Properties

Label 891.2.n.e.379.1
Level $891$
Weight $2$
Character 891.379
Analytic conductor $7.115$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(136,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.136");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{14} - 15x^{12} + 116x^{10} + 69x^{8} - 814x^{6} + 2420x^{4} - 7986x^{2} + 14641 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 379.1
Root \(-1.50964 - 0.320883i\) of defining polynomial
Character \(\chi\) \(=\) 891.379
Dual form 891.2.n.e.757.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50964 - 0.320883i) q^{2} +(0.348943 + 0.155360i) q^{4} +(1.50964 - 0.320883i) q^{5} +(-0.0246758 - 0.234775i) q^{7} +(2.02029 + 1.46782i) q^{8} -2.38197 q^{10} +(3.21432 - 0.817391i) q^{11} +(-2.83448 + 3.14801i) q^{13} +(-0.0380837 + 0.362342i) q^{14} +(-3.09007 - 3.43187i) q^{16} +(1.83812 - 5.65714i) q^{17} +(3.73607 + 2.71441i) q^{19} +(0.576630 + 0.122566i) q^{20} +(-5.11474 + 0.202541i) q^{22} +(3.74582 + 6.48795i) q^{23} +(-2.39169 + 1.06485i) q^{25} +(5.28918 - 3.84281i) q^{26} +(0.0278640 - 0.0857567i) q^{28} +(0.199409 + 1.89725i) q^{29} +(-1.59385 + 1.77015i) q^{31} +(1.06644 + 1.84712i) q^{32} +(-4.59017 + 7.95041i) q^{34} +(-0.112587 - 0.346506i) q^{35} +(-5.04508 + 3.66547i) q^{37} +(-4.76909 - 5.29661i) q^{38} +(3.52090 + 1.56760i) q^{40} +(0.583680 - 5.55335i) q^{41} +(5.35410 - 9.27358i) q^{43} +(1.24861 + 0.214153i) q^{44} +(-3.57295 - 10.9964i) q^{46} +(-0.871385 + 0.387966i) q^{47} +(6.79252 - 1.44380i) q^{49} +(3.95228 - 0.840083i) q^{50} +(-1.47815 + 0.658114i) q^{52} +(2.79197 + 8.59279i) q^{53} +(4.59017 - 2.26538i) q^{55} +(0.294756 - 0.510532i) q^{56} +(0.307760 - 2.92814i) q^{58} +(7.71534 + 3.43509i) q^{59} +(2.89482 + 3.21502i) q^{61} +(2.97414 - 2.16084i) q^{62} +(1.83688 + 5.65334i) q^{64} +(-3.26889 + 5.66189i) q^{65} +(-1.92705 - 3.33775i) q^{67} +(1.52029 - 1.68845i) q^{68} +(0.0587770 + 0.559226i) q^{70} +(2.38463 - 7.33912i) q^{71} +(5.23607 - 3.80423i) q^{73} +(8.79243 - 3.91464i) q^{74} +(0.881966 + 1.52761i) q^{76} +(-0.271219 - 0.734472i) q^{77} +(0.516329 + 0.109749i) q^{79} +(-5.76611 - 4.18932i) q^{80} +(-2.66312 + 8.19624i) q^{82} +(-2.94746 - 3.27349i) q^{83} +(0.959607 - 9.13005i) q^{85} +(-11.0585 + 12.2817i) q^{86} +(7.69364 + 3.06670i) q^{88} +16.7518 q^{89} +(0.809017 + 0.587785i) q^{91} +(0.299113 + 2.84587i) q^{92} +(1.43997 - 0.306074i) q^{94} +(6.51111 + 2.89893i) q^{95} +(12.5187 + 2.66093i) q^{97} -10.7175 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{4} + 6 q^{7} - 56 q^{10} + 6 q^{13} - 2 q^{16} + 24 q^{19} - 28 q^{22} - 8 q^{25} + 72 q^{28} - 12 q^{31} + 16 q^{34} - 36 q^{37} + 16 q^{40} + 32 q^{43} - 84 q^{46} + 44 q^{49} - 6 q^{52} - 16 q^{55}+ \cdots + 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.50964 0.320883i −1.06747 0.226899i −0.359506 0.933143i \(-0.617055\pi\)
−0.707968 + 0.706244i \(0.750388\pi\)
\(3\) 0 0
\(4\) 0.348943 + 0.155360i 0.174472 + 0.0776798i
\(5\) 1.50964 0.320883i 0.675130 0.143503i 0.142426 0.989805i \(-0.454510\pi\)
0.532703 + 0.846302i \(0.321176\pi\)
\(6\) 0 0
\(7\) −0.0246758 0.234775i −0.00932658 0.0887365i 0.988868 0.148793i \(-0.0475387\pi\)
−0.998195 + 0.0600561i \(0.980872\pi\)
\(8\) 2.02029 + 1.46782i 0.714279 + 0.518954i
\(9\) 0 0
\(10\) −2.38197 −0.753244
\(11\) 3.21432 0.817391i 0.969155 0.246453i
\(12\) 0 0
\(13\) −2.83448 + 3.14801i −0.786144 + 0.873101i −0.994477 0.104957i \(-0.966530\pi\)
0.208333 + 0.978058i \(0.433196\pi\)
\(14\) −0.0380837 + 0.362342i −0.0101783 + 0.0968401i
\(15\) 0 0
\(16\) −3.09007 3.43187i −0.772517 0.857967i
\(17\) 1.83812 5.65714i 0.445809 1.37206i −0.435785 0.900051i \(-0.643529\pi\)
0.881594 0.472008i \(-0.156471\pi\)
\(18\) 0 0
\(19\) 3.73607 + 2.71441i 0.857113 + 0.622729i 0.927098 0.374819i \(-0.122295\pi\)
−0.0699852 + 0.997548i \(0.522295\pi\)
\(20\) 0.576630 + 0.122566i 0.128938 + 0.0274067i
\(21\) 0 0
\(22\) −5.11474 + 0.202541i −1.09047 + 0.0431819i
\(23\) 3.74582 + 6.48795i 0.781057 + 1.35283i 0.931326 + 0.364185i \(0.118653\pi\)
−0.150269 + 0.988645i \(0.548014\pi\)
\(24\) 0 0
\(25\) −2.39169 + 1.06485i −0.478339 + 0.212970i
\(26\) 5.28918 3.84281i 1.03729 0.753638i
\(27\) 0 0
\(28\) 0.0278640 0.0857567i 0.00526581 0.0162065i
\(29\) 0.199409 + 1.89725i 0.0370293 + 0.352310i 0.997311 + 0.0732795i \(0.0233465\pi\)
−0.960282 + 0.279031i \(0.909987\pi\)
\(30\) 0 0
\(31\) −1.59385 + 1.77015i −0.286263 + 0.317928i −0.869076 0.494679i \(-0.835286\pi\)
0.582812 + 0.812607i \(0.301952\pi\)
\(32\) 1.06644 + 1.84712i 0.188521 + 0.326528i
\(33\) 0 0
\(34\) −4.59017 + 7.95041i −0.787208 + 1.36348i
\(35\) −0.112587 0.346506i −0.0190306 0.0585703i
\(36\) 0 0
\(37\) −5.04508 + 3.66547i −0.829407 + 0.602599i −0.919391 0.393344i \(-0.871318\pi\)
0.0899846 + 0.995943i \(0.471318\pi\)
\(38\) −4.76909 5.29661i −0.773649 0.859224i
\(39\) 0 0
\(40\) 3.52090 + 1.56760i 0.556703 + 0.247860i
\(41\) 0.583680 5.55335i 0.0911555 0.867287i −0.849423 0.527712i \(-0.823050\pi\)
0.940579 0.339575i \(-0.110283\pi\)
\(42\) 0 0
\(43\) 5.35410 9.27358i 0.816493 1.41421i −0.0917581 0.995781i \(-0.529249\pi\)
0.908251 0.418426i \(-0.137418\pi\)
\(44\) 1.24861 + 0.214153i 0.188234 + 0.0322847i
\(45\) 0 0
\(46\) −3.57295 10.9964i −0.526803 1.62133i
\(47\) −0.871385 + 0.387966i −0.127105 + 0.0565906i −0.469304 0.883037i \(-0.655495\pi\)
0.342199 + 0.939628i \(0.388828\pi\)
\(48\) 0 0
\(49\) 6.79252 1.44380i 0.970360 0.206256i
\(50\) 3.95228 0.840083i 0.558936 0.118806i
\(51\) 0 0
\(52\) −1.47815 + 0.658114i −0.204982 + 0.0912640i
\(53\) 2.79197 + 8.59279i 0.383506 + 1.18031i 0.937558 + 0.347829i \(0.113081\pi\)
−0.554052 + 0.832482i \(0.686919\pi\)
\(54\) 0 0
\(55\) 4.59017 2.26538i 0.618938 0.305464i
\(56\) 0.294756 0.510532i 0.0393884 0.0682227i
\(57\) 0 0
\(58\) 0.307760 2.92814i 0.0404109 0.384484i
\(59\) 7.71534 + 3.43509i 1.00445 + 0.447210i 0.841983 0.539503i \(-0.181388\pi\)
0.162468 + 0.986714i \(0.448055\pi\)
\(60\) 0 0
