Properties

Label 891.2.n.e.757.2
Level $891$
Weight $2$
Character 891.757
Analytic conductor $7.115$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(136,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.136");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{14} - 15x^{12} + 116x^{10} + 69x^{8} - 814x^{6} + 2420x^{4} - 7986x^{2} + 14641 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 757.2
Root \(1.50964 - 0.320883i\) of defining polynomial
Character \(\chi\) \(=\) 891.757
Dual form 891.2.n.e.379.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50964 - 0.320883i) q^{2} +(0.348943 - 0.155360i) q^{4} +(-1.50964 - 0.320883i) q^{5} +(-0.0246758 + 0.234775i) q^{7} +(-2.02029 + 1.46782i) q^{8} -2.38197 q^{10} +(-3.21432 - 0.817391i) q^{11} +(-2.83448 - 3.14801i) q^{13} +(0.0380837 + 0.362342i) q^{14} +(-3.09007 + 3.43187i) q^{16} +(-1.83812 - 5.65714i) q^{17} +(3.73607 - 2.71441i) q^{19} +(-0.576630 + 0.122566i) q^{20} +(-5.11474 - 0.202541i) q^{22} +(-3.74582 + 6.48795i) q^{23} +(-2.39169 - 1.06485i) q^{25} +(-5.28918 - 3.84281i) q^{26} +(0.0278640 + 0.0857567i) q^{28} +(-0.199409 + 1.89725i) q^{29} +(-1.59385 - 1.77015i) q^{31} +(-1.06644 + 1.84712i) q^{32} +(-4.59017 - 7.95041i) q^{34} +(0.112587 - 0.346506i) q^{35} +(-5.04508 - 3.66547i) q^{37} +(4.76909 - 5.29661i) q^{38} +(3.52090 - 1.56760i) q^{40} +(-0.583680 - 5.55335i) q^{41} +(5.35410 + 9.27358i) q^{43} +(-1.24861 + 0.214153i) q^{44} +(-3.57295 + 10.9964i) q^{46} +(0.871385 + 0.387966i) q^{47} +(6.79252 + 1.44380i) q^{49} +(-3.95228 - 0.840083i) q^{50} +(-1.47815 - 0.658114i) q^{52} +(-2.79197 + 8.59279i) q^{53} +(4.59017 + 2.26538i) q^{55} +(-0.294756 - 0.510532i) q^{56} +(0.307760 + 2.92814i) q^{58} +(-7.71534 + 3.43509i) q^{59} +(2.89482 - 3.21502i) q^{61} +(-2.97414 - 2.16084i) q^{62} +(1.83688 - 5.65334i) q^{64} +(3.26889 + 5.66189i) q^{65} +(-1.92705 + 3.33775i) q^{67} +(-1.52029 - 1.68845i) q^{68} +(0.0587770 - 0.559226i) q^{70} +(-2.38463 - 7.33912i) q^{71} +(5.23607 + 3.80423i) q^{73} +(-8.79243 - 3.91464i) q^{74} +(0.881966 - 1.52761i) q^{76} +(0.271219 - 0.734472i) q^{77} +(0.516329 - 0.109749i) q^{79} +(5.76611 - 4.18932i) q^{80} +(-2.66312 - 8.19624i) q^{82} +(2.94746 - 3.27349i) q^{83} +(0.959607 + 9.13005i) q^{85} +(11.0585 + 12.2817i) q^{86} +(7.69364 - 3.06670i) q^{88} -16.7518 q^{89} +(0.809017 - 0.587785i) q^{91} +(-0.299113 + 2.84587i) q^{92} +(1.43997 + 0.306074i) q^{94} +(-6.51111 + 2.89893i) q^{95} +(12.5187 - 2.66093i) q^{97} +10.7175 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{4} + 6 q^{7} - 56 q^{10} + 6 q^{13} - 2 q^{16} + 24 q^{19} - 28 q^{22} - 8 q^{25} + 72 q^{28} - 12 q^{31} + 16 q^{34} - 36 q^{37} + 16 q^{40} + 32 q^{43} - 84 q^{46} + 44 q^{49} - 6 q^{52} - 16 q^{55}+ \cdots + 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.50964 0.320883i 1.06747 0.226899i 0.359506 0.933143i \(-0.382945\pi\)
0.707968 + 0.706244i \(0.249612\pi\)
\(3\) 0 0
\(4\) 0.348943 0.155360i 0.174472 0.0776798i
\(5\) −1.50964 0.320883i −0.675130 0.143503i −0.142426 0.989805i \(-0.545490\pi\)
−0.532703 + 0.846302i \(0.678824\pi\)
\(6\) 0 0
\(7\) −0.0246758 + 0.234775i −0.00932658 + 0.0887365i −0.998195 0.0600561i \(-0.980872\pi\)
0.988868 + 0.148793i \(0.0475387\pi\)
\(8\) −2.02029 + 1.46782i −0.714279 + 0.518954i
\(9\) 0 0
\(10\) −2.38197 −0.753244
\(11\) −3.21432 0.817391i −0.969155 0.246453i
\(12\) 0 0
\(13\) −2.83448 3.14801i −0.786144 0.873101i 0.208333 0.978058i \(-0.433196\pi\)
−0.994477 + 0.104957i \(0.966530\pi\)
\(14\) 0.0380837 + 0.362342i 0.0101783 + 0.0968401i
\(15\) 0 0
\(16\) −3.09007 + 3.43187i −0.772517 + 0.857967i
\(17\) −1.83812 5.65714i −0.445809 1.37206i −0.881594 0.472008i \(-0.843529\pi\)
0.435785 0.900051i \(-0.356471\pi\)
\(18\) 0 0
\(19\) 3.73607 2.71441i 0.857113 0.622729i −0.0699852 0.997548i \(-0.522295\pi\)
0.927098 + 0.374819i \(0.122295\pi\)
\(20\) −0.576630 + 0.122566i −0.128938 + 0.0274067i
\(21\) 0 0
\(22\) −5.11474 0.202541i −1.09047 0.0431819i
\(23\) −3.74582 + 6.48795i −0.781057 + 1.35283i 0.150269 + 0.988645i \(0.451986\pi\)
−0.931326 + 0.364185i \(0.881347\pi\)
\(24\) 0 0
\(25\) −2.39169 1.06485i −0.478339 0.212970i
\(26\) −5.28918 3.84281i −1.03729 0.753638i
\(27\) 0 0
\(28\) 0.0278640 + 0.0857567i 0.00526581 + 0.0162065i
\(29\) −0.199409 + 1.89725i −0.0370293 + 0.352310i 0.960282 + 0.279031i \(0.0900132\pi\)
−0.997311 + 0.0732795i \(0.976653\pi\)
\(30\) 0 0
\(31\) −1.59385 1.77015i −0.286263 0.317928i 0.582812 0.812607i \(-0.301952\pi\)
−0.869076 + 0.494679i \(0.835286\pi\)
\(32\) −1.06644 + 1.84712i −0.188521 + 0.326528i
\(33\) 0 0
\(34\) −4.59017 7.95041i −0.787208 1.36348i
\(35\) 0.112587 0.346506i 0.0190306 0.0585703i
\(36\) 0 0
\(37\) −5.04508 3.66547i −0.829407 0.602599i 0.0899846 0.995943i \(-0.471318\pi\)
−0.919391 + 0.393344i \(0.871318\pi\)
\(38\) 4.76909 5.29661i 0.773649 0.859224i
\(39\) 0 0
\(40\) 3.52090 1.56760i 0.556703 0.247860i
\(41\) −0.583680 5.55335i −0.0911555 0.867287i −0.940579 0.339575i \(-0.889717\pi\)
0.849423 0.527712i \(-0.176950\pi\)
\(42\) 0 0
\(43\) 5.35410 + 9.27358i 0.816493 + 1.41421i 0.908251 + 0.418426i \(0.137418\pi\)
−0.0917581 + 0.995781i \(0.529249\pi\)
\(44\) −1.24861 + 0.214153i −0.188234 + 0.0322847i
\(45\) 0 0
\(46\) −3.57295 + 10.9964i −0.526803 + 1.62133i
\(47\) 0.871385 + 0.387966i 0.127105 + 0.0565906i 0.469304 0.883037i \(-0.344505\pi\)
−0.342199 + 0.939628i \(0.611172\pi\)
\(48\) 0 0
\(49\) 6.79252 + 1.44380i 0.970360 + 0.206256i
\(50\) −3.95228 0.840083i −0.558936 0.118806i
\(51\) 0 0
\(52\) −1.47815 0.658114i −0.204982 0.0912640i
\(53\) −2.79197 + 8.59279i −0.383506 + 1.18031i 0.554052 + 0.832482i \(0.313081\pi\)
−0.937558 + 0.347829i \(0.886919\pi\)
\(54\) 0 0
\(55\) 4.59017 + 2.26538i 0.618938 + 0.305464i
\(56\) −0.294756 0.510532i −0.0393884 0.0682227i
\(57\) 0 0
\(58\) 0.307760 + 2.92814i 0.0404109 + 0.384484i
\(59\) −7.71534 + 3.43509i −1.00445 + 0.447210i −0.841983 0.539503i \(-0.818612\pi\)
−0.162468 + 0.986714i \(0.551945\pi\)
\(60\) 0 0
\(61\) 2.89482 3.21502i 0.370643 0.411641i −0.528753 0.848776i \(-0.677340\pi\)
0.899396 + 0.437135i \(0.144007\pi\)
\(62\) −2.97414 2.16084i −0.377716 0.274427i
\(63\) 0 0
\(64\) 1.83688 5.65334i 0.229610 0.706667i
\(65\) 3.26889 + 5.66189i 0.405456 + 0.702271i
\(66\) 0 0
\(67\) −1.92705 + 3.33775i −0.235427 + 0.407771i −0.959397 0.282061i \(-0.908982\pi\)
0.723970 + 0.689832i \(0.242315\pi\)
\(68\) −1.52029 1.68845i −0.184362 0.204755i
