Properties

Label 891.2.n.e.676.1
Level $891$
Weight $2$
Character 891.676
Analytic conductor $7.115$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(136,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.136");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{14} - 15x^{12} + 116x^{10} + 69x^{8} - 814x^{6} + 2420x^{4} - 7986x^{2} + 14641 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 676.1
Root \(-1.03271 + 1.14694i\) of defining polynomial
Character \(\chi\) \(=\) 891.676
Dual form 891.2.n.e.460.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.03271 + 1.14694i) q^{2} +(-0.0399263 - 0.379874i) q^{4} +(1.03271 + 1.14694i) q^{5} +(0.215659 + 0.0960175i) q^{7} +(-2.02029 - 1.46782i) q^{8} -2.38197 q^{10} +(0.899280 - 3.19238i) q^{11} +(4.14350 + 0.880728i) q^{13} +(-0.332840 + 0.148190i) q^{14} +(4.51712 - 0.960143i) q^{16} +(-1.83812 + 5.65714i) q^{17} +(3.73607 + 2.71441i) q^{19} +(0.394460 - 0.438093i) q^{20} +(2.73278 + 4.32823i) q^{22} +(-3.74582 + 6.48795i) q^{23} +(0.273659 - 2.60369i) q^{25} +(-5.28918 + 3.84281i) q^{26} +(0.0278640 - 0.0857567i) q^{28} +(1.74277 + 0.775932i) q^{29} +(2.32991 + 0.495239i) q^{31} +(-1.06644 + 1.84712i) q^{32} +(-4.59017 - 7.95041i) q^{34} +(0.112587 + 0.346506i) q^{35} +(-5.04508 + 3.66547i) q^{37} +(-6.97155 + 1.48185i) q^{38} +(-0.402863 - 3.83299i) q^{40} +(5.10118 - 2.27119i) q^{41} +(5.35410 + 9.27358i) q^{43} +(-1.24861 - 0.214153i) q^{44} +(-3.57295 - 10.9964i) q^{46} +(-0.0997045 + 0.948625i) q^{47} +(-4.64662 - 5.16060i) q^{49} +(2.70367 + 3.00273i) q^{50} +(0.169131 - 1.60917i) q^{52} +(-2.79197 - 8.59279i) q^{53} +(4.59017 - 2.26538i) q^{55} +(-0.294756 - 0.510532i) q^{56} +(-2.68973 + 1.19754i) q^{58} +(0.882794 + 8.39922i) q^{59} +(-4.23170 + 0.899475i) q^{61} +(-2.97414 + 2.16084i) q^{62} +(1.83688 + 5.65334i) q^{64} +(3.26889 + 5.66189i) q^{65} +(-1.92705 + 3.33775i) q^{67} +(2.22239 + 0.472383i) q^{68} +(-0.513692 - 0.228710i) q^{70} +(-2.38463 + 7.33912i) q^{71} +(5.23607 - 3.80423i) q^{73} +(1.00604 - 9.57179i) q^{74} +(0.881966 - 1.52761i) q^{76} +(0.500462 - 0.602118i) q^{77} +(-0.353210 + 0.392279i) q^{79} +(5.76611 + 4.18932i) q^{80} +(-2.66312 + 8.19624i) q^{82} +(-4.30865 + 0.915833i) q^{83} +(-8.38666 + 3.73398i) q^{85} +(-16.1655 - 3.43608i) q^{86} +(-6.50266 + 5.12954i) q^{88} -16.7518 q^{89} +(0.809017 + 0.587785i) q^{91} +(2.61416 + 1.16390i) q^{92} +(-0.985051 - 1.09401i) q^{94} +(0.745005 + 7.08825i) q^{95} +(-8.56378 + 9.51105i) q^{97} +10.7175 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{4} + 6 q^{7} - 56 q^{10} + 6 q^{13} - 2 q^{16} + 24 q^{19} - 28 q^{22} - 8 q^{25} + 72 q^{28} - 12 q^{31} + 16 q^{34} - 36 q^{37} + 16 q^{40} + 32 q^{43} - 84 q^{46} + 44 q^{49} - 6 q^{52} - 16 q^{55}+ \cdots + 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.03271 + 1.14694i −0.730237 + 0.811010i −0.987878 0.155231i \(-0.950388\pi\)
0.257642 + 0.966241i \(0.417055\pi\)
\(3\) 0 0
\(4\) −0.0399263 0.379874i −0.0199632 0.189937i
\(5\) 1.03271 + 1.14694i 0.461842 + 0.512928i 0.928410 0.371558i \(-0.121176\pi\)
−0.466568 + 0.884486i \(0.654510\pi\)
\(6\) 0 0
\(7\) 0.215659 + 0.0960175i 0.0815114 + 0.0362912i 0.447087 0.894490i \(-0.352461\pi\)
−0.365576 + 0.930781i \(0.619128\pi\)
\(8\) −2.02029 1.46782i −0.714279 0.518954i
\(9\) 0 0
\(10\) −2.38197 −0.753244
\(11\) 0.899280 3.19238i 0.271143 0.962539i
\(12\) 0 0
\(13\) 4.14350 + 0.880728i 1.14920 + 0.244270i 0.742857 0.669450i \(-0.233470\pi\)
0.406343 + 0.913720i \(0.366804\pi\)
\(14\) −0.332840 + 0.148190i −0.0889551 + 0.0396054i
\(15\) 0 0
\(16\) 4.51712 0.960143i 1.12928 0.240036i
\(17\) −1.83812 + 5.65714i −0.445809 + 1.37206i 0.435785 + 0.900051i \(0.356471\pi\)
−0.881594 + 0.472008i \(0.843529\pi\)
\(18\) 0 0
\(19\) 3.73607 + 2.71441i 0.857113 + 0.622729i 0.927098 0.374819i \(-0.122295\pi\)
−0.0699852 + 0.997548i \(0.522295\pi\)
\(20\) 0.394460 0.438093i 0.0882040 0.0979605i
\(21\) 0 0
\(22\) 2.73278 + 4.32823i 0.582630 + 0.922781i
\(23\) −3.74582 + 6.48795i −0.781057 + 1.35283i 0.150269 + 0.988645i \(0.451986\pi\)
−0.931326 + 0.364185i \(0.881347\pi\)
\(24\) 0 0
\(25\) 0.273659 2.60369i 0.0547318 0.520738i
\(26\) −5.28918 + 3.84281i −1.03729 + 0.753638i
\(27\) 0 0
\(28\) 0.0278640 0.0857567i 0.00526581 0.0162065i
\(29\) 1.74277 + 0.775932i 0.323624 + 0.144087i 0.562118 0.827057i \(-0.309987\pi\)
−0.238493 + 0.971144i \(0.576653\pi\)
\(30\) 0 0
\(31\) 2.32991 + 0.495239i 0.418465 + 0.0889475i 0.412332 0.911034i \(-0.364714\pi\)
0.00613311 + 0.999981i \(0.498048\pi\)
\(32\) −1.06644 + 1.84712i −0.188521 + 0.326528i
\(33\) 0 0
\(34\) −4.59017 7.95041i −0.787208 1.36348i
\(35\) 0.112587 + 0.346506i 0.0190306 + 0.0585703i
\(36\) 0 0
\(37\) −5.04508 + 3.66547i −0.829407 + 0.602599i −0.919391 0.393344i \(-0.871318\pi\)
0.0899846 + 0.995943i \(0.471318\pi\)
\(38\) −6.97155 + 1.48185i −1.13093 + 0.240388i
\(39\) 0 0
\(40\) −0.402863 3.83299i −0.0636983 0.606049i
\(41\) 5.10118 2.27119i 0.796670 0.354700i 0.0323002 0.999478i \(-0.489717\pi\)
0.764370 + 0.644778i \(0.223050\pi\)
\(42\) 0 0
\(43\) 5.35410 + 9.27358i 0.816493 + 1.41421i 0.908251 + 0.418426i \(0.137418\pi\)
−0.0917581 + 0.995781i \(0.529249\pi\)
\(44\) −1.24861 0.214153i −0.188234 0.0322847i
\(45\) 0 0
\(46\) −3.57295 10.9964i −0.526803 1.62133i
\(47\) −0.0997045 + 0.948625i −0.0145434 + 0.138371i −0.999384 0.0350896i \(-0.988828\pi\)
0.984841 + 0.173461i \(0.0554950\pi\)
\(48\) 0 0
\(49\) −4.64662 5.16060i −0.663804 0.737229i
\(50\) 2.70367 + 3.00273i 0.382357 + 0.424650i
\(51\) 0 0
\(52\) 0.169131 1.60917i 0.0234542 0.223152i
\(53\) −2.79197 8.59279i −0.383506 1.18031i −0.937558 0.347829i \(-0.886919\pi\)
0.554052 0.832482i \(-0.313081\pi\)
\(54\) 0 0
\(55\) 4.59017 2.26538i 0.618938 0.305464i
\(56\) −0.294756 0.510532i −0.0393884 0.0682227i
\(57\) 0 0
\(58\) −2.68973 + 1.19754i −0.353178 + 0.157245i
\(59\) 0.882794 + 8.39922i 0.114930 + 1.09349i 0.888215 + 0.459427i \(0.151945\pi\)
−0.773285 + 0.634058i \(0.781388\pi\)
\(60\) 0 0
\(61\) −4.23170 + 0.899475i −0.541814 + 0.115166i −0.470685 0.882301i \(-0.655993\pi\)
−0.0711282 + 0.997467i \(0.522660\pi\)
\(62\) −2.97414 + 2.16084i −0.377716 + 0.274427i
\(63\) 0 0
\(64\) 1.83688 + 5.65334i 0.229610 + 0.706667i
\(65\) 3.26889 + 5.66189i 0.405456 + 0.702271i
\(66\) 0 0
\(67\) −1.92705 + 3.33775i −0.235427 + 0.407771i −0.959397 0.282061i \(-0.908982\pi\)
0.723970 + 0.689832i \(0.242315\pi\)