\(61\) 2.89482 + 3.21502i 0.370643 + 0.411641i 0.899396 0.437135i \(-0.144007\pi\)
−0.528753 + 0.848776i \(0.677340\pi\)
\(62\) 2.97414 2.16084i 0.377716 0.274427i
\(63\) 0 0
\(64\) 1.83688 + 5.65334i 0.229610 + 0.706667i
\(65\) −3.26889 + 5.66189i −0.405456 + 0.702271i
\(66\) 0 0
\(67\) −1.92705 3.33775i −0.235427 0.407771i 0.723970 0.689832i \(-0.242315\pi\)
−0.959397 + 0.282061i \(0.908982\pi\)
\(68\) 1.52029 1.68845i 0.184362 0.204755i
\(69\) 0 0
\(70\) 0.0587770 + 0.559226i 0.00702519 + 0.0668402i
\(71\) 2.38463 7.33912i 0.283003 0.870994i −0.703987 0.710213i \(-0.748599\pi\)
0.986990 0.160781i \(-0.0514012\pi\)
\(72\) 0 0
\(73\) 5.23607 3.80423i 0.612835 0.445251i −0.237576 0.971369i \(-0.576353\pi\)
0.850412 + 0.526118i \(0.176353\pi\)
\(74\) 8.79243 3.91464i 1.02210 0.455068i
\(75\) 0 0
\(76\) 0.881966 + 1.52761i 0.101168 + 0.175229i
\(77\) −0.271219 0.734472i −0.0309083 0.0837009i
\(78\) 0 0
\(79\) 0.516329 + 0.109749i 0.0580915 + 0.0123477i 0.236866 0.971542i \(-0.423880\pi\)
−0.178774 + 0.983890i \(0.557213\pi\)
\(80\) −5.76611 4.18932i −0.644670 0.468380i
\(81\) 0 0
\(82\) −2.66312 + 8.19624i −0.294092 + 0.905123i
\(83\) −2.94746 3.27349i −0.323526 0.359312i 0.559339 0.828939i \(-0.311055\pi\)
−0.882865 + 0.469627i \(0.844388\pi\)
\(84\) 0 0
\(85\) 0.959607 9.13005i 0.104084 0.990293i
\(86\) −11.0585 + 12.2817i −1.19247 + 1.32437i
\(87\) 0 0
\(88\) 7.69364 + 3.06670i 0.820145 + 0.326911i
\(89\) 16.7518 1.77569 0.887844 0.460145i \(-0.152202\pi\)
0.887844 + 0.460145i \(0.152202\pi\)
\(90\) 0 0
\(91\) 0.809017 + 0.587785i 0.0848080 + 0.0616166i
\(92\) 0.299113 + 2.84587i 0.0311847 + 0.296703i
\(93\) 0 0
\(94\) 1.43997 0.306074i 0.148521 0.0315692i
\(95\) 6.51111 + 2.89893i 0.668026 + 0.297424i
\(96\) 0 0
\(97\) 12.5187 + 2.66093i 1.27108 + 0.270177i 0.793586 0.608458i \(-0.208212\pi\)
0.477495 + 0.878634i \(0.341545\pi\)
\(98\) −10.7175 −1.08263
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) 10.3472 + 2.19936i 1.02958 + 0.218845i 0.691580 0.722300i \(-0.256915\pi\)
0.338004 + 0.941145i \(0.390248\pi\)
\(102\) 0 0
\(103\) 6.34391 + 2.82449i 0.625084 + 0.278305i 0.694735 0.719266i \(-0.255522\pi\)
−0.0696508 + 0.997571i \(0.522188\pi\)
\(104\) −10.3472 + 2.19936i −1.01463 + 0.215665i
\(105\) 0 0
\(106\) −1.45757 13.8679i −0.141572 1.34697i
\(107\) −7.60422 5.52479i −0.735128 0.534102i 0.156054 0.987749i \(-0.450123\pi\)
−0.891182 + 0.453647i \(0.850123\pi\)
\(108\) 0 0
\(109\) −0.291796 −0.0279490 −0.0139745 0.999902i \(-0.504448\pi\)
−0.0139745 + 0.999902i \(0.504448\pi\)
\(110\) −7.65641 + 1.94700i −0.730010 + 0.185639i
\(111\) 0 0
\(112\) −0.729466 + 0.810154i −0.0689281 + 0.0765524i
\(113\) 1.18191 11.2451i 0.111184 1.05785i −0.786615 0.617444i \(-0.788168\pi\)
0.897799 0.440405i \(-0.145165\pi\)
\(114\) 0 0
\(115\) 7.73669 + 8.59247i 0.721450 + 0.801252i
\(116\) −0.225173 + 0.693013i −0.0209068 + 0.0643446i
\(117\) 0 0
\(118\) −10.5451 7.66145i −0.970754 0.705294i
\(119\) −1.37351 0.291949i −0.125910 0.0267629i
\(120\) 0 0
\(121\) 9.66374 5.25472i 0.878522 0.477702i
\(122\) −3.33848 5.78241i −0.302251 0.523515i
\(123\) 0 0
\(124\) −0.831171 + 0.370061i −0.0746414 + 0.0332325i
\(125\) −9.51192 + 6.91082i −0.850772 + 0.618122i
\(126\) 0 0
\(127\) −2.23607 + 6.88191i −0.198419 + 0.610671i 0.801501 + 0.597994i \(0.204035\pi\)
−0.999920 + 0.0126769i \(0.995965\pi\)
\(128\) −1.40485 13.3663i −0.124173 1.18142i
\(129\) 0 0
\(130\) 6.75164 7.49846i 0.592158 0.657658i
\(131\) −6.06086 10.4977i −0.529540 0.917190i −0.999406 0.0344525i \(-0.989031\pi\)
0.469866 0.882738i \(-0.344302\pi\)
\(132\) 0 0
\(133\) 0.545085 0.944115i 0.0472649 0.0818651i
\(134\) 1.83812 + 5.65714i 0.158789 + 0.488703i
\(135\) 0 0
\(136\) 12.0172 8.73102i 1.03047 0.748679i
\(137\) 7.07830 + 7.86125i 0.604740 + 0.671632i 0.965312 0.261099i \(-0.0840850\pi\)
−0.360572 + 0.932732i \(0.617418\pi\)
\(138\) 0 0
\(139\) −12.4407 5.53895i −1.05521 0.469808i −0.195556 0.980692i \(-0.562651\pi\)
−0.859649 + 0.510885i \(0.829318\pi\)
\(140\) 0.0145467 0.138402i 0.00122942 0.0116971i
\(141\) 0 0
\(142\) −5.95492 + 10.3142i −0.499725 + 0.865550i
\(143\) −6.53779 + 12.4356i −0.546717 + 1.03992i
\(144\) 0 0
\(145\) 0.909830 + 2.80017i 0.0755573 + 0.232541i
\(146\) −9.12527 + 4.06283i −0.755212 + 0.336242i
\(147\) 0 0
\(148\) −2.32991 + 0.495239i −0.191518 + 0.0407084i
\(149\) 13.3665 2.84113i 1.09502 0.232754i 0.375223 0.926935i \(-0.377566\pi\)
0.719801 + 0.694180i \(0.244233\pi\)
\(150\) 0 0
\(151\) −8.00625 + 3.56461i −0.651539 + 0.290084i −0.705766 0.708445i \(-0.749397\pi\)
0.0542270 + 0.998529i \(0.482731\pi\)
\(152\) 3.56365 + 10.9678i 0.289050 + 0.889605i
\(153\) 0 0
\(154\) 0.173762 + 1.19581i 0.0140021 + 0.0963615i
\(155\) −1.83812 + 3.18371i −0.147641 + 0.255722i
\(156\) 0 0
\(157\) −1.11349 + 10.5941i −0.0888659 + 0.845503i 0.855764 + 0.517366i \(0.173087\pi\)
−0.944630 + 0.328137i \(0.893579\pi\)
\(158\) −0.744252 0.331362i −0.0592095 0.0263618i
\(159\) 0 0
\(160\) 2.20264 + 2.44628i 0.174134 + 0.193396i
\(161\) 1.43078 1.03952i 0.112761 0.0819256i
\(162\) 0 0
\(163\) 1.11803 + 3.44095i 0.0875712 + 0.269516i 0.985247 0.171141i \(-0.0547454\pi\)
−0.897675 + 0.440657i \(0.854745\pi\)
\(164\) 1.06644 1.84712i 0.0832747 0.144236i
\(165\) 0 0
\(166\) 3.39919 + 5.88756i 0.263828 + 0.456964i
\(167\) −5.16355 + 5.73471i −0.399568 + 0.443765i −0.909032 0.416727i \(-0.863177\pi\)
0.509464 + 0.860492i \(0.329844\pi\)
\(168\) 0 0
\(169\) −0.516817 4.91719i −0.0397552 0.378245i
\(170\) −4.37833 + 13.4751i −0.335803 + 1.03350i
\(171\) 0 0
\(172\) 3.30902 2.40414i 0.252310 0.183314i
\(173\) −2.48702 + 1.10729i −0.189085 + 0.0841860i −0.499095 0.866547i \(-0.666334\pi\)
0.310010 + 0.950733i \(0.399668\pi\)
\(174\) 0 0
\(175\) 0.309017 + 0.535233i 0.0233595 + 0.0404598i
\(176\) −12.7377 8.50534i −0.960137 0.641114i
\(177\) 0 0
\(178\) −25.2891 5.37537i −1.89550 0.402901i
\(179\) −15.0959 10.9678i −1.12832 0.819771i −0.142868 0.989742i \(-0.545633\pi\)
−0.985449 + 0.169971i \(0.945633\pi\)
