Properties

Label 8910.2.a.bs.1.3
Level $8910$
Weight $2$
Character 8910.1
Self dual yes
Analytic conductor $71.147$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8910,2,Mod(1,8910)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8910, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8910.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 8910 = 2 \cdot 3^{4} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8910.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,0,4,4,0,2,-4,0,-4,-4,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.1467082010\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.4752.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 3x^{2} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.219687\) of defining polynomial
Character \(\chi\) \(=\) 8910.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +1.00000 q^{5} +1.60020 q^{7} -1.00000 q^{8} -1.00000 q^{10} -1.00000 q^{11} +4.77162 q^{13} -1.60020 q^{14} +1.00000 q^{16} -3.93244 q^{17} -1.29268 q^{19} +1.00000 q^{20} +1.00000 q^{22} -4.33225 q^{23} +1.00000 q^{25} -4.77162 q^{26} +1.60020 q^{28} -6.23996 q^{29} +3.33225 q^{31} -1.00000 q^{32} +3.93244 q^{34} +1.60020 q^{35} -2.43937 q^{37} +1.29268 q^{38} -1.00000 q^{40} +1.69346 q^{41} -1.34709 q^{43} -1.00000 q^{44} +4.33225 q^{46} +3.35697 q^{47} -4.43937 q^{49} -1.00000 q^{50} +4.77162 q^{52} -1.19941 q^{53} -1.00000 q^{55} -1.60020 q^{56} +6.23996 q^{58} +1.26371 q^{59} -0.878747 q^{61} -3.33225 q^{62} +1.00000 q^{64} +4.77162 q^{65} -3.77162 q^{67} -3.93244 q^{68} -1.60020 q^{70} -7.15658 q^{71} -10.8755 q^{73} +2.43937 q^{74} -1.29268 q^{76} -1.60020 q^{77} -7.41139 q^{79} +1.00000 q^{80} -1.69346 q^{82} -1.73629 q^{83} -3.93244 q^{85} +1.34709 q^{86} +1.00000 q^{88} -5.78575 q^{89} +7.63553 q^{91} -4.33225 q^{92} -3.35697 q^{94} -1.29268 q^{95} +0.425248 q^{97} +4.43937 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{4} + 4 q^{5} + 2 q^{7} - 4 q^{8} - 4 q^{10} - 4 q^{11} + 2 q^{13} - 2 q^{14} + 4 q^{16} - 4 q^{19} + 4 q^{20} + 4 q^{22} - 6 q^{23} + 4 q^{25} - 2 q^{26} + 2 q^{28} - 6 q^{29} + 2 q^{31}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 1.60020 0.604817 0.302409 0.953178i \(-0.402209\pi\)
0.302409 + 0.953178i \(0.402209\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −1.00000 −0.316228
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) 4.77162 1.32341 0.661705 0.749765i \(-0.269833\pi\)
0.661705 + 0.749765i \(0.269833\pi\)
\(14\) −1.60020 −0.427670
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −3.93244 −0.953757 −0.476879 0.878969i \(-0.658232\pi\)
−0.476879 + 0.878969i \(0.658232\pi\)
\(18\) 0 0
\(19\) −1.29268 −0.296560 −0.148280 0.988945i \(-0.547374\pi\)
−0.148280 + 0.988945i \(0.547374\pi\)
\(20\) 1.00000 0.223607
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) −4.33225 −0.903336 −0.451668 0.892186i \(-0.649171\pi\)
−0.451668 + 0.892186i \(0.649171\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −4.77162 −0.935792
\(27\) 0 0
\(28\) 1.60020 0.302409
\(29\) −6.23996 −1.15873 −0.579366 0.815068i \(-0.696700\pi\)
−0.579366 + 0.815068i \(0.696700\pi\)
\(30\) 0 0
\(31\) 3.33225 0.598489 0.299245 0.954176i \(-0.403265\pi\)
0.299245 + 0.954176i \(0.403265\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 3.93244 0.674408
\(35\) 1.60020 0.270482
\(36\) 0 0
\(37\) −2.43937 −0.401031 −0.200515 0.979691i \(-0.564262\pi\)
−0.200515 + 0.979691i \(0.564262\pi\)
\(38\) 1.29268 0.209700
\(39\) 0 0
\(40\) −1.00000 −0.158114
\(41\) 1.69346 0.264474 0.132237 0.991218i \(-0.457784\pi\)
0.132237 + 0.991218i \(0.457784\pi\)
\(42\) 0 0
\(43\) −1.34709 −0.205429 −0.102715 0.994711i \(-0.532753\pi\)
−0.102715 + 0.994711i \(0.532753\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) 4.33225 0.638755
\(47\) 3.35697 0.489665 0.244833 0.969565i \(-0.421267\pi\)
0.244833 + 0.969565i \(0.421267\pi\)
\(48\) 0 0
\(49\) −4.43937 −0.634196
\(50\) −1.00000 −0.141421
\(51\) 0 0
\(52\) 4.77162 0.661705
\(53\) −1.19941 −0.164752 −0.0823760 0.996601i \(-0.526251\pi\)
−0.0823760 + 0.996601i \(0.526251\pi\)
\(54\) 0 0
\(55\) −1.00000 −0.134840
\(56\) −1.60020 −0.213835
\(57\) 0 0
\(58\) 6.23996 0.819347
\(59\) 1.26371 0.164521 0.0822605 0.996611i \(-0.473786\pi\)
0.0822605 + 0.996611i \(0.473786\pi\)
\(60\) 0 0
\(61\) −0.878747 −0.112512 −0.0562560 0.998416i \(-0.517916\pi\)
−0.0562560 + 0.998416i \(0.517916\pi\)
\(62\) −3.33225 −0.423196
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 4.77162 0.591847
\(66\) 0 0