\(68\) 2.22239 + 0.472383i 0.269504 + 0.0572849i
\(69\) 0 0
\(70\) −0.513692 0.228710i −0.0613979 0.0273361i
\(71\) −2.38463 + 7.33912i −0.283003 + 0.870994i 0.703987 + 0.710213i \(0.251401\pi\)
−0.986990 + 0.160781i \(0.948599\pi\)
\(72\) 0 0
\(73\) 5.23607 3.80423i 0.612835 0.445251i −0.237576 0.971369i \(-0.576353\pi\)
0.850412 + 0.526118i \(0.176353\pi\)
\(74\) 1.00604 9.57179i 0.116949 1.11270i
\(75\) 0 0
\(76\) 0.881966 1.52761i 0.101168 0.175229i
\(77\) 0.500462 0.602118i 0.0570329 0.0686178i
\(78\) 0 0
\(79\) −0.353210 + 0.392279i −0.0397392 + 0.0441349i −0.762687 0.646768i \(-0.776120\pi\)
0.722947 + 0.690903i \(0.242787\pi\)
\(80\) 5.76611 + 4.18932i 0.644670 + 0.468380i
\(81\) 0 0
\(82\) −2.66312 + 8.19624i −0.294092 + 0.905123i
\(83\) −4.30865 + 0.915833i −0.472936 + 0.100526i −0.438213 0.898871i \(-0.644388\pi\)
−0.0347234 + 0.999397i \(0.511055\pi\)
\(84\) 0 0
\(85\) −8.38666 + 3.73398i −0.909661 + 0.405007i
\(86\) −16.1655 3.43608i −1.74317 0.370522i
\(87\) 0 0
\(88\) −6.50266 + 5.12954i −0.693186 + 0.546811i
\(89\) −16.7518 −1.77569 −0.887844 0.460145i \(-0.847798\pi\)
−0.887844 + 0.460145i \(0.847798\pi\)
\(90\) 0 0
\(91\) 0.809017 + 0.587785i 0.0848080 + 0.0616166i
\(92\) 2.61416 + 1.16390i 0.272545 + 0.121345i
\(93\) 0 0
\(94\) −0.985051 1.09401i −0.101600 0.112839i
\(95\) 0.745005 + 7.08825i 0.0764360 + 0.727239i
\(96\) 0 0
\(97\) −8.56378 + 9.51105i −0.869520 + 0.965700i −0.999667 0.0257944i \(-0.991788\pi\)
0.130147 + 0.991495i \(0.458455\pi\)
\(98\) 10.7175 1.08263
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 7.07830 7.86125i 0.704318 0.782224i −0.279740 0.960076i \(-0.590248\pi\)
0.984057 + 0.177852i \(0.0569148\pi\)
\(102\) 0 0
\(103\) −0.725874 6.90623i −0.0715225 0.680491i −0.970270 0.242025i \(-0.922188\pi\)
0.898748 0.438466i \(-0.144478\pi\)
\(104\) −7.07830 7.86125i −0.694085 0.770859i
\(105\) 0 0
\(106\) 12.7387 + 5.67165i 1.23729 + 0.550879i
\(107\) 7.60422 + 5.52479i 0.735128 + 0.534102i 0.891182 0.453647i \(-0.149877\pi\)
−0.156054 + 0.987749i \(0.549877\pi\)
\(108\) 0 0
\(109\) −0.291796 −0.0279490 −0.0139745 0.999902i \(-0.504448\pi\)
−0.0139745 + 0.999902i \(0.504448\pi\)
\(110\) −2.14205 + 7.60414i −0.204237 + 0.725027i
\(111\) 0 0
\(112\) 1.06635 + 0.226659i 0.100760 + 0.0214173i
\(113\) 10.3295 4.59899i 0.971717 0.432636i 0.141415 0.989950i \(-0.454835\pi\)
0.830302 + 0.557314i \(0.188168\pi\)
\(114\) 0 0
\(115\) −11.3096 + 2.40394i −1.05463 + 0.224168i
\(116\) 0.225173 0.693013i 0.0209068 0.0643446i
\(117\) 0 0
\(118\) −10.5451 7.66145i −0.970754 0.705294i
\(119\) −0.939591 + 1.04352i −0.0861322 + 0.0956595i
\(120\) 0 0
\(121\) −9.38259 5.74169i −0.852963 0.521972i
\(122\) 3.33848 5.78241i 0.302251 0.523515i
\(123\) 0 0
\(124\) 0.0951031 0.904846i 0.00854051 0.0812576i
\(125\) 9.51192 6.91082i 0.850772 0.618122i
\(126\) 0 0
\(127\) −2.23607 + 6.88191i −0.198419 + 0.610671i 0.801501 + 0.597994i \(0.204035\pi\)
−0.999920 + 0.0126769i \(0.995965\pi\)
\(128\) −12.2780 5.46650i −1.08523 0.483175i
\(129\) 0 0
\(130\) −9.86968 2.09786i −0.865628 0.183995i
\(131\) 6.06086 10.4977i 0.529540 0.917190i −0.469866 0.882738i \(-0.655698\pi\)
0.999406 0.0344525i \(-0.0109687\pi\)
\(132\) 0 0
\(133\) 0.545085 + 0.944115i 0.0472649 + 0.0818651i
\(134\) −1.83812 5.65714i −0.158789 0.488703i
\(135\) 0 0
\(136\) 12.0172 8.73102i 1.03047 0.748679i
\(137\) 10.3472 2.19936i 0.884021 0.187904i 0.256537 0.966534i \(-0.417418\pi\)
0.627483 + 0.778630i \(0.284085\pi\)
\(138\) 0 0
\(139\) 1.42347 + 13.5434i 0.120737 + 1.14874i 0.872264 + 0.489036i \(0.162651\pi\)
−0.751526 + 0.659703i \(0.770682\pi\)
\(140\) 0.127133 0.0566034i 0.0107447 0.00478386i
\(141\) 0 0
\(142\) −5.95492 10.3142i −0.499725 0.865550i
\(143\) 6.53779 12.4356i 0.546717 1.03992i
\(144\) 0 0
\(145\) 0.909830 + 2.80017i 0.0755573 + 0.232541i
\(146\) −1.04412 + 9.93413i −0.0864119 + 0.822154i
\(147\) 0 0
\(148\) 1.59385 + 1.77015i 0.131013 + 0.145505i
\(149\) 9.14373 + 10.1551i 0.749083 + 0.831941i 0.990360 0.138515i \(-0.0442329\pi\)
−0.241277 + 0.970456i \(0.577566\pi\)
\(150\) 0 0
\(151\) 0.916080 8.71592i 0.0745496 0.709292i −0.891865 0.452302i \(-0.850603\pi\)
0.966414 0.256989i \(-0.0827305\pi\)
\(152\) −3.56365 10.9678i −0.289050 0.889605i
\(153\) 0 0
\(154\) 0.173762 + 1.19581i 0.0140021 + 0.0963615i
\(155\) 1.83812 + 3.18371i 0.147641 + 0.255722i
\(156\) 0 0
\(157\) 9.73152 4.33275i 0.776660 0.345791i 0.0201699 0.999797i \(-0.493579\pi\)
0.756490 + 0.654005i \(0.226913\pi\)
\(158\) −0.0851578 0.810222i −0.00677479 0.0644578i
\(159\) 0 0
\(160\) −3.21986 + 0.684403i −0.254552 + 0.0541068i
\(161\) −1.43078 + 1.03952i −0.112761 + 0.0819256i
\(162\) 0 0
\(163\) 1.11803 + 3.44095i 0.0875712 + 0.269516i 0.985247 0.171141i \(-0.0547454\pi\)
−0.897675 + 0.440657i \(0.854745\pi\)
\(164\) −1.06644 1.84712i −0.0832747 0.144236i
\(165\) 0 0
\(166\) 3.39919 5.88756i 0.263828 0.456964i
\(167\) −7.54818 1.60441i −0.584096 0.124153i −0.0936196 0.995608i \(-0.529844\pi\)
−0.490476 + 0.871455i \(0.663177\pi\)
\(168\) 0 0
\(169\) 4.51682 + 2.01102i 0.347447 + 0.154694i
\(170\) 4.37833 13.4751i 0.335803 1.03350i
\(171\) 0 0
\(172\) 3.30902 2.40414i 0.252310 0.183314i
\(173\) −0.284567 + 2.70747i −0.0216352 + 0.205845i −0.999999 0.00104456i \(-0.999668\pi\)
0.978364 + 0.206890i \(0.0663342\pi\)
\(174\) 0 0
\(175\) 0.309017 0.535233i 0.0233595 0.0404598i
\(176\) 0.997012 15.2838i 0.0751526 1.15206i
\(177\) 0 0
\(178\) 17.2998 19.2133i 1.29667 1.44010i
\(179\) 15.0959 + 10.9678i 1.12832 + 0.819771i 0.985449 0.169971i \(-0.0543674\pi\)
0.142868 + 0.989742i \(0.454367\pi\)
\(180\) 0 0
\(181\) 2.39919 7.38394i 0.178330 0.548844i −0.821440 0.570295i \(-0.806829\pi\)
0.999770 + 0.0214515i \(0.00682876\pi\)
\(182\) −1.50964 + 0.320883i −0.111902 + 0.0237854i
\(183\) 0 0
\(184\) 17.0908 7.60931i 1.25995 0.560966i
\(185\) −9.41419 2.00105i −0.692145 0.147120i
\(186\) 0 0
\(187\) 16.4068 + 10.9553i 1.19978 + 0.801133i
\(188\) 0.364338 0.0265721
\(189\) 0 0
\(190\) −8.89919 6.46564i −0.645615 0.469067i
\(191\) 3.35841 + 1.49526i 0.243006 + 0.108193i 0.524626 0.851333i \(-0.324205\pi\)
−0.281620 + 0.959526i \(0.590872\pi\)
\(192\) 0 0
\(193\) 6.43572 + 7.14759i 0.463253 + 0.514495i 0.928827 0.370514i \(-0.120819\pi\)
−0.465573 + 0.885009i \(0.654152\pi\)
\(194\) −2.06470 19.6443i −0.148237 1.41038i
\(195\) 0 0
\(196\) −1.77485 + 1.97117i −0.126775 + 0.140798i
\(197\) 12.1217 0.863637 0.431818 0.901961i \(-0.357872\pi\)