\(180\) 0 0
\(181\) 2.39919 7.38394i 0.178330 0.548844i −0.821440 0.570295i \(-0.806829\pi\)
0.999770 + 0.0214515i \(0.00682876\pi\)
\(182\) −1.03271 1.14694i −0.0765496 0.0850170i
\(183\) 0 0
\(184\) −1.95554 + 18.6057i −0.144164 + 1.37163i
\(185\) −6.44005 + 7.15240i −0.473482 + 0.525855i
\(186\) 0 0
\(187\) 1.28420 19.6864i 0.0939103 1.43961i
\(188\) −0.364338 −0.0265721
\(189\) 0 0
\(190\) −8.89919 6.46564i −0.645615 0.469067i
\(191\) 0.384271 + 3.65610i 0.0278049 + 0.264546i 0.999589 + 0.0286731i \(0.00912819\pi\)
−0.971784 + 0.235873i \(0.924205\pi\)
\(192\) 0 0
\(193\) −9.40786 + 1.99970i −0.677192 + 0.143942i −0.533654 0.845703i \(-0.679181\pi\)
−0.143539 + 0.989645i \(0.545848\pi\)
\(194\) −18.0448 8.03407i −1.29554 0.576813i
\(195\) 0 0
\(196\) 2.59451 + 0.551481i 0.185322 + 0.0393915i
\(197\) −12.1217 −0.863637 −0.431818 0.901961i \(-0.642128\pi\)
−0.431818 + 0.901961i \(0.642128\pi\)
\(198\) 0 0
\(199\) −26.4164 −1.87261 −0.936305 0.351189i \(-0.885778\pi\)
−0.936305 + 0.351189i \(0.885778\pi\)
\(200\) −6.39492 1.35928i −0.452189 0.0961158i
\(201\) 0 0
\(202\) −14.9148 6.64048i −1.04940 0.467222i
\(203\) 0.440506 0.0936324i 0.0309174 0.00657171i
\(204\) 0 0
\(205\) −0.900830 8.57082i −0.0629167 0.598612i
\(206\) −8.67066 6.29960i −0.604113 0.438914i
\(207\) 0 0
\(208\) 19.5623 1.35640
\(209\) 14.2277 + 5.67117i 0.984148 + 0.392283i
\(210\) 0 0
\(211\) 7.38348 8.20019i 0.508300 0.564524i −0.433304 0.901248i \(-0.642652\pi\)
0.941603 + 0.336724i \(0.109319\pi\)
\(212\) −0.360734 + 3.43216i −0.0247753 + 0.235722i
\(213\) 0 0
\(214\) 9.70680 + 10.7805i 0.663543 + 0.736939i
\(215\) 5.10701 15.7178i 0.348295 1.07194i
\(216\) 0 0
\(217\) 0.454915 + 0.330515i 0.0308816 + 0.0224368i
\(218\) 0.440506 + 0.0936324i 0.0298348 + 0.00634159i
\(219\) 0 0
\(220\) 1.95366 0.0773639i 0.131716 0.00521587i
\(221\) 12.5986 + 21.8215i 0.847477 + 1.46787i
\(222\) 0 0
\(223\) −17.5221 + 7.80135i −1.17337 + 0.522417i −0.898461 0.439054i \(-0.855314\pi\)
−0.274907 + 0.961471i \(0.588647\pi\)
\(224\) 0.407343 0.295952i 0.0272167 0.0197741i
\(225\) 0 0
\(226\) −5.39261 + 16.5967i −0.358711 + 1.10400i
\(227\) 0.982498 + 9.34785i 0.0652107 + 0.620438i 0.977506 + 0.210906i \(0.0676414\pi\)
−0.912296 + 0.409532i \(0.865692\pi\)
\(228\) 0 0
\(229\) −6.37539 + 7.08058i −0.421297 + 0.467898i −0.916008 0.401160i \(-0.868607\pi\)
0.494711 + 0.869058i \(0.335274\pi\)
\(230\) −8.92241 15.4541i −0.588326 1.01901i
\(231\) 0 0
\(232\) −2.38197 + 4.12569i −0.156384 + 0.270865i
\(233\) −1.29161 3.97517i −0.0846162 0.260422i 0.899793 0.436318i \(-0.143718\pi\)
−0.984409 + 0.175896i \(0.943718\pi\)
\(234\) 0 0
\(235\) −1.19098 + 0.865300i −0.0776912 + 0.0564459i
\(236\) 2.15854 + 2.39730i 0.140509 + 0.156051i
\(237\) 0 0
\(238\) 1.97982 + 0.881473i 0.128333 + 0.0571374i
\(239\) 1.66588 15.8498i 0.107757 1.02524i −0.798351 0.602193i \(-0.794294\pi\)
0.906108 0.423047i \(-0.139039\pi\)
\(240\) 0 0
\(241\) −7.00000 + 12.1244i −0.450910 + 0.780998i −0.998443 0.0557856i \(-0.982234\pi\)
0.547533 + 0.836784i \(0.315567\pi\)
\(242\) −16.2749 + 4.83178i −1.04619 + 0.310598i
\(243\) 0 0
\(244\) 0.510643 + 1.57160i 0.0326906 + 0.100611i
\(245\) 9.79095 4.35921i 0.625521 0.278500i
\(246\) 0 0
\(247\) −19.1348 + 4.06723i −1.21752 + 0.258792i
\(248\) −5.81829 + 1.23672i −0.369462 + 0.0785315i
\(249\) 0 0
\(250\) 16.5771 7.38060i 1.04843 0.466790i
\(251\) 4.56050 + 14.0358i 0.287856 + 0.885931i 0.985528 + 0.169513i \(0.0542195\pi\)
−0.697672 + 0.716418i \(0.745780\pi\)
\(252\) 0 0
\(253\) 17.3435 + 17.7926i 1.09037 + 1.11861i
\(254\) 5.58394 9.67166i 0.350367 0.606854i
\(255\) 0 0
\(256\) −0.925506 + 8.80560i −0.0578441 + 0.550350i
\(257\) −14.4322 6.42561i −0.900253 0.400818i −0.0961902 0.995363i \(-0.530666\pi\)
−0.804063 + 0.594545i \(0.797332\pi\)
\(258\) 0 0
\(259\) 0.985051 + 1.09401i 0.0612081 + 0.0679785i
\(260\) −2.02029 + 1.46782i −0.125293 + 0.0910306i
\(261\) 0 0
\(262\) 5.78115 + 17.7926i 0.357161 + 1.09923i
\(263\) 2.31504 4.00977i 0.142752 0.247253i −0.785780 0.618506i \(-0.787738\pi\)
0.928532 + 0.371253i \(0.121072\pi\)
\(264\) 0 0
\(265\) 6.97214 + 12.0761i 0.428295 + 0.741829i
\(266\) −1.12583 + 1.25036i −0.0690291 + 0.0766646i
\(267\) 0 0
\(268\) −0.153880 1.46407i −0.00939972 0.0894324i
\(269\) −8.30632 + 25.5642i −0.506445 + 1.55868i 0.291882 + 0.956454i \(0.405719\pi\)
−0.798327 + 0.602224i \(0.794281\pi\)
\(270\) 0 0
\(271\) 24.2984 17.6538i 1.47602 1.07239i 0.497209 0.867631i \(-0.334358\pi\)
0.978812 0.204761i \(-0.0656418\pi\)
\(272\) −25.0945 + 11.1728i −1.52158 + 0.677450i
\(273\) 0 0
\(274\) −8.16312 14.1389i −0.493152 0.854164i
\(275\) −6.81727 + 5.37772i −0.411097 + 0.324289i
\(276\) 0 0
\(277\) −21.1456 4.49464i −1.27052 0.270057i −0.477162 0.878815i \(-0.658335\pi\)
−0.793356 + 0.608758i \(0.791668\pi\)
\(278\) 17.0036 + 12.3538i 1.01981 + 0.740932i
\(279\) 0 0
\(280\) 0.281153 0.865300i 0.0168021 0.0517116i
\(281\) 5.89492 + 6.54698i 0.351662 + 0.390560i 0.892859 0.450336i \(-0.148696\pi\)
−0.541198 + 0.840895i \(0.682029\pi\)
\(282\) 0 0
\(283\) −0.725874 + 6.90623i −0.0431487 + 0.410533i 0.951534 + 0.307544i \(0.0995072\pi\)
−0.994683 + 0.102989i \(0.967159\pi\)
\(284\) 1.97230 2.19046i 0.117035 0.129980i
\(285\) 0 0
\(286\) 13.8601 16.6754i 0.819562 0.986036i
\(287\) −1.31819 −0.0778102
\(288\) 0 0
\(289\) −14.8713 10.8046i −0.874784 0.635568i
\(290\) −0.474985 4.51918i −0.0278921 0.265376i
\(291\) 0 0
\(292\) 2.41811 0.513986i 0.141509 0.0300788i
\(293\) 18.7891 + 8.36544i 1.09767 + 0.488714i 0.873988 0.485948i \(-0.161526\pi\)
0.223682 + 0.974662i \(0.428192\pi\)
\(294\) 0 0
\(295\) 12.7496 + 2.71001i 0.742311 + 0.157783i
\(296\) −15.5728 −0.905150
\(297\) 0 0
\(298\) −21.0902 −1.22172
\(299\) −31.0416 6.59809i −1.79518 0.381578i
\(300\) 0 0
\(301\) −2.30932 1.02817i −0.133107 0.0592630i
\(302\) 13.2303 2.81220i 0.761321 0.161824i
\(303\) 0 0
\(304\) −2.22920 21.2094i −0.127853 1.21644i
\(305\) 5.40177 + 3.92461i 0.309304 + 0.224723i