\(69\) 0 0
\(70\) 0.0587770 0.559226i 0.00702519 0.0668402i
\(71\) −2.38463 7.33912i −0.283003 0.870994i −0.986990 0.160781i \(-0.948599\pi\)
0.703987 0.710213i \(-0.251401\pi\)
\(72\) 0 0
\(73\) 5.23607 + 3.80423i 0.612835 + 0.445251i 0.850412 0.526118i \(-0.176353\pi\)
−0.237576 + 0.971369i \(0.576353\pi\)
\(74\) −8.79243 3.91464i −1.02210 0.455068i
\(75\) 0 0
\(76\) 0.881966 1.52761i 0.101168 0.175229i
\(77\) 0.271219 0.734472i 0.0309083 0.0837009i
\(78\) 0 0
\(79\) 0.516329 0.109749i 0.0580915 0.0123477i −0.178774 0.983890i \(-0.557213\pi\)
0.236866 + 0.971542i \(0.423880\pi\)
\(80\) 5.76611 4.18932i 0.644670 0.468380i
\(81\) 0 0
\(82\) −2.66312 8.19624i −0.294092 0.905123i
\(83\) 2.94746 3.27349i 0.323526 0.359312i −0.559339 0.828939i \(-0.688945\pi\)
0.882865 + 0.469627i \(0.155612\pi\)
\(84\) 0 0
\(85\) 0.959607 + 9.13005i 0.104084 + 0.990293i
\(86\) 11.0585 + 12.2817i 1.19247 + 1.32437i
\(87\) 0 0
\(88\) 7.69364 3.06670i 0.820145 0.326911i
\(89\) −16.7518 −1.77569 −0.887844 0.460145i \(-0.847798\pi\)
−0.887844 + 0.460145i \(0.847798\pi\)
\(90\) 0 0
\(91\) 0.809017 0.587785i 0.0848080 0.0616166i
\(92\) −0.299113 + 2.84587i −0.0311847 + 0.296703i
\(93\) 0 0
\(94\) 1.43997 + 0.306074i 0.148521 + 0.0315692i
\(95\) −6.51111 + 2.89893i −0.668026 + 0.297424i
\(96\) 0 0
\(97\) 12.5187 2.66093i 1.27108 0.270177i 0.477495 0.878634i \(-0.341545\pi\)
0.793586 + 0.608458i \(0.208212\pi\)
\(98\) 10.7175 1.08263
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) −10.3472 + 2.19936i −1.02958 + 0.218845i −0.691580 0.722300i \(-0.743085\pi\)
−0.338004 + 0.941145i \(0.609752\pi\)
\(102\) 0 0
\(103\) 6.34391 2.82449i 0.625084 0.278305i −0.0696508 0.997571i \(-0.522188\pi\)
0.694735 + 0.719266i \(0.255522\pi\)
\(104\) 10.3472 + 2.19936i 1.01463 + 0.215665i
\(105\) 0 0
\(106\) −1.45757 + 13.8679i −0.141572 + 1.34697i
\(107\) 7.60422 5.52479i 0.735128 0.534102i −0.156054 0.987749i \(-0.549877\pi\)
0.891182 + 0.453647i \(0.149877\pi\)
\(108\) 0 0
\(109\) −0.291796 −0.0279490 −0.0139745 0.999902i \(-0.504448\pi\)
−0.0139745 + 0.999902i \(0.504448\pi\)
\(110\) 7.65641 + 1.94700i 0.730010 + 0.185639i
\(111\) 0 0
\(112\) −0.729466 0.810154i −0.0689281 0.0765524i
\(113\) −1.18191 11.2451i −0.111184 1.05785i −0.897799 0.440405i \(-0.854835\pi\)
0.786615 0.617444i \(-0.211832\pi\)
\(114\) 0 0
\(115\) 7.73669 8.59247i 0.721450 0.801252i
\(116\) 0.225173 + 0.693013i 0.0209068 + 0.0643446i
\(117\) 0 0
\(118\) −10.5451 + 7.66145i −0.970754 + 0.705294i
\(119\) 1.37351 0.291949i 0.125910 0.0267629i
\(120\) 0 0
\(121\) 9.66374 + 5.25472i 0.878522 + 0.477702i
\(122\) 3.33848 5.78241i 0.302251 0.523515i
\(123\) 0 0
\(124\) −0.831171 0.370061i −0.0746414 0.0332325i
\(125\) 9.51192 + 6.91082i 0.850772 + 0.618122i
\(126\) 0 0
\(127\) −2.23607 6.88191i −0.198419 0.610671i −0.999920 0.0126769i \(-0.995965\pi\)
0.801501 0.597994i \(-0.204035\pi\)
\(128\) 1.40485 13.3663i 0.124173 1.18142i
\(129\) 0 0
\(130\) 6.75164 + 7.49846i 0.592158 + 0.657658i
\(131\) 6.06086 10.4977i 0.529540 0.917190i −0.469866 0.882738i \(-0.655698\pi\)
0.999406 0.0344525i \(-0.0109687\pi\)
\(132\) 0 0
\(133\) 0.545085 + 0.944115i 0.0472649 + 0.0818651i
\(134\) −1.83812 + 5.65714i −0.158789 + 0.488703i
\(135\) 0 0
\(136\) 12.0172 + 8.73102i 1.03047 + 0.748679i
\(137\) −7.07830 + 7.86125i −0.604740 + 0.671632i −0.965312 0.261099i \(-0.915915\pi\)
0.360572 + 0.932732i \(0.382582\pi\)
\(138\) 0 0
\(139\) −12.4407 + 5.53895i −1.05521 + 0.469808i −0.859649 0.510885i \(-0.829318\pi\)
−0.195556 + 0.980692i \(0.562651\pi\)
\(140\) −0.0145467 0.138402i −0.00122942 0.0116971i
\(141\) 0 0
\(142\) −5.95492 10.3142i −0.499725 0.865550i
\(143\) 6.53779 + 12.4356i 0.546717 + 1.03992i
\(144\) 0 0
\(145\) 0.909830 2.80017i 0.0755573 0.232541i
\(146\) 9.12527 + 4.06283i 0.755212 + 0.336242i
\(147\) 0 0
\(148\) −2.32991 0.495239i −0.191518 0.0407084i
\(149\) −13.3665 2.84113i −1.09502 0.232754i −0.375223 0.926935i \(-0.622434\pi\)
−0.719801 + 0.694180i \(0.755767\pi\)
\(150\) 0 0
\(151\) −8.00625 3.56461i −0.651539 0.290084i 0.0542270 0.998529i \(-0.482731\pi\)
−0.705766 + 0.708445i \(0.749397\pi\)
\(152\) −3.56365 + 10.9678i −0.289050 + 0.889605i
\(153\) 0 0
\(154\) 0.173762 1.19581i 0.0140021 0.0963615i
\(155\) 1.83812 + 3.18371i 0.147641 + 0.255722i
\(156\) 0 0
\(157\) −1.11349 10.5941i −0.0888659 0.845503i −0.944630 0.328137i \(-0.893579\pi\)
0.855764 0.517366i \(-0.173087\pi\)
\(158\) 0.744252 0.331362i 0.0592095 0.0263618i
\(159\) 0 0
\(160\) 2.20264 2.44628i 0.174134 0.193396i
\(161\) −1.43078 1.03952i −0.112761 0.0819256i
\(162\) 0 0
\(163\) 1.11803 3.44095i 0.0875712 0.269516i −0.897675 0.440657i \(-0.854745\pi\)
0.985247 + 0.171141i \(0.0547454\pi\)
\(164\) −1.06644 1.84712i −0.0832747 0.144236i
\(165\) 0 0
\(166\) 3.39919 5.88756i 0.263828 0.456964i
\(167\) 5.16355 + 5.73471i 0.399568 + 0.443765i 0.909032 0.416727i \(-0.136823\pi\)
−0.509464 + 0.860492i \(0.670156\pi\)
\(168\) 0 0
\(169\) −0.516817 + 4.91719i −0.0397552 + 0.378245i
\(170\) 4.37833 + 13.4751i 0.335803 + 1.03350i
\(171\) 0 0
\(172\) 3.30902 + 2.40414i 0.252310 + 0.183314i
\(173\) 2.48702 + 1.10729i 0.189085 + 0.0841860i 0.499095 0.866547i \(-0.333666\pi\)
−0.310010 + 0.950733i \(0.600332\pi\)
\(174\) 0 0
\(175\) 0.309017 0.535233i 0.0233595 0.0404598i
\(176\) 12.7377 8.50534i 0.960137 0.641114i
\(177\) 0 0
\(178\) −25.2891 + 5.37537i −1.89550 + 0.402901i
\(179\) 15.0959 10.9678i 1.12832 0.819771i 0.142868 0.989742i \(-0.454367\pi\)
0.985449 + 0.169971i \(0.0543674\pi\)
\(180\) 0 0
\(181\) 2.39919 + 7.38394i 0.178330 + 0.548844i 0.999770 0.0214515i \(-0.00682876\pi\)
−0.821440 + 0.570295i \(0.806829\pi\)
\(182\) 1.03271 1.14694i 0.0765496 0.0850170i
\(183\) 0 0
\(184\) −1.95554 18.6057i −0.144164 1.37163i
\(185\) 6.44005 + 7.15240i 0.473482 + 0.525855i
\(186\) 0 0
\(187\) 1.28420 + 19.6864i 0.0939103 + 1.43961i
\(188\) 0.364338 0.0265721
\(189\) 0 0
\(190\) −8.89919 + 6.46564i −0.645615 + 0.469067i
\(191\) −0.384271 + 3.65610i −0.0278049 + 0.264546i 0.971784 + 0.235873i \(0.0757949\pi\)
−0.999589 + 0.0286731i \(0.990872\pi\)
\(192\) 0 0
\(193\) −9.40786 1.99970i −0.677192 0.143942i −0.143539 0.989645i \(-0.545848\pi\)
−0.533654 + 0.845703i \(0.679181\pi\)
\(194\) 18.0448 8.03407i 1.29554 0.576813i
\(195\) 0 0
\(196\) 2.59451 0.551481i 0.185322 0.0393915i
\(197\) 12.1217 0.863637 0.431818 0.901961i \(-0.357872\pi\)
0.431818 + 0.901961i \(0.357872\pi\)