0.431818 + 0.901961i \(0.357872\pi\)
\(198\) 0 0
\(199\) −26.4164 −1.87261 −0.936305 0.351189i \(-0.885778\pi\)
−0.936305 + 0.351189i \(0.885778\pi\)
\(200\) −4.37463 + 4.85852i −0.309333 + 0.343549i
\(201\) 0 0
\(202\) 1.70656 + 16.2368i 0.120073 + 1.14242i
\(203\) 0.301341 + 0.334673i 0.0211500 + 0.0234894i
\(204\) 0 0
\(205\) 7.87297 + 3.50527i 0.549872 + 0.244819i
\(206\) 8.67066 + 6.29960i 0.604113 + 0.438914i
\(207\) 0 0
\(208\) 19.5623 1.35640
\(209\) 12.0252 9.48594i 0.831801 0.656156i
\(210\) 0 0
\(211\) −10.7933 2.29419i −0.743042 0.157939i −0.179190 0.983814i \(-0.557348\pi\)
−0.563852 + 0.825876i \(0.690681\pi\)
\(212\) −3.15270 + 1.40367i −0.216528 + 0.0964047i
\(213\) 0 0
\(214\) −14.1896 + 3.01609i −0.969979 + 0.206175i
\(215\) −5.10701 + 15.7178i −0.348295 + 1.07194i
\(216\) 0 0
\(217\) 0.454915 + 0.330515i 0.0308816 + 0.0224368i
\(218\) 0.301341 0.334673i 0.0204094 0.0226669i
\(219\) 0 0
\(220\) −1.04383 1.65324i −0.0703749 0.111461i
\(221\) −12.5986 + 21.8215i −0.847477 + 1.46787i
\(222\) 0 0
\(223\) 2.00489 19.0753i 0.134257 1.27737i −0.695205 0.718812i \(-0.744686\pi\)
0.829462 0.558563i \(-0.188647\pi\)
\(224\) −0.407343 + 0.295952i −0.0272167 + 0.0197741i
\(225\) 0 0
\(226\) −5.39261 + 16.5967i −0.358711 + 1.10400i
\(227\) 8.58672 + 3.82305i 0.569921 + 0.253745i 0.671403 0.741092i \(-0.265692\pi\)
−0.101482 + 0.994837i \(0.532359\pi\)
\(228\) 0 0
\(229\) 9.31966 + 1.98095i 0.615860 + 0.130905i 0.505271 0.862961i \(-0.331393\pi\)
0.110590 + 0.993866i \(0.464726\pi\)
\(230\) 8.92241 15.4541i 0.588326 1.01901i
\(231\) 0 0
\(232\) −2.38197 4.12569i −0.156384 0.270865i
\(233\) 1.29161 + 3.97517i 0.0846162 + 0.260422i 0.984409 0.175896i \(-0.0562823\pi\)
−0.899793 + 0.436318i \(0.856282\pi\)
\(234\) 0 0
\(235\) −1.19098 + 0.865300i −0.0776912 + 0.0564459i
\(236\) 3.15540 0.670700i 0.205399 0.0436588i
\(237\) 0 0
\(238\) −0.226532 2.15531i −0.0146839 0.139708i
\(239\) 14.5593 6.48221i 0.941762 0.419299i 0.122339 0.992488i \(-0.460961\pi\)
0.819423 + 0.573189i \(0.194294\pi\)
\(240\) 0 0
\(241\) −7.00000 12.1244i −0.450910 0.780998i 0.547533 0.836784i \(-0.315567\pi\)
−0.998443 + 0.0557856i \(0.982234\pi\)
\(242\) 16.2749 4.83178i 1.04619 0.310598i
\(243\) 0 0
\(244\) 0.510643 + 1.57160i 0.0326906 + 0.100611i
\(245\) 1.12029 10.6588i 0.0715725 0.680967i
\(246\) 0 0
\(247\) 13.0897 + 14.5376i 0.832880 + 0.925007i
\(248\) −3.98017 4.42043i −0.252741 0.280698i
\(249\) 0 0
\(250\) −1.89676 + 18.0465i −0.119962 + 1.14136i
\(251\) −4.56050 14.0358i −0.287856 0.885931i −0.985528 0.169513i \(-0.945780\pi\)
0.697672 0.716418i \(-0.254220\pi\)
\(252\) 0 0
\(253\) 17.3435 + 17.7926i 1.09037 + 1.11861i
\(254\) −5.58394 9.67166i −0.350367 0.606854i
\(255\) 0 0
\(256\) 8.08862 3.60129i 0.505539 0.225080i
\(257\) −1.65134 15.7114i −0.103008 0.980051i −0.916922 0.399066i \(-0.869334\pi\)
0.813914 0.580985i \(-0.197332\pi\)
\(258\) 0 0
\(259\) −1.43997 + 0.306074i −0.0894751 + 0.0190185i
\(260\) 2.02029 1.46782i 0.125293 0.0910306i
\(261\) 0 0
\(262\) 5.78115 + 17.7926i 0.357161 + 1.09923i
\(263\) −2.31504 4.00977i −0.142752 0.247253i 0.785780 0.618506i \(-0.212262\pi\)
−0.928532 + 0.371253i \(0.878928\pi\)
\(264\) 0 0
\(265\) 6.97214 12.0761i 0.428295 0.741829i
\(266\) −1.64576 0.349817i −0.100908 0.0214487i
\(267\) 0 0
\(268\) 1.34486 + 0.598772i 0.0821506 + 0.0365758i
\(269\) 8.30632 25.5642i 0.506445 1.55868i −0.291882 0.956454i \(-0.594281\pi\)
0.798327 0.602224i \(-0.205719\pi\)
\(270\) 0 0
\(271\) 24.2984 17.6538i 1.47602 1.07239i 0.497209 0.867631i \(-0.334358\pi\)
0.978812 0.204761i \(-0.0656418\pi\)
\(272\) −2.87133 + 27.3189i −0.174100 + 1.65645i
\(273\) 0 0
\(274\) −8.16312 + 14.1389i −0.493152 + 0.854164i
\(275\) −8.06588 3.21507i −0.486391 0.193876i
\(276\) 0 0
\(277\) 14.4653 16.0653i 0.869135 0.965272i −0.130522 0.991445i \(-0.541665\pi\)
0.999657 + 0.0261732i \(0.00833214\pi\)
\(278\) −17.0036 12.3538i −1.01981 0.740932i
\(279\) 0 0
\(280\) 0.281153 0.865300i 0.0168021 0.0517116i
\(281\) 8.61731 1.83167i 0.514066 0.109268i 0.0564277 0.998407i \(-0.482029\pi\)
0.457638 + 0.889139i \(0.348696\pi\)
\(282\) 0 0
\(283\) 6.34391 2.82449i 0.377106 0.167898i −0.209426 0.977825i \(-0.567159\pi\)
0.586532 + 0.809926i \(0.300493\pi\)
\(284\) 2.88315 + 0.612832i 0.171083 + 0.0363649i
\(285\) 0 0
\(286\) 7.51127 + 20.3408i 0.444151 + 1.20278i
\(287\) 1.31819 0.0778102
\(288\) 0 0
\(289\) −14.8713 10.8046i −0.874784 0.635568i
\(290\) −4.15122 1.84824i −0.243768 0.108533i
\(291\) 0 0
\(292\) −1.65418 1.83716i −0.0968037 0.107511i
\(293\) 2.14986 + 20.4545i 0.125596 + 1.19497i 0.857837 + 0.513921i \(0.171808\pi\)
−0.732241 + 0.681045i \(0.761526\pi\)
\(294\) 0 0
\(295\) −8.72174 + 9.68648i −0.507800 + 0.563969i
\(296\) 15.5728 0.905150
\(297\) 0 0
\(298\) −21.0902 −1.22172
\(299\) −21.2349 + 23.5838i −1.22805 + 1.36388i
\(300\) 0 0
\(301\) 0.264234 + 2.51402i 0.0152302 + 0.144905i
\(302\) 9.05061 + 10.0517i 0.520804 + 0.578411i
\(303\) 0 0
\(304\) 19.4825 + 8.67416i 1.11740 + 0.497497i
\(305\) −5.40177 3.92461i −0.309304 0.224723i
\(306\) 0 0
\(307\) −16.2705 −0.928607 −0.464304 0.885676i \(-0.653695\pi\)
−0.464304 + 0.885676i \(0.653695\pi\)
\(308\) −0.248711 0.166072i −0.0141716 0.00946283i
\(309\) 0 0
\(310\) −5.54978 1.17964i −0.315206 0.0669991i
\(311\) 22.0204 9.80409i 1.24866 0.555939i 0.327400 0.944886i \(-0.393828\pi\)
0.921260 + 0.388947i \(0.127161\pi\)
\(312\) 0 0
\(313\) −0.339930 + 0.0722543i −0.0192140 + 0.00408406i −0.217509 0.976058i \(-0.569793\pi\)
0.198295 + 0.980142i \(0.436460\pi\)
\(314\) −5.08043 + 15.6360i −0.286705 + 0.882389i
\(315\) 0 0
\(316\) 0.163119 + 0.118513i 0.00917616 + 0.00666687i
\(317\) 7.07830 7.86125i 0.397557 0.441532i −0.510817 0.859689i \(-0.670657\pi\)
0.908375 + 0.418157i \(0.137324\pi\)
\(318\) 0 0
\(319\) 4.04431 4.86581i 0.226438 0.272433i
\(320\) −4.58708 + 7.94506i −0.256426 + 0.444142i
\(321\) 0 0
\(322\) 0.285309 2.71454i 0.0158997 0.151275i
\(323\) −22.2232 + 16.1461i −1.23653 + 0.898391i
\(324\) 0 0
\(325\) 3.42705 10.5474i 0.190099 0.585063i
\(326\) −5.10118 2.27119i −0.282528 0.125790i
\(327\) 0 0
\(328\) −13.6396 2.89918i −0.753118 0.160080i
\(329\) −0.112587 + 0.195006i −0.00620711 + 0.0107510i
\(330\) 0 0
\(331\) −10.3541 17.9338i −0.569113 0.985732i −0.996654 0.0817366i \(-0.973953\pi\)
0.427541 0.903996i \(-0.359380\pi\)
\(332\) 0.519929 + 1.60018i 0.0285348 + 0.0878212i
\(333\) 0 0