\(306\) 0 0
\(307\) −16.2705 −0.928607 −0.464304 0.885676i \(-0.653695\pi\)
−0.464304 + 0.885676i \(0.653695\pi\)
\(308\) 0.0194673 0.298426i 0.00110925 0.0170044i
\(309\) 0 0
\(310\) 3.79649 4.21643i 0.215626 0.239477i
\(311\) 2.51958 23.9722i 0.142872 1.35934i −0.654595 0.755979i \(-0.727161\pi\)
0.797468 0.603361i \(-0.206172\pi\)
\(312\) 0 0
\(313\) 0.232539 + 0.258261i 0.0131439 + 0.0145978i 0.749681 0.661799i \(-0.230207\pi\)
−0.736537 + 0.676397i \(0.763540\pi\)
\(314\) 5.08043 15.6360i 0.286705 0.882389i
\(315\) 0 0
\(316\) 0.163119 + 0.118513i 0.00917616 + 0.00666687i
\(317\) 10.3472 + 2.19936i 0.581157 + 0.123529i 0.489104 0.872226i \(-0.337324\pi\)
0.0920526 + 0.995754i \(0.470657\pi\)
\(318\) 0 0
\(319\) 2.19176 + 5.93538i 0.122715 + 0.332317i
\(320\) 4.58708 + 7.94506i 0.256426 + 0.444142i
\(321\) 0 0
\(322\) −2.49351 + 1.11018i −0.138958 + 0.0618681i
\(323\) 22.2232 16.1461i 1.23653 0.898391i
\(324\) 0 0
\(325\) 3.42705 10.5474i 0.190099 0.585063i
\(326\) −0.583680 5.55335i −0.0323271 0.307571i
\(327\) 0 0
\(328\) 9.33054 10.3626i 0.515193 0.572180i
\(329\) 0.112587 + 0.195006i 0.00620711 + 0.0107510i
\(330\) 0 0
\(331\) −10.3541 + 17.9338i −0.569113 + 0.985732i 0.427541 + 0.903996i \(0.359380\pi\)
−0.996654 + 0.0817366i \(0.973953\pi\)
\(332\) −0.519929 1.60018i −0.0285348 0.0878212i
\(333\) 0 0
\(334\) 9.63525 7.00042i 0.527218 0.383046i
\(335\) −3.98017 4.42043i −0.217460 0.241514i
\(336\) 0 0
\(337\) 4.25025 + 1.89233i 0.231526 + 0.103082i 0.519221 0.854640i \(-0.326222\pi\)
−0.287695 + 0.957722i \(0.592889\pi\)
\(338\) −0.797636 + 7.58900i −0.0433857 + 0.412787i
\(339\) 0 0
\(340\) 1.75329 3.03679i 0.0950854 0.164693i
\(341\) −3.67624 + 6.99262i −0.199079 + 0.378671i
\(342\) 0 0
\(343\) −1.01722 3.13068i −0.0549248 0.169041i
\(344\) 24.4288 10.8764i 1.31711 0.586416i
\(345\) 0 0
\(346\) 4.10981 0.873567i 0.220945 0.0469633i
\(347\) 2.57877 0.548134i 0.138435 0.0294254i −0.138173 0.990408i \(-0.544123\pi\)
0.276608 + 0.960983i \(0.410790\pi\)
\(348\) 0 0
\(349\) −12.0408 + 5.36093i −0.644531 + 0.286964i −0.702854 0.711334i \(-0.748091\pi\)
0.0583229 + 0.998298i \(0.481425\pi\)
\(350\) −0.294756 0.907165i −0.0157554 0.0484900i
\(351\) 0 0
\(352\) 4.93769 + 5.06555i 0.263180 + 0.269995i
\(353\) 1.76854 3.06319i 0.0941296 0.163037i −0.815115 0.579299i \(-0.803327\pi\)
0.909245 + 0.416261i \(0.136660\pi\)
\(354\) 0 0
\(355\) 1.24492 11.8446i 0.0660733 0.628645i
\(356\) 5.84543 + 2.60255i 0.309807 + 0.137935i
\(357\) 0 0
\(358\) 19.2699 + 21.4014i 1.01844 + 1.13110i
\(359\) 21.1567 15.3713i 1.11661 0.811264i 0.132917 0.991127i \(-0.457566\pi\)
0.983692 + 0.179863i \(0.0575655\pi\)
\(360\) 0 0
\(361\) 0.718847 + 2.21238i 0.0378341 + 0.116441i
\(362\) −5.99128 + 10.3772i −0.314895 + 0.545413i
\(363\) 0 0
\(364\) 0.190983 + 0.330792i 0.0100102 + 0.0173382i
\(365\) 6.68384 7.42316i 0.349848 0.388546i
\(366\) 0 0
\(367\) 0.630771 + 6.00138i 0.0329260 + 0.313270i 0.998573 + 0.0534110i \(0.0170093\pi\)
−0.965647 + 0.259859i \(0.916324\pi\)
\(368\) 10.6909 32.9034i 0.557304 1.71521i
\(369\) 0 0
\(370\) 12.0172 8.73102i 0.624746 0.453904i
\(371\) 1.94848 0.867518i 0.101160 0.0450393i
\(372\) 0 0
\(373\) −6.20820 10.7529i −0.321449 0.556765i 0.659339 0.751846i \(-0.270836\pi\)
−0.980787 + 0.195081i \(0.937503\pi\)
\(374\) −8.25570 + 29.3071i −0.426892 + 1.51544i
\(375\) 0 0
\(376\) −2.32991 0.495239i −0.120156 0.0255400i
\(377\) −6.53779 4.74998i −0.336713 0.244636i
\(378\) 0 0
\(379\) 0.545085 1.67760i 0.0279991 0.0861725i −0.936080 0.351786i \(-0.885574\pi\)
0.964080 + 0.265613i \(0.0855745\pi\)
\(380\) 1.82163 + 2.02313i 0.0934477 + 0.103784i
\(381\) 0 0
\(382\) 0.593070 5.64268i 0.0303441 0.288705i
\(383\) −9.44507 + 10.4898i −0.482620 + 0.536004i −0.934447 0.356101i \(-0.884106\pi\)
0.451827 + 0.892106i \(0.350772\pi\)
\(384\) 0 0
\(385\) −0.645121 1.02176i −0.0328784 0.0520735i
\(386\) 14.8441 0.755545
\(387\) 0 0
\(388\) 3.95492 + 2.87341i 0.200780 + 0.145875i
\(389\) −2.03561 19.3675i −0.103209 0.981972i −0.916478 0.400084i \(-0.868981\pi\)
0.813269 0.581888i \(-0.197686\pi\)
\(390\) 0 0
\(391\) 43.5885 9.26502i 2.20437 0.468552i
\(392\) 15.8421 + 7.05335i 0.800146 + 0.356248i
\(393\) 0 0
\(394\) 18.2994 + 3.88965i 0.921910 + 0.195958i
\(395\) 0.814685 0.0409913
\(396\) 0 0
\(397\) −2.41641 −0.121276 −0.0606380 0.998160i \(-0.519314\pi\)
−0.0606380 + 0.998160i \(0.519314\pi\)
\(398\) 39.8792 + 8.47658i 1.99896 + 0.424892i
\(399\) 0 0
\(400\) 11.0449 + 4.91752i 0.552246 + 0.245876i
\(401\) 3.23952 0.688582i 0.161774 0.0343862i −0.126313 0.991990i \(-0.540314\pi\)
0.288087 + 0.957604i \(0.406981\pi\)
\(402\) 0 0
\(403\) −1.05471 10.0349i −0.0525388 0.499874i
\(404\) 3.26889 + 2.37499i 0.162634 + 0.118160i
\(405\) 0 0
\(406\) −0.695048 −0.0344947
\(407\) −13.2204 + 15.9058i −0.655311 + 0.788422i
\(408\) 0 0
\(409\) −15.3527 + 17.0509i −0.759143 + 0.843114i −0.991580 0.129498i \(-0.958663\pi\)
0.232437 + 0.972611i \(0.425330\pi\)
\(410\) −1.39031 + 13.2279i −0.0686623 + 0.653279i
\(411\) 0 0
\(412\) 1.77485 + 1.97117i 0.0874407 + 0.0971128i
\(413\) 0.616090 1.89613i 0.0303158 0.0933024i
\(414\) 0 0
\(415\) −5.50000 3.99598i −0.269984 0.196155i
\(416\) −8.83756 1.87848i −0.433297 0.0921001i
\(417\) 0 0
\(418\) −19.6588 13.1268i −0.961544 0.642054i
\(419\) −8.03814 13.9225i −0.392689 0.680157i 0.600114 0.799914i \(-0.295122\pi\)
−0.992803 + 0.119757i \(0.961788\pi\)
\(420\) 0 0
\(421\) 20.2942 9.03557i 0.989079 0.440367i 0.152554 0.988295i \(-0.451250\pi\)
0.836525 + 0.547929i \(0.184583\pi\)
\(422\) −13.7777 + 10.0101i −0.670687 + 0.487282i
\(423\) 0 0
\(424\) −6.97214 + 21.4580i −0.338597 + 1.04209i
\(425\) 1.62780 + 15.4875i 0.0789599 + 0.751253i
\(426\) 0 0
\(427\) 0.683374 0.758964i 0.0330708 0.0367288i
\(428\) −1.79511 3.10923i −0.0867701 0.150290i
\(429\) 0 0
\(430\) −12.7533 + 22.0893i −0.615018 + 1.06524i
\(431\) 1.69895 + 5.22884i 0.0818357 + 0.251864i 0.983600 0.180364i \(-0.0577275\pi\)