\(198\) 0 0
\(199\) −26.4164 −1.87261 −0.936305 0.351189i \(-0.885778\pi\)
−0.936305 + 0.351189i \(0.885778\pi\)
\(200\) 6.39492 1.35928i 0.452189 0.0961158i
\(201\) 0 0
\(202\) −14.9148 + 6.64048i −1.04940 + 0.467222i
\(203\) −0.440506 0.0936324i −0.0309174 0.00657171i
\(204\) 0 0
\(205\) −0.900830 + 8.57082i −0.0629167 + 0.598612i
\(206\) 8.67066 6.29960i 0.604113 0.438914i
\(207\) 0 0
\(208\) 19.5623 1.35640
\(209\) −14.2277 + 5.67117i −0.984148 + 0.392283i
\(210\) 0 0
\(211\) 7.38348 + 8.20019i 0.508300 + 0.564524i 0.941603 0.336724i \(-0.109319\pi\)
−0.433304 + 0.901248i \(0.642652\pi\)
\(212\) 0.360734 + 3.43216i 0.0247753 + 0.235722i
\(213\) 0 0
\(214\) 9.70680 10.7805i 0.663543 0.736939i
\(215\) −5.10701 15.7178i −0.348295 1.07194i
\(216\) 0 0
\(217\) 0.454915 0.330515i 0.0308816 0.0224368i
\(218\) −0.440506 + 0.0936324i −0.0298348 + 0.00634159i
\(219\) 0 0
\(220\) 1.95366 + 0.0773639i 0.131716 + 0.00521587i
\(221\) −12.5986 + 21.8215i −0.847477 + 1.46787i
\(222\) 0 0
\(223\) −17.5221 7.80135i −1.17337 0.522417i −0.274907 0.961471i \(-0.588647\pi\)
−0.898461 + 0.439054i \(0.855314\pi\)
\(224\) −0.407343 0.295952i −0.0272167 0.0197741i
\(225\) 0 0
\(226\) −5.39261 16.5967i −0.358711 1.10400i
\(227\) −0.982498 + 9.34785i −0.0652107 + 0.620438i 0.912296 + 0.409532i \(0.134308\pi\)
−0.977506 + 0.210906i \(0.932359\pi\)
\(228\) 0 0
\(229\) −6.37539 7.08058i −0.421297 0.467898i 0.494711 0.869058i \(-0.335274\pi\)
−0.916008 + 0.401160i \(0.868607\pi\)
\(230\) 8.92241 15.4541i 0.588326 1.01901i
\(231\) 0 0
\(232\) −2.38197 4.12569i −0.156384 0.270865i
\(233\) 1.29161 3.97517i 0.0846162 0.260422i −0.899793 0.436318i \(-0.856282\pi\)
0.984409 + 0.175896i \(0.0562823\pi\)
\(234\) 0 0
\(235\) −1.19098 0.865300i −0.0776912 0.0564459i
\(236\) −2.15854 + 2.39730i −0.140509 + 0.156051i
\(237\) 0 0
\(238\) 1.97982 0.881473i 0.128333 0.0571374i
\(239\) −1.66588 15.8498i −0.107757 1.02524i −0.906108 0.423047i \(-0.860961\pi\)
0.798351 0.602193i \(-0.205706\pi\)
\(240\) 0 0
\(241\) −7.00000 12.1244i −0.450910 0.780998i 0.547533 0.836784i \(-0.315567\pi\)
−0.998443 + 0.0557856i \(0.982234\pi\)
\(242\) 16.2749 + 4.83178i 1.04619 + 0.310598i
\(243\) 0 0
\(244\) 0.510643 1.57160i 0.0326906 0.100611i
\(245\) −9.79095 4.35921i −0.625521 0.278500i
\(246\) 0 0
\(247\) −19.1348 4.06723i −1.21752 0.258792i
\(248\) 5.81829 + 1.23672i 0.369462 + 0.0785315i
\(249\) 0 0
\(250\) 16.5771 + 7.38060i 1.04843 + 0.466790i
\(251\) −4.56050 + 14.0358i −0.287856 + 0.885931i 0.697672 + 0.716418i \(0.254220\pi\)
−0.985528 + 0.169513i \(0.945780\pi\)
\(252\) 0 0
\(253\) 17.3435 17.7926i 1.09037 1.11861i
\(254\) −5.58394 9.67166i −0.350367 0.606854i
\(255\) 0 0
\(256\) −0.925506 8.80560i −0.0578441 0.550350i
\(257\) 14.4322 6.42561i 0.900253 0.400818i 0.0961902 0.995363i \(-0.469334\pi\)
0.804063 + 0.594545i \(0.202668\pi\)
\(258\) 0 0
\(259\) 0.985051 1.09401i 0.0612081 0.0679785i
\(260\) 2.02029 + 1.46782i 0.125293 + 0.0910306i
\(261\) 0 0
\(262\) 5.78115 17.7926i 0.357161 1.09923i
\(263\) −2.31504 4.00977i −0.142752 0.247253i 0.785780 0.618506i \(-0.212262\pi\)
−0.928532 + 0.371253i \(0.878928\pi\)
\(264\) 0 0
\(265\) 6.97214 12.0761i 0.428295 0.741829i
\(266\) 1.12583 + 1.25036i 0.0690291 + 0.0766646i
\(267\) 0 0
\(268\) −0.153880 + 1.46407i −0.00939972 + 0.0894324i
\(269\) 8.30632 + 25.5642i 0.506445 + 1.55868i 0.798327 + 0.602224i \(0.205719\pi\)
−0.291882 + 0.956454i \(0.594281\pi\)
\(270\) 0 0
\(271\) 24.2984 + 17.6538i 1.47602 + 1.07239i 0.978812 + 0.204761i \(0.0656418\pi\)
0.497209 + 0.867631i \(0.334358\pi\)
\(272\) 25.0945 + 11.1728i 1.52158 + 0.677450i
\(273\) 0 0
\(274\) −8.16312 + 14.1389i −0.493152 + 0.854164i
\(275\) 6.81727 + 5.37772i 0.411097 + 0.324289i
\(276\) 0 0
\(277\) −21.1456 + 4.49464i −1.27052 + 0.270057i −0.793356 0.608758i \(-0.791668\pi\)
−0.477162 + 0.878815i \(0.658335\pi\)
\(278\) −17.0036 + 12.3538i −1.01981 + 0.740932i
\(279\) 0 0
\(280\) 0.281153 + 0.865300i 0.0168021 + 0.0517116i
\(281\) −5.89492 + 6.54698i −0.351662 + 0.390560i −0.892859 0.450336i \(-0.851304\pi\)
0.541198 + 0.840895i \(0.317971\pi\)
\(282\) 0 0
\(283\) −0.725874 6.90623i −0.0431487 0.410533i −0.994683 0.102989i \(-0.967159\pi\)
0.951534 0.307544i \(-0.0995072\pi\)
\(284\) −1.97230 2.19046i −0.117035 0.129980i
\(285\) 0 0
\(286\) 13.8601 + 16.6754i 0.819562 + 0.986036i
\(287\) 1.31819 0.0778102
\(288\) 0 0
\(289\) −14.8713 + 10.8046i −0.874784 + 0.635568i
\(290\) 0.474985 4.51918i 0.0278921 0.265376i
\(291\) 0 0
\(292\) 2.41811 + 0.513986i 0.141509 + 0.0300788i
\(293\) −18.7891 + 8.36544i −1.09767 + 0.488714i −0.873988 0.485948i \(-0.838474\pi\)
−0.223682 + 0.974662i \(0.571808\pi\)
\(294\) 0 0
\(295\) 12.7496 2.71001i 0.742311 0.157783i
\(296\) 15.5728 0.905150
\(297\) 0 0
\(298\) −21.0902 −1.22172
\(299\) 31.0416 6.59809i 1.79518 0.381578i
\(300\) 0 0
\(301\) −2.30932 + 1.02817i −0.133107 + 0.0592630i
\(302\) −13.2303 2.81220i −0.761321 0.161824i
\(303\) 0 0
\(304\) −2.22920 + 21.2094i −0.127853 + 1.21644i
\(305\) −5.40177 + 3.92461i −0.309304 + 0.224723i
\(306\) 0 0
\(307\) −16.2705 −0.928607 −0.464304 0.885676i \(-0.653695\pi\)
−0.464304 + 0.885676i \(0.653695\pi\)
\(308\) −0.0194673 0.298426i −0.00110925 0.0170044i
\(309\) 0 0
\(310\) 3.79649 + 4.21643i 0.215626 + 0.239477i
\(311\) −2.51958 23.9722i −0.142872 1.35934i −0.797468 0.603361i \(-0.793828\pi\)
0.654595 0.755979i \(-0.272839\pi\)
\(312\) 0 0
\(313\) 0.232539 0.258261i 0.0131439 0.0145978i −0.736537 0.676397i \(-0.763540\pi\)
0.749681 + 0.661799i \(0.230207\pi\)
\(314\) −5.08043 15.6360i −0.286705 0.882389i
\(315\) 0 0
\(316\) 0.163119 0.118513i 0.00917616 0.00666687i
\(317\) −10.3472 + 2.19936i −0.581157 + 0.123529i −0.489104 0.872226i \(-0.662676\pi\)
−0.0920526 + 0.995754i \(0.529343\pi\)
\(318\) 0 0
\(319\) 2.19176 5.93538i 0.122715 0.332317i
\(320\) −4.58708 + 7.94506i −0.256426 + 0.444142i
\(321\) 0 0
\(322\) −2.49351 1.11018i −0.138958 0.0618681i
\(323\) −22.2232 16.1461i −1.23653 0.898391i
\(324\) 0 0
\(325\) 3.42705 + 10.5474i 0.190099 + 0.585063i
\(326\) 0.583680 5.55335i 0.0323271 0.307571i
\(327\) 0 0
\(328\) 9.33054 + 10.3626i 0.515193 + 0.572180i
\(329\) −0.112587 + 0.195006i −0.00620711 + 0.0107510i
\(330\) 0 0
\(331\) −10.3541 17.9338i −0.569113 0.985732i −0.996654 0.0817366i \(-0.973953\pi\)
0.427541 0.903996i \(-0.359380\pi\)
\(332\) 0.519929 1.60018i 0.0285348 0.0878212i
\(333\) 0 0
\(334\) 9.63525 + 7.00042i 0.527218 + 0.383046i