\(67\) −3.77162 −0.460777 −0.230388 0.973099i \(-0.574000\pi\)
−0.230388 + 0.973099i \(0.574000\pi\)
\(68\) −3.93244 −0.476879
\(69\) 0 0
\(70\) −1.60020 −0.191260
\(71\) −7.15658 −0.849330 −0.424665 0.905351i \(-0.639608\pi\)
−0.424665 + 0.905351i \(0.639608\pi\)
\(72\) 0 0
\(73\) −10.8755 −1.27288 −0.636440 0.771326i \(-0.719594\pi\)
−0.636440 + 0.771326i \(0.719594\pi\)
\(74\) 2.43937 0.283571
\(75\) 0 0
\(76\) −1.29268 −0.148280
\(77\) −1.60020 −0.182359
\(78\) 0 0
\(79\) −7.41139 −0.833846 −0.416923 0.908942i \(-0.636892\pi\)
−0.416923 + 0.908942i \(0.636892\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) −1.69346 −0.187011
\(83\) −1.73629 −0.190583 −0.0952913 0.995449i \(-0.530378\pi\)
−0.0952913 + 0.995449i \(0.530378\pi\)
\(84\) 0 0
\(85\) −3.93244 −0.426533
\(86\) 1.34709 0.145260
\(87\) 0 0
\(88\) 1.00000 0.106600
\(89\) −5.78575 −0.613288 −0.306644 0.951824i \(-0.599206\pi\)
−0.306644 + 0.951824i \(0.599206\pi\)
\(90\) 0 0
\(91\) 7.63553 0.800421
\(92\) −4.33225 −0.451668
\(93\) 0 0
\(94\) −3.35697 −0.346245
\(95\) −1.29268 −0.132626
\(96\) 0 0
\(97\) 0.425248 0.0431774 0.0215887 0.999767i \(-0.493128\pi\)
0.0215887 + 0.999767i \(0.493128\pi\)
\(98\) 4.43937 0.448444
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 9.00734 0.896264 0.448132 0.893967i \(-0.352089\pi\)
0.448132 + 0.893967i \(0.352089\pi\)
\(102\) 0 0
\(103\) −16.8327 −1.65857 −0.829285 0.558825i \(-0.811252\pi\)
−0.829285 + 0.558825i \(0.811252\pi\)
\(104\) −4.77162 −0.467896
\(105\) 0 0
\(106\) 1.19941 0.116497
\(107\) −8.47470 −0.819281 −0.409640 0.912247i \(-0.634346\pi\)
−0.409640 + 0.912247i \(0.634346\pi\)
\(108\) 0 0
\(109\) 5.17142 0.495333 0.247666 0.968845i \(-0.420336\pi\)
0.247666 + 0.968845i \(0.420336\pi\)
\(110\) 1.00000 0.0953463
\(111\) 0 0
\(112\) 1.60020 0.151204
\(113\) −15.4757 −1.45583 −0.727915 0.685668i \(-0.759510\pi\)
−0.727915 + 0.685668i \(0.759510\pi\)
\(114\) 0 0
\(115\) −4.33225 −0.403984
\(116\) −6.23996 −0.579366
\(117\) 0 0
\(118\) −1.26371 −0.116334
\(119\) −6.29268 −0.576849
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0.878747 0.0795581
\(123\) 0 0
\(124\) 3.33225 0.299245
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 18.5110 1.64259 0.821293 0.570506i \(-0.193253\pi\)
0.821293 + 0.570506i \(0.193253\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −4.77162 −0.418499
\(131\) −12.0073 −1.04909 −0.524543 0.851384i \(-0.675764\pi\)
−0.524543 + 0.851384i \(0.675764\pi\)
\(132\) 0 0
\(133\) −2.06854 −0.179365
\(134\) 3.77162 0.325818
\(135\) 0 0
\(136\) 3.93244 0.337204
\(137\) 10.4039 0.888864 0.444432 0.895813i \(-0.353406\pi\)
0.444432 + 0.895813i \(0.353406\pi\)
\(138\) 0 0
\(139\) 3.10811 0.263626 0.131813 0.991275i \(-0.457920\pi\)
0.131813 + 0.991275i \(0.457920\pi\)
\(140\) 1.60020 0.135241
\(141\) 0 0
\(142\) 7.15658 0.600567
\(143\) −4.77162 −0.399023
\(144\) 0 0
\(145\) −6.23996 −0.518201
\(146\) 10.8755 0.900062
\(147\) 0 0
\(148\) −2.43937 −0.200515
\(149\) −6.05272 −0.495858 −0.247929 0.968778i \(-0.579750\pi\)
−0.247929 + 0.968778i \(0.579750\pi\)
\(150\) 0 0
\(151\) −0.0289668 −0.00235729 −0.00117864 0.999999i \(-0.500375\pi\)
−0.00117864 + 0.999999i \(0.500375\pi\)
\(152\) 1.29268 0.104850
\(153\) 0 0
\(154\) 1.60020 0.128947
\(155\) 3.33225 0.267652
\(156\) 0 0
\(157\) −15.0462 −1.20082 −0.600409 0.799693i \(-0.704995\pi\)
−0.600409 + 0.799693i \(0.704995\pi\)
\(158\) 7.41139 0.589618
\(159\) 0 0
\(160\) −1.00000 −0.0790569
\(161\) −6.93244 −0.546353
\(162\) 0 0
\(163\) 12.5037 0.979363 0.489682 0.871901i \(-0.337113\pi\)
0.489682 + 0.871901i \(0.337113\pi\)
\(164\) 1.69346 0.132237
\(165\) 0 0
\(166\) 1.73629 0.134762
\(167\) 5.02473 0.388825 0.194413 0.980920i \(-0.437720\pi\)
0.194413 + 0.980920i \(0.437720\pi\)
\(168\) 0 0
\(169\) 9.76836 0.751412
\(170\) 3.93244 0.301605
\(171\) 0 0
\(172\) −1.34709 −0.102715
\(173\) 4.96777 0.377693 0.188846 0.982007i \(-0.439525\pi\)
0.188846 + 0.982007i \(0.439525\pi\)
\(174\) 0 0
\(175\) 1.60020 0.120963
\(176\) −1.00000 −0.0753778
\(177\) 0 0
\(178\) 5.78575 0.433660
\(179\) −11.1460 −0.833090 −0.416545 0.909115i \(-0.636759\pi\)
−0.416545 + 0.909115i \(0.636759\pi\)
\(180\) 0 0
\(181\) −4.50693 −0.334998 −0.167499 0.985872i \(-0.553569\pi\)
−0.167499 + 0.985872i \(0.553569\pi\)
\(182\) −7.63553 −0.565983
\(183\) 0 0
\(184\) 4.33225 0.319377
\(185\) −2.43937 −0.179346
\(186\) 0 0
\(187\) 3.93244 0.287569
\(188\) 3.35697 0.244833
\(189\) 0 0
\(190\) 1.29268 0.0937807
\(191\) −14.2805 −1.03330 −0.516651 0.856196i \(-0.672821\pi\)