−0.901764 + 0.432228i \(0.857728\pi\)
\(432\) 0 0
\(433\) −23.1803 + 16.8415i −1.11398 + 0.809351i −0.983285 0.182072i \(-0.941720\pi\)
−0.130691 + 0.991423i \(0.541720\pi\)
\(434\) −0.580699 0.644932i −0.0278745 0.0309577i
\(435\) 0 0
\(436\) −0.101820 0.0453333i −0.00487631 0.00217107i
\(437\) −3.61633 + 34.4071i −0.172993 + 1.64592i
\(438\) 0 0
\(439\) 12.5000 21.6506i 0.596592 1.03333i −0.396728 0.917936i \(-0.629854\pi\)
0.993320 0.115392i \(-0.0368124\pi\)
\(440\) 12.5986 + 2.16084i 0.600617 + 0.103014i
\(441\) 0 0
\(442\) −12.0172 36.9852i −0.571601 1.75921i
\(443\) −17.1734 + 7.64611i −0.815935 + 0.363278i −0.771893 0.635752i \(-0.780690\pi\)
−0.0440416 + 0.999030i \(0.514023\pi\)
\(444\) 0 0
\(445\) 25.2891 5.37537i 1.19882 0.254817i
\(446\) 28.9553 6.15464i 1.37107 0.291431i
\(447\) 0 0
\(448\) 1.28193 0.570754i 0.0605657 0.0269656i
\(449\) 0.139165 + 0.428305i 0.00656760 + 0.0202130i 0.954287 0.298893i \(-0.0966174\pi\)
−0.947719 + 0.319106i \(0.896617\pi\)
\(450\) 0 0
\(451\) −2.66312 18.3273i −0.125401 0.863001i
\(452\) 2.15945 3.74028i 0.101572 0.175928i
\(453\) 0 0
\(454\) 1.51635 14.4271i 0.0711658 0.677098i
\(455\) 1.40993 + 0.627742i 0.0660986 + 0.0294290i
\(456\) 0 0
\(457\) 15.9988 + 17.7685i 0.748392 + 0.831174i 0.990274 0.139132i \(-0.0444312\pi\)
−0.241882 + 0.970306i \(0.577765\pi\)
\(458\) 11.8965 8.64335i 0.555889 0.403877i
\(459\) 0 0
\(460\) 1.36475 + 4.20025i 0.0636316 + 0.195838i
\(461\) 9.80668 16.9857i 0.456743 0.791101i −0.542044 0.840350i \(-0.682349\pi\)
0.998787 + 0.0492488i \(0.0156827\pi\)
\(462\) 0 0
\(463\) 0.718847 + 1.24508i 0.0334077 + 0.0578638i 0.882246 0.470789i \(-0.156031\pi\)
−0.848838 + 0.528653i \(0.822697\pi\)
\(464\) 5.89492 6.54698i 0.273665 0.303936i
\(465\) 0 0
\(466\) 0.674297 + 6.41551i 0.0312362 + 0.297193i
\(467\) 1.50036 4.61763i 0.0694283 0.213678i −0.910322 0.413900i \(-0.864166\pi\)
0.979751 + 0.200222i \(0.0641663\pi\)
\(468\) 0 0
\(469\) −0.736068 + 0.534785i −0.0339885 + 0.0246941i
\(470\) 2.07561 0.924121i 0.0957408 0.0426265i
\(471\) 0 0
\(472\) 10.5451 + 18.2646i 0.485377 + 0.840697i
\(473\) 9.62967 34.1847i 0.442773 1.57181i
\(474\) 0 0
\(475\) −11.8260 2.51369i −0.542613 0.115336i
\(476\) −0.433921 0.315262i −0.0198887 0.0144500i
\(477\) 0 0
\(478\) −7.60081 + 23.3929i −0.347653 + 1.06997i
\(479\) −24.6344 27.3593i −1.12557 1.25008i −0.964771 0.263090i \(-0.915258\pi\)
−0.160802 0.986987i \(-0.551408\pi\)
\(480\) 0 0
\(481\) 2.76127 26.2717i 0.125903 1.19789i
\(482\) 14.4579 16.0572i 0.658542 0.731385i
\(483\) 0 0
\(484\) 4.18847 0.332243i 0.190385 0.0151020i
\(485\) 19.7525 0.896916
\(486\) 0 0
\(487\) 13.6631 + 9.92684i 0.619135 + 0.449828i 0.852619 0.522533i \(-0.175013\pi\)
−0.233484 + 0.972361i \(0.575013\pi\)
\(488\) 1.12928 + 10.7444i 0.0511200 + 0.486374i
\(489\) 0 0
\(490\) −16.1796 + 3.43907i −0.730918 + 0.155361i
\(491\) 28.2472 + 12.5765i 1.27478 + 0.567568i 0.928767 0.370663i \(-0.120870\pi\)
0.346010 + 0.938231i \(0.387536\pi\)
\(492\) 0 0
\(493\) 11.0996 + 2.35928i 0.499899 + 0.106257i
\(494\) 30.1917 1.35839
\(495\) 0 0
\(496\) 11.0000 0.493915
\(497\) −1.78188 0.378751i −0.0799284 0.0169893i
\(498\) 0 0
\(499\) −8.90035 3.96269i −0.398434 0.177394i 0.197731 0.980256i \(-0.436643\pi\)
−0.596165 + 0.802862i \(0.703310\pi\)
\(500\) −4.39278 + 0.933715i −0.196451 + 0.0417570i
\(501\) 0 0
\(502\) −2.38085 22.6523i −0.106263 1.01102i
\(503\) −9.03500 6.56431i −0.402851 0.292688i 0.367850 0.929885i \(-0.380094\pi\)
−0.770701 + 0.637197i \(0.780094\pi\)
\(504\) 0 0
\(505\) 16.3262 0.726508
\(506\) −20.4730 32.4255i −0.910135 1.44149i
\(507\) 0 0
\(508\) −1.84943 + 2.05400i −0.0820553 + 0.0911316i
\(509\) −0.868247 + 8.26082i −0.0384844 + 0.366154i 0.958284 + 0.285819i \(0.0922657\pi\)
−0.996768 + 0.0803351i \(0.974401\pi\)
\(510\) 0 0
\(511\) −1.02234 1.13542i −0.0452257 0.0502282i
\(512\) −4.08358 + 12.5680i −0.180470 + 0.555431i
\(513\) 0 0
\(514\) 19.7254 + 14.3314i 0.870051 + 0.632129i
\(515\) 10.4833 + 2.22830i 0.461950 + 0.0981906i
\(516\) 0 0
\(517\) −2.48379 + 1.95931i −0.109237 + 0.0861704i
\(518\) −1.13602 1.96764i −0.0499138 0.0864533i
\(519\) 0 0
\(520\) −14.9148 + 6.64048i −0.654056 + 0.291204i
\(521\) 4.40491 3.20036i 0.192983 0.140210i −0.487098 0.873347i \(-0.661945\pi\)
0.680081 + 0.733137i \(0.261945\pi\)
\(522\) 0 0
\(523\) 5.70163 17.5478i 0.249315 0.767312i −0.745582 0.666414i \(-0.767828\pi\)
0.994897 0.100898i \(-0.0321716\pi\)
\(524\) −0.483976 4.60472i −0.0211426 0.201158i
\(525\) 0 0
\(526\) −4.78154 + 5.31044i −0.208485 + 0.231546i
\(527\) 7.08429 + 12.2704i 0.308597 + 0.534505i
\(528\) 0 0
\(529\) −16.5623 + 28.6868i −0.720100 + 1.24725i
\(530\) −6.65037 20.4677i −0.288874 0.889062i
\(531\) 0 0
\(532\) 0.336881 0.244758i 0.0146056 0.0106116i
\(533\) 15.8276 + 17.5783i 0.685568 + 0.761401i
\(534\) 0 0
\(535\) −13.2524 5.90036i −0.572952 0.255095i
\(536\) 1.00604 9.57179i 0.0434541 0.413438i
\(537\) 0 0
\(538\) 20.7426 35.9273i 0.894279 1.54894i
\(539\) 20.6532 10.1930i 0.889597 0.439042i
\(540\) 0 0
\(541\) −12.2467 37.6915i −0.526527 1.62048i −0.761276 0.648428i \(-0.775427\pi\)
0.234749 0.972056i \(-0.424573\pi\)
\(542\) −42.3465 + 18.8539i −1.81894 + 0.809843i
\(543\) 0 0
\(544\) 12.4097 2.63776i 0.532061 0.113093i
\(545\) −0.440506 + 0.0936324i −0.0188692 + 0.00401077i
\(546\) 0 0
\(547\) −8.25337 + 3.67464i −0.352889 + 0.157116i −0.575522 0.817786i \(-0.695201\pi\)
0.222634 + 0.974902i \(0.428535\pi\)
\(548\) 1.24861 + 3.84281i 0.0533378 + 0.164157i
\(549\) 0 0
\(550\) 12.0172 5.93085i 0.512416 0.252892i
\(551\) −4.40491 + 7.62953i −0.187656 + 0.325029i
\(552\) 0 0
\(553\) 0.0130255 0.123929i 0.000553900 0.00527000i
\(554\) 30.4799 + 13.5705i 1.29497 + 0.576557i
\(555\) 0 0
\(556\) −3.48057 3.86556i −0.147609 0.163936i
\(557\) −14.3242 + 10.4071i −0.606935 + 0.440964i −0.848334 0.529462i \(-0.822394\pi\)
0.241399 + 0.970426i \(0.422394\pi\)
\(558\) 0 0
\(559\) 14.0172 + 43.1406i 0.592865 + 1.82465i