\(334\) 9.63525 7.00042i 0.527218 0.383046i
\(335\) −5.81829 + 1.23672i −0.317887 + 0.0675690i
\(336\) 0 0
\(337\) −0.486316 4.62699i −0.0264913 0.252048i −0.999750 0.0223382i \(-0.992889\pi\)
0.973259 0.229710i \(-0.0737777\pi\)
\(338\) −6.97108 + 3.10373i −0.379177 + 0.168820i
\(339\) 0 0
\(340\) 1.75329 + 3.03679i 0.0950854 + 0.164693i
\(341\) 3.67624 6.99262i 0.199079 0.378671i
\(342\) 0 0
\(343\) −1.01722 3.13068i −0.0549248 0.169041i
\(344\) 2.79516 26.5942i 0.150705 1.43386i
\(345\) 0 0
\(346\) −2.81144 3.12242i −0.151144 0.167862i
\(347\) 1.76408 + 1.95921i 0.0947008 + 0.105176i 0.788632 0.614865i \(-0.210790\pi\)
−0.693931 + 0.720041i \(0.744123\pi\)
\(348\) 0 0
\(349\) 1.37772 13.1081i 0.0737477 0.701662i −0.893713 0.448640i \(-0.851909\pi\)
0.967460 0.253023i \(-0.0814247\pi\)
\(350\) 0.294756 + 0.907165i 0.0157554 + 0.0484900i
\(351\) 0 0
\(352\) 4.93769 + 5.06555i 0.263180 + 0.269995i
\(353\) −1.76854 3.06319i −0.0941296 0.163037i 0.815115 0.579299i \(-0.196673\pi\)
−0.909245 + 0.416261i \(0.863340\pi\)
\(354\) 0 0
\(355\) −10.8802 + 4.84416i −0.577460 + 0.257102i
\(356\) 0.668838 + 6.36357i 0.0354483 + 0.337268i
\(357\) 0 0
\(358\) −28.1691 + 5.98752i −1.48878 + 0.316450i
\(359\) −21.1567 + 15.3713i −1.11661 + 0.811264i −0.983692 0.179863i \(-0.942434\pi\)
−0.132917 + 0.991127i \(0.542434\pi\)
\(360\) 0 0
\(361\) 0.718847 + 2.21238i 0.0378341 + 0.116441i
\(362\) 5.99128 + 10.3772i 0.314895 + 0.545413i
\(363\) 0 0
\(364\) 0.190983 0.330792i 0.0100102 0.0173382i
\(365\) 9.77057 + 2.07680i 0.511415 + 0.108705i
\(366\) 0 0
\(367\) −5.51274 2.45443i −0.287763 0.128120i 0.257779 0.966204i \(-0.417009\pi\)
−0.545542 + 0.838084i \(0.683676\pi\)
\(368\) −10.6909 + 32.9034i −0.557304 + 1.71521i
\(369\) 0 0
\(370\) 12.0172 8.73102i 0.624746 0.453904i
\(371\) 0.222946 2.12119i 0.0115748 0.110127i
\(372\) 0 0
\(373\) −6.20820 + 10.7529i −0.321449 + 0.556765i −0.980787 0.195081i \(-0.937503\pi\)
0.659339 + 0.751846i \(0.270836\pi\)
\(374\) −29.5086 + 7.50393i −1.52585 + 0.388019i
\(375\) 0 0
\(376\) 1.59385 1.77015i 0.0821964 0.0912883i
\(377\) 6.53779 + 4.74998i 0.336713 + 0.244636i
\(378\) 0 0
\(379\) 0.545085 1.67760i 0.0279991 0.0861725i −0.936080 0.351786i \(-0.885574\pi\)
0.964080 + 0.265613i \(0.0855745\pi\)
\(380\) 2.66289 0.566016i 0.136604 0.0290360i
\(381\) 0 0
\(382\) −5.18324 + 2.30773i −0.265198 + 0.118074i
\(383\) −13.8070 2.93476i −0.705503 0.149959i −0.158831 0.987306i \(-0.550772\pi\)
−0.546673 + 0.837346i \(0.684106\pi\)
\(384\) 0 0
\(385\) 1.20743 0.0478135i 0.0615362 0.00243680i
\(386\) −14.8441 −0.755545
\(387\) 0 0
\(388\) 3.95492 + 2.87341i 0.200780 + 0.145875i
\(389\) −17.7906 7.92087i −0.902017 0.401604i −0.0972951 0.995256i \(-0.531019\pi\)
−0.804722 + 0.593652i \(0.797686\pi\)
\(390\) 0 0
\(391\) −29.8180 33.1162i −1.50796 1.67476i
\(392\) 1.81266 + 17.2463i 0.0915532 + 0.871071i
\(393\) 0 0
\(394\) −12.5182 + 13.9029i −0.630659 + 0.700418i
\(395\) −0.814685 −0.0409913
\(396\) 0 0
\(397\) −2.41641 −0.121276 −0.0606380 0.998160i \(-0.519314\pi\)
−0.0606380 + 0.998160i \(0.519314\pi\)
\(398\) 27.2805 30.2981i 1.36745 1.51871i
\(399\) 0 0
\(400\) −1.26377 12.0239i −0.0631883 0.601197i
\(401\) 2.21609 + 2.46122i 0.110666 + 0.122907i 0.795933 0.605385i \(-0.206981\pi\)
−0.685266 + 0.728293i \(0.740314\pi\)
\(402\) 0 0
\(403\) 9.21783 + 4.10404i 0.459173 + 0.204437i
\(404\) −3.26889 2.37499i −0.162634 0.118160i
\(405\) 0 0
\(406\) −0.695048 −0.0344947
\(407\) 7.16463 + 19.4021i 0.355137 + 0.961727i
\(408\) 0 0
\(409\) 22.4429 + 4.77038i 1.10973 + 0.235880i 0.726088 0.687602i \(-0.241337\pi\)
0.383641 + 0.923482i \(0.374670\pi\)
\(410\) −12.1508 + 5.40990i −0.600087 + 0.267176i
\(411\) 0 0
\(412\) −2.59451 + 0.551481i −0.127822 + 0.0271695i
\(413\) −0.616090 + 1.89613i −0.0303158 + 0.0933024i
\(414\) 0 0
\(415\) −5.50000 3.99598i −0.269984 0.196155i
\(416\) −6.04559 + 6.71431i −0.296410 + 0.329196i
\(417\) 0 0
\(418\) −1.53875 + 23.5884i −0.0752627 + 1.15375i
\(419\) 8.03814 13.9225i 0.392689 0.680157i −0.600114 0.799914i \(-0.704878\pi\)
0.992803 + 0.119757i \(0.0382115\pi\)
\(420\) 0 0
\(421\) −2.32208 + 22.0931i −0.113171 + 1.07675i 0.779612 + 0.626263i \(0.215417\pi\)
−0.892783 + 0.450488i \(0.851250\pi\)
\(422\) 13.7777 10.0101i 0.670687 0.487282i
\(423\) 0 0
\(424\) −6.97214 + 21.4580i −0.338597 + 1.04209i
\(425\) 14.2264 + 6.33402i 0.690084 + 0.307245i
\(426\) 0 0
\(427\) −0.998969 0.212337i −0.0483435 0.0102757i
\(428\) 1.79511 3.10923i 0.0867701 0.150290i
\(429\) 0 0
\(430\) −12.7533 22.0893i −0.615018 1.06524i
\(431\) −1.69895 5.22884i −0.0818357 0.251864i 0.901764 0.432228i \(-0.142272\pi\)
−0.983600 + 0.180364i \(0.942272\pi\)
\(432\) 0 0
\(433\) −23.1803 + 16.8415i −1.11398 + 0.809351i −0.983285 0.182072i \(-0.941720\pi\)
−0.130691 + 0.991423i \(0.541720\pi\)
\(434\) −0.848877 + 0.180434i −0.0407474 + 0.00866113i
\(435\) 0 0
\(436\) 0.0116503 + 0.110846i 0.000557950 + 0.00530854i
\(437\) −31.6056 + 14.0717i −1.51190 + 0.673142i
\(438\) 0 0
\(439\) 12.5000 + 21.6506i 0.596592 + 1.03333i 0.993320 + 0.115392i \(0.0368124\pi\)
−0.396728 + 0.917936i \(0.629854\pi\)
\(440\) −12.5986 2.16084i −0.600617 0.103014i
\(441\) 0 0
\(442\) −12.0172 36.9852i −0.571601 1.75921i
\(443\) −1.96500 + 18.6957i −0.0933598 + 0.888259i 0.843164 + 0.537656i \(0.180690\pi\)
−0.936524 + 0.350603i \(0.885977\pi\)
\(444\) 0 0
\(445\) −17.2998 19.2133i −0.820088 0.910800i
\(446\) 19.8077 + 21.9987i 0.937924 + 1.04167i
\(447\) 0 0
\(448\) −0.146680 + 1.39557i −0.00692997 + 0.0659343i
\(449\) −0.139165 0.428305i −0.00656760 0.0202130i 0.947719 0.319106i \(-0.103383\pi\)
−0.954287 + 0.298893i \(0.903383\pi\)
\(450\) 0 0
\(451\) −2.66312 18.3273i −0.125401 0.863001i
\(452\) −2.15945 3.74028i −0.101572 0.175928i
\(453\) 0 0
\(454\) −13.2524 + 5.90036i −0.621967 + 0.276917i
\(455\) 0.161325 + 1.53491i 0.00756304 + 0.0719576i
\(456\) 0 0
\(457\) −23.3873 + 4.97113i −1.09401 + 0.232540i −0.719369 0.694628i \(-0.755569\pi\)
−0.374645 + 0.927168i \(0.622235\pi\)
\(458\) −11.8965 + 8.64335i −0.555889 + 0.403877i
\(459\) 0 0
\(460\) 1.36475 + 4.20025i 0.0636316 + 0.195838i
\(461\) −9.80668 16.9857i −0.456743 0.791101i 0.542044 0.840350i \(-0.317651\pi\)
−0.998787 + 0.0492488i \(0.984317\pi\)
\(462\) 0 0
\(463\) 0.718847 1.24508i 0.0334077 0.0578638i −0.848838 0.528653i \(-0.822697\pi\)
0.882246 + 0.470789i \(0.156031\pi\)
\(464\) 8.61731 + 1.83167i 0.400049 + 0.0850329i