−0.516651 + 0.856196i \(0.672821\pi\)
\(192\) 0 0
\(193\) 8.18979 0.589514 0.294757 0.955572i \(-0.404761\pi\)
0.294757 + 0.955572i \(0.404761\pi\)
\(194\) −0.425248 −0.0305311
\(195\) 0 0
\(196\) −4.43937 −0.317098
\(197\) −8.08903 −0.576319 −0.288160 0.957582i \(-0.593043\pi\)
−0.288160 + 0.957582i \(0.593043\pi\)
\(198\) 0 0
\(199\) 4.45024 0.315469 0.157735 0.987482i \(-0.449581\pi\)
0.157735 + 0.987482i \(0.449581\pi\)
\(200\) −1.00000 −0.0707107
\(201\) 0 0
\(202\) −9.00734 −0.633754
\(203\) −9.98516 −0.700821
\(204\) 0 0
\(205\) 1.69346 0.118276
\(206\) 16.8327 1.17279
\(207\) 0 0
\(208\) 4.77162 0.330852
\(209\) 1.29268 0.0894163
\(210\) 0 0
\(211\) −6.49307 −0.447001 −0.223501 0.974704i \(-0.571748\pi\)
−0.223501 + 0.974704i \(0.571748\pi\)
\(212\) −1.19941 −0.0823760
\(213\) 0 0
\(214\) 8.47470 0.579319
\(215\) −1.34709 −0.0918706
\(216\) 0 0
\(217\) 5.33225 0.361976
\(218\) −5.17142 −0.350253
\(219\) 0 0
\(220\) −1.00000 −0.0674200
\(221\) −18.7641 −1.26221
\(222\) 0 0
\(223\) 19.1251 1.28071 0.640355 0.768079i \(-0.278787\pi\)
0.640355 + 0.768079i \(0.278787\pi\)
\(224\) −1.60020 −0.106918
\(225\) 0 0
\(226\) 15.4757 1.02943
\(227\) 1.07816 0.0715600 0.0357800 0.999360i \(-0.488608\pi\)
0.0357800 + 0.999360i \(0.488608\pi\)
\(228\) 0 0
\(229\) −6.03461 −0.398779 −0.199389 0.979920i \(-0.563896\pi\)
−0.199389 + 0.979920i \(0.563896\pi\)
\(230\) 4.33225 0.285660
\(231\) 0 0
\(232\) 6.23996 0.409673
\(233\) −5.54578 −0.363316 −0.181658 0.983362i \(-0.558146\pi\)
−0.181658 + 0.983362i \(0.558146\pi\)
\(234\) 0 0
\(235\) 3.35697 0.218985
\(236\) 1.26371 0.0822605
\(237\) 0 0
\(238\) 6.29268 0.407894
\(239\) 8.00636 0.517889 0.258944 0.965892i \(-0.416625\pi\)
0.258944 + 0.965892i \(0.416625\pi\)
\(240\) 0 0
\(241\) 18.0726 1.16416 0.582080 0.813132i \(-0.302239\pi\)
0.582080 + 0.813132i \(0.302239\pi\)
\(242\) −1.00000 −0.0642824
\(243\) 0 0
\(244\) −0.878747 −0.0562560
\(245\) −4.43937 −0.283621
\(246\) 0 0
\(247\) −6.16816 −0.392471
\(248\) −3.33225 −0.211598
\(249\) 0 0
\(250\) −1.00000 −0.0632456
\(251\) −0.0312489 −0.00197241 −0.000986205 1.00000i \(-0.500314\pi\)
−0.000986205 1.00000i \(0.500314\pi\)
\(252\) 0 0
\(253\) 4.33225 0.272366
\(254\) −18.5110 −1.16148
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 11.6860 0.728950 0.364475 0.931213i \(-0.381248\pi\)
0.364475 + 0.931213i \(0.381248\pi\)
\(258\) 0 0
\(259\) −3.90348 −0.242550
\(260\) 4.77162 0.295923
\(261\) 0 0
\(262\) 12.0073 0.741816
\(263\) 20.4717 1.26234 0.631170 0.775645i \(-0.282575\pi\)
0.631170 + 0.775645i \(0.282575\pi\)
\(264\) 0 0
\(265\) −1.19941 −0.0736793
\(266\) 2.06854 0.126830
\(267\) 0 0
\(268\) −3.77162 −0.230388
\(269\) −20.2322 −1.23358 −0.616789 0.787128i \(-0.711567\pi\)
−0.616789 + 0.787128i \(0.711567\pi\)
\(270\) 0 0
\(271\) −10.6085 −0.644421 −0.322211 0.946668i \(-0.604426\pi\)
−0.322211 + 0.946668i \(0.604426\pi\)
\(272\) −3.93244 −0.238439
\(273\) 0 0
\(274\) −10.4039 −0.628522
\(275\) −1.00000 −0.0603023
\(276\) 0 0
\(277\) −28.0446 −1.68504 −0.842519 0.538666i \(-0.818928\pi\)
−0.842519 + 0.538666i \(0.818928\pi\)
\(278\) −3.10811 −0.186412
\(279\) 0 0
\(280\) −1.60020 −0.0956300
\(281\) −10.8251 −0.645769 −0.322884 0.946438i \(-0.604652\pi\)
−0.322884 + 0.946438i \(0.604652\pi\)
\(282\) 0 0
\(283\) −24.9076 −1.48060 −0.740300 0.672276i \(-0.765317\pi\)
−0.740300 + 0.672276i \(0.765317\pi\)
\(284\) −7.15658 −0.424665
\(285\) 0 0
\(286\) 4.77162 0.282152
\(287\) 2.70987 0.159958
\(288\) 0 0
\(289\) −1.53590 −0.0903470
\(290\) 6.23996 0.366423
\(291\) 0 0
\(292\) −10.8755 −0.636440
\(293\) −21.1844 −1.23761 −0.618803 0.785546i \(-0.712382\pi\)
−0.618803 + 0.785546i \(0.712382\pi\)
\(294\) 0 0
\(295\) 1.26371 0.0735761
\(296\) 2.43937 0.141786
\(297\) 0 0
\(298\) 6.05272 0.350624
\(299\) −20.6718 −1.19548
\(300\) 0 0
\(301\) −2.15560 −0.124247
\(302\) 0.0289668 0.00166685
\(303\) 0 0
\(304\) −1.29268 −0.0741401
\(305\) −0.878747 −0.0503169
\(306\) 0 0
\(307\) 23.5842 1.34602 0.673011 0.739632i \(-0.265001\pi\)
0.673011 + 0.739632i \(0.265001\pi\)
\(308\) −1.60020 −0.0911796
\(309\) 0 0
\(310\) −3.33225 −0.189259
\(311\) −4.50622 −0.255524 −0.127762 0.991805i \(-0.540779\pi\)
−0.127762 + 0.991805i \(0.540779\pi\)
\(312\) 0 0
\(313\) 13.0620 0.738309 0.369154 0.929368i \(-0.379647\pi\)
0.369154 + 0.929368i \(0.379647\pi\)
\(314\) 15.0462 0.849106
\(315\) 0 0
\(316\) −7.41139 −0.416923
\(317\) 28.1913 1.58338 0.791691 0.610921i \(-0.209201\pi\)
0.791691 + 0.610921i \(0.209201\pi\)