\(560\) −0.841263 + 1.45711i −0.0355499 + 0.0615742i
\(561\) 0 0
\(562\) −6.79837 11.7751i −0.286772 0.496704i
\(563\) −27.1298 + 30.1307i −1.14339 + 1.26986i −0.185521 + 0.982640i \(0.559397\pi\)
−0.957865 + 0.287219i \(0.907269\pi\)
\(564\) 0 0
\(565\) −1.82411 17.3553i −0.0767409 0.730141i
\(566\) 3.31190 10.1930i 0.139209 0.428443i
\(567\) 0 0
\(568\) 15.5902 11.3269i 0.654149 0.475267i
\(569\) 27.1215 12.0753i 1.13699 0.506222i 0.250111 0.968217i \(-0.419533\pi\)
0.886883 + 0.461995i \(0.152866\pi\)
\(570\) 0 0
\(571\) 17.4894 + 30.2925i 0.731907 + 1.26770i 0.956067 + 0.293148i \(0.0947027\pi\)
−0.224160 + 0.974552i \(0.571964\pi\)
\(572\) −4.21331 + 3.32361i −0.176167 + 0.138967i
\(573\) 0 0
\(574\) 1.98998 + 0.422984i 0.0830603 + 0.0176550i
\(575\) −15.8675 11.5284i −0.661722 0.480769i
\(576\) 0 0
\(577\) −10.0902 + 31.0543i −0.420059 + 1.29281i 0.487587 + 0.873074i \(0.337877\pi\)
−0.907647 + 0.419735i \(0.862123\pi\)
\(578\) 18.9833 + 21.0830i 0.789599 + 0.876939i
\(579\) 0 0
\(580\) −0.117554 + 1.11845i −0.00488116 + 0.0464412i
\(581\) −0.695801 + 0.772766i −0.0288667 + 0.0320597i
\(582\) 0 0
\(583\) 15.9980 + 25.3379i 0.662568 + 1.04939i
\(584\) 16.1623 0.668801
\(585\) 0 0
\(586\) −25.6803 18.6579i −1.06085 0.770749i
\(587\) −0.953405 9.07104i −0.0393512 0.374402i −0.996420 0.0845410i \(-0.973058\pi\)
0.957069 0.289861i \(-0.0936091\pi\)
\(588\) 0 0
\(589\) −10.7596 + 2.28703i −0.443343 + 0.0942354i
\(590\) −18.3777 8.18226i −0.756597 0.336859i
\(591\) 0 0
\(592\) 28.1691 + 5.98752i 1.15774 + 0.246085i
\(593\) −1.09301 −0.0448847 −0.0224424 0.999748i \(-0.507144\pi\)
−0.0224424 + 0.999748i \(0.507144\pi\)
\(594\) 0 0
\(595\) −2.16718 −0.0888459
\(596\) 5.10554 + 1.08522i 0.209131 + 0.0444522i
\(597\) 0 0
\(598\) 44.7443 + 19.9214i 1.82973 + 0.814648i
\(599\) −12.0771 + 2.56706i −0.493456 + 0.104887i −0.447917 0.894075i \(-0.647834\pi\)
−0.0455394 + 0.998963i \(0.514501\pi\)
\(600\) 0 0
\(601\) −3.69620 35.1670i −0.150771 1.43449i −0.764322 0.644835i \(-0.776926\pi\)
0.613551 0.789655i \(-0.289741\pi\)
\(602\) 3.15631 + 2.29319i 0.128641 + 0.0934635i
\(603\) 0 0
\(604\) −3.34752 −0.136209
\(605\) 12.9026 11.0336i 0.524565 0.448581i
\(606\) 0 0
\(607\) −17.6530 + 19.6056i −0.716512 + 0.795768i −0.985913 0.167261i \(-0.946508\pi\)
0.269400 + 0.963028i \(0.413175\pi\)
\(608\) −1.02957 + 9.79573i −0.0417547 + 0.397269i
\(609\) 0 0
\(610\) −6.89536 7.65807i −0.279185 0.310066i
\(611\) 1.24861 3.84281i 0.0505132 0.155464i
\(612\) 0 0
\(613\) −34.7426 25.2420i −1.40324 1.01952i −0.994262 0.106972i \(-0.965885\pi\)
−0.408980 0.912543i \(-0.634115\pi\)
\(614\) 24.5625 + 5.22093i 0.991264 + 0.210700i
\(615\) 0 0
\(616\) 0.530136 1.88195i 0.0213598 0.0758258i
\(617\) −0.884268 1.53160i −0.0355993 0.0616598i 0.847677 0.530513i \(-0.178001\pi\)
−0.883276 + 0.468853i \(0.844667\pi\)
\(618\) 0 0
\(619\) −26.3910 + 11.7500i −1.06074 + 0.472274i −0.861543 0.507685i \(-0.830501\pi\)
−0.199201 + 0.979959i \(0.563835\pi\)
\(620\) −1.13602 + 0.825366i −0.0456236 + 0.0331475i
\(621\) 0 0
\(622\) −11.4959 + 35.3808i −0.460945 + 1.41864i
\(623\) −0.413365 3.93290i −0.0165611 0.157568i
\(624\) 0 0
\(625\) −3.38294 + 3.75714i −0.135318 + 0.150286i
\(626\) −0.268178 0.464498i −0.0107185 0.0185651i
\(627\) 0 0
\(628\) −2.03444 + 3.52376i −0.0811831 + 0.140613i
\(629\) 11.4626 + 35.2783i 0.457045 + 1.40664i
\(630\) 0 0
\(631\) 15.8713 11.5312i 0.631827 0.459049i −0.225205 0.974311i \(-0.572305\pi\)
0.857033 + 0.515262i \(0.172305\pi\)
\(632\) 0.882040 + 0.979605i 0.0350857 + 0.0389666i
\(633\) 0 0
\(634\) −14.9148 6.64048i −0.592341 0.263727i
\(635\) −1.16736 + 11.1067i −0.0463253 + 0.440756i
\(636\) 0 0
\(637\) −14.7082 + 25.4754i −0.582760 + 1.00937i
\(638\) −1.40420 9.66356i −0.0555927 0.382584i
\(639\) 0 0
\(640\) −6.40983 19.7274i −0.253371 0.779795i
\(641\) 11.2009 4.98695i 0.442408 0.196973i −0.173429 0.984846i \(-0.555485\pi\)
0.615837 + 0.787874i \(0.288818\pi\)
\(642\) 0 0
\(643\) −27.5437 + 5.85460i −1.08622 + 0.230883i −0.716027 0.698073i \(-0.754041\pi\)
−0.370191 + 0.928956i \(0.620708\pi\)
\(644\) 0.660759 0.140449i 0.0260375 0.00553445i
\(645\) 0 0
\(646\) −38.7299 + 17.2436i −1.52381 + 0.678442i
\(647\) −12.1913 37.5210i −0.479290 1.47510i −0.840084 0.542456i \(-0.817494\pi\)
0.360794 0.932645i \(-0.382506\pi\)
\(648\) 0 0
\(649\) 27.6074 + 4.73504i 1.08368 + 0.185867i
\(650\) −8.55807 + 14.8230i −0.335675 + 0.581407i
\(651\) 0 0
\(652\) −0.144455 + 1.37440i −0.00565729 + 0.0538255i
\(653\) −38.1953 17.0056i −1.49470 0.665482i −0.513429 0.858132i \(-0.671625\pi\)
−0.981268 + 0.192650i \(0.938292\pi\)
\(654\) 0 0
\(655\) −12.5182 13.9029i −0.489128 0.543231i
\(656\) −20.8620 + 15.1571i −0.814523 + 0.591785i
\(657\) 0 0
\(658\) −0.107391 0.330515i −0.00418653 0.0128848i
\(659\) 1.76854 3.06319i 0.0688924 0.119325i −0.829522 0.558475i \(-0.811387\pi\)
0.898414 + 0.439150i \(0.144720\pi\)
\(660\) 0 0
\(661\) −11.2812 19.5395i −0.438786 0.760000i 0.558810 0.829296i \(-0.311258\pi\)
−0.997596 + 0.0692960i \(0.977925\pi\)
\(662\) 21.3856 23.7511i 0.831174 0.923113i
\(663\) 0 0
\(664\) −1.14981 10.9397i −0.0446214 0.424544i
\(665\) 0.519929 1.60018i 0.0201620 0.0620522i
\(666\) 0 0
\(667\) −11.5623 + 8.40051i −0.447694 + 0.325269i
\(668\) −2.69273 + 1.19888i −0.104185 + 0.0463861i
\(669\) 0 0
\(670\) 4.59017 + 7.95041i 0.177334 + 0.307151i
\(671\) 11.9328 + 7.96792i 0.460661 + 0.307598i
\(672\) 0 0
\(673\) −13.4632 2.86168i −0.518967 0.110310i −0.0590208 0.998257i \(-0.518798\pi\)
−0.459946 + 0.887947i \(0.652131\pi\)
\(674\) −5.80911 4.22056i −0.223759 0.162570i
\(675\) 0 0
\(676\) 0.583592 1.79611i 0.0224459 0.0690812i
\(677\) −4.13084 4.58777i −0.158761 0.176322i 0.658516 0.752566i \(-0.271184\pi\)
−0.817278 + 0.576244i \(0.804518\pi\)
\(678\) 0 0
\(679\) 0.315810 3.00474i 0.0121197 0.115311i
\(680\) 15.3400 17.0368i 0.588262 0.653331i
\(681\) 0 0
\(682\) 7.79359 9.37666i 0.298432 0.359051i
\(683\) −31.7351 −1.21431 −0.607155 0.794584i \(-0.707689\pi\)