\(335\) 3.98017 4.42043i 0.217460 0.241514i
\(336\) 0 0
\(337\) 4.25025 1.89233i 0.231526 0.103082i −0.287695 0.957722i \(-0.592889\pi\)
0.519221 + 0.854640i \(0.326222\pi\)
\(338\) 0.797636 + 7.58900i 0.0433857 + 0.412787i
\(339\) 0 0
\(340\) 1.75329 + 3.03679i 0.0950854 + 0.164693i
\(341\) 3.67624 + 6.99262i 0.199079 + 0.378671i
\(342\) 0 0
\(343\) −1.01722 + 3.13068i −0.0549248 + 0.169041i
\(344\) −24.4288 10.8764i −1.31711 0.586416i
\(345\) 0 0
\(346\) 4.10981 + 0.873567i 0.220945 + 0.0469633i
\(347\) −2.57877 0.548134i −0.138435 0.0294254i 0.138173 0.990408i \(-0.455877\pi\)
−0.276608 + 0.960983i \(0.589210\pi\)
\(348\) 0 0
\(349\) −12.0408 5.36093i −0.644531 0.286964i 0.0583229 0.998298i \(-0.481425\pi\)
−0.702854 + 0.711334i \(0.748091\pi\)
\(350\) 0.294756 0.907165i 0.0157554 0.0484900i
\(351\) 0 0
\(352\) 4.93769 5.06555i 0.263180 0.269995i
\(353\) −1.76854 3.06319i −0.0941296 0.163037i 0.815115 0.579299i \(-0.196673\pi\)
−0.909245 + 0.416261i \(0.863340\pi\)
\(354\) 0 0
\(355\) 1.24492 + 11.8446i 0.0660733 + 0.628645i
\(356\) −5.84543 + 2.60255i −0.309807 + 0.137935i
\(357\) 0 0
\(358\) 19.2699 21.4014i 1.01844 1.13110i
\(359\) −21.1567 15.3713i −1.11661 0.811264i −0.132917 0.991127i \(-0.542434\pi\)
−0.983692 + 0.179863i \(0.942434\pi\)
\(360\) 0 0
\(361\) 0.718847 2.21238i 0.0378341 0.116441i
\(362\) 5.99128 + 10.3772i 0.314895 + 0.545413i
\(363\) 0 0
\(364\) 0.190983 0.330792i 0.0100102 0.0173382i
\(365\) −6.68384 7.42316i −0.349848 0.388546i
\(366\) 0 0
\(367\) 0.630771 6.00138i 0.0329260 0.313270i −0.965647 0.259859i \(-0.916324\pi\)
0.998573 0.0534110i \(-0.0170093\pi\)
\(368\) −10.6909 32.9034i −0.557304 1.71521i
\(369\) 0 0
\(370\) 12.0172 + 8.73102i 0.624746 + 0.453904i
\(371\) −1.94848 0.867518i −0.101160 0.0450393i
\(372\) 0 0
\(373\) −6.20820 + 10.7529i −0.321449 + 0.556765i −0.980787 0.195081i \(-0.937503\pi\)
0.659339 + 0.751846i \(0.270836\pi\)
\(374\) 8.25570 + 29.3071i 0.426892 + 1.51544i
\(375\) 0 0
\(376\) −2.32991 + 0.495239i −0.120156 + 0.0255400i
\(377\) 6.53779 4.74998i 0.336713 0.244636i
\(378\) 0 0
\(379\) 0.545085 + 1.67760i 0.0279991 + 0.0861725i 0.964080 0.265613i \(-0.0855745\pi\)
−0.936080 + 0.351786i \(0.885574\pi\)
\(380\) −1.82163 + 2.02313i −0.0934477 + 0.103784i
\(381\) 0 0
\(382\) 0.593070 + 5.64268i 0.0303441 + 0.288705i
\(383\) 9.44507 + 10.4898i 0.482620 + 0.536004i 0.934447 0.356101i \(-0.115894\pi\)
−0.451827 + 0.892106i \(0.649228\pi\)
\(384\) 0 0
\(385\) −0.645121 + 1.02176i −0.0328784 + 0.0520735i
\(386\) −14.8441 −0.755545
\(387\) 0 0
\(388\) 3.95492 2.87341i 0.200780 0.145875i
\(389\) 2.03561 19.3675i 0.103209 0.981972i −0.813269 0.581888i \(-0.802314\pi\)
0.916478 0.400084i \(-0.131019\pi\)
\(390\) 0 0
\(391\) 43.5885 + 9.26502i 2.20437 + 0.468552i
\(392\) −15.8421 + 7.05335i −0.800146 + 0.356248i
\(393\) 0 0
\(394\) 18.2994 3.88965i 0.921910 0.195958i
\(395\) −0.814685 −0.0409913
\(396\) 0 0
\(397\) −2.41641 −0.121276 −0.0606380 0.998160i \(-0.519314\pi\)
−0.0606380 + 0.998160i \(0.519314\pi\)
\(398\) −39.8792 + 8.47658i −1.99896 + 0.424892i
\(399\) 0 0
\(400\) 11.0449 4.91752i 0.552246 0.245876i
\(401\) −3.23952 0.688582i −0.161774 0.0343862i 0.126313 0.991990i \(-0.459686\pi\)
−0.288087 + 0.957604i \(0.593019\pi\)
\(402\) 0 0
\(403\) −1.05471 + 10.0349i −0.0525388 + 0.499874i
\(404\) −3.26889 + 2.37499i −0.162634 + 0.118160i
\(405\) 0 0
\(406\) −0.695048 −0.0344947
\(407\) 13.2204 + 15.9058i 0.655311 + 0.788422i
\(408\) 0 0
\(409\) −15.3527 17.0509i −0.759143 0.843114i 0.232437 0.972611i \(-0.425330\pi\)
−0.991580 + 0.129498i \(0.958663\pi\)
\(410\) 1.39031 + 13.2279i 0.0686623 + 0.653279i
\(411\) 0 0
\(412\) 1.77485 1.97117i 0.0874407 0.0971128i
\(413\) −0.616090 1.89613i −0.0303158 0.0933024i
\(414\) 0 0
\(415\) −5.50000 + 3.99598i −0.269984 + 0.196155i
\(416\) 8.83756 1.87848i 0.433297 0.0921001i
\(417\) 0 0
\(418\) −19.6588 + 13.1268i −0.961544 + 0.642054i
\(419\) 8.03814 13.9225i 0.392689 0.680157i −0.600114 0.799914i \(-0.704878\pi\)
0.992803 + 0.119757i \(0.0382115\pi\)
\(420\) 0 0
\(421\) 20.2942 + 9.03557i 0.989079 + 0.440367i 0.836525 0.547929i \(-0.184583\pi\)
0.152554 + 0.988295i \(0.451250\pi\)
\(422\) 13.7777 + 10.0101i 0.670687 + 0.487282i
\(423\) 0 0
\(424\) −6.97214 21.4580i −0.338597 1.04209i
\(425\) −1.62780 + 15.4875i −0.0789599 + 0.751253i
\(426\) 0 0
\(427\) 0.683374 + 0.758964i 0.0330708 + 0.0367288i
\(428\) 1.79511 3.10923i 0.0867701 0.150290i
\(429\) 0 0
\(430\) −12.7533 22.0893i −0.615018 1.06524i
\(431\) −1.69895 + 5.22884i −0.0818357 + 0.251864i −0.983600 0.180364i \(-0.942272\pi\)
0.901764 + 0.432228i \(0.142272\pi\)
\(432\) 0 0
\(433\) −23.1803 16.8415i −1.11398 0.809351i −0.130691 0.991423i \(-0.541720\pi\)
−0.983285 + 0.182072i \(0.941720\pi\)
\(434\) 0.580699 0.644932i 0.0278745 0.0309577i
\(435\) 0 0
\(436\) −0.101820 + 0.0453333i −0.00487631 + 0.00217107i
\(437\) 3.61633 + 34.4071i 0.172993 + 1.64592i
\(438\) 0 0
\(439\) 12.5000 + 21.6506i 0.596592 + 1.03333i 0.993320 + 0.115392i \(0.0368124\pi\)
−0.396728 + 0.917936i \(0.629854\pi\)
\(440\) −12.5986 + 2.16084i −0.600617 + 0.103014i
\(441\) 0 0
\(442\) −12.0172 + 36.9852i −0.571601 + 1.75921i
\(443\) 17.1734 + 7.64611i 0.815935 + 0.363278i 0.771893 0.635752i \(-0.219310\pi\)
0.0440416 + 0.999030i \(0.485977\pi\)
\(444\) 0 0
\(445\) 25.2891 + 5.37537i 1.19882 + 0.254817i
\(446\) −28.9553 6.15464i −1.37107 0.291431i
\(447\) 0 0
\(448\) 1.28193 + 0.570754i 0.0605657 + 0.0269656i
\(449\) −0.139165 + 0.428305i −0.00656760 + 0.0202130i −0.954287 0.298893i \(-0.903383\pi\)
0.947719 + 0.319106i \(0.103383\pi\)
\(450\) 0 0
\(451\) −2.66312 + 18.3273i −0.125401 + 0.863001i
\(452\) −2.15945 3.74028i −0.101572 0.175928i
\(453\) 0 0
\(454\) 1.51635 + 14.4271i 0.0711658 + 0.677098i
\(455\) −1.40993 + 0.627742i −0.0660986 + 0.0294290i
\(456\) 0 0
\(457\) 15.9988 17.7685i 0.748392 0.831174i −0.241882 0.970306i \(-0.577765\pi\)
0.990274 + 0.139132i \(0.0444312\pi\)
\(458\) −11.8965 8.64335i −0.555889 0.403877i
\(459\) 0 0
\(460\) 1.36475 4.20025i 0.0636316 0.195838i
\(461\) −9.80668 16.9857i −0.456743 0.791101i 0.542044 0.840350i \(-0.317651\pi\)
−0.998787 + 0.0492488i \(0.984317\pi\)
\(462\) 0 0
\(463\) 0.718847 1.24508i 0.0334077 0.0578638i −0.848838 0.528653i \(-0.822697\pi\)
0.882246 + 0.470789i \(0.156031\pi\)
\(464\) −5.89492 6.54698i −0.273665 0.303936i
\(465\) 0 0
\(466\) 0.674297 6.41551i 0.0312362 0.297193i