\(318\) 0 0
\(319\) 6.23996 0.349371
\(320\) 1.00000 0.0559017
\(321\) 0 0
\(322\) 6.93244 0.386330
\(323\) 5.08338 0.282847
\(324\) 0 0
\(325\) 4.77162 0.264682
\(326\) −12.5037 −0.692514
\(327\) 0 0
\(328\) −1.69346 −0.0935057
\(329\) 5.37182 0.296158
\(330\) 0 0
\(331\) 22.9019 1.25880 0.629401 0.777080i \(-0.283300\pi\)
0.629401 + 0.777080i \(0.283300\pi\)
\(332\) −1.73629 −0.0952913
\(333\) 0 0
\(334\) −5.02473 −0.274941
\(335\) −3.77162 −0.206066
\(336\) 0 0
\(337\) 0.934724 0.0509177 0.0254588 0.999676i \(-0.491895\pi\)
0.0254588 + 0.999676i \(0.491895\pi\)
\(338\) −9.76836 −0.531329
\(339\) 0 0
\(340\) −3.93244 −0.213267
\(341\) −3.33225 −0.180451
\(342\) 0 0
\(343\) −18.3052 −0.988390
\(344\) 1.34709 0.0726301
\(345\) 0 0
\(346\) −4.96777 −0.267069
\(347\) 13.9009 0.746241 0.373121 0.927783i \(-0.378288\pi\)
0.373121 + 0.927783i \(0.378288\pi\)
\(348\) 0 0
\(349\) −5.55808 −0.297517 −0.148759 0.988874i \(-0.547528\pi\)
−0.148759 + 0.988874i \(0.547528\pi\)
\(350\) −1.60020 −0.0855341
\(351\) 0 0
\(352\) 1.00000 0.0533002
\(353\) 16.3898 0.872339 0.436169 0.899865i \(-0.356335\pi\)
0.436169 + 0.899865i \(0.356335\pi\)
\(354\) 0 0
\(355\) −7.15658 −0.379832
\(356\) −5.78575 −0.306644
\(357\) 0 0
\(358\) 11.1460 0.589083
\(359\) 15.1946 0.801940 0.400970 0.916091i \(-0.368673\pi\)
0.400970 + 0.916091i \(0.368673\pi\)
\(360\) 0 0
\(361\) −17.3290 −0.912052
\(362\) 4.50693 0.236879
\(363\) 0 0
\(364\) 7.63553 0.400210
\(365\) −10.8755 −0.569249
\(366\) 0 0
\(367\) 11.7684 0.614303 0.307152 0.951661i \(-0.400624\pi\)
0.307152 + 0.951661i \(0.400624\pi\)
\(368\) −4.33225 −0.225834
\(369\) 0 0
\(370\) 2.43937 0.126817
\(371\) −1.91930 −0.0996449
\(372\) 0 0
\(373\) −10.1587 −0.525998 −0.262999 0.964796i \(-0.584712\pi\)
−0.262999 + 0.964796i \(0.584712\pi\)
\(374\) −3.93244 −0.203342
\(375\) 0 0
\(376\) −3.35697 −0.173123
\(377\) −29.7747 −1.53348
\(378\) 0 0
\(379\) 21.5795 1.10847 0.554233 0.832361i \(-0.313011\pi\)
0.554233 + 0.832361i \(0.313011\pi\)
\(380\) −1.29268 −0.0663129
\(381\) 0 0
\(382\) 14.2805 0.730654
\(383\) −21.7701 −1.11240 −0.556199 0.831049i \(-0.687741\pi\)
−0.556199 + 0.831049i \(0.687741\pi\)
\(384\) 0 0
\(385\) −1.60020 −0.0815535
\(386\) −8.18979 −0.416849
\(387\) 0 0
\(388\) 0.425248 0.0215887
\(389\) −13.0897 −0.663676 −0.331838 0.943336i \(-0.607669\pi\)
−0.331838 + 0.943336i \(0.607669\pi\)
\(390\) 0 0
\(391\) 17.0363 0.861563
\(392\) 4.43937 0.224222
\(393\) 0 0
\(394\) 8.08903 0.407519
\(395\) −7.41139 −0.372907
\(396\) 0 0
\(397\) −1.86250 −0.0934761 −0.0467380 0.998907i \(-0.514883\pi\)
−0.0467380 + 0.998907i \(0.514883\pi\)
\(398\) −4.45024 −0.223070
\(399\) 0 0
\(400\) 1.00000 0.0500000
\(401\) −8.87451 −0.443172 −0.221586 0.975141i \(-0.571123\pi\)
−0.221586 + 0.975141i \(0.571123\pi\)
\(402\) 0 0
\(403\) 15.9002 0.792046
\(404\) 9.00734 0.448132
\(405\) 0 0
\(406\) 9.98516 0.495555
\(407\) 2.43937 0.120915
\(408\) 0 0
\(409\) −21.6362 −1.06984 −0.534922 0.844902i \(-0.679659\pi\)
−0.534922 + 0.844902i \(0.679659\pi\)
\(410\) −1.69346 −0.0836340
\(411\) 0 0
\(412\) −16.8327 −0.829285
\(413\) 2.02218 0.0995052
\(414\) 0 0
\(415\) −1.73629 −0.0852311
\(416\) −4.77162 −0.233948
\(417\) 0 0
\(418\) −1.29268 −0.0632269
\(419\) 10.1395 0.495345 0.247673 0.968844i \(-0.420334\pi\)
0.247673 + 0.968844i \(0.420334\pi\)
\(420\) 0 0
\(421\) −12.0791 −0.588701 −0.294351 0.955698i \(-0.595103\pi\)
−0.294351 + 0.955698i \(0.595103\pi\)
\(422\) 6.49307 0.316078
\(423\) 0 0
\(424\) 1.19941 0.0582486
\(425\) −3.93244 −0.190751
\(426\) 0 0
\(427\) −1.40617 −0.0680492
\(428\) −8.47470 −0.409640
\(429\) 0 0
\(430\) 1.34709 0.0649624
\(431\) 10.7706 0.518804 0.259402 0.965769i \(-0.416475\pi\)
0.259402 + 0.965769i \(0.416475\pi\)
\(432\) 0 0
\(433\) 25.7446 1.23721 0.618604 0.785703i \(-0.287699\pi\)
0.618604 + 0.785703i \(0.287699\pi\)
\(434\) −5.33225 −0.255956
\(435\) 0 0
\(436\) 5.17142 0.247666
\(437\) 5.60020 0.267894
\(438\) 0 0
\(439\) 13.6963 0.653689 0.326844 0.945078i \(-0.394015\pi\)
0.326844 + 0.945078i \(0.394015\pi\)
\(440\) 1.00000 0.0476731
\(441\) 0 0
\(442\) 18.7641 0.892518
\(443\) −4.43373 −0.210653 −0.105326 0.994438i \(-0.533589\pi\)
−0.105326 + 0.994438i \(0.533589\pi\)
\(444\) 0 0
\(445\) −5.78575 −0.274271
\(446\) −19.1251 −0.905598
\(447\) 0 0
\(448\) 1.60020 0.0756021
\(449\) −10.5807 −0.499333 −0.249667 0.968332i \(-0.580321\pi\)
−0.249667 + 0.968332i \(0.580321\pi\)
\(450\) 0 0
\(451\) −1.69346 −0.0797419
\(452\) −15.4757 −0.727915
\(453\) 0 0