−0.607155 + 0.794584i \(0.707689\pi\)
\(684\) 0 0
\(685\) 13.2082 + 9.59632i 0.504660 + 0.366657i
\(686\) 0.531050 + 5.05260i 0.0202756 + 0.192909i
\(687\) 0 0
\(688\) −48.3702 + 10.2814i −1.84410 + 0.391975i
\(689\) −34.9640 15.5670i −1.33202 0.593055i
\(690\) 0 0
\(691\) 12.0906 + 2.56993i 0.459947 + 0.0977647i 0.432057 0.901846i \(-0.357788\pi\)
0.0278899 + 0.999611i \(0.491121\pi\)
\(692\) −1.03986 −0.0395295
\(693\) 0 0
\(694\) −4.06888 −0.154453
\(695\) −20.5583 4.36980i −0.779820 0.165756i
\(696\) 0 0
\(697\) −30.3432 13.5097i −1.14933 0.511715i
\(698\) 19.8975 4.22935i 0.753132 0.160083i
\(699\) 0 0
\(700\) 0.0246758 + 0.234775i 0.000932658 + 0.00887365i
\(701\) 31.0760 + 22.5780i 1.17372 + 0.852760i 0.991450 0.130488i \(-0.0416543\pi\)
0.182274 + 0.983248i \(0.441654\pi\)
\(702\) 0 0
\(703\) −28.7984 −1.08615
\(704\) 10.5253 + 16.6702i 0.396688 + 0.628282i
\(705\) 0 0
\(706\) −3.65277 + 4.05681i −0.137474 + 0.152680i
\(707\) 0.261030 2.48353i 0.00981703 0.0934028i
\(708\) 0 0
\(709\) −26.6303 29.5760i −1.00012 1.11075i −0.993846 0.110768i \(-0.964669\pi\)
−0.00627600 0.999980i \(-0.501998\pi\)
\(710\) −5.68010 + 17.4815i −0.213170 + 0.656070i
\(711\) 0 0
\(712\) 33.8435 + 24.5887i 1.26834 + 0.921501i
\(713\) −17.4549 3.71015i −0.653690 0.138946i
\(714\) 0 0
\(715\) −5.87930 + 20.8711i −0.219873 + 0.780535i
\(716\) −3.56365 6.17242i −0.133180 0.230674i
\(717\) 0 0
\(718\) −36.8713 + 16.4162i −1.37603 + 0.612646i
\(719\) −28.7609 + 20.8960i −1.07260 + 0.779291i −0.976378 0.216069i \(-0.930677\pi\)
−0.0962240 + 0.995360i \(0.530677\pi\)
\(720\) 0 0
\(721\) 0.506578 1.55909i 0.0188659 0.0580634i
\(722\) −0.375281 3.57056i −0.0139665 0.132882i
\(723\) 0 0
\(724\) 1.98435 2.20384i 0.0737476 0.0819050i
\(725\) −2.49721 4.32530i −0.0927441 0.160638i
\(726\) 0 0
\(727\) 0.281153 0.486971i 0.0104274 0.0180608i −0.860765 0.509003i \(-0.830014\pi\)
0.871192 + 0.490942i \(0.163347\pi\)
\(728\) 0.771681 + 2.37499i 0.0286004 + 0.0880230i
\(729\) 0 0
\(730\) −12.4721 + 9.06154i −0.461614 + 0.335383i
\(731\) −42.6205 47.3349i −1.57638 1.75074i
\(732\) 0 0
\(733\) 15.2128 + 6.77317i 0.561897 + 0.250173i 0.667973 0.744185i \(-0.267162\pi\)
−0.106076 + 0.994358i \(0.533829\pi\)
\(734\) 0.973508 9.26231i 0.0359328 0.341878i
\(735\) 0 0
\(736\) −7.98936 + 13.8380i −0.294492 + 0.510074i
\(737\) −8.92241 9.15345i −0.328661 0.337172i
\(738\) 0 0
\(739\) 4.25329 + 13.0903i 0.156460 + 0.481534i 0.998306 0.0581840i \(-0.0185310\pi\)
−0.841846 + 0.539718i \(0.818531\pi\)
\(740\) −3.35841 + 1.49526i −0.123458 + 0.0549668i
\(741\) 0 0
\(742\) −3.21986 + 0.684403i −0.118205 + 0.0251252i
\(743\) −43.1187 + 9.16516i −1.58187 + 0.336237i −0.913261 0.407376i \(-0.866444\pi\)
−0.668610 + 0.743613i \(0.733111\pi\)
\(744\) 0 0
\(745\) 19.2668 8.57814i 0.705882 0.314279i
\(746\) 5.92170 + 18.2251i 0.216809 + 0.667269i
\(747\) 0 0
\(748\) 3.50658 6.66991i 0.128213 0.243876i
\(749\) −1.10944 + 1.92161i −0.0405381 + 0.0702140i
\(750\) 0 0
\(751\) −3.81598 + 36.3066i −0.139247 + 1.32485i 0.672178 + 0.740390i \(0.265359\pi\)
−0.811425 + 0.584457i \(0.801308\pi\)
\(752\) 4.02409 + 1.79164i 0.146743 + 0.0653344i
\(753\) 0 0
\(754\) 8.34549 + 9.26860i 0.303925 + 0.337543i
\(755\) −10.9427 + 7.95034i −0.398246 + 0.289342i
\(756\) 0 0
\(757\) −1.57953 4.86128i −0.0574089 0.176686i 0.918240 0.396024i \(-0.129610\pi\)
−0.975649 + 0.219338i \(0.929610\pi\)
\(758\) −1.36119 + 2.35766i −0.0494407 + 0.0856339i
\(759\) 0 0
\(760\) 8.89919 + 15.4138i 0.322807 + 0.559119i
\(761\) −4.71154 + 5.23270i −0.170793 + 0.189685i −0.822465 0.568816i \(-0.807402\pi\)
0.651671 + 0.758502i \(0.274068\pi\)
\(762\) 0 0
\(763\) 0.00720031 + 0.0685064i 0.000260669 + 0.00248010i
\(764\) −0.433921 + 1.33547i −0.0156987 + 0.0483156i
\(765\) 0 0
\(766\) 17.6246 12.8050i 0.636803 0.462665i
\(767\) −32.6827 + 14.5513i −1.18010 + 0.525416i
\(768\) 0 0
\(769\) −5.63525 9.76055i −0.203212 0.351974i 0.746349 0.665555i \(-0.231805\pi\)
−0.949562 + 0.313580i \(0.898472\pi\)
\(770\) 0.646034 + 1.74949i 0.0232815 + 0.0630472i
\(771\) 0 0
\(772\) −3.59348 0.763818i −0.129332 0.0274904i
\(773\) 39.1141 + 28.4181i 1.40684 + 1.02213i 0.993773 + 0.111426i \(0.0355417\pi\)
0.413065 + 0.910702i \(0.364458\pi\)
\(774\) 0 0
\(775\) 1.92705 5.93085i 0.0692217 0.213043i
\(776\) 21.3856 + 23.7511i 0.767698 + 0.852615i
\(777\) 0 0
\(778\) −3.14168 + 29.8911i −0.112635 + 1.07165i
\(779\) 17.2547 19.1633i 0.618215 0.686598i
\(780\) 0 0
\(781\) 1.66602 25.5395i 0.0596150 0.913874i
\(782\) −68.7758 −2.45942
\(783\) 0 0
\(784\) −25.9443 18.8496i −0.926581 0.673201i
\(785\) 1.71851 + 16.3506i 0.0613364 + 0.583577i
\(786\) 0 0
\(787\) 42.8205 9.10177i 1.52638 0.324443i 0.633148 0.774031i \(-0.281762\pi\)
0.893236 + 0.449588i \(0.148429\pi\)
\(788\) −4.22979 1.88323i −0.150680 0.0670871i
\(789\) 0 0
\(790\) −1.22988 0.261419i −0.0437571 0.00930086i
\(791\) −2.66923 −0.0949069
\(792\) 0 0
\(793\) −18.3262 −0.650784
\(794\) 3.64790 + 0.775384i 0.129459 + 0.0275174i
\(795\) 0 0
\(796\) −9.21783 4.10404i −0.326717 0.145464i
\(797\) −3.01927 + 0.641766i −0.106948 + 0.0227325i −0.261075 0.965319i \(-0.584077\pi\)
0.154127 + 0.988051i \(0.450744\pi\)
\(798\) 0 0
\(799\) 0.593070 + 5.64268i 0.0209813 + 0.199624i
\(800\) −4.51750 3.28216i −0.159718 0.116042i
\(801\) 0 0
\(802\) −5.11146 −0.180492
\(803\) 13.7209 16.5079i 0.484199 0.582552i
\(804\) 0 0
\(805\) 1.82639 2.02841i 0.0643716 0.0714919i
\(806\) −1.62780 + 15.4875i −0.0573368 + 0.545523i
\(807\) 0 0
\(808\) 17.6760 + 19.6312i 0.621840 + 0.690624i
\(809\) −7.96856 + 24.5247i −0.280160 + 0.862243i 0.707648 + 0.706565i \(0.249756\pi\)
−0.987808 + 0.155678i \(0.950244\pi\)
\(810\) 0 0
\(811\) −5.83688 4.24074i −0.204961 0.148913i 0.480570 0.876956i \(-0.340430\pi\)
−0.685531 + 0.728044i \(0.740430\pi\)
\(812\) 0.168258 + 0.0357644i 0.00590471 + 0.00125508i
\(813\) 0 0
\(814\) 25.0619 19.7698i 0.878419 0.692930i
\(815\) 2.79197 + 4.83583i 0.0977984 + 0.169392i
\(816\) 0 0