\(467\) −1.50036 4.61763i −0.0694283 0.213678i 0.910322 0.413900i \(-0.135834\pi\)
−0.979751 + 0.200222i \(0.935834\pi\)
\(468\) 0 0
\(469\) −0.736068 0.534785i −0.0339885 0.0246941i
\(470\) −2.07561 0.924121i −0.0957408 0.0426265i
\(471\) 0 0
\(472\) 10.5451 18.2646i 0.485377 0.840697i
\(473\) −9.62967 34.1847i −0.442773 1.57181i
\(474\) 0 0
\(475\) −11.8260 + 2.51369i −0.542613 + 0.115336i
\(476\) 0.433921 0.315262i 0.0198887 0.0144500i
\(477\) 0 0
\(478\) −7.60081 23.3929i −0.347653 1.06997i
\(479\) 24.6344 27.3593i 1.12557 1.25008i 0.160802 0.986987i \(-0.448592\pi\)
0.964771 0.263090i \(-0.0847415\pi\)
\(480\) 0 0
\(481\) 2.76127 + 26.2717i 0.125903 + 1.19789i
\(482\) −14.4579 16.0572i −0.658542 0.731385i
\(483\) 0 0
\(484\) 4.18847 + 0.332243i 0.190385 + 0.0151020i
\(485\) −19.7525 −0.896916
\(486\) 0 0
\(487\) 13.6631 9.92684i 0.619135 0.449828i −0.233484 0.972361i \(-0.575013\pi\)
0.852619 + 0.522533i \(0.175013\pi\)
\(488\) −1.12928 + 10.7444i −0.0511200 + 0.486374i
\(489\) 0 0
\(490\) −16.1796 3.43907i −0.730918 0.155361i
\(491\) −28.2472 + 12.5765i −1.27478 + 0.567568i −0.928767 0.370663i \(-0.879130\pi\)
−0.346010 + 0.938231i \(0.612464\pi\)
\(492\) 0 0
\(493\) 11.0996 2.35928i 0.499899 0.106257i
\(494\) −30.1917 −1.35839
\(495\) 0 0
\(496\) 11.0000 0.493915
\(497\) 1.78188 0.378751i 0.0799284 0.0169893i
\(498\) 0 0
\(499\) −8.90035 + 3.96269i −0.398434 + 0.177394i −0.596165 0.802862i \(-0.703310\pi\)
0.197731 + 0.980256i \(0.436643\pi\)
\(500\) 4.39278 + 0.933715i 0.196451 + 0.0417570i
\(501\) 0 0
\(502\) −2.38085 + 22.6523i −0.106263 + 1.01102i
\(503\) 9.03500 6.56431i 0.402851 0.292688i −0.367850 0.929885i \(-0.619906\pi\)
0.770701 + 0.637197i \(0.219906\pi\)
\(504\) 0 0
\(505\) 16.3262 0.726508
\(506\) 20.4730 32.4255i 0.910135 1.44149i
\(507\) 0 0
\(508\) −1.84943 2.05400i −0.0820553 0.0911316i
\(509\) 0.868247 + 8.26082i 0.0384844 + 0.366154i 0.996768 + 0.0803351i \(0.0255990\pi\)
−0.958284 + 0.285819i \(0.907734\pi\)
\(510\) 0 0
\(511\) −1.02234 + 1.13542i −0.0452257 + 0.0502282i
\(512\) 4.08358 + 12.5680i 0.180470 + 0.555431i
\(513\) 0 0
\(514\) 19.7254 14.3314i 0.870051 0.632129i
\(515\) −10.4833 + 2.22830i −0.461950 + 0.0981906i
\(516\) 0 0
\(517\) −2.48379 1.95931i −0.109237 0.0861704i
\(518\) 1.13602 1.96764i 0.0499138 0.0864533i
\(519\) 0 0
\(520\) −14.9148 6.64048i −0.654056 0.291204i
\(521\) −4.40491 3.20036i −0.192983 0.140210i 0.487098 0.873347i \(-0.338055\pi\)
−0.680081 + 0.733137i \(0.738055\pi\)
\(522\) 0 0
\(523\) 5.70163 + 17.5478i 0.249315 + 0.767312i 0.994897 + 0.100898i \(0.0321716\pi\)
−0.745582 + 0.666414i \(0.767828\pi\)
\(524\) 0.483976 4.60472i 0.0211426 0.201158i
\(525\) 0 0
\(526\) −4.78154 5.31044i −0.208485 0.231546i
\(527\) −7.08429 + 12.2704i −0.308597 + 0.534505i
\(528\) 0 0
\(529\) −16.5623 28.6868i −0.720100 1.24725i
\(530\) 6.65037 20.4677i 0.288874 0.889062i
\(531\) 0 0
\(532\) 0.336881 + 0.244758i 0.0146056 + 0.0106116i
\(533\) −15.8276 + 17.5783i −0.685568 + 0.761401i
\(534\) 0 0
\(535\) −13.2524 + 5.90036i −0.572952 + 0.255095i
\(536\) −1.00604 9.57179i −0.0434541 0.413438i
\(537\) 0 0
\(538\) 20.7426 + 35.9273i 0.894279 + 1.54894i
\(539\) −20.6532 10.1930i −0.889597 0.439042i
\(540\) 0 0
\(541\) −12.2467 + 37.6915i −0.526527 + 1.62048i 0.234749 + 0.972056i \(0.424573\pi\)
−0.761276 + 0.648428i \(0.775427\pi\)
\(542\) 42.3465 + 18.8539i 1.81894 + 0.809843i
\(543\) 0 0
\(544\) 12.4097 + 2.63776i 0.532061 + 0.113093i
\(545\) 0.440506 + 0.0936324i 0.0188692 + 0.00401077i
\(546\) 0 0
\(547\) −8.25337 3.67464i −0.352889 0.157116i 0.222634 0.974902i \(-0.428535\pi\)
−0.575522 + 0.817786i \(0.695201\pi\)
\(548\) −1.24861 + 3.84281i −0.0533378 + 0.164157i
\(549\) 0 0
\(550\) 12.0172 + 5.93085i 0.512416 + 0.252892i
\(551\) 4.40491 + 7.62953i 0.187656 + 0.325029i
\(552\) 0 0
\(553\) 0.0130255 + 0.123929i 0.000553900 + 0.00527000i
\(554\) −30.4799 + 13.5705i −1.29497 + 0.576557i
\(555\) 0 0
\(556\) −3.48057 + 3.86556i −0.147609 + 0.163936i
\(557\) 14.3242 + 10.4071i 0.606935 + 0.440964i 0.848334 0.529462i \(-0.177606\pi\)
−0.241399 + 0.970426i \(0.577606\pi\)
\(558\) 0 0
\(559\) 14.0172 43.1406i 0.592865 1.82465i
\(560\) 0.841263 + 1.45711i 0.0355499 + 0.0615742i
\(561\) 0 0
\(562\) −6.79837 + 11.7751i −0.286772 + 0.496704i
\(563\) 27.1298 + 30.1307i 1.14339 + 1.26986i 0.957865 + 0.287219i \(0.0927307\pi\)
0.185521 + 0.982640i \(0.440603\pi\)
\(564\) 0 0
\(565\) −1.82411 + 17.3553i −0.0767409 + 0.730141i
\(566\) −3.31190 10.1930i −0.139209 0.428443i
\(567\) 0 0
\(568\) 15.5902 + 11.3269i 0.654149 + 0.475267i
\(569\) −27.1215 12.0753i −1.13699 0.506222i −0.250111 0.968217i \(-0.580467\pi\)
−0.886883 + 0.461995i \(0.847134\pi\)
\(570\) 0 0
\(571\) 17.4894 30.2925i 0.731907 1.26770i −0.224160 0.974552i \(-0.571964\pi\)
0.956067 0.293148i \(-0.0947027\pi\)
\(572\) 4.21331 + 3.32361i 0.176167 + 0.138967i
\(573\) 0 0
\(574\) 1.98998 0.422984i 0.0830603 0.0176550i
\(575\) 15.8675 11.5284i 0.661722 0.480769i
\(576\) 0 0
\(577\) −10.0902 31.0543i −0.420059 1.29281i −0.907647 0.419735i \(-0.862123\pi\)
0.487587 0.873074i \(-0.337877\pi\)
\(578\) −18.9833 + 21.0830i −0.789599 + 0.876939i
\(579\) 0 0
\(580\) −0.117554 1.11845i −0.00488116 0.0464412i
\(581\) 0.695801 + 0.772766i 0.0288667 + 0.0320597i
\(582\) 0 0
\(583\) 15.9980 25.3379i 0.662568 1.04939i
\(584\) −16.1623 −0.668801
\(585\) 0 0
\(586\) −25.6803 + 18.6579i −1.06085 + 0.770749i
\(587\) 0.953405 9.07104i 0.0393512 0.374402i −0.957069 0.289861i \(-0.906391\pi\)
0.996420 0.0845410i \(-0.0269424\pi\)
\(588\) 0 0
\(589\) −10.7596 2.28703i −0.443343 0.0942354i
\(590\) 18.3777 8.18226i 0.756597 0.336859i
\(591\) 0 0
\(592\) 28.1691 5.98752i 1.15774 0.246085i
\(593\) 1.09301 0.0448847 0.0224424 0.999748i \(-0.492856\pi\)
0.0224424 + 0.999748i \(0.492856\pi\)
\(594\) 0 0
\(595\) −2.16718 −0.0888459
\(596\) −5.10554 + 1.08522i −0.209131 + 0.0444522i
\(597\) 0 0
\(598\) 44.7443 19.9214i 1.82973 0.814648i
\(599\) 12.0771 + 2.56706i 0.493456 + 0.104887i 0.447917 0.894075i \(-0.352166\pi\)
0.0455394 + 0.998963i \(0.485499\pi\)
\(600\) 0 0
\(601\) −3.69620 + 35.1670i −0.150771 + 1.43449i 0.613551 + 0.789655i \(0.289741\pi\)
−0.764322 + 0.644835i \(0.776926\pi\)
\(602\) −3.15631 + 2.29319i −0.128641 + 0.0934635i
\(603\) 0 0
\(604\) −3.34752 −0.136209
\(605\) −12.9026 11.0336i −0.524565 0.448581i
\(606\) 0 0
\(607\) −17.6530 19.6056i −0.716512 0.795768i 0.269400 0.963028i \(-0.413175\pi\)