\(454\) −1.07816 −0.0506006
\(455\) 7.63553 0.357959
\(456\) 0 0
\(457\) −11.1211 −0.520223 −0.260111 0.965579i \(-0.583759\pi\)
−0.260111 + 0.965579i \(0.583759\pi\)
\(458\) 6.03461 0.281979
\(459\) 0 0
\(460\) −4.33225 −0.201992
\(461\) 39.0734 1.81983 0.909916 0.414793i \(-0.136146\pi\)
0.909916 + 0.414793i \(0.136146\pi\)
\(462\) 0 0
\(463\) −18.3462 −0.852621 −0.426310 0.904577i \(-0.640187\pi\)
−0.426310 + 0.904577i \(0.640187\pi\)
\(464\) −6.23996 −0.289683
\(465\) 0 0
\(466\) 5.54578 0.256904
\(467\) −14.0377 −0.649588 −0.324794 0.945785i \(-0.605295\pi\)
−0.324794 + 0.945785i \(0.605295\pi\)
\(468\) 0 0
\(469\) −6.03533 −0.278686
\(470\) −3.35697 −0.154846
\(471\) 0 0
\(472\) −1.26371 −0.0581670
\(473\) 1.34709 0.0619392
\(474\) 0 0
\(475\) −1.29268 −0.0593121
\(476\) −6.29268 −0.288424
\(477\) 0 0
\(478\) −8.00636 −0.366203
\(479\) 6.98121 0.318979 0.159490 0.987200i \(-0.449015\pi\)
0.159490 + 0.987200i \(0.449015\pi\)
\(480\) 0 0
\(481\) −11.6398 −0.530728
\(482\) −18.0726 −0.823185
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 0.425248 0.0193095
\(486\) 0 0
\(487\) 12.5779 0.569957 0.284978 0.958534i \(-0.408014\pi\)
0.284978 + 0.958534i \(0.408014\pi\)
\(488\) 0.878747 0.0397790
\(489\) 0 0
\(490\) 4.43937 0.200550
\(491\) −0.944023 −0.0426032 −0.0213016 0.999773i \(-0.506781\pi\)
−0.0213016 + 0.999773i \(0.506781\pi\)
\(492\) 0 0
\(493\) 24.5383 1.10515
\(494\) 6.16816 0.277519
\(495\) 0 0
\(496\) 3.33225 0.149622
\(497\) −11.4519 −0.513689
\(498\) 0 0
\(499\) 0.990376 0.0443353 0.0221677 0.999754i \(-0.492943\pi\)
0.0221677 + 0.999754i \(0.492943\pi\)
\(500\) 1.00000 0.0447214
\(501\) 0 0
\(502\) 0.0312489 0.00139471
\(503\) −27.3700 −1.22037 −0.610183 0.792260i \(-0.708904\pi\)
−0.610183 + 0.792260i \(0.708904\pi\)
\(504\) 0 0
\(505\) 9.00734 0.400821
\(506\) −4.33225 −0.192592
\(507\) 0 0
\(508\) 18.5110 0.821293
\(509\) −39.3317 −1.74335 −0.871673 0.490089i \(-0.836964\pi\)
−0.871673 + 0.490089i \(0.836964\pi\)
\(510\) 0 0
\(511\) −17.4029 −0.769859
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −11.6860 −0.515446
\(515\) −16.8327 −0.741735
\(516\) 0 0
\(517\) −3.35697 −0.147640
\(518\) 3.90348 0.171509
\(519\) 0 0
\(520\) −4.77162 −0.209249
\(521\) −31.7699 −1.39186 −0.695932 0.718107i \(-0.745009\pi\)
−0.695932 + 0.718107i \(0.745009\pi\)
\(522\) 0 0
\(523\) 39.4279 1.72406 0.862031 0.506856i \(-0.169192\pi\)
0.862031 + 0.506856i \(0.169192\pi\)
\(524\) −12.0073 −0.524543
\(525\) 0 0
\(526\) −20.4717 −0.892609
\(527\) −13.1039 −0.570813
\(528\) 0 0
\(529\) −4.23164 −0.183984
\(530\) 1.19941 0.0520992
\(531\) 0 0
\(532\) −2.06854 −0.0896824
\(533\) 8.08055 0.350007
\(534\) 0 0
\(535\) −8.47470 −0.366393
\(536\) 3.77162 0.162909
\(537\) 0 0
\(538\) 20.2322 0.872272
\(539\) 4.43937 0.191217
\(540\) 0 0
\(541\) 34.0082 1.46213 0.731063 0.682310i \(-0.239025\pi\)
0.731063 + 0.682310i \(0.239025\pi\)
\(542\) 10.6085 0.455675
\(543\) 0 0
\(544\) 3.93244 0.168602
\(545\) 5.17142 0.221519
\(546\) 0 0
\(547\) −1.90419 −0.0814174 −0.0407087 0.999171i \(-0.512962\pi\)
−0.0407087 + 0.999171i \(0.512962\pi\)
\(548\) 10.4039 0.444432
\(549\) 0 0
\(550\) 1.00000 0.0426401
\(551\) 8.06625 0.343634
\(552\) 0 0
\(553\) −11.8597 −0.504324
\(554\) 28.0446 1.19150
\(555\) 0 0
\(556\) 3.10811 0.131813
\(557\) 20.0890 0.851199 0.425600 0.904912i \(-0.360063\pi\)
0.425600 + 0.904912i \(0.360063\pi\)
\(558\) 0 0
\(559\) −6.42779 −0.271867
\(560\) 1.60020 0.0676206
\(561\) 0 0
\(562\) 10.8251 0.456627
\(563\) 26.7802 1.12865 0.564325 0.825552i \(-0.309136\pi\)
0.564325 + 0.825552i \(0.309136\pi\)
\(564\) 0 0
\(565\) −15.4757 −0.651067
\(566\) 24.9076 1.04694
\(567\) 0 0
\(568\) 7.15658 0.300284
\(569\) −26.4460 −1.10867 −0.554337 0.832292i \(-0.687028\pi\)
−0.554337 + 0.832292i \(0.687028\pi\)
\(570\) 0 0
\(571\) −24.4263 −1.02221 −0.511105 0.859518i \(-0.670764\pi\)
−0.511105 + 0.859518i \(0.670764\pi\)
\(572\) −4.77162 −0.199511
\(573\) 0 0
\(574\) −2.70987 −0.113108
\(575\) −4.33225 −0.180667
\(576\) 0 0
\(577\) 5.33861 0.222249 0.111125 0.993806i \(-0.464555\pi\)
0.111125 + 0.993806i \(0.464555\pi\)
\(578\) 1.53590 0.0638850
\(579\) 0 0
\(580\) −6.23996 −0.259100
\(581\) −2.77840 −0.115268
\(582\) 0 0
\(583\) 1.19941 0.0496746
\(584\) 10.8755 0.450031
\(585\) 0 0
\(586\) 21.1844 0.875120
\(587\) 19.2037 0.792620 0.396310 0.918117i \(-0.370291\pi\)
0.396310 + 0.918117i \(0.370291\pi\)
\(588\) 0 0
\(589\) −4.30752 −0.177488
\(590\) −1.26371 −0.0520261
\(591\) 0 0
\(592\) −2.43937 −0.100258