\(465\) 0 0
\(466\) −5.89314 2.62380i −0.272995 0.121545i
\(467\) −1.50036 + 4.61763i −0.0694283 + 0.213678i −0.979751 0.200222i \(-0.935834\pi\)
0.910322 + 0.413900i \(0.135834\pi\)
\(468\) 0 0
\(469\) −0.736068 + 0.534785i −0.0339885 + 0.0246941i
\(470\) 0.237493 2.25959i 0.0109547 0.104227i
\(471\) 0 0
\(472\) 10.5451 18.2646i 0.485377 0.840697i
\(473\) 34.4196 8.75279i 1.58262 0.402454i
\(474\) 0 0
\(475\) 8.08990 8.98475i 0.371190 0.412248i
\(476\) 0.433921 + 0.315262i 0.0198887 + 0.0144500i
\(477\) 0 0
\(478\) −7.60081 + 23.3929i −0.347653 + 1.06997i
\(479\) −36.0110 + 7.65438i −1.64538 + 0.349737i −0.935157 0.354234i \(-0.884742\pi\)
−0.710228 + 0.703972i \(0.751408\pi\)
\(480\) 0 0
\(481\) −24.1326 + 10.7445i −1.10035 + 0.489908i
\(482\) 21.1349 + 4.49236i 0.962668 + 0.204621i
\(483\) 0 0
\(484\) −1.80650 + 3.79344i −0.0821138 + 0.172429i
\(485\) −19.7525 −0.896916
\(486\) 0 0
\(487\) 13.6631 + 9.92684i 0.619135 + 0.449828i 0.852619 0.522533i \(-0.175013\pi\)
−0.233484 + 0.972361i \(0.575013\pi\)
\(488\) 9.86952 + 4.39419i 0.446772 + 0.198916i
\(489\) 0 0
\(490\) 11.0681 + 12.2924i 0.500006 + 0.555313i
\(491\) 3.23206 + 30.7510i 0.145861 + 1.38777i 0.785387 + 0.619005i \(0.212464\pi\)
−0.639526 + 0.768769i \(0.720870\pi\)
\(492\) 0 0
\(493\) −7.59298 + 8.43285i −0.341970 + 0.379797i
\(494\) −30.1917 −1.35839
\(495\) 0 0
\(496\) 11.0000 0.493915
\(497\) −1.21895 + 1.35378i −0.0546774 + 0.0607254i
\(498\) 0 0
\(499\) 1.01838 + 9.68927i 0.0455891 + 0.433751i 0.993381 + 0.114863i \(0.0366429\pi\)
−0.947792 + 0.318889i \(0.896690\pi\)
\(500\) −3.00501 3.33740i −0.134388 0.149253i
\(501\) 0 0
\(502\) 20.8079 + 9.26428i 0.928702 + 0.413485i
\(503\) 9.03500 + 6.56431i 0.402851 + 0.292688i 0.770701 0.637197i \(-0.219906\pi\)
−0.367850 + 0.929885i \(0.619906\pi\)
\(504\) 0 0
\(505\) 16.3262 0.726508
\(506\) −38.3178 + 1.51737i −1.70343 + 0.0674551i
\(507\) 0 0
\(508\) 2.70353 + 0.574654i 0.119950 + 0.0254961i
\(509\) −7.58820 + 3.37849i −0.336341 + 0.149749i −0.567956 0.823059i \(-0.692266\pi\)
0.231615 + 0.972808i \(0.425599\pi\)
\(510\) 0 0
\(511\) 1.49448 0.317661i 0.0661118 0.0140525i
\(512\) 4.08358 12.5680i 0.180470 0.555431i
\(513\) 0 0
\(514\) 19.7254 + 14.3314i 0.870051 + 0.632129i
\(515\) 7.17142 7.96467i 0.316011 0.350965i
\(516\) 0 0
\(517\) 2.93871 + 1.17137i 0.129244 + 0.0515170i
\(518\) 1.13602 1.96764i 0.0499138 0.0864533i
\(519\) 0 0
\(520\) 1.70656 16.2368i 0.0748375 0.712031i
\(521\) −4.40491 + 3.20036i −0.192983 + 0.140210i −0.680081 0.733137i \(-0.738055\pi\)
0.487098 + 0.873347i \(0.338055\pi\)
\(522\) 0 0
\(523\) 5.70163 17.5478i 0.249315 0.767312i −0.745582 0.666414i \(-0.767828\pi\)
0.994897 0.100898i \(-0.0321716\pi\)
\(524\) −4.22979 1.88323i −0.184779 0.0822691i
\(525\) 0 0
\(526\) 6.98974 + 1.48572i 0.304767 + 0.0647803i
\(527\) −7.08429 + 12.2704i −0.308597 + 0.534505i
\(528\) 0 0
\(529\) −16.5623 28.6868i −0.720100 1.24725i
\(530\) 6.65037 + 20.4677i 0.288874 + 0.889062i
\(531\) 0 0
\(532\) 0.336881 0.244758i 0.0146056 0.0106116i
\(533\) 23.1370 4.91793i 1.00218 0.213019i
\(534\) 0 0
\(535\) 1.51635 + 14.4271i 0.0655575 + 0.623738i
\(536\) 8.79243 3.91464i 0.379775 0.169087i
\(537\) 0 0
\(538\) 20.7426 + 35.9273i 0.894279 + 1.54894i
\(539\) −20.6532 + 10.1930i −0.889597 + 0.439042i
\(540\) 0 0
\(541\) −12.2467 37.6915i −0.526527 1.62048i −0.761276 0.648428i \(-0.775427\pi\)
0.234749 0.972056i \(-0.424573\pi\)
\(542\) −4.84531 + 46.1001i −0.208124 + 1.98017i
\(543\) 0 0
\(544\) −8.48920 9.42822i −0.363972 0.404231i
\(545\) −0.301341 0.334673i −0.0129080 0.0143358i
\(546\) 0 0
\(547\) 0.944356 8.98495i 0.0403778 0.384169i −0.955607 0.294645i \(-0.904799\pi\)
0.995985 0.0895241i \(-0.0285346\pi\)
\(548\) −1.24861 3.84281i −0.0533378 0.164157i
\(549\) 0 0
\(550\) 12.0172 5.93085i 0.512416 0.252892i
\(551\) 4.40491 + 7.62953i 0.187656 + 0.325029i
\(552\) 0 0
\(553\) −0.113839 + 0.0506842i −0.00484091 + 0.00215531i
\(554\) 3.48753 + 33.1817i 0.148171 + 1.40975i
\(555\) 0 0
\(556\) 5.08796 1.08148i 0.215777 0.0458649i
\(557\) 14.3242 10.4071i 0.606935 0.440964i −0.241399 0.970426i \(-0.577606\pi\)
0.848334 + 0.529462i \(0.177606\pi\)
\(558\) 0 0
\(559\) 14.0172 + 43.1406i 0.592865 + 1.82465i
\(560\) 0.841263 + 1.45711i 0.0355499 + 0.0615742i
\(561\) 0 0
\(562\) −6.79837 + 11.7751i −0.286772 + 0.496704i
\(563\) −39.6589 8.42976i −1.67142 0.355272i −0.727671 0.685926i \(-0.759397\pi\)
−0.943752 + 0.330654i \(0.892731\pi\)
\(564\) 0 0
\(565\) 15.9421 + 7.09790i 0.670691 + 0.298611i
\(566\) −3.31190 + 10.1930i −0.139209 + 0.428443i
\(567\) 0 0
\(568\) 15.5902 11.3269i 0.654149 0.475267i
\(569\) 3.10326 29.5256i 0.130096 1.23778i −0.713445 0.700711i \(-0.752866\pi\)
0.843541 0.537065i \(-0.180467\pi\)
\(570\) 0 0
\(571\) 17.4894 30.2925i 0.731907 1.26770i −0.224160 0.974552i \(-0.571964\pi\)
0.956067 0.293148i \(-0.0947027\pi\)
\(572\) −4.98499 1.98702i −0.208433 0.0830816i
\(573\) 0 0
\(574\) −1.36131 + 1.51188i −0.0568199 + 0.0631049i
\(575\) 15.8675 + 11.5284i 0.661722 + 0.480769i
\(576\) 0 0
\(577\) −10.0902 + 31.0543i −0.420059 + 1.29281i 0.487587 + 0.873074i \(0.337877\pi\)
−0.907647 + 0.419735i \(0.862123\pi\)
\(578\) 27.7501 5.89846i 1.15425 0.245344i
\(579\) 0 0
\(580\) 1.02738 0.457421i 0.0426598 0.0189934i
\(581\) −1.01714 0.216199i −0.0421979 0.00896944i
\(582\) 0 0
\(583\) −29.9422 + 1.18570i −1.24008 + 0.0491066i
\(584\) −16.1623 −0.668801
\(585\) 0 0
\(586\) −25.6803 18.6579i −1.06085 0.770749i
\(587\) −8.33245 3.70985i −0.343917 0.153122i 0.227507 0.973776i \(-0.426942\pi\)
−0.571425 + 0.820655i \(0.693609\pi\)
\(588\) 0 0
\(589\) 7.36044 + 8.17459i 0.303282 + 0.336828i
\(590\) −2.10278 20.0067i −0.0865703 0.823661i
\(591\) 0 0
\(592\) −19.2699 + 21.4014i −0.791987 + 0.879591i
\(593\) 1.09301 0.0448847 0.0224424 0.999748i \(-0.492856\pi\)
0.0224424 + 0.999748i \(0.492856\pi\)
\(594\) 0 0
\(595\) −2.16718 −0.0888459
\(596\) 3.49259 3.87892i 0.143062 0.158887i
\(597\) 0 0
\(598\) −5.11967 48.7104i −0.209359 1.99192i
\(599\) −8.26169 9.17553i −0.337563 0.374902i 0.550333 0.834945i \(-0.314501\pi\)
−0.887897 + 0.460043i \(0.847834\pi\)
\(600\) 0 0
\(601\) 32.3036 + 14.3825i 1.31769 + 0.586674i 0.940604 0.339504i \(-0.110259\pi\)
0.377086 + 0.926178i \(0.376926\pi\)
\(602\) −3.15631 2.29319i −0.128641 0.0934635i
\(603\) 0 0
\(604\) −3.34752 −0.136209
\(605\) −3.10412 16.6908i −0.126200 0.678577i
\(606\) 0 0