−0.985913 + 0.167261i \(0.946508\pi\)
\(608\) 1.02957 + 9.79573i 0.0417547 + 0.397269i
\(609\) 0 0
\(610\) −6.89536 + 7.65807i −0.279185 + 0.310066i
\(611\) −1.24861 3.84281i −0.0505132 0.155464i
\(612\) 0 0
\(613\) −34.7426 + 25.2420i −1.40324 + 1.01952i −0.408980 + 0.912543i \(0.634115\pi\)
−0.994262 + 0.106972i \(0.965885\pi\)
\(614\) −24.5625 + 5.22093i −0.991264 + 0.210700i
\(615\) 0 0
\(616\) 0.530136 + 1.88195i 0.0213598 + 0.0758258i
\(617\) 0.884268 1.53160i 0.0355993 0.0616598i −0.847677 0.530513i \(-0.821999\pi\)
0.883276 + 0.468853i \(0.155333\pi\)
\(618\) 0 0
\(619\) −26.3910 11.7500i −1.06074 0.472274i −0.199201 0.979959i \(-0.563835\pi\)
−0.861543 + 0.507685i \(0.830501\pi\)
\(620\) 1.13602 + 0.825366i 0.0456236 + 0.0331475i
\(621\) 0 0
\(622\) −11.4959 35.3808i −0.460945 1.41864i
\(623\) 0.413365 3.93290i 0.0165611 0.157568i
\(624\) 0 0
\(625\) −3.38294 3.75714i −0.135318 0.150286i
\(626\) 0.268178 0.464498i 0.0107185 0.0185651i
\(627\) 0 0
\(628\) −2.03444 3.52376i −0.0811831 0.140613i
\(629\) −11.4626 + 35.2783i −0.457045 + 1.40664i
\(630\) 0 0
\(631\) 15.8713 + 11.5312i 0.631827 + 0.459049i 0.857033 0.515262i \(-0.172305\pi\)
−0.225205 + 0.974311i \(0.572305\pi\)
\(632\) −0.882040 + 0.979605i −0.0350857 + 0.0389666i
\(633\) 0 0
\(634\) −14.9148 + 6.64048i −0.592341 + 0.263727i
\(635\) 1.16736 + 11.1067i 0.0463253 + 0.440756i
\(636\) 0 0
\(637\) −14.7082 25.4754i −0.582760 1.00937i
\(638\) 1.40420 9.66356i 0.0555927 0.382584i
\(639\) 0 0
\(640\) −6.40983 + 19.7274i −0.253371 + 0.779795i
\(641\) −11.2009 4.98695i −0.442408 0.196973i 0.173429 0.984846i \(-0.444515\pi\)
−0.615837 + 0.787874i \(0.711182\pi\)
\(642\) 0 0
\(643\) −27.5437 5.85460i −1.08622 0.230883i −0.370191 0.928956i \(-0.620708\pi\)
−0.716027 + 0.698073i \(0.754041\pi\)
\(644\) −0.660759 0.140449i −0.0260375 0.00553445i
\(645\) 0 0
\(646\) −38.7299 17.2436i −1.52381 0.678442i
\(647\) 12.1913 37.5210i 0.479290 1.47510i −0.360794 0.932645i \(-0.617494\pi\)
0.840084 0.542456i \(-0.182506\pi\)
\(648\) 0 0
\(649\) 27.6074 4.73504i 1.08368 0.185867i
\(650\) 8.55807 + 14.8230i 0.335675 + 0.581407i
\(651\) 0 0
\(652\) −0.144455 1.37440i −0.00565729 0.0538255i
\(653\) 38.1953 17.0056i 1.49470 0.665482i 0.513429 0.858132i \(-0.328375\pi\)
0.981268 + 0.192650i \(0.0617082\pi\)
\(654\) 0 0
\(655\) −12.5182 + 13.9029i −0.489128 + 0.543231i
\(656\) 20.8620 + 15.1571i 0.814523 + 0.591785i
\(657\) 0 0
\(658\) −0.107391 + 0.330515i −0.00418653 + 0.0128848i
\(659\) −1.76854 3.06319i −0.0688924 0.119325i 0.829522 0.558475i \(-0.188613\pi\)
−0.898414 + 0.439150i \(0.855280\pi\)
\(660\) 0 0
\(661\) −11.2812 + 19.5395i −0.438786 + 0.760000i −0.997596 0.0692960i \(-0.977925\pi\)
0.558810 + 0.829296i \(0.311258\pi\)
\(662\) −21.3856 23.7511i −0.831174 0.923113i
\(663\) 0 0
\(664\) −1.14981 + 10.9397i −0.0446214 + 0.424544i
\(665\) −0.519929 1.60018i −0.0201620 0.0620522i
\(666\) 0 0
\(667\) −11.5623 8.40051i −0.447694 0.325269i
\(668\) 2.69273 + 1.19888i 0.104185 + 0.0463861i
\(669\) 0 0
\(670\) 4.59017 7.95041i 0.177334 0.307151i
\(671\) −11.9328 + 7.96792i −0.460661 + 0.307598i
\(672\) 0 0
\(673\) −13.4632 + 2.86168i −0.518967 + 0.110310i −0.459946 0.887947i \(-0.652131\pi\)
−0.0590208 + 0.998257i \(0.518798\pi\)
\(674\) 5.80911 4.22056i 0.223759 0.162570i
\(675\) 0 0
\(676\) 0.583592 + 1.79611i 0.0224459 + 0.0690812i
\(677\) 4.13084 4.58777i 0.158761 0.176322i −0.658516 0.752566i \(-0.728816\pi\)
0.817278 + 0.576244i \(0.195482\pi\)
\(678\) 0 0
\(679\) 0.315810 + 3.00474i 0.0121197 + 0.115311i
\(680\) −15.3400 17.0368i −0.588262 0.653331i
\(681\) 0 0
\(682\) 7.79359 + 9.37666i 0.298432 + 0.359051i
\(683\) 31.7351 1.21431 0.607155 0.794584i \(-0.292311\pi\)
0.607155 + 0.794584i \(0.292311\pi\)
\(684\) 0 0
\(685\) 13.2082 9.59632i 0.504660 0.366657i
\(686\) −0.531050 + 5.05260i −0.0202756 + 0.192909i
\(687\) 0 0
\(688\) −48.3702 10.2814i −1.84410 0.391975i
\(689\) 34.9640 15.5670i 1.33202 0.593055i
\(690\) 0 0
\(691\) 12.0906 2.56993i 0.459947 0.0977647i 0.0278899 0.999611i \(-0.491121\pi\)
0.432057 + 0.901846i \(0.357788\pi\)
\(692\) 1.03986 0.0395295
\(693\) 0 0
\(694\) −4.06888 −0.154453
\(695\) 20.5583 4.36980i 0.779820 0.165756i
\(696\) 0 0
\(697\) −30.3432 + 13.5097i −1.14933 + 0.511715i
\(698\) −19.8975 4.22935i −0.753132 0.160083i
\(699\) 0 0
\(700\) 0.0246758 0.234775i 0.000932658 0.00887365i
\(701\) −31.0760 + 22.5780i −1.17372 + 0.852760i −0.991450 0.130488i \(-0.958346\pi\)
−0.182274 + 0.983248i \(0.558346\pi\)
\(702\) 0 0
\(703\) −28.7984 −1.08615
\(704\) −10.5253 + 16.6702i −0.396688 + 0.628282i
\(705\) 0 0
\(706\) −3.65277 4.05681i −0.137474 0.152680i
\(707\) −0.261030 2.48353i −0.00981703 0.0934028i
\(708\) 0 0
\(709\) −26.6303 + 29.5760i −1.00012 + 1.11075i −0.00627600 + 0.999980i \(0.501998\pi\)
−0.993846 + 0.110768i \(0.964669\pi\)
\(710\) 5.68010 + 17.4815i 0.213170 + 0.656070i
\(711\) 0 0
\(712\) 33.8435 24.5887i 1.26834 0.921501i
\(713\) 17.4549 3.71015i 0.653690 0.138946i
\(714\) 0 0
\(715\) −5.87930 20.8711i −0.219873 0.780535i
\(716\) 3.56365 6.17242i 0.133180 0.230674i
\(717\) 0 0
\(718\) −36.8713 16.4162i −1.37603 0.612646i
\(719\) 28.7609 + 20.8960i 1.07260 + 0.779291i 0.976378 0.216069i \(-0.0693235\pi\)
0.0962240 + 0.995360i \(0.469323\pi\)
\(720\) 0 0
\(721\) 0.506578 + 1.55909i 0.0188659 + 0.0580634i
\(722\) 0.375281 3.57056i 0.0139665 0.132882i
\(723\) 0 0
\(724\) 1.98435 + 2.20384i 0.0737476 + 0.0819050i
\(725\) 2.49721 4.32530i 0.0927441 0.160638i
\(726\) 0 0
\(727\) 0.281153 + 0.486971i 0.0104274 + 0.0180608i 0.871192 0.490942i \(-0.163347\pi\)
−0.860765 + 0.509003i \(0.830014\pi\)
\(728\) −0.771681 + 2.37499i −0.0286004 + 0.0880230i
\(729\) 0 0
\(730\) −12.4721 9.06154i −0.461614 0.335383i
\(731\) 42.6205 47.3349i 1.57638 1.75074i
\(732\) 0 0
\(733\) 15.2128 6.77317i 0.561897 0.250173i −0.106076 0.994358i \(-0.533829\pi\)
0.667973 + 0.744185i \(0.267162\pi\)
\(734\) −0.973508 9.26231i −0.0359328 0.341878i
\(735\) 0 0
\(736\) −7.98936 13.8380i −0.294492 0.510074i
\(737\) 8.92241 9.15345i 0.328661 0.337172i
\(738\) 0 0
\(739\) 4.25329 13.0903i 0.156460 0.481534i −0.841846 0.539718i \(-0.818531\pi\)
0.998306 + 0.0581840i \(0.0185310\pi\)
\(740\) 3.35841 + 1.49526i 0.123458 + 0.0549668i
\(741\) 0 0
\(742\) −3.21986 0.684403i −0.118205 0.0251252i
\(743\) 43.1187 + 9.16516i 1.58187 + 0.336237i 0.913261 0.407376i \(-0.133556\pi\)
0.668610 + 0.743613i \(0.266889\pi\)