\(593\) −7.48785 −0.307489 −0.153745 0.988111i \(-0.549133\pi\)
−0.153745 + 0.988111i \(0.549133\pi\)
\(594\) 0 0
\(595\) −6.29268 −0.257975
\(596\) −6.05272 −0.247929
\(597\) 0 0
\(598\) 20.6718 0.845334
\(599\) 46.2159 1.88833 0.944165 0.329472i \(-0.106871\pi\)
0.944165 + 0.329472i \(0.106871\pi\)
\(600\) 0 0
\(601\) −14.3309 −0.584571 −0.292286 0.956331i \(-0.594416\pi\)
−0.292286 + 0.956331i \(0.594416\pi\)
\(602\) 2.15560 0.0878559
\(603\) 0 0
\(604\) −0.0289668 −0.00117864
\(605\) 1.00000 0.0406558
\(606\) 0 0
\(607\) −29.7406 −1.20714 −0.603568 0.797312i \(-0.706255\pi\)
−0.603568 + 0.797312i \(0.706255\pi\)
\(608\) 1.29268 0.0524250
\(609\) 0 0
\(610\) 0.878747 0.0355794
\(611\) 16.0182 0.648027
\(612\) 0 0
\(613\) 13.3693 0.539980 0.269990 0.962863i \(-0.412980\pi\)
0.269990 + 0.962863i \(0.412980\pi\)
\(614\) −23.5842 −0.951782
\(615\) 0 0
\(616\) 1.60020 0.0644737
\(617\) 31.1713 1.25491 0.627454 0.778654i \(-0.284097\pi\)
0.627454 + 0.778654i \(0.284097\pi\)
\(618\) 0 0
\(619\) −6.12197 −0.246063 −0.123031 0.992403i \(-0.539262\pi\)
−0.123031 + 0.992403i \(0.539262\pi\)
\(620\) 3.33225 0.133826
\(621\) 0 0
\(622\) 4.50622 0.180683
\(623\) −9.25833 −0.370927
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −13.0620 −0.522063
\(627\) 0 0
\(628\) −15.0462 −0.600409
\(629\) 9.59270 0.382486
\(630\) 0 0
\(631\) −34.4972 −1.37331 −0.686655 0.726983i \(-0.740922\pi\)
−0.686655 + 0.726983i \(0.740922\pi\)
\(632\) 7.41139 0.294809
\(633\) 0 0
\(634\) −28.1913 −1.11962
\(635\) 18.5110 0.734587
\(636\) 0 0
\(637\) −21.1830 −0.839301
\(638\) −6.23996 −0.247042
\(639\) 0 0
\(640\) −1.00000 −0.0395285
\(641\) 2.74167 0.108290 0.0541448 0.998533i \(-0.482757\pi\)
0.0541448 + 0.998533i \(0.482757\pi\)
\(642\) 0 0
\(643\) 6.96947 0.274849 0.137424 0.990512i \(-0.456118\pi\)
0.137424 + 0.990512i \(0.456118\pi\)
\(644\) −6.93244 −0.273176
\(645\) 0 0
\(646\) −5.08338 −0.200003
\(647\) 14.2934 0.561931 0.280966 0.959718i \(-0.409345\pi\)
0.280966 + 0.959718i \(0.409345\pi\)
\(648\) 0 0
\(649\) −1.26371 −0.0496050
\(650\) −4.77162 −0.187158
\(651\) 0 0
\(652\) 12.5037 0.489682
\(653\) 31.6841 1.23990 0.619948 0.784643i \(-0.287154\pi\)
0.619948 + 0.784643i \(0.287154\pi\)
\(654\) 0 0
\(655\) −12.0073 −0.469166
\(656\) 1.69346 0.0661185
\(657\) 0 0
\(658\) −5.37182 −0.209415
\(659\) −39.1715 −1.52591 −0.762953 0.646454i \(-0.776251\pi\)
−0.762953 + 0.646454i \(0.776251\pi\)
\(660\) 0 0
\(661\) −16.7629 −0.652000 −0.326000 0.945370i \(-0.605701\pi\)
−0.326000 + 0.945370i \(0.605701\pi\)
\(662\) −22.9019 −0.890108
\(663\) 0 0
\(664\) 1.73629 0.0673811
\(665\) −2.06854 −0.0802144
\(666\) 0 0
\(667\) 27.0330 1.04672
\(668\) 5.02473 0.194413
\(669\) 0 0
\(670\) 3.77162 0.145710
\(671\) 0.878747 0.0339237
\(672\) 0 0
\(673\) 7.55482 0.291217 0.145608 0.989342i \(-0.453486\pi\)
0.145608 + 0.989342i \(0.453486\pi\)
\(674\) −0.934724 −0.0360042
\(675\) 0 0
\(676\) 9.76836 0.375706
\(677\) −34.0157 −1.30733 −0.653664 0.756785i \(-0.726769\pi\)
−0.653664 + 0.756785i \(0.726769\pi\)
\(678\) 0 0
\(679\) 0.680481 0.0261145
\(680\) 3.93244 0.150802
\(681\) 0 0
\(682\) 3.33225 0.127598
\(683\) −29.1225 −1.11434 −0.557171 0.830398i \(-0.688113\pi\)
−0.557171 + 0.830398i \(0.688113\pi\)
\(684\) 0 0
\(685\) 10.4039 0.397512
\(686\) 18.3052 0.698897
\(687\) 0 0
\(688\) −1.34709 −0.0513573
\(689\) −5.72314 −0.218034
\(690\) 0 0
\(691\) −21.7231 −0.826387 −0.413194 0.910643i \(-0.635587\pi\)
−0.413194 + 0.910643i \(0.635587\pi\)
\(692\) 4.96777 0.188846
\(693\) 0 0
\(694\) −13.9009 −0.527672
\(695\) 3.10811 0.117897
\(696\) 0 0
\(697\) −6.65943 −0.252244
\(698\) 5.55808 0.210377
\(699\) 0 0
\(700\) 1.60020 0.0604817
\(701\) 11.2004 0.423033 0.211516 0.977374i \(-0.432160\pi\)
0.211516 + 0.977374i \(0.432160\pi\)
\(702\) 0 0
\(703\) 3.15332 0.118930
\(704\) −1.00000 −0.0376889
\(705\) 0 0
\(706\) −16.3898 −0.616837
\(707\) 14.4135 0.542076
\(708\) 0 0
\(709\) −16.3287 −0.613238 −0.306619 0.951832i \(-0.599198\pi\)
−0.306619 + 0.951832i \(0.599198\pi\)
\(710\) 7.15658 0.268582
\(711\) 0 0
\(712\) 5.78575 0.216830
\(713\) −14.4361 −0.540637
\(714\) 0 0
\(715\) −4.77162 −0.178448
\(716\) −11.1460 −0.416545
\(717\) 0 0
\(718\) −15.1946 −0.567057
\(719\) −28.8637 −1.07644 −0.538218 0.842806i \(-0.680902\pi\)
−0.538218 + 0.842806i \(0.680902\pi\)
\(720\) 0 0
\(721\) −26.9355 −1.00313
\(722\) 17.3290 0.644918
\(723\) 0 0
\(724\) −4.50693 −0.167499
\(725\) −6.23996 −0.231746
\(726\) 0 0
\(727\) −38.9156 −1.44330 −0.721650 0.692258i \(-0.756616\pi\)
