Properties

Label 8954.2.a.bh
Level $8954$
Weight $2$
Character orbit 8954.a
Self dual yes
Analytic conductor $71.498$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8954,2,Mod(1,8954)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8954.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8954, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8954 = 2 \cdot 11^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8954.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,-7,1,7,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.4980499699\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 11x^{5} + 27x^{4} - 3x^{3} - 21x^{2} + 4x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{6}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} - \beta_{5} q^{3} + q^{4} + \beta_{2} q^{5} + \beta_{5} q^{6} + ( - \beta_{6} - \beta_{5} - \beta_1 + 1) q^{7} - q^{8} + (\beta_{4} - \beta_{3} - \beta_{2} + \beta_1) q^{9} - \beta_{2} q^{10}+ \cdots + (\beta_{6} + \beta_{5} - 2 \beta_{3} + \cdots - 2) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 7 q^{2} + q^{3} + 7 q^{4} - 3 q^{5} - q^{6} + 3 q^{7} - 7 q^{8} + 6 q^{9} + 3 q^{10} + q^{12} + 2 q^{13} - 3 q^{14} + q^{15} + 7 q^{16} + 3 q^{17} - 6 q^{18} + 10 q^{19} - 3 q^{20} + 8 q^{21}+ \cdots - 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{7} - 2x^{6} - 11x^{5} + 27x^{4} - 3x^{3} - 21x^{2} + 4x + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -3\nu^{6} + 37\nu^{4} - 11\nu^{3} - 57\nu^{2} + 5\nu + 10 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -3\nu^{6} + 4\nu^{5} + 33\nu^{4} - 55\nu^{3} + 3\nu^{2} + 13\nu - 6 ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{6} + 2\nu^{5} + 11\nu^{4} - 27\nu^{3} + 3\nu^{2} + 19\nu - 2 ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\nu^{6} + \nu^{5} + 12\nu^{4} - 15\nu^{3} - 12\nu^{2} + 9\nu + 5 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( 2\nu^{6} - 2\nu^{5} - 23\nu^{4} + 30\nu^{3} + 13\nu^{2} - 14\nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{6} + \beta_{4} + \beta_{3} + \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} - 2\beta_{4} + \beta_{3} - \beta_{2} + 8\beta _1 - 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 12\beta_{6} + 2\beta_{5} + 11\beta_{4} + 11\beta_{3} + 11\beta_{2} - 4\beta _1 + 26 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -3\beta_{6} + 13\beta_{5} - 26\beta_{4} + 8\beta_{3} - 16\beta_{2} + 82\beta _1 - 48 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 129\beta_{6} + 21\beta_{5} + 124\beta_{4} + 113\beta_{3} + 119\beta_{2} - 77\beta _1 + 278 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.694735
−0.402331
−0.702530
−3.42639
3.02333
1.51668
1.29651
−1.00000 −3.27585 1.00000 −2.36104 3.27585 −1.12156 −1.00000 7.73117 2.36104
1.2 −1.00000 −0.713098 1.00000 0.108716 0.713098 −1.52087 −1.00000 −2.49149 −0.108716
1.3 −1.00000 −0.587361 1.00000 −2.29467 0.587361 3.28545 −1.00000 −2.65501 2.29467
1.4 −1.00000 −0.225918 1.00000 2.86053 0.225918 2.66826 −1.00000 −2.94896 −2.86053
1.5 −1.00000 0.494236 1.00000 0.0992536 −0.494236 −4.61415 −1.00000 −2.75573 −0.0992536
1.6 −1.00000 1.93544 1.00000 1.83896 −1.93544 4.49319 −1.00000 0.745917 −1.83896
1.7 −1.00000 3.37255 1.00000 −3.25175 −3.37255 −0.190313 −1.00000 8.37410 3.25175
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.7
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(11\) \( -1 \)
\(37\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8954.2.a.bh 7
11.b odd 2 1 8954.2.a.bj yes 7
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8954.2.a.bh 7 1.a even 1 1 trivial
8954.2.a.bj yes 7 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8954))\):

\( T_{3}^{7} - T_{3}^{6} - 13T_{3}^{5} + 10T_{3}^{4} + 23T_{3}^{3} + 2T_{3}^{2} - 5T_{3} - 1 \) Copy content Toggle raw display
\( T_{5}^{7} + 3T_{5}^{6} - 12T_{5}^{5} - 35T_{5}^{4} + 33T_{5}^{3} + 87T_{5}^{2} - 19T_{5} + 1 \) Copy content Toggle raw display
\( T_{7}^{7} - 3T_{7}^{6} - 27T_{7}^{5} + 76T_{7}^{4} + 141T_{7}^{3} - 244T_{7}^{2} - 361T_{7} - 59 \) Copy content Toggle raw display
\( T_{17}^{7} - 3T_{17}^{6} - 74T_{17}^{5} + 267T_{17}^{4} + 1274T_{17}^{3} - 4905T_{17}^{2} - 2961T_{17} + 11637 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{7} \) Copy content Toggle raw display
$3$ \( T^{7} - T^{6} - 13 T^{5} + \cdots - 1 \) Copy content Toggle raw display
$5$ \( T^{7} + 3 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{7} - 3 T^{6} + \cdots - 59 \) Copy content Toggle raw display
$11$ \( T^{7} \) Copy content Toggle raw display
$13$ \( T^{7} - 2 T^{6} + \cdots - 6607 \) Copy content Toggle raw display
$17$ \( T^{7} - 3 T^{6} + \cdots + 11637 \) Copy content Toggle raw display
$19$ \( T^{7} - 10 T^{6} + \cdots + 1727 \) Copy content Toggle raw display
$23$ \( T^{7} + 18 T^{6} + \cdots - 6124 \) Copy content Toggle raw display
$29$ \( T^{7} - 14 T^{6} + \cdots + 2453 \) Copy content Toggle raw display
$31$ \( T^{7} + 5 T^{6} + \cdots + 34363 \) Copy content Toggle raw display
$37$ \( (T + 1)^{7} \) Copy content Toggle raw display
$41$ \( T^{7} + 10 T^{6} + \cdots + 727 \) Copy content Toggle raw display
$43$ \( T^{7} - 11 T^{6} + \cdots + 452861 \) Copy content Toggle raw display
$47$ \( T^{7} + 16 T^{6} + \cdots + 3587 \) Copy content Toggle raw display
$53$ \( T^{7} + 21 T^{6} + \cdots - 26207 \) Copy content Toggle raw display
$59$ \( T^{7} - 29 T^{6} + \cdots - 439177 \) Copy content Toggle raw display
$61$ \( T^{7} - 37 T^{6} + \cdots - 16 \) Copy content Toggle raw display
$67$ \( T^{7} + 13 T^{6} + \cdots - 279221 \) Copy content Toggle raw display
$71$ \( T^{7} + 15 T^{6} + \cdots + 1684 \) Copy content Toggle raw display
$73$ \( T^{7} - 12 T^{6} + \cdots + 472049 \) Copy content Toggle raw display
$79$ \( T^{7} + 9 T^{6} + \cdots + 251372 \) Copy content Toggle raw display
$83$ \( T^{7} + 9 T^{6} + \cdots - 196421 \) Copy content Toggle raw display
$89$ \( T^{7} + 17 T^{6} + \cdots + 451332 \) Copy content Toggle raw display
$97$ \( T^{7} + 31 T^{6} + \cdots - 106807 \) Copy content Toggle raw display
show more
show less