\(607\) 25.8055 + 5.48512i 1.04741 + 0.222634i 0.699307 0.714822i \(-0.253492\pi\)
0.348104 + 0.937456i \(0.386825\pi\)
\(608\) −8.99813 + 4.00623i −0.364922 + 0.162474i
\(609\) 0 0
\(610\) 10.0798 2.14252i 0.408118 0.0867481i
\(611\) −1.24861 + 3.84281i −0.0505132 + 0.155464i
\(612\) 0 0
\(613\) −34.7426 25.2420i −1.40324 1.01952i −0.994262 0.106972i \(-0.965885\pi\)
−0.408980 0.912543i \(-0.634115\pi\)
\(614\) 16.8027 18.6613i 0.678103 0.753110i
\(615\) 0 0
\(616\) −1.89488 + 0.481862i −0.0763469 + 0.0194148i
\(617\) 0.884268 1.53160i 0.0355993 0.0616598i −0.847677 0.530513i \(-0.821999\pi\)
0.883276 + 0.468853i \(0.155333\pi\)
\(618\) 0 0
\(619\) 3.01968 28.7303i 0.121371 1.15477i −0.749069 0.662492i \(-0.769499\pi\)
0.870440 0.492275i \(-0.163835\pi\)
\(620\) 1.13602 0.825366i 0.0456236 0.0331475i
\(621\) 0 0
\(622\) −11.4959 + 35.3808i −0.460945 + 1.41864i
\(623\) −3.61268 1.60847i −0.144739 0.0644419i
\(624\) 0 0
\(625\) 4.94525 + 1.05114i 0.197810 + 0.0420458i
\(626\) 0.268178 0.464498i 0.0107185 0.0185651i
\(627\) 0 0
\(628\) −2.03444 3.52376i −0.0811831 0.140613i
\(629\) −11.4626 35.2783i −0.457045 1.40664i
\(630\) 0 0
\(631\) 15.8713 11.5312i 0.631827 0.459049i −0.225205 0.974311i \(-0.572305\pi\)
0.857033 + 0.515262i \(0.172305\pi\)
\(632\) 1.28938 0.274067i 0.0512889 0.0109018i
\(633\) 0 0
\(634\) 1.70656 + 16.2368i 0.0677760 + 0.644846i
\(635\) −10.2024 + 4.54238i −0.404868 + 0.180259i
\(636\) 0 0
\(637\) −14.7082 25.4754i −0.582760 1.00937i
\(638\) 1.40420 + 9.66356i 0.0555927 + 0.382584i
\(639\) 0 0
\(640\) −6.40983 19.7274i −0.253371 0.779795i
\(641\) 1.28161 12.1937i 0.0506206 0.481623i −0.939616 0.342229i \(-0.888818\pi\)
0.990237 0.139394i \(-0.0445153\pi\)
\(642\) 0 0
\(643\) 18.8421 + 20.9263i 0.743059 + 0.825251i 0.989595 0.143883i \(-0.0459588\pi\)
−0.246535 + 0.969134i \(0.579292\pi\)
\(644\) 0.452011 + 0.502009i 0.0178117 + 0.0197819i
\(645\) 0 0
\(646\) 4.43150 42.1629i 0.174355 1.65888i
\(647\) 12.1913 + 37.5210i 0.479290 + 1.47510i 0.840084 + 0.542456i \(0.182506\pi\)
−0.360794 + 0.932645i \(0.617494\pi\)
\(648\) 0 0
\(649\) 27.6074 + 4.73504i 1.08368 + 0.185867i
\(650\) 8.55807 + 14.8230i 0.335675 + 0.581407i
\(651\) 0 0
\(652\) 1.26249 0.562096i 0.0494429 0.0220134i
\(653\) −4.37033 41.5809i −0.171024 1.62719i −0.657474 0.753478i \(-0.728375\pi\)
0.486449 0.873709i \(-0.338292\pi\)
\(654\) 0 0
\(655\) 18.2994 3.88965i 0.715016 0.151981i
\(656\) 20.8620 15.1571i 0.814523 0.591785i
\(657\) 0 0
\(658\) −0.107391 0.330515i −0.00418653 0.0128848i
\(659\) −1.76854 3.06319i −0.0688924 0.119325i 0.829522 0.558475i \(-0.188613\pi\)
−0.898414 + 0.439150i \(0.855280\pi\)
\(660\) 0 0
\(661\) −11.2812 + 19.5395i −0.438786 + 0.760000i −0.997596 0.0692960i \(-0.977925\pi\)
0.558810 + 0.829296i \(0.311258\pi\)
\(662\) 31.2618 + 6.64491i 1.21503 + 0.258262i
\(663\) 0 0
\(664\) 10.0490 + 4.47410i 0.389977 + 0.173629i
\(665\) −0.519929 + 1.60018i −0.0201620 + 0.0620522i
\(666\) 0 0
\(667\) −11.5623 + 8.40051i −0.447694 + 0.325269i
\(668\) −0.308104 + 2.93141i −0.0119209 + 0.113420i
\(669\) 0 0
\(670\) 4.59017 7.95041i 0.177334 0.307151i
\(671\) −0.934015 + 14.3181i −0.0360572 + 0.552743i
\(672\) 0 0
\(673\) 9.20987 10.2286i 0.355014 0.394283i −0.539012 0.842298i \(-0.681202\pi\)
0.894026 + 0.448015i \(0.147869\pi\)
\(674\) 5.80911 + 4.22056i 0.223759 + 0.162570i
\(675\) 0 0
\(676\) 0.583592 1.79611i 0.0224459 0.0690812i
\(677\) −6.03854 + 1.28353i −0.232080 + 0.0493301i −0.322483 0.946575i \(-0.604518\pi\)
0.0904034 + 0.995905i \(0.471184\pi\)
\(678\) 0 0
\(679\) −2.76008 + 1.22887i −0.105922 + 0.0471596i
\(680\) 22.4243 + 4.76643i 0.859932 + 0.182784i
\(681\) 0 0
\(682\) 4.22363 + 11.4378i 0.161731 + 0.437975i
\(683\) 31.7351 1.21431 0.607155 0.794584i \(-0.292311\pi\)
0.607155 + 0.794584i \(0.292311\pi\)
\(684\) 0 0
\(685\) 13.2082 + 9.59632i 0.504660 + 0.366657i
\(686\) 4.64121 + 2.06640i 0.177202 + 0.0788954i
\(687\) 0 0
\(688\) 33.0891 + 36.7491i 1.26151 + 1.40105i
\(689\) −4.00060 38.0632i −0.152411 1.45009i
\(690\) 0 0
\(691\) −8.27091 + 9.18578i −0.314640 + 0.349443i −0.879633 0.475652i \(-0.842212\pi\)
0.564993 + 0.825096i \(0.308879\pi\)
\(692\) 1.03986 0.0395295
\(693\) 0 0
\(694\) −4.06888 −0.154453
\(695\) −14.0635 + 15.6191i −0.533459 + 0.592466i
\(696\) 0 0
\(697\) 3.47189 + 33.0328i 0.131507 + 1.25121i
\(698\) 13.6115 + 15.1171i 0.515202 + 0.572190i
\(699\) 0 0
\(700\) −0.215659 0.0960175i −0.00815114 0.00362912i
\(701\) −31.0760 22.5780i −1.17372 0.852760i −0.182274 0.983248i \(-0.558346\pi\)
−0.991450 + 0.130488i \(0.958346\pi\)
\(702\) 0 0
\(703\) −28.7984 −1.08615
\(704\) 19.6995 0.780089i 0.742452 0.0294007i
\(705\) 0 0
\(706\) 5.33969 + 1.13499i 0.200962 + 0.0427158i
\(707\) 2.28132 1.01571i 0.0857977 0.0381996i
\(708\) 0 0
\(709\) 38.9287 8.27455i 1.46200 0.310757i 0.592851 0.805312i \(-0.298002\pi\)
0.869146 + 0.494555i \(0.164669\pi\)
\(710\) 5.68010 17.4815i 0.213170 0.656070i
\(711\) 0 0
\(712\) 33.8435 + 24.5887i 1.26834 + 0.921501i
\(713\) −11.9405 + 13.2613i −0.447176 + 0.496639i
\(714\) 0 0
\(715\) 21.0146 5.34393i 0.785900 0.199852i
\(716\) 3.56365 6.17242i 0.133180 0.230674i
\(717\) 0 0
\(718\) 4.21884 40.1396i 0.157446 1.49800i
\(719\) 28.7609 20.8960i 1.07260 0.779291i 0.0962240 0.995360i \(-0.469323\pi\)
0.976378 + 0.216069i \(0.0693235\pi\)
\(720\) 0 0
\(721\) 0.506578 1.55909i 0.0188659 0.0580634i
\(722\) −3.27984 1.46028i −0.122063 0.0543459i
\(723\) 0 0
\(724\) −2.90075 0.616574i −0.107806 0.0229148i
\(725\) 2.49721 4.32530i 0.0927441 0.160638i
\(726\) 0 0
\(727\) 0.281153 + 0.486971i 0.0104274 + 0.0180608i 0.871192 0.490942i \(-0.163347\pi\)
−0.860765 + 0.509003i \(0.830014\pi\)
\(728\) −0.771681 2.37499i −0.0286004 0.0880230i
\(729\) 0 0
\(730\) −12.4721 + 9.06154i −0.461614 + 0.335383i
\(731\) −62.3034 + 13.2430i −2.30438 + 0.489810i
\(732\) 0 0
\(733\) −1.74066 16.5613i −0.0642927 0.611704i −0.978470 0.206389i \(-0.933829\pi\)
0.914177 0.405315i \(-0.132838\pi\)
\(734\) 8.50815 3.78807i 0.314041 0.139820i
\(735\) 0 0
\(736\) −7.98936 13.8380i −0.294492 0.510074i
\(737\) 8.92241 + 9.15345i 0.328661 + 0.337172i
\(738\) 0 0
\(739\) 4.25329 + 13.0903i 0.156460 + 0.481534i 0.998306 0.0581840i \(-0.0185310\pi\)
−0.841846 + 0.539718i \(0.818531\pi\)
\(740\) −0.384271 + 3.65610i −0.0141261 + 0.134401i
\(741\) 0 0
\(742\) 2.20264 + 2.44628i 0.0808615 + 0.0898058i
\(743\) −29.4966 32.7593i −1.08213 1.20182i −0.978293 0.207227i \(-0.933556\pi\)