−0.721650 + 0.692258i \(0.756616\pi\)
\(728\) −7.63553 −0.282991
\(729\) 0 0
\(730\) 10.8755 0.402520
\(731\) 5.29735 0.195929
\(732\) 0 0
\(733\) 16.5660 0.611880 0.305940 0.952051i \(-0.401029\pi\)
0.305940 + 0.952051i \(0.401029\pi\)
\(734\) −11.7684 −0.434378
\(735\) 0 0
\(736\) 4.33225 0.159689
\(737\) 3.77162 0.138929
\(738\) 0 0
\(739\) −46.0815 −1.69514 −0.847568 0.530687i \(-0.821934\pi\)
−0.847568 + 0.530687i \(0.821934\pi\)
\(740\) −2.43937 −0.0896732
\(741\) 0 0
\(742\) 1.91930 0.0704596
\(743\) 12.6985 0.465864 0.232932 0.972493i \(-0.425168\pi\)
0.232932 + 0.972493i \(0.425168\pi\)
\(744\) 0 0
\(745\) −6.05272 −0.221754
\(746\) 10.1587 0.371937
\(747\) 0 0
\(748\) 3.93244 0.143784
\(749\) −13.5612 −0.495515
\(750\) 0 0
\(751\) −28.0957 −1.02522 −0.512612 0.858620i \(-0.671322\pi\)
−0.512612 + 0.858620i \(0.671322\pi\)
\(752\) 3.35697 0.122416
\(753\) 0 0
\(754\) 29.7747 1.08433
\(755\) −0.0289668 −0.00105421
\(756\) 0 0
\(757\) 10.8771 0.395333 0.197667 0.980269i \(-0.436664\pi\)
0.197667 + 0.980269i \(0.436664\pi\)
\(758\) −21.5795 −0.783805
\(759\) 0 0
\(760\) 1.29268 0.0468903
\(761\) −7.36529 −0.266992 −0.133496 0.991049i \(-0.542620\pi\)
−0.133496 + 0.991049i \(0.542620\pi\)
\(762\) 0 0
\(763\) 8.27529 0.299586
\(764\) −14.2805 −0.516651
\(765\) 0 0
\(766\) 21.7701 0.786584
\(767\) 6.02995 0.217729
\(768\) 0 0
\(769\) −42.9885 −1.55021 −0.775103 0.631835i \(-0.782302\pi\)
−0.775103 + 0.631835i \(0.782302\pi\)
\(770\) 1.60020 0.0576670
\(771\) 0 0
\(772\) 8.18979 0.294757
\(773\) −46.7197 −1.68039 −0.840196 0.542283i \(-0.817560\pi\)
−0.840196 + 0.542283i \(0.817560\pi\)
\(774\) 0 0
\(775\) 3.33225 0.119698
\(776\) −0.425248 −0.0152655
\(777\) 0 0
\(778\) 13.0897 0.469290
\(779\) −2.18910 −0.0784325
\(780\) 0 0
\(781\) 7.15658 0.256083
\(782\) −17.0363 −0.609217
\(783\) 0 0
\(784\) −4.43937 −0.158549
\(785\) −15.0462 −0.537022
\(786\) 0 0
\(787\) 29.8643 1.06455 0.532274 0.846572i \(-0.321338\pi\)
0.532274 + 0.846572i \(0.321338\pi\)
\(788\) −8.08903 −0.288160
\(789\) 0 0
\(790\) 7.41139 0.263685
\(791\) −24.7641 −0.880511
\(792\) 0 0
\(793\) −4.19305 −0.148900
\(794\) 1.86250 0.0660976
\(795\) 0 0
\(796\) 4.45024 0.157735
\(797\) −44.4966 −1.57615 −0.788075 0.615580i \(-0.788922\pi\)
−0.788075 + 0.615580i \(0.788922\pi\)
\(798\) 0 0
\(799\) −13.2011 −0.467022
\(800\) −1.00000 −0.0353553
\(801\) 0 0
\(802\) 8.87451 0.313370
\(803\) 10.8755 0.383788
\(804\) 0 0
\(805\) −6.93244 −0.244336
\(806\) −15.9002 −0.560061
\(807\) 0 0
\(808\) −9.00734 −0.316877
\(809\) 22.5167 0.791644 0.395822 0.918327i \(-0.370460\pi\)
0.395822 + 0.918327i \(0.370460\pi\)
\(810\) 0 0
\(811\) −13.8926 −0.487836 −0.243918 0.969796i \(-0.578433\pi\)
−0.243918 + 0.969796i \(0.578433\pi\)
\(812\) −9.98516 −0.350410
\(813\) 0 0
\(814\) −2.43937 −0.0855000
\(815\) 12.5037 0.437984
\(816\) 0 0
\(817\) 1.74135 0.0609221
\(818\) 21.6362 0.756493
\(819\) 0 0
\(820\) 1.69346 0.0591382
\(821\) 53.4183 1.86431 0.932156 0.362057i \(-0.117925\pi\)
0.932156 + 0.362057i \(0.117925\pi\)
\(822\) 0 0
\(823\) 20.0514 0.698948 0.349474 0.936946i \(-0.386360\pi\)
0.349474 + 0.936946i \(0.386360\pi\)
\(824\) 16.8327 0.586393
\(825\) 0 0
\(826\) −2.02218 −0.0703608
\(827\) 17.9704 0.624894 0.312447 0.949935i \(-0.398851\pi\)
0.312447 + 0.949935i \(0.398851\pi\)
\(828\) 0 0
\(829\) −56.4430 −1.96035 −0.980174 0.198139i \(-0.936510\pi\)
−0.980174 + 0.198139i \(0.936510\pi\)
\(830\) 1.73629 0.0602675
\(831\) 0 0
\(832\) 4.77162 0.165426
\(833\) 17.4576 0.604869
\(834\) 0 0
\(835\) 5.02473 0.173888
\(836\) 1.29268 0.0447082
\(837\) 0 0
\(838\) −10.1395 −0.350262
\(839\) −20.1061 −0.694141 −0.347071 0.937839i \(-0.612824\pi\)
−0.347071 + 0.937839i \(0.612824\pi\)
\(840\) 0 0
\(841\) 9.93711 0.342659
\(842\) 12.0791 0.416275
\(843\) 0 0
\(844\) −6.49307 −0.223501
\(845\) 9.76836 0.336042
\(846\) 0 0
\(847\) 1.60020 0.0549834
\(848\) −1.19941 −0.0411880
\(849\) 0 0
\(850\) 3.93244 0.134882
\(851\) 10.5680 0.362265
\(852\) 0 0
\(853\) 2.32308 0.0795406 0.0397703 0.999209i \(-0.487337\pi\)
0.0397703 + 0.999209i \(0.487337\pi\)
\(854\) 1.40617 0.0481181
\(855\) 0 0
\(856\) 8.47470 0.289659
\(857\) −0.973969 −0.0332701 −0.0166351 0.999862i \(-0.505295\pi\)
−0.0166351 + 0.999862i \(0.505295\pi\)
\(858\) 0 0
\(859\) −2.89613 −0.0988148 −0.0494074 0.998779i \(-0.515733\pi\)
−0.0494074 + 0.998779i \(0.515733\pi\)
\(860\) −1.34709 −0.0459353
\(861\) 0 0
\(862\) −10.7706 −0.366850
\(863\) −47.2949 −1.60994 −0.804969 0.593317i \(-0.797818\pi\)