\(744\) 0 0
\(745\) 19.2668 + 8.57814i 0.705882 + 0.314279i
\(746\) −5.92170 + 18.2251i −0.216809 + 0.667269i
\(747\) 0 0
\(748\) 3.50658 + 6.66991i 0.128213 + 0.243876i
\(749\) 1.10944 + 1.92161i 0.0405381 + 0.0702140i
\(750\) 0 0
\(751\) −3.81598 36.3066i −0.139247 1.32485i −0.811425 0.584457i \(-0.801308\pi\)
0.672178 0.740390i \(-0.265359\pi\)
\(752\) −4.02409 + 1.79164i −0.146743 + 0.0653344i
\(753\) 0 0
\(754\) 8.34549 9.26860i 0.303925 0.337543i
\(755\) 10.9427 + 7.95034i 0.398246 + 0.289342i
\(756\) 0 0
\(757\) −1.57953 + 4.86128i −0.0574089 + 0.176686i −0.975649 0.219338i \(-0.929610\pi\)
0.918240 + 0.396024i \(0.129610\pi\)
\(758\) 1.36119 + 2.35766i 0.0494407 + 0.0856339i
\(759\) 0 0
\(760\) 8.89919 15.4138i 0.322807 0.559119i
\(761\) 4.71154 + 5.23270i 0.170793 + 0.189685i 0.822465 0.568816i \(-0.192598\pi\)
−0.651671 + 0.758502i \(0.725932\pi\)
\(762\) 0 0
\(763\) 0.00720031 0.0685064i 0.000260669 0.00248010i
\(764\) 0.433921 + 1.33547i 0.0156987 + 0.0483156i
\(765\) 0 0
\(766\) 17.6246 + 12.8050i 0.636803 + 0.462665i
\(767\) 32.6827 + 14.5513i 1.18010 + 0.525416i
\(768\) 0 0
\(769\) −5.63525 + 9.76055i −0.203212 + 0.351974i −0.949562 0.313580i \(-0.898472\pi\)
0.746349 + 0.665555i \(0.231805\pi\)
\(770\) −0.646034 + 1.74949i −0.0232815 + 0.0630472i
\(771\) 0 0
\(772\) −3.59348 + 0.763818i −0.129332 + 0.0274904i
\(773\) −39.1141 + 28.4181i −1.40684 + 1.02213i −0.413065 + 0.910702i \(0.635542\pi\)
−0.993773 + 0.111426i \(0.964458\pi\)
\(774\) 0 0
\(775\) 1.92705 + 5.93085i 0.0692217 + 0.213043i
\(776\) −21.3856 + 23.7511i −0.767698 + 0.852615i
\(777\) 0 0
\(778\) −3.14168 29.8911i −0.112635 1.07165i
\(779\) −17.2547 19.1633i −0.618215 0.686598i
\(780\) 0 0
\(781\) 1.66602 + 25.5395i 0.0596150 + 0.913874i
\(782\) 68.7758 2.45942
\(783\) 0 0
\(784\) −25.9443 + 18.8496i −0.926581 + 0.673201i
\(785\) −1.71851 + 16.3506i −0.0613364 + 0.583577i
\(786\) 0 0
\(787\) 42.8205 + 9.10177i 1.52638 + 0.324443i 0.893236 0.449588i \(-0.148429\pi\)
0.633148 + 0.774031i \(0.281762\pi\)
\(788\) 4.22979 1.88323i 0.150680 0.0670871i
\(789\) 0 0
\(790\) −1.22988 + 0.261419i −0.0437571 + 0.00930086i
\(791\) 2.66923 0.0949069
\(792\) 0 0
\(793\) −18.3262 −0.650784
\(794\) −3.64790 + 0.775384i −0.129459 + 0.0275174i
\(795\) 0 0
\(796\) −9.21783 + 4.10404i −0.326717 + 0.145464i
\(797\) 3.01927 + 0.641766i 0.106948 + 0.0227325i 0.261075 0.965319i \(-0.415923\pi\)
−0.154127 + 0.988051i \(0.549256\pi\)
\(798\) 0 0
\(799\) 0.593070 5.64268i 0.0209813 0.199624i
\(800\) 4.51750 3.28216i 0.159718 0.116042i
\(801\) 0 0
\(802\) −5.11146 −0.180492
\(803\) −13.7209 16.5079i −0.484199 0.582552i
\(804\) 0 0
\(805\) 1.82639 + 2.02841i 0.0643716 + 0.0714919i
\(806\) 1.62780 + 15.4875i 0.0573368 + 0.545523i
\(807\) 0 0
\(808\) 17.6760 19.6312i 0.621840 0.690624i
\(809\) 7.96856 + 24.5247i 0.280160 + 0.862243i 0.987808 + 0.155678i \(0.0497562\pi\)
−0.707648 + 0.706565i \(0.750244\pi\)
\(810\) 0 0
\(811\) −5.83688 + 4.24074i −0.204961 + 0.148913i −0.685531 0.728044i \(-0.740430\pi\)
0.480570 + 0.876956i \(0.340430\pi\)
\(812\) −0.168258 + 0.0357644i −0.00590471 + 0.00125508i
\(813\) 0 0
\(814\) 25.0619 + 19.7698i 0.878419 + 0.692930i
\(815\) −2.79197 + 4.83583i −0.0977984 + 0.169392i
\(816\) 0 0
\(817\) 45.1756 + 20.1135i 1.58049 + 0.703681i
\(818\) −28.6484 20.8142i −1.00167 0.727753i
\(819\) 0 0
\(820\) 1.01722 + 3.13068i 0.0355229 + 0.109328i
\(821\) −3.14690 + 29.9408i −0.109828 + 1.04494i 0.791312 + 0.611412i \(0.209398\pi\)
−0.901140 + 0.433528i \(0.857268\pi\)
\(822\) 0 0
\(823\) 36.7276 + 40.7901i 1.28024 + 1.42185i 0.856562 + 0.516044i \(0.172596\pi\)
0.423681 + 0.905811i \(0.360738\pi\)
\(824\) −8.67066 + 15.0180i −0.302057 + 0.523178i
\(825\) 0 0
\(826\) −1.53851 2.66477i −0.0535315 0.0927193i
\(827\) 10.2140 31.4355i 0.355176 1.09312i −0.600731 0.799451i \(-0.705124\pi\)
0.955907 0.293669i \(-0.0948763\pi\)
\(828\) 0 0
\(829\) 7.30902 + 5.31031i 0.253853 + 0.184435i 0.707433 0.706781i \(-0.249853\pi\)
−0.453580 + 0.891216i \(0.649853\pi\)
\(830\) −7.02075 + 7.79734i −0.243694 + 0.270650i
\(831\) 0 0
\(832\) −23.0034 + 10.2418i −0.797499 + 0.355069i
\(833\) −4.31770 41.0802i −0.149599 1.42334i
\(834\) 0 0
\(835\) −5.95492 10.3142i −0.206078 0.356938i
\(836\) −4.08358 + 4.18932i −0.141234 + 0.144891i
\(837\) 0 0
\(838\) 7.66718 23.5972i 0.264858 0.815151i
\(839\) −44.4221 19.7780i −1.53362 0.682812i −0.545730 0.837961i \(-0.683748\pi\)
−0.987891 + 0.155149i \(0.950414\pi\)
\(840\) 0 0
\(841\) 24.8065 + 5.27278i 0.855396 + 0.181820i
\(842\) 33.5362 + 7.12835i 1.15573 + 0.245659i
\(843\) 0 0
\(844\) 3.85039 + 1.71431i 0.132536 + 0.0590089i
\(845\) 2.35805 7.25732i 0.0811193 0.249660i
\(846\) 0 0
\(847\) −1.47214 + 2.13914i −0.0505832 + 0.0735017i
\(848\) −20.8620 36.1340i −0.716403 1.24085i
\(849\) 0 0
\(850\) 2.51228 + 23.9028i 0.0861706 + 0.819859i
\(851\) 42.6793 19.0021i 1.46303 0.651382i
\(852\) 0 0
\(853\) 14.1724 15.7401i 0.485254 0.538929i −0.449943 0.893057i \(-0.648556\pi\)
0.935197 + 0.354128i \(0.115222\pi\)
\(854\) 1.27518 + 0.926476i 0.0436359 + 0.0317033i
\(855\) 0 0
\(856\) −7.25329 + 22.3233i −0.247912 + 0.762996i
\(857\) 20.4976 + 35.5029i 0.700186 + 1.21276i 0.968401 + 0.249398i \(0.0802327\pi\)
−0.268216 + 0.963359i \(0.586434\pi\)
\(858\) 0 0
\(859\) −7.79180 + 13.4958i −0.265853 + 0.460470i −0.967787 0.251772i \(-0.918987\pi\)
0.701934 + 0.712242i \(0.252320\pi\)
\(860\) −4.22396 4.69119i −0.144036 0.159968i
\(861\) 0 0
\(862\) −0.886954 + 8.43881i −0.0302098 + 0.287427i
\(863\) 7.63080 + 23.4852i 0.259755 + 0.799445i 0.992855 + 0.119324i \(0.0380728\pi\)
−0.733100 + 0.680121i \(0.761927\pi\)
\(864\) 0 0
\(865\) −3.39919 2.46965i −0.115576 0.0839708i
\(866\) −40.3980 17.9864i −1.37278 0.611201i
\(867\) 0 0
\(868\) 0.107391 0.186006i 0.00364508 0.00631347i
\(869\) −1.74936 0.0692736i −0.0593428 0.00234995i
\(870\) 0 0
\(871\) 15.9695 3.39442i 0.541105 0.115015i
\(872\) 0.589512 0.428305i 0.0199634 0.0145043i
\(873\) 0 0
\(874\) 16.5000 + 50.7818i 0.558121 + 1.71772i
\(875\) −1.85720 + 2.06263i −0.0627848 + 0.0697296i
\(876\) 0 0
\(877\) −0.264234 2.51402i −0.00892254 0.0848923i 0.989154 0.146879i \(-0.0469229\pi\)
−0.998077 + 0.0619871i \(0.980256\pi\)
\(878\) 25.8178 + 28.6735i 0.871307 + 0.967685i
\(879\) 0 0
\(880\) −21.9584 + 8.75267i −0.740219 + 0.295052i
\(881\) 47.8114 1.61081 0.805403 0.592728i \(-0.201949\pi\)
0.805403 + 0.592728i \(0.201949\pi\)