−0.103832 0.994595i \(-0.533111\pi\)
\(744\) 0 0
\(745\) −2.20452 + 20.9746i −0.0807675 + 0.768451i
\(746\) −5.92170 18.2251i −0.216809 0.667269i
\(747\) 0 0
\(748\) 3.50658 6.66991i 0.128213 0.243876i
\(749\) 1.10944 + 1.92161i 0.0405381 + 0.0702140i
\(750\) 0 0
\(751\) 33.3504 14.8486i 1.21697 0.541832i 0.305107 0.952318i \(-0.401308\pi\)
0.911867 + 0.410486i \(0.134641\pi\)
\(752\) 0.460439 + 4.38078i 0.0167905 + 0.159751i
\(753\) 0 0
\(754\) −12.1996 + 2.59310i −0.444283 + 0.0944352i
\(755\) 10.9427 7.95034i 0.398246 0.289342i
\(756\) 0 0
\(757\) −1.57953 4.86128i −0.0574089 0.176686i 0.918240 0.396024i \(-0.129610\pi\)
−0.975649 + 0.219338i \(0.929610\pi\)
\(758\) 1.36119 + 2.35766i 0.0494407 + 0.0856339i
\(759\) 0 0
\(760\) 8.89919 15.4138i 0.322807 0.559119i
\(761\) −6.88742 1.46397i −0.249669 0.0530687i 0.0813771 0.996683i \(-0.474068\pi\)
−0.331046 + 0.943615i \(0.607402\pi\)
\(762\) 0 0
\(763\) −0.0629284 0.0280175i −0.00227816 0.00101430i
\(764\) 0.433921 1.33547i 0.0156987 0.0483156i
\(765\) 0 0
\(766\) 17.6246 12.8050i 0.636803 0.462665i
\(767\) −3.73957 + 35.5797i −0.135028 + 1.28471i
\(768\) 0 0
\(769\) −5.63525 + 9.76055i −0.203212 + 0.351974i −0.949562 0.313580i \(-0.898472\pi\)
0.746349 + 0.665555i \(0.231805\pi\)
\(770\) −1.19208 + 1.43423i −0.0429597 + 0.0516859i
\(771\) 0 0
\(772\) 2.45823 2.73014i 0.0884735 0.0982598i
\(773\) −39.1141 28.4181i −1.40684 1.02213i −0.993773 0.111426i \(-0.964458\pi\)
−0.413065 0.910702i \(-0.635542\pi\)
\(774\) 0 0
\(775\) 1.92705 5.93085i 0.0692217 0.213043i
\(776\) 31.2618 6.64491i 1.12223 0.238538i
\(777\) 0 0
\(778\) 27.4573 12.2248i 0.984391 0.438279i
\(779\) 25.2233 + 5.36138i 0.903719 + 0.192091i
\(780\) 0 0
\(781\) 21.2848 + 14.2126i 0.761631 + 0.508565i
\(782\) 68.7758 2.45942
\(783\) 0 0
\(784\) −25.9443 18.8496i −0.926581 0.673201i
\(785\) 15.0193 + 6.68700i 0.536060 + 0.238669i
\(786\) 0 0
\(787\) −29.2926 32.5327i −1.04417 1.15967i −0.986904 0.161307i \(-0.948429\pi\)
−0.0572638 0.998359i \(-0.518238\pi\)
\(788\) −0.483976 4.60472i −0.0172409 0.164036i
\(789\) 0 0
\(790\) 0.841334 0.934396i 0.0299333 0.0332443i
\(791\) 2.66923 0.0949069
\(792\) 0 0
\(793\) −18.3262 −0.650784
\(794\) 2.49545 2.77148i 0.0885602 0.0983561i
\(795\) 0 0
\(796\) 1.05471 + 10.0349i 0.0373832 + 0.355677i
\(797\) −2.06542 2.29388i −0.0731610 0.0812535i 0.705453 0.708757i \(-0.250744\pi\)
−0.778614 + 0.627503i \(0.784077\pi\)
\(798\) 0 0
\(799\) −5.18324 2.30773i −0.183370 0.0816415i
\(800\) 4.51750 + 3.28216i 0.159718 + 0.116042i
\(801\) 0 0
\(802\) −5.11146 −0.180492
\(803\) −7.43585 20.1366i −0.262405 0.710605i
\(804\) 0 0
\(805\) −2.66984 0.567493i −0.0940996 0.0200015i
\(806\) −14.2264 + 6.33402i −0.501105 + 0.223106i
\(807\) 0 0
\(808\) −25.8391 + 5.49228i −0.909018 + 0.193218i
\(809\) 7.96856 24.5247i 0.280160 0.862243i −0.707648 0.706565i \(-0.750244\pi\)
0.987808 0.155678i \(-0.0497562\pi\)
\(810\) 0 0
\(811\) −5.83688 4.24074i −0.204961 0.148913i 0.480570 0.876956i \(-0.340430\pi\)
−0.685531 + 0.728044i \(0.740430\pi\)
\(812\) 0.115102 0.127834i 0.00403929 0.00448608i
\(813\) 0 0
\(814\) −29.6521 11.8194i −1.03930 0.414268i
\(815\) −2.79197 + 4.83583i −0.0977984 + 0.169392i
\(816\) 0 0
\(817\) −5.16902 + 49.1800i −0.180841 + 1.72059i
\(818\) −28.6484 + 20.8142i −1.00167 + 0.727753i
\(819\) 0 0
\(820\) 1.01722 3.13068i 0.0355229 0.109328i
\(821\) 27.5029 + 12.2451i 0.959859 + 0.427357i 0.826017 0.563646i \(-0.190602\pi\)
0.133842 + 0.991003i \(0.457268\pi\)
\(822\) 0 0
\(823\) −53.6891 11.4120i −1.87148 0.397796i −0.875188 0.483783i \(-0.839262\pi\)
−0.996296 + 0.0859867i \(0.972596\pi\)
\(824\) −8.67066 + 15.0180i −0.302057 + 0.523178i
\(825\) 0 0
\(826\) −1.53851 2.66477i −0.0535315 0.0927193i
\(827\) 10.2140 + 31.4355i 0.355176 + 1.09312i 0.955907 + 0.293669i \(0.0948763\pi\)
−0.600731 + 0.799451i \(0.705124\pi\)
\(828\) 0 0
\(829\) 7.30902 5.31031i 0.253853 0.184435i −0.453580 0.891216i \(-0.649853\pi\)
0.707433 + 0.706781i \(0.249853\pi\)
\(830\) 10.2631 2.18148i 0.356236 0.0757204i
\(831\) 0 0
\(832\) 2.63206 + 25.0424i 0.0912503 + 0.868189i
\(833\) 37.7353 16.8008i 1.30745 0.582115i
\(834\) 0 0
\(835\) −5.95492 10.3142i −0.206078 0.356938i
\(836\) −4.08358 4.18932i −0.141234 0.144891i
\(837\) 0 0
\(838\) 7.66718 + 23.5972i 0.264858 + 0.815151i
\(839\) 5.08281 48.3597i 0.175478 1.66956i −0.452830 0.891597i \(-0.649586\pi\)
0.628308 0.777965i \(-0.283748\pi\)
\(840\) 0 0
\(841\) −16.9696 18.8467i −0.585159 0.649885i
\(842\) −22.9414 25.4791i −0.790614 0.878066i
\(843\) 0 0
\(844\) −0.440565 + 4.19169i −0.0151649 + 0.144284i
\(845\) 2.35805 + 7.25732i 0.0811193 + 0.249660i
\(846\) 0 0
\(847\) −1.47214 2.13914i −0.0505832 0.0735017i
\(848\) −20.8620 36.1340i −0.716403 1.24085i
\(849\) 0 0
\(850\) −21.9566 + 9.77569i −0.753104 + 0.335303i
\(851\) −4.88340 46.4624i −0.167401 1.59271i
\(852\) 0 0
\(853\) −20.7175 + 4.40364i −0.709354 + 0.150778i −0.548439 0.836191i \(-0.684778\pi\)
−0.160915 + 0.986968i \(0.551444\pi\)
\(854\) 1.27518 0.926476i 0.0436359 0.0317033i
\(855\) 0 0
\(856\) −7.25329 22.3233i −0.247912 0.762996i
\(857\) 20.4976 + 35.5029i 0.700186 + 1.21276i 0.968401 + 0.249398i \(0.0802327\pi\)
−0.268216 + 0.963359i \(0.586434\pi\)
\(858\) 0 0
\(859\) −7.79180 + 13.4958i −0.265853 + 0.460470i −0.967787 0.251772i \(-0.918987\pi\)
0.701934 + 0.712242i \(0.252320\pi\)
\(860\) 6.17467 + 1.31247i 0.210554 + 0.0447547i
\(861\) 0 0
\(862\) 7.75170 + 3.45128i 0.264024 + 0.117551i
\(863\) 7.63080 23.4852i 0.259755 0.799445i −0.733100 0.680121i \(-0.761927\pi\)
0.992855 0.119324i \(-0.0380728\pi\)
\(864\) 0 0
\(865\) −3.39919 + 2.46965i −0.115576 + 0.0839708i
\(866\) 4.62237 43.9789i 0.157074 1.49446i
\(867\) 0 0
\(868\) 0.107391 0.186006i 0.00364508 0.00631347i
\(869\) 0.934671 + 1.48035i 0.0317065 + 0.0502174i
\(870\) 0 0
\(871\) −10.9244 + 12.1328i −0.370159 + 0.411103i
\(872\) 0.589512 + 0.428305i 0.0199634 + 0.0145043i
\(873\) 0 0
\(874\) 16.5000 50.7818i 0.558121 1.71772i
\(875\) 2.71489 0.577068i 0.0917800 0.0195084i
\(876\) 0 0
\(877\) 2.30932 1.02817i 0.0779802 0.0347190i −0.367376 0.930073i \(-0.619744\pi\)
0.445356 + 0.895354i \(0.353077\pi\)
\(878\) −37.7409 8.02207i −1.27369 0.270732i
\(879\) 0 0
\(880\) 18.5592 14.6402i 0.625632 0.493522i
\(881\) 47.8114 1.61081 0.805403 0.592728i \(-0.201949\pi\)
0.805403 + 0.592728i \(0.201949\pi\)
\(882\) 0 0
