Properties

Label 8954.2.a.bb
Level $8954$
Weight $2$
Character orbit 8954.a
Self dual yes
Analytic conductor $71.498$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8954,2,Mod(1,8954)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8954.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8954, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8954 = 2 \cdot 11^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8954.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,5,0,5,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.4980499699\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.2186192.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 12x^{3} - 2x^{2} + 30x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 814)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + \beta_1 q^{3} + q^{4} + ( - \beta_{2} + \beta_1 + 1) q^{5} + \beta_1 q^{6} + ( - \beta_{3} - \beta_{2} - \beta_1 + 1) q^{7} + q^{8} + (\beta_{4} - \beta_{2} + \beta_1 + 2) q^{9} + ( - \beta_{2} + \beta_1 + 1) q^{10}+ \cdots + (\beta_{4} - 3 \beta_{2} - \beta_1 + 4) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 5 q^{2} + 5 q^{4} + 6 q^{5} + 6 q^{7} + 5 q^{8} + 9 q^{9} + 6 q^{10} + 2 q^{13} + 6 q^{14} + 14 q^{15} + 5 q^{16} - 8 q^{17} + 9 q^{18} + 8 q^{19} + 6 q^{20} - 22 q^{21} + 4 q^{23} + 11 q^{25} + 2 q^{26}+ \cdots + 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 12x^{3} - 2x^{2} + 30x + 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{4} + 4\nu^{3} + 6\nu^{2} - 22\nu - 2 ) / 10 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 3\nu^{4} - 2\nu^{3} - 28\nu^{2} + 6\nu + 36 ) / 10 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{4} + 4\nu^{3} + 16\nu^{2} - 32\nu - 52 ) / 10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} - \beta_{2} + \beta _1 + 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} + \beta_{3} + 2\beta_{2} + 7\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 10\beta_{4} + 4\beta_{3} - 8\beta_{2} + 12\beta _1 + 36 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.79452
−1.85130
−0.269612
1.90549
3.00994
1.00000 −2.79452 1.00000 2.39985 −2.79452 5.27135 1.00000 4.80934 2.39985
1.2 1.00000 −1.85130 1.00000 −3.06790 −1.85130 2.94902 1.00000 0.427321 −3.06790
1.3 1.00000 −0.269612 1.00000 0.301993 −0.269612 −2.39898 1.00000 −2.92731 0.301993
1.4 1.00000 1.90549 1.00000 3.66992 1.90549 2.71086 1.00000 0.630907 3.66992
1.5 1.00000 3.00994 1.00000 2.69614 3.00994 −2.53225 1.00000 6.05974 2.69614
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(11\) \( -1 \)
\(37\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8954.2.a.bb 5
11.b odd 2 1 814.2.a.j 5
33.d even 2 1 7326.2.a.bs 5
44.c even 2 1 6512.2.a.s 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
814.2.a.j 5 11.b odd 2 1
6512.2.a.s 5 44.c even 2 1
7326.2.a.bs 5 33.d even 2 1
8954.2.a.bb 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8954))\):

\( T_{3}^{5} - 12T_{3}^{3} - 2T_{3}^{2} + 30T_{3} + 8 \) Copy content Toggle raw display
\( T_{5}^{5} - 6T_{5}^{4} + 54T_{5}^{2} - 89T_{5} + 22 \) Copy content Toggle raw display
\( T_{7}^{5} - 6T_{7}^{4} - 10T_{7}^{3} + 78T_{7}^{2} + 22T_{7} - 256 \) Copy content Toggle raw display
\( T_{17}^{5} + 8T_{17}^{4} - 12T_{17}^{3} - 170T_{17}^{2} - 21T_{17} + 842 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{5} \) Copy content Toggle raw display
$3$ \( T^{5} - 12 T^{3} + \cdots + 8 \) Copy content Toggle raw display
$5$ \( T^{5} - 6 T^{4} + \cdots + 22 \) Copy content Toggle raw display
$7$ \( T^{5} - 6 T^{4} + \cdots - 256 \) Copy content Toggle raw display
$11$ \( T^{5} \) Copy content Toggle raw display
$13$ \( T^{5} - 2 T^{4} + \cdots + 508 \) Copy content Toggle raw display
$17$ \( T^{5} + 8 T^{4} + \cdots + 842 \) Copy content Toggle raw display
$19$ \( T^{5} - 8 T^{4} + \cdots - 216 \) Copy content Toggle raw display
$23$ \( T^{5} - 4 T^{4} + \cdots + 4544 \) Copy content Toggle raw display
$29$ \( T^{5} - 98 T^{3} + \cdots + 604 \) Copy content Toggle raw display
$31$ \( T^{5} - 2 T^{4} + \cdots + 7136 \) Copy content Toggle raw display
$37$ \( (T - 1)^{5} \) Copy content Toggle raw display
$41$ \( T^{5} - 2 T^{4} + \cdots - 52 \) Copy content Toggle raw display
$43$ \( T^{5} - 10 T^{4} + \cdots + 5688 \) Copy content Toggle raw display
$47$ \( T^{5} - 10 T^{4} + \cdots + 13744 \) Copy content Toggle raw display
$53$ \( T^{5} - 10 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$59$ \( T^{5} - 12 T^{4} + \cdots + 4864 \) Copy content Toggle raw display
$61$ \( T^{5} + 6 T^{4} + \cdots + 14564 \) Copy content Toggle raw display
$67$ \( T^{5} + 18 T^{4} + \cdots + 5176 \) Copy content Toggle raw display
$71$ \( T^{5} - 34 T^{4} + \cdots + 206208 \) Copy content Toggle raw display
$73$ \( T^{5} - 104 T^{3} + \cdots - 556 \) Copy content Toggle raw display
$79$ \( T^{5} + 8 T^{4} + \cdots + 28088 \) Copy content Toggle raw display
$83$ \( T^{5} + 10 T^{4} + \cdots + 118044 \) Copy content Toggle raw display
$89$ \( T^{5} - 60 T^{4} + \cdots - 129168 \) Copy content Toggle raw display
$97$ \( T^{5} - 20 T^{4} + \cdots + 4124 \) Copy content Toggle raw display
show more
show less