\(882\) 0 0
\(883\) 40.3607 29.3238i 1.35825 0.986823i 0.359691 0.933072i \(-0.382882\pi\)
0.998554 0.0537512i \(-0.0171178\pi\)
\(884\) −1.00604 + 9.57179i −0.0338366 + 0.321934i
\(885\) 0 0
\(886\) 28.3791 + 6.03217i 0.953416 + 0.202655i
\(887\) 15.0493 6.70037i 0.505305 0.224976i −0.138220 0.990402i \(-0.544138\pi\)
0.643525 + 0.765425i \(0.277471\pi\)
\(888\) 0 0
\(889\) 1.67088 0.355156i 0.0560394 0.0119115i
\(890\) 39.9022 1.33753
\(891\) 0 0
\(892\) −7.32624 −0.245301
\(893\) 4.30865 0.915833i 0.144184 0.0306472i
\(894\) 0 0
\(895\) −26.3086 + 11.7134i −0.879400 + 0.391534i
\(896\) 3.10340 + 0.659648i 0.103677 + 0.0220373i
\(897\) 0 0
\(898\) −0.0726523 + 0.691241i −0.00242444 + 0.0230670i
\(899\) 3.67624 2.67094i 0.122609 0.0890809i
\(900\) 0 0
\(901\) 53.7426 1.79043
\(902\) 1.86059 + 28.5222i 0.0619510 + 0.949684i
\(903\) 0 0
\(904\) 18.8936 + 20.9835i 0.628392 + 0.697900i
\(905\) −1.25252 11.9169i −0.0416351 0.396132i
\(906\) 0 0
\(907\) 31.3603 34.8292i 1.04130 1.15648i 0.0538526 0.998549i \(-0.482850\pi\)
0.987450 0.157934i \(-0.0504834\pi\)
\(908\) 1.10944 + 3.41451i 0.0368181 + 0.113314i
\(909\) 0 0
\(910\) −1.92705 + 1.40008i −0.0638811 + 0.0464123i
\(911\) 37.0801 7.88163i 1.22852 0.261130i 0.452457 0.891786i \(-0.350547\pi\)
0.776062 + 0.630656i \(0.217214\pi\)
\(912\) 0 0
\(913\) −12.1498 + 8.11282i −0.402100 + 0.268495i
\(914\) 18.4508 31.9577i 0.610297 1.05707i
\(915\) 0 0
\(916\) −3.32468 1.48024i −0.109851 0.0489087i
\(917\) 2.31504 + 1.68198i 0.0764495 + 0.0555438i
\(918\) 0 0
\(919\) −0.871323 2.68166i −0.0287423 0.0884597i 0.935656 0.352912i \(-0.114809\pi\)
−0.964399 + 0.264453i \(0.914809\pi\)
\(920\) −3.01811 + 28.7154i −0.0995040 + 0.946717i
\(921\) 0 0
\(922\) −20.2549 22.4954i −0.667060 0.740846i
\(923\) −16.3445 + 28.3094i −0.537985 + 0.931817i
\(924\) 0 0
\(925\) 8.16312 + 14.1389i 0.268402 + 0.464885i
\(926\) 0.685672 2.11028i 0.0225326 0.0693482i
\(927\) 0 0
\(928\) −3.29180 2.39163i −0.108058 0.0785091i
\(929\) 0.580699 0.644932i 0.0190521 0.0211595i −0.733543 0.679643i \(-0.762135\pi\)
0.752596 + 0.658483i \(0.228802\pi\)
\(930\) 0 0
\(931\) 29.2964 13.0436i 0.960150 0.427486i
\(932\) −0.166882 1.58777i −0.00546639 0.0520092i
\(933\) 0 0
\(934\) −3.74671 6.48949i −0.122596 0.212343i
\(935\) 4.37833 30.1313i 0.143187 0.985399i
\(936\) 0 0
\(937\) 10.2533 31.5564i 0.334960 1.03090i −0.631781 0.775147i \(-0.717676\pi\)
0.966742 0.255755i \(-0.0823241\pi\)
\(938\) −1.28280 0.571138i −0.0418848 0.0186483i
\(939\) 0 0
\(940\) −0.550018 0.116910i −0.0179396 0.00381318i
\(941\) 44.1878 + 9.39241i 1.44048 + 0.306184i 0.860918 0.508743i \(-0.169890\pi\)
0.579563 + 0.814927i \(0.303223\pi\)
\(942\) 0 0
\(943\) 38.2162 + 17.0149i 1.24449 + 0.554083i
\(944\) 12.0521 37.0927i 0.392264 1.20726i
\(945\) 0 0
\(946\) −25.5066 48.5164i −0.829290 1.57740i
\(947\) 12.6682 + 21.9420i 0.411662 + 0.713020i 0.995072 0.0991584i \(-0.0316151\pi\)
−0.583410 + 0.812178i \(0.698282\pi\)
\(948\) 0 0
\(949\) −2.86579 27.2662i −0.0930276 0.885099i
\(950\) −17.0463 + 7.58951i −0.553055 + 0.246236i
\(951\) 0 0
\(952\) −2.34636 + 2.60590i −0.0760459 + 0.0844575i
\(953\) 37.6834 + 27.3786i 1.22068 + 0.886879i 0.996157 0.0875894i \(-0.0279163\pi\)
0.224527 + 0.974468i \(0.427916\pi\)
\(954\) 0 0
\(955\) 1.75329 5.39607i 0.0567351 0.174613i
\(956\) −3.04372 5.27188i −0.0984409 0.170505i
\(957\) 0 0
\(958\) 28.4098 49.2073i 0.917880 1.58981i
\(959\) −1.67096 1.85579i −0.0539581 0.0599266i
\(960\) 0 0
\(961\) 2.64731 25.1875i 0.0853972 0.812500i
\(962\) 12.5986 + 38.7746i 0.406197 + 1.25014i
\(963\) 0 0
\(964\) −4.32624 3.14320i −0.139339 0.101236i
\(965\) 13.5608 + 6.03764i 0.436537 + 0.194359i
\(966\) 0 0
\(967\) −21.3435 + 36.9680i −0.686359 + 1.18881i 0.286648 + 0.958036i \(0.407459\pi\)
−0.973008 + 0.230773i \(0.925874\pi\)
\(968\) −27.2365 + 3.56864i −0.875415 + 0.114700i
\(969\) 0 0
\(970\) −29.8191 + 6.33825i −0.957434 + 0.203509i
\(971\) −10.5784 + 7.68563i −0.339476 + 0.246644i −0.744441 0.667689i \(-0.767284\pi\)
0.404965 + 0.914332i \(0.367284\pi\)
\(972\) 0 0
\(973\) −0.993422 3.05744i −0.0318477 0.0980170i
\(974\) 17.4410 19.3702i 0.558845 0.620660i
\(975\) 0 0
\(976\) 2.08834 + 19.8693i 0.0668463 + 0.636000i
\(977\) −19.1695 21.2899i −0.613286 0.681124i 0.353873 0.935293i \(-0.384864\pi\)
−0.967160 + 0.254170i \(0.918198\pi\)
\(978\) 0 0
\(979\) 53.8457 + 13.6928i 1.72092 + 0.437623i
\(980\) −4.09373 −0.130769
\(981\) 0 0
\(982\) −38.6074 + 28.0499i −1.23201 + 0.895109i
\(983\) 4.12940 39.2886i 0.131707 1.25311i −0.706481 0.707732i \(-0.749718\pi\)
0.838188 0.545381i \(-0.183615\pi\)
\(984\) 0 0
\(985\) −18.2994 3.88965i −0.583067 0.123935i
\(986\) 15.9992 7.12332i 0.509519 0.226853i
\(987\) 0 0
\(988\) −7.30885 + 1.55354i −0.232526 + 0.0494248i
\(989\) −80.2220 −2.55091
\(990\) 0 0
\(991\) −24.7295 −0.785558 −0.392779 0.919633i \(-0.628486\pi\)
−0.392779 + 0.919633i \(0.628486\pi\)
\(992\) 4.96941 1.05628i 0.157779 0.0335370i
\(993\) 0 0
\(994\) 2.56846 1.14355i 0.0814666 0.0362713i
\(995\) 39.8792 + 8.47658i 1.26425 + 0.268726i
\(996\) 0 0
\(997\) 0.391213 3.72214i 0.0123898 0.117881i −0.986579 0.163285i \(-0.947791\pi\)
0.998969 + 0.0454040i \(0.0144575\pi\)
\(998\) −12.1647 + 8.83819i −0.385068 + 0.279768i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.n.e.757.2 16
3.2 odd 2 inner 891.2.n.e.757.1 16
9.2 odd 6 inner 891.2.n.e.460.2 16
9.4 even 3 99.2.f.c.64.1 8
9.5 odd 6 99.2.f.c.64.2 yes 8
9.7 even 3 inner 891.2.n.e.460.1 16
11.5 even 5 inner 891.2.n.e.676.1 16
33.5 odd 10 inner 891.2.n.e.676.2 16
99.4 even 15 1089.2.a.v.1.2 4
99.5 odd 30 99.2.f.c.82.2 yes 8
99.16 even 15 inner 891.2.n.e.379.2 16
99.38 odd 30 inner 891.2.n.e.379.1 16
99.40 odd 30 1089.2.a.w.1.3 4
99.49 even 15 99.2.f.c.82.1 yes 8
99.59 odd 30 1089.2.a.v.1.3 4
99.95 even 30 1089.2.a.w.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.f.c.64.1 8 9.4 even 3
99.2.f.c.64.2 yes 8 9.5 odd 6
99.2.f.c.82.1 yes 8 99.49 even 15
99.2.f.c.82.2 yes 8 99.5 odd 30
891.2.n.e.379.1 16 99.38 odd 30 inner
891.2.n.e.379.2 16 99.16 even 15 inner
891.2.n.e.460.1 16 9.7 even 3 inner
891.2.n.e.460.2 16 9.2 odd 6 inner
891.2.n.e.676.1 16 11.5 even 5 inner
891.2.n.e.676.2 16 33.5 odd 10 inner
891.2.n.e.757.1 16 3.2 odd 2 inner
891.2.n.e.757.2 16 1.1 even 1 trivial
1089.2.a.v.1.2 4 99.4 even 15
1089.2.a.v.1.3 4 99.59 odd 30
1089.2.a.w.1.2 4 99.95 even 30
1089.2.a.w.1.3 4 99.40 odd 30