\(883\) 40.3607 + 29.3238i 1.35825 + 0.986823i 0.998554 + 0.0537512i \(0.0171178\pi\)
0.359691 + 0.933072i \(0.382882\pi\)
\(884\) 8.79243 + 3.91464i 0.295721 + 0.131664i
\(885\) 0 0
\(886\) −19.4136 21.5610i −0.652212 0.724355i
\(887\) −1.72195 16.3832i −0.0578173 0.550095i −0.984640 0.174596i \(-0.944138\pi\)
0.926823 0.375499i \(-0.122529\pi\)
\(888\) 0 0
\(889\) −1.14301 + 1.26944i −0.0383354 + 0.0425757i
\(890\) 39.9022 1.33753
\(891\) 0 0
\(892\) −7.32624 −0.245301
\(893\) −2.94746 + 3.27349i −0.0986330 + 0.109543i
\(894\) 0 0
\(895\) 3.01025 + 28.6406i 0.100622 + 0.957350i
\(896\) −2.12297 2.35780i −0.0709235 0.0787686i
\(897\) 0 0
\(898\) 0.634958 + 0.282702i 0.0211888 + 0.00943388i
\(899\) 3.67624 + 2.67094i 0.122609 + 0.0890809i
\(900\) 0 0
\(901\) 53.7426 1.79043
\(902\) 23.7706 + 15.8724i 0.791475 + 0.528493i
\(903\) 0 0
\(904\) −27.6190 5.87061i −0.918596 0.195254i
\(905\) 10.9466 4.87375i 0.363878 0.162009i
\(906\) 0 0
\(907\) −45.8431 + 9.74425i −1.52220 + 0.323553i −0.891695 0.452637i \(-0.850483\pi\)
−0.630500 + 0.776189i \(0.717150\pi\)
\(908\) 1.10944 3.41451i 0.0368181 0.113314i
\(909\) 0 0
\(910\) −1.92705 1.40008i −0.0638811 0.0464123i
\(911\) −25.3658 + 28.1715i −0.840405 + 0.933364i −0.998538 0.0540535i \(-0.982786\pi\)
0.158133 + 0.987418i \(0.449453\pi\)
\(912\) 0 0
\(913\) −0.951000 + 14.5785i −0.0314735 + 0.482476i
\(914\) 18.4508 31.9577i 0.610297 1.05707i
\(915\) 0 0
\(916\) 0.380413 3.61938i 0.0125692 0.119588i
\(917\) 2.31504 1.68198i 0.0764495 0.0555438i
\(918\) 0 0
\(919\) −0.871323 + 2.68166i −0.0287423 + 0.0884597i −0.964399 0.264453i \(-0.914809\pi\)
0.935656 + 0.352912i \(0.114809\pi\)
\(920\) 26.3773 + 11.7439i 0.869633 + 0.387186i
\(921\) 0 0
\(922\) 29.6090 + 6.29359i 0.975121 + 0.207268i
\(923\) −16.3445 + 28.3094i −0.537985 + 0.931817i
\(924\) 0 0
\(925\) 8.16312 + 14.1389i 0.268402 + 0.464885i
\(926\) 0.685672 + 2.11028i 0.0225326 + 0.0693482i
\(927\) 0 0
\(928\) −3.29180 + 2.39163i −0.108058 + 0.0785091i
\(929\) −0.848877 + 0.180434i −0.0278508 + 0.00591986i −0.221816 0.975089i \(-0.571198\pi\)
0.193965 + 0.981008i \(0.437865\pi\)
\(930\) 0 0
\(931\) −3.35211 31.8932i −0.109861 1.04526i
\(932\) 1.45849 0.649362i 0.0477745 0.0212706i
\(933\) 0 0
\(934\) −3.74671 6.48949i −0.122596 0.212343i
\(935\) 4.37833 + 30.1313i 0.143187 + 0.985399i
\(936\) 0 0
\(937\) 10.2533 + 31.5564i 0.334960 + 1.03090i 0.966742 + 0.255755i \(0.0823241\pi\)
−0.631781 + 0.775147i \(0.717676\pi\)
\(938\) 0.146779 1.39650i 0.00479249 0.0455975i
\(939\) 0 0
\(940\) 0.376256 + 0.417875i 0.0122721 + 0.0136296i
\(941\) −30.2280 33.5716i −0.985404 1.09440i −0.995529 0.0944529i \(-0.969890\pi\)
0.0101257 0.999949i \(-0.496777\pi\)
\(942\) 0 0
\(943\) −4.37272 + 41.6037i −0.142395 + 1.35480i
\(944\) 12.0521 + 37.0927i 0.392264 + 1.20726i
\(945\) 0 0
\(946\) −25.5066 + 48.5164i −0.829290 + 1.57740i
\(947\) 12.6682 + 21.9420i 0.411662 + 0.713020i 0.995072 0.0991584i \(-0.0316151\pi\)
−0.583410 + 0.812178i \(0.698282\pi\)
\(948\) 0 0
\(949\) 25.0461 11.1513i 0.813032 0.361985i
\(950\) 1.95045 + 18.5573i 0.0632809 + 0.602078i
\(951\) 0 0
\(952\) 3.42995 0.729059i 0.111165 0.0236289i
\(953\) 37.6834 27.3786i 1.22068 0.886879i 0.224527 0.974468i \(-0.427916\pi\)
0.996157 + 0.0875894i \(0.0279163\pi\)
\(954\) 0 0
\(955\) 1.75329 + 5.39607i 0.0567351 + 0.174613i
\(956\) −3.04372 5.27188i −0.0984409 0.170505i
\(957\) 0 0
\(958\) 28.4098 49.2073i 0.917880 1.58981i
\(959\) 2.44264 + 0.519200i 0.0788770 + 0.0167658i
\(960\) 0 0
\(961\) −23.1367 10.3011i −0.746344 0.332294i
\(962\) 12.5986 38.7746i 0.406197 1.25014i
\(963\) 0 0
\(964\) −4.32624 + 3.14320i −0.139339 + 0.101236i
\(965\) −1.55163 + 14.7628i −0.0499488 + 0.475231i
\(966\) 0 0
\(967\) −21.3435 + 36.9680i −0.686359 + 1.18881i 0.286648 + 0.958036i \(0.407459\pi\)
−0.973008 + 0.230773i \(0.925874\pi\)
\(968\) 10.5277 + 25.3719i 0.338374 + 0.815482i
\(969\) 0 0
\(970\) 20.3986 22.6550i 0.654961 0.727408i
\(971\) −10.5784 7.68563i −0.339476 0.246644i 0.404965 0.914332i \(-0.367284\pi\)
−0.744441 + 0.667689i \(0.767284\pi\)
\(972\) 0 0
\(973\) −0.993422 + 3.05744i −0.0318477 + 0.0980170i
\(974\) −25.4955 + 5.41925i −0.816930 + 0.173644i
\(975\) 0 0
\(976\) −18.2515 + 8.12607i −0.584215 + 0.260109i
\(977\) 28.0223 + 5.95633i 0.896513 + 0.190560i 0.633051 0.774110i \(-0.281802\pi\)
0.263462 + 0.964670i \(0.415136\pi\)
\(978\) 0 0
\(979\) −15.0646 + 53.4781i −0.481466 + 1.70917i
\(980\) −4.09373 −0.130769
\(981\) 0 0
\(982\) −38.6074 28.0499i −1.23201 0.895109i
\(983\) −36.0897 16.0681i −1.15108 0.512494i −0.259673 0.965696i \(-0.583615\pi\)
−0.891408 + 0.453202i \(0.850282\pi\)
\(984\) 0 0
\(985\) 12.5182 + 13.9029i 0.398864 + 0.442983i
\(986\) −1.83064 17.4174i −0.0582995 0.554683i
\(987\) 0 0
\(988\) 4.99983 5.55288i 0.159066 0.176661i
\(989\) −80.2220 −2.55091
\(990\) 0 0
\(991\) −24.7295 −0.785558 −0.392779 0.919633i \(-0.628486\pi\)
−0.392779 + 0.919633i \(0.628486\pi\)
\(992\) −3.39947 + 3.77550i −0.107933 + 0.119872i
\(993\) 0 0
\(994\) −0.293885 2.79613i −0.00932146 0.0886878i
\(995\) −27.2805 30.2981i −0.864850 0.960513i
\(996\) 0 0
\(997\) −3.41908 1.52227i −0.108283 0.0482108i 0.351880 0.936045i \(-0.385542\pi\)
−0.460163 + 0.887834i \(0.652209\pi\)
\(998\) −12.1647 8.83819i −0.385068 0.279768i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.n.e.676.1 16
3.2 odd 2 inner 891.2.n.e.676.2 16
9.2 odd 6 inner 891.2.n.e.379.1 16
9.4 even 3 99.2.f.c.82.1 yes 8
9.5 odd 6 99.2.f.c.82.2 yes 8
9.7 even 3 inner 891.2.n.e.379.2 16
11.9 even 5 inner 891.2.n.e.757.2 16
33.20 odd 10 inner 891.2.n.e.757.1 16
99.14 odd 30 1089.2.a.v.1.3 4
99.20 odd 30 inner 891.2.n.e.460.2 16
99.31 even 15 99.2.f.c.64.1 8
99.41 even 30 1089.2.a.w.1.2 4
99.58 even 15 1089.2.a.v.1.2 4
99.85 odd 30 1089.2.a.w.1.3 4
99.86 odd 30 99.2.f.c.64.2 yes 8
99.97 even 15 inner 891.2.n.e.460.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.f.c.64.1 8 99.31 even 15
99.2.f.c.64.2 yes 8 99.86 odd 30
99.2.f.c.82.1 yes 8 9.4 even 3
99.2.f.c.82.2 yes 8 9.5 odd 6
891.2.n.e.379.1 16 9.2 odd 6 inner
891.2.n.e.379.2 16 9.7 even 3 inner
891.2.n.e.460.1 16 99.97 even 15 inner
891.2.n.e.460.2 16 99.20 odd 30 inner
891.2.n.e.676.1 16 1.1 even 1 trivial
891.2.n.e.676.2 16 3.2 odd 2 inner
891.2.n.e.757.1 16 33.20 odd 10 inner
891.2.n.e.757.2 16 11.9 even 5 inner
1089.2.a.v.1.2 4 99.58 even 15
1089.2.a.v.1.3 4 99.14 odd 30
1089.2.a.w.1.2 4 99.41 even 30
1089.2.a.w.1.3 4 99.85 odd 30