−0.804969 + 0.593317i \(0.797818\pi\)
\(864\) 0 0
\(865\) 4.96777 0.168909
\(866\) −25.7446 −0.874837
\(867\) 0 0
\(868\) 5.33225 0.180988
\(869\) 7.41139 0.251414
\(870\) 0 0
\(871\) −17.9967 −0.609796
\(872\) −5.17142 −0.175127
\(873\) 0 0
\(874\) −5.60020 −0.189429
\(875\) 1.60020 0.0540965
\(876\) 0 0
\(877\) 18.9304 0.639235 0.319617 0.947547i \(-0.396446\pi\)
0.319617 + 0.947547i \(0.396446\pi\)
\(878\) −13.6963 −0.462228
\(879\) 0 0
\(880\) −1.00000 −0.0337100
\(881\) 21.6526 0.729494 0.364747 0.931107i \(-0.381155\pi\)
0.364747 + 0.931107i \(0.381155\pi\)
\(882\) 0 0
\(883\) 9.98190 0.335918 0.167959 0.985794i \(-0.446282\pi\)
0.167959 + 0.985794i \(0.446282\pi\)
\(884\) −18.7641 −0.631106
\(885\) 0 0
\(886\) 4.43373 0.148954
\(887\) 37.5435 1.26059 0.630294 0.776357i \(-0.282934\pi\)
0.630294 + 0.776357i \(0.282934\pi\)
\(888\) 0 0
\(889\) 29.6212 0.993465
\(890\) 5.78575 0.193939
\(891\) 0 0
\(892\) 19.1251 0.640355
\(893\) −4.33948 −0.145215
\(894\) 0 0
\(895\) −11.1460 −0.372569
\(896\) −1.60020 −0.0534588
\(897\) 0 0
\(898\) 10.5807 0.353082
\(899\) −20.7931 −0.693488
\(900\) 0 0
\(901\) 4.71662 0.157133
\(902\) 1.69346 0.0563860
\(903\) 0 0
\(904\) 15.4757 0.514714
\(905\) −4.50693 −0.149815
\(906\) 0 0
\(907\) −4.17097 −0.138495 −0.0692474 0.997600i \(-0.522060\pi\)
−0.0692474 + 0.997600i \(0.522060\pi\)
\(908\) 1.07816 0.0357800
\(909\) 0 0
\(910\) −7.63553 −0.253115
\(911\) −47.6865 −1.57992 −0.789962 0.613155i \(-0.789900\pi\)
−0.789962 + 0.613155i \(0.789900\pi\)
\(912\) 0 0
\(913\) 1.73629 0.0574628
\(914\) 11.1211 0.367853
\(915\) 0 0
\(916\) −6.03461 −0.199389
\(917\) −19.2141 −0.634505
\(918\) 0 0
\(919\) −29.3482 −0.968107 −0.484053 0.875038i \(-0.660836\pi\)
−0.484053 + 0.875038i \(0.660836\pi\)
\(920\) 4.33225 0.142830
\(921\) 0 0
\(922\) −39.0734 −1.28682
\(923\) −34.1485 −1.12401
\(924\) 0 0
\(925\) −2.43937 −0.0802061
\(926\) 18.3462 0.602894
\(927\) 0 0
\(928\) 6.23996 0.204837
\(929\) −5.13864 −0.168593 −0.0842966 0.996441i \(-0.526864\pi\)
−0.0842966 + 0.996441i \(0.526864\pi\)
\(930\) 0 0
\(931\) 5.73868 0.188078
\(932\) −5.54578 −0.181658
\(933\) 0 0
\(934\) 14.0377 0.459328
\(935\) 3.93244 0.128605
\(936\) 0 0
\(937\) −20.7436 −0.677665 −0.338832 0.940847i \(-0.610032\pi\)
−0.338832 + 0.940847i \(0.610032\pi\)
\(938\) 6.03533 0.197061
\(939\) 0 0
\(940\) 3.35697 0.109492
\(941\) −33.1262 −1.07988 −0.539941 0.841703i \(-0.681553\pi\)
−0.539941 + 0.841703i \(0.681553\pi\)
\(942\) 0 0
\(943\) −7.33649 −0.238909
\(944\) 1.26371 0.0411303
\(945\) 0 0
\(946\) −1.34709 −0.0437976
\(947\) −21.2645 −0.691004 −0.345502 0.938418i \(-0.612291\pi\)
−0.345502 + 0.938418i \(0.612291\pi\)
\(948\) 0 0
\(949\) −51.8937 −1.68454
\(950\) 1.29268 0.0419400
\(951\) 0 0
\(952\) 6.29268 0.203947
\(953\) 13.8508 0.448670 0.224335 0.974512i \(-0.427979\pi\)
0.224335 + 0.974512i \(0.427979\pi\)
\(954\) 0 0
\(955\) −14.2805 −0.462106
\(956\) 8.00636 0.258944
\(957\) 0 0
\(958\) −6.98121 −0.225553
\(959\) 16.6483 0.537600
\(960\) 0 0
\(961\) −19.8961 −0.641811
\(962\) 11.6398 0.375281
\(963\) 0 0
\(964\) 18.0726 0.582080
\(965\) 8.18979 0.263639
\(966\) 0 0
\(967\) −32.3170 −1.03924 −0.519622 0.854396i \(-0.673927\pi\)
−0.519622 + 0.854396i \(0.673927\pi\)
\(968\) −1.00000 −0.0321412
\(969\) 0 0
\(970\) −0.425248 −0.0136539
\(971\) −36.1086 −1.15878 −0.579391 0.815050i \(-0.696709\pi\)
−0.579391 + 0.815050i \(0.696709\pi\)
\(972\) 0 0
\(973\) 4.97358 0.159446
\(974\) −12.5779 −0.403020
\(975\) 0 0
\(976\) −0.878747 −0.0281280
\(977\) 29.8174 0.953943 0.476971 0.878919i \(-0.341735\pi\)
0.476971 + 0.878919i \(0.341735\pi\)
\(978\) 0 0
\(979\) 5.78575 0.184913
\(980\) −4.43937 −0.141811
\(981\) 0 0
\(982\) 0.944023 0.0301250
\(983\) 36.3472 1.15930 0.579648 0.814867i \(-0.303190\pi\)
0.579648 + 0.814867i \(0.303190\pi\)
\(984\) 0 0
\(985\) −8.08903 −0.257738
\(986\) −24.5383 −0.781458
\(987\) 0 0
\(988\) −6.16816 −0.196235
\(989\) 5.83592 0.185571
\(990\) 0 0
\(991\) 26.2117 0.832642 0.416321 0.909218i \(-0.363319\pi\)
0.416321 + 0.909218i \(0.363319\pi\)
\(992\) −3.33225 −0.105799
\(993\) 0 0
\(994\) 11.4519 0.363233
\(995\) 4.45024 0.141082
\(996\) 0 0
\(997\) 10.7048 0.339024 0.169512 0.985528i \(-0.445781\pi\)
0.169512 + 0.985528i \(0.445781\pi\)
\(998\) −0.990376 −0.0313498
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8910.2.a.bs.1.3 4
3.2 odd 2 8910.2.a.bu.1.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8910.2.a.bs.1.3 4 1.1 even 1 trivial
8910.2.a.bu.1.3 yes 4 3.2 odd 2