Properties

Label 8954.2.a.ba
Level $8954$
Weight $2$
Character orbit 8954.a
Self dual yes
Analytic conductor $71.498$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8954,2,Mod(1,8954)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8954.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8954, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8954 = 2 \cdot 11^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8954.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,5,0,5,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.4980499699\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.303952.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 6x^{3} + 2x^{2} + 5x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - \beta_{4} q^{3} + q^{4} + \beta_1 q^{5} - \beta_{4} q^{6} + (\beta_{4} + \beta_{3} + \beta_1 - 1) q^{7} + q^{8} + (\beta_{4} - 2 \beta_{2} + \beta_1) q^{9} + \beta_1 q^{10} - \beta_{4} q^{12}+ \cdots + ( - 2 \beta_{4} - 3 \beta_{3} + \cdots + 1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 5 q^{2} + 5 q^{4} + q^{5} - 4 q^{7} + 5 q^{8} + 5 q^{9} + q^{10} - 6 q^{13} - 4 q^{14} + 2 q^{15} + 5 q^{16} + 7 q^{17} + 5 q^{18} - 10 q^{19} + q^{20} - 20 q^{21} - 12 q^{23} - 12 q^{25} - 6 q^{26}+ \cdots + 5 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 6x^{3} + 2x^{2} + 5x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{4} - \nu^{3} - 5\nu^{2} + 2\nu + 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} - \nu^{3} - 6\nu^{2} + 2\nu + 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -\nu^{4} + 2\nu^{3} + 5\nu^{2} - 7\nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{3} + \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} + \beta_{2} + 5\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} - 5\beta_{3} + 7\beta_{2} + 3\beta _1 + 16 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.665485
2.68092
−1.97156
−0.238066
1.19418
1.00000 −3.08717 1.00000 −0.665485 −3.08717 1.92435 1.00000 6.53062 −0.665485
1.2 1.00000 −1.04977 1.00000 2.68092 −1.04977 1.35768 1.00000 −1.89799 2.68092
1.3 1.00000 0.199967 1.00000 −1.97156 0.199967 −3.66431 1.00000 −2.96001 −1.97156
1.4 1.00000 1.08036 1.00000 −0.238066 1.08036 0.882095 1.00000 −1.83282 −0.238066
1.5 1.00000 2.85661 1.00000 1.19418 2.85661 −4.49982 1.00000 5.16021 1.19418
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(11\) \( +1 \)
\(37\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8954.2.a.ba yes 5
11.b odd 2 1 8954.2.a.x 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8954.2.a.x 5 11.b odd 2 1
8954.2.a.ba yes 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8954))\):

\( T_{3}^{5} - 10T_{3}^{3} + 2T_{3}^{2} + 10T_{3} - 2 \) Copy content Toggle raw display
\( T_{5}^{5} - T_{5}^{4} - 6T_{5}^{3} + 2T_{5}^{2} + 5T_{5} + 1 \) Copy content Toggle raw display
\( T_{7}^{5} + 4T_{7}^{4} - 12T_{7}^{3} - 26T_{7}^{2} + 72T_{7} - 38 \) Copy content Toggle raw display
\( T_{17}^{5} - 7T_{17}^{4} - 10T_{17}^{3} + 114T_{17}^{2} - 63T_{17} - 43 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{5} \) Copy content Toggle raw display
$3$ \( T^{5} - 10 T^{3} + \cdots - 2 \) Copy content Toggle raw display
$5$ \( T^{5} - T^{4} - 6 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{5} + 4 T^{4} + \cdots - 38 \) Copy content Toggle raw display
$11$ \( T^{5} \) Copy content Toggle raw display
$13$ \( T^{5} + 6 T^{4} + \cdots + 2 \) Copy content Toggle raw display
$17$ \( T^{5} - 7 T^{4} + \cdots - 43 \) Copy content Toggle raw display
$19$ \( T^{5} + 10 T^{4} + \cdots - 874 \) Copy content Toggle raw display
$23$ \( T^{5} + 12 T^{4} + \cdots - 128 \) Copy content Toggle raw display
$29$ \( T^{5} - 2 T^{4} + \cdots + 1718 \) Copy content Toggle raw display
$31$ \( T^{5} + 10 T^{4} + \cdots + 2648 \) Copy content Toggle raw display
$37$ \( (T - 1)^{5} \) Copy content Toggle raw display
$41$ \( T^{5} - 4 T^{4} + \cdots - 2 \) Copy content Toggle raw display
$43$ \( T^{5} + 20 T^{4} + \cdots - 50 \) Copy content Toggle raw display
$47$ \( T^{5} - 3 T^{4} + \cdots - 6361 \) Copy content Toggle raw display
$53$ \( T^{5} + 16 T^{4} + \cdots + 1216 \) Copy content Toggle raw display
$59$ \( T^{5} + 4 T^{4} + \cdots + 4 \) Copy content Toggle raw display
$61$ \( T^{5} + 14 T^{4} + \cdots + 974 \) Copy content Toggle raw display
$67$ \( T^{5} - 26 T^{4} + \cdots - 650 \) Copy content Toggle raw display
$71$ \( T^{5} + 5 T^{4} + \cdots + 10861 \) Copy content Toggle raw display
$73$ \( T^{5} + 28 T^{4} + \cdots - 2246 \) Copy content Toggle raw display
$79$ \( T^{5} + 21 T^{4} + \cdots + 323 \) Copy content Toggle raw display
$83$ \( T^{5} + 19 T^{4} + \cdots + 15173 \) Copy content Toggle raw display
$89$ \( T^{5} + 10 T^{4} + \cdots - 1112 \) Copy content Toggle raw display
$97$ \( T^{5} + 10 T^{4} + \cdots - 6346 \) Copy content Toggle raw display
show more
show less