Properties

Label 8954.2.a.be
Level $8954$
Weight $2$
Character orbit 8954.a
Self dual yes
Analytic conductor $71.498$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8954,2,Mod(1,8954)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8954.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8954, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8954 = 2 \cdot 11^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8954.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-6,0,6,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.4980499699\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.249645904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 12x^{4} - 6x^{3} + 34x^{2} + 34x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + \beta_1 q^{3} + q^{4} + ( - \beta_{4} - \beta_1) q^{5} - \beta_1 q^{6} + (\beta_{5} + \beta_{2} - 1) q^{7} - q^{8} + (\beta_{2} + \beta_1 + 1) q^{9} + (\beta_{4} + \beta_1) q^{10} + \beta_1 q^{12}+ \cdots + (3 \beta_{5} - 2 \beta_{4} + \beta_{3} + \cdots - 5) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} + 6 q^{4} + q^{5} - 8 q^{7} - 6 q^{8} + 6 q^{9} - q^{10} - 12 q^{13} + 8 q^{14} - 18 q^{15} + 6 q^{16} - 5 q^{17} - 6 q^{18} - 2 q^{19} + q^{20} - 4 q^{21} + 14 q^{23} + 7 q^{25} + 12 q^{26}+ \cdots - 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 12x^{4} - 6x^{3} + 34x^{2} + 34x + 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 6\nu - 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} - 12\nu^{3} - 4\nu^{2} + 34\nu + 20 ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\nu^{5} + \nu^{4} + 11\nu^{3} - 4\nu^{2} - 30\nu - 11 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 6\beta _1 + 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{5} + 2\beta_{4} + \beta_{3} + 8\beta_{2} + 10\beta _1 + 26 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2\beta_{4} + 12\beta_{3} + 4\beta_{2} + 42\beta _1 + 32 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.43488
−1.79965
−0.676613
−0.389103
2.35251
2.94773
−1.00000 −2.43488 1.00000 1.86346 2.43488 3.63624 −1.00000 2.92863 −1.86346
1.2 −1.00000 −1.79965 1.00000 3.33826 1.79965 −4.67488 −1.00000 0.238734 −3.33826
1.3 −1.00000 −0.676613 1.00000 1.30701 0.676613 0.545661 −1.00000 −2.54219 −1.30701
1.4 −1.00000 −0.389103 1.00000 −3.04234 0.389103 −5.00817 −1.00000 −2.84860 3.04234
1.5 −1.00000 2.35251 1.00000 0.813501 −2.35251 −3.74156 −1.00000 2.53430 −0.813501
1.6 −1.00000 2.94773 1.00000 −3.27989 −2.94773 1.24272 −1.00000 5.68913 3.27989
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(11\) \( +1 \)
\(37\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8954.2.a.be 6
11.b odd 2 1 8954.2.a.bf yes 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8954.2.a.be 6 1.a even 1 1 trivial
8954.2.a.bf yes 6 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8954))\):

\( T_{3}^{6} - 12T_{3}^{4} - 6T_{3}^{3} + 34T_{3}^{2} + 34T_{3} + 8 \) Copy content Toggle raw display
\( T_{5}^{6} - T_{5}^{5} - 18T_{5}^{4} + 24T_{5}^{3} + 71T_{5}^{2} - 145T_{5} + 66 \) Copy content Toggle raw display
\( T_{7}^{6} + 8T_{7}^{5} - 6T_{7}^{4} - 142T_{7}^{3} - 80T_{7}^{2} + 482T_{7} - 216 \) Copy content Toggle raw display
\( T_{17}^{6} + 5T_{17}^{5} - 28T_{17}^{4} - 114T_{17}^{3} + 153T_{17}^{2} + 629T_{17} + 402 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - 12 T^{4} + \cdots + 8 \) Copy content Toggle raw display
$5$ \( T^{6} - T^{5} + \cdots + 66 \) Copy content Toggle raw display
$7$ \( T^{6} + 8 T^{5} + \cdots - 216 \) Copy content Toggle raw display
$11$ \( T^{6} \) Copy content Toggle raw display
$13$ \( T^{6} + 12 T^{5} + \cdots + 108 \) Copy content Toggle raw display
$17$ \( T^{6} + 5 T^{5} + \cdots + 402 \) Copy content Toggle raw display
$19$ \( T^{6} + 2 T^{5} + \cdots - 24 \) Copy content Toggle raw display
$23$ \( T^{6} - 14 T^{5} + \cdots - 768 \) Copy content Toggle raw display
$29$ \( T^{6} + 4 T^{5} + \cdots + 12 \) Copy content Toggle raw display
$31$ \( T^{6} - 4 T^{5} + \cdots + 16 \) Copy content Toggle raw display
$37$ \( (T + 1)^{6} \) Copy content Toggle raw display
$41$ \( T^{6} - 98 T^{4} + \cdots - 13824 \) Copy content Toggle raw display
$43$ \( T^{6} + 4 T^{5} + \cdots - 1752 \) Copy content Toggle raw display
$47$ \( T^{6} - 15 T^{5} + \cdots + 16248 \) Copy content Toggle raw display
$53$ \( T^{6} - 10 T^{5} + \cdots + 4224 \) Copy content Toggle raw display
$59$ \( T^{6} + 18 T^{5} + \cdots + 161064 \) Copy content Toggle raw display
$61$ \( T^{6} + 12 T^{5} + \cdots + 93732 \) Copy content Toggle raw display
$67$ \( T^{6} - 10 T^{5} + \cdots + 32 \) Copy content Toggle raw display
$71$ \( T^{6} - 35 T^{5} + \cdots + 253044 \) Copy content Toggle raw display
$73$ \( T^{6} + 4 T^{5} + \cdots - 369312 \) Copy content Toggle raw display
$79$ \( T^{6} - T^{5} + \cdots + 1800 \) Copy content Toggle raw display
$83$ \( T^{6} + 3 T^{5} + \cdots - 9132 \) Copy content Toggle raw display
$89$ \( T^{6} + 4 T^{5} + \cdots - 1334832 \) Copy content Toggle raw display
$97$ \( T^{6} - 12 T^{5} + \cdots - 810484 \) Copy content Toggle raw display
show more
show less