\(817\) 45.1756 20.1135i 1.58049 0.703681i
\(818\) 28.6484 20.8142i 1.00167 0.727753i
\(819\) 0 0
\(820\) 1.01722 3.13068i 0.0355229 0.109328i
\(821\) 3.14690 + 29.9408i 0.109828 + 1.04494i 0.901140 + 0.433528i \(0.142732\pi\)
−0.791312 + 0.611412i \(0.790602\pi\)
\(822\) 0 0
\(823\) 36.7276 40.7901i 1.28024 1.42185i 0.423681 0.905811i \(-0.360738\pi\)
0.856562 0.516044i \(-0.172596\pi\)
\(824\) 8.67066 + 15.0180i 0.302057 + 0.523178i
\(825\) 0 0
\(826\) −1.53851 + 2.66477i −0.0535315 + 0.0927193i
\(827\) −10.2140 31.4355i −0.355176 1.09312i −0.955907 0.293669i \(-0.905124\pi\)
0.600731 0.799451i \(-0.294876\pi\)
\(828\) 0 0
\(829\) 7.30902 5.31031i 0.253853 0.184435i −0.453580 0.891216i \(-0.649853\pi\)
0.707433 + 0.706781i \(0.249853\pi\)
\(830\) 7.02075 + 7.79734i 0.243694 + 0.270650i
\(831\) 0 0
\(832\) −23.0034 10.2418i −0.797499 0.355069i
\(833\) 4.31770 41.0802i 0.149599 1.42334i
\(834\) 0 0
\(835\) −5.95492 + 10.3142i −0.206078 + 0.356938i
\(836\) 4.08358 + 4.18932i 0.141234 + 0.144891i
\(837\) 0 0
\(838\) 7.66718 + 23.5972i 0.264858 + 0.815151i
\(839\) 44.4221 19.7780i 1.53362 0.682812i 0.545730 0.837961i \(-0.316252\pi\)
0.987891 + 0.155149i \(0.0495856\pi\)
\(840\) 0 0
\(841\) 24.8065 5.27278i 0.855396 0.181820i
\(842\) −33.5362 + 7.12835i −1.15573 + 0.245659i
\(843\) 0 0
\(844\) 3.85039 1.71431i 0.132536 0.0590089i
\(845\) −2.35805 7.25732i −0.0811193 0.249660i
\(846\) 0 0
\(847\) −1.47214 2.13914i −0.0505832 0.0735017i
\(848\) 20.8620 36.1340i 0.716403 1.24085i
\(849\) 0 0
\(850\) 2.51228 23.9028i 0.0861706 0.819859i
\(851\) −42.6793 19.0021i −1.46303 0.651382i
\(852\) 0 0
\(853\) 14.1724 + 15.7401i 0.485254 + 0.538929i 0.935197 0.354128i \(-0.115222\pi\)
−0.449943 + 0.893057i \(0.648556\pi\)
\(854\) −1.27518 + 0.926476i −0.0436359 + 0.0317033i
\(855\) 0 0
\(856\) −7.25329 22.3233i −0.247912 0.762996i
\(857\) −20.4976 + 35.5029i −0.700186 + 1.21276i 0.268216 + 0.963359i \(0.413566\pi\)
−0.968401 + 0.249398i \(0.919767\pi\)
\(858\) 0 0
\(859\) −7.79180 13.4958i −0.265853 0.460470i 0.701934 0.712242i \(-0.252320\pi\)
−0.967787 + 0.251772i \(0.918987\pi\)
\(860\) 4.22396 4.69119i 0.144036 0.159968i
\(861\) 0 0
\(862\) −0.886954 8.43881i −0.0302098 0.287427i
\(863\) −7.63080 + 23.4852i −0.259755 + 0.799445i 0.733100 + 0.680121i \(0.238073\pi\)
−0.992855 + 0.119324i \(0.961927\pi\)
\(864\) 0 0
\(865\) −3.39919 + 2.46965i −0.115576 + 0.0839708i
\(866\) 40.3980 17.9864i 1.37278 0.611201i
\(867\) 0 0
\(868\) 0.107391 + 0.186006i 0.00364508 + 0.00631347i
\(869\) 1.74936 0.0692736i 0.0593428 0.00234995i
\(870\) 0 0
\(871\) 15.9695 + 3.39442i 0.541105 + 0.115015i
\(872\) −0.589512 0.428305i −0.0199634 0.0145043i
\(873\) 0 0
\(874\) 16.5000 50.7818i 0.558121 1.71772i
\(875\) 1.85720 + 2.06263i 0.0627848 + 0.0697296i
\(876\) 0 0
\(877\) −0.264234 + 2.51402i −0.00892254 + 0.0848923i −0.998077 0.0619871i \(-0.980256\pi\)
0.989154 + 0.146879i \(0.0469229\pi\)
\(878\) −25.8178 + 28.6735i −0.871307 + 0.967685i
\(879\) 0 0
\(880\) −21.9584 8.75267i −0.740219 0.295052i
\(881\) −47.8114 −1.61081 −0.805403 0.592728i \(-0.798051\pi\)
−0.805403 + 0.592728i \(0.798051\pi\)
\(882\) 0 0
\(883\) 40.3607 + 29.3238i 1.35825 + 0.986823i 0.998554 + 0.0537512i \(0.0171178\pi\)
0.359691 + 0.933072i \(0.382882\pi\)
\(884\) 1.00604 + 9.57179i 0.0338366 + 0.321934i
\(885\) 0 0
\(886\) 28.3791 6.03217i 0.953416 0.202655i
\(887\) −15.0493 6.70037i −0.505305 0.224976i 0.138220 0.990402i \(-0.455862\pi\)
−0.643525 + 0.765425i \(0.722529\pi\)
\(888\) 0 0
\(889\) 1.67088 + 0.355156i 0.0560394 + 0.0119115i
\(890\) −39.9022 −1.33753
\(891\) 0 0
\(892\) −7.32624 −0.245301
\(893\) −4.30865 0.915833i −0.144184 0.0306472i
\(894\) 0 0
\(895\) −26.3086 11.7134i −0.879400 0.391534i
\(896\) −3.10340 + 0.659648i −0.103677 + 0.0220373i
\(897\) 0 0
\(898\) −0.0726523 0.691241i −0.00242444 0.0230670i
\(899\) −3.67624 2.67094i −0.122609 0.0890809i
\(900\) 0 0
\(901\) 53.7426 1.79043
\(902\) −1.86059 + 28.5222i −0.0619510 + 0.949684i
\(903\) 0 0
\(904\) 18.8936 20.9835i 0.628392 0.697900i
\(905\) 1.25252 11.9169i 0.0416351 0.396132i
\(906\) 0 0
\(907\) 31.3603 + 34.8292i 1.04130 + 1.15648i 0.987450 + 0.157934i \(0.0504834\pi\)
0.0538526 + 0.998549i \(0.482850\pi\)
\(908\) −1.10944 + 3.41451i −0.0368181 + 0.113314i
\(909\) 0 0
\(910\) −1.92705 1.40008i −0.0638811 0.0464123i
\(911\) −37.0801 7.88163i −1.22852 0.261130i −0.452457 0.891786i \(-0.649453\pi\)
−0.776062 + 0.630656i \(0.782786\pi\)
\(912\) 0 0
\(913\) −12.1498 8.11282i −0.402100 0.268495i
\(914\) −18.4508 31.9577i −0.610297 1.05707i
\(915\) 0 0
\(916\) −3.32468 + 1.48024i −0.109851 + 0.0489087i
\(917\) −2.31504 + 1.68198i −0.0764495 + 0.0555438i
\(918\) 0 0
\(919\) −0.871323 + 2.68166i −0.0287423 + 0.0884597i −0.964399 0.264453i \(-0.914809\pi\)
0.935656 + 0.352912i \(0.114809\pi\)
\(920\) 3.01811 + 28.7154i 0.0995040 + 0.946717i
\(921\) 0 0
\(922\) −20.2549 + 22.4954i −0.667060 + 0.740846i
\(923\) 16.3445 + 28.3094i 0.537985 + 0.931817i
\(924\) 0 0
\(925\) 8.16312 14.1389i 0.268402 0.464885i
\(926\) −0.685672 2.11028i −0.0225326 0.0693482i
\(927\) 0 0
\(928\) −3.29180 + 2.39163i −0.108058 + 0.0785091i
\(929\) −0.580699 0.644932i −0.0190521 0.0211595i 0.733543 0.679643i \(-0.237865\pi\)
−0.752596 + 0.658483i \(0.771198\pi\)
\(930\) 0 0
\(931\) 29.2964 + 13.0436i 0.960150 + 0.427486i
\(932\) 0.166882 1.58777i 0.00546639 0.0520092i
\(933\) 0 0
\(934\) −3.74671 + 6.48949i −0.122596 + 0.212343i
\(935\) −4.37833 30.1313i −0.143187 0.985399i
\(936\) 0 0
\(937\) 10.2533 + 31.5564i 0.334960 + 1.03090i 0.966742 + 0.255755i \(0.0823241\pi\)
−0.631781 + 0.775147i \(0.717676\pi\)
\(938\) 1.28280 0.571138i 0.0418848 0.0186483i
\(939\) 0 0
\(940\) −0.550018 + 0.116910i −0.0179396 + 0.00381318i
\(941\) −44.1878 + 9.39241i −1.44048 + 0.306184i −0.860918 0.508743i \(-0.830110\pi\)
−0.579563 + 0.814927i \(0.696777\pi\)
\(942\) 0 0
\(943\) 38.2162 17.0149i 1.24449 0.554083i
\(944\) −12.0521 37.0927i −0.392264 1.20726i
\(945\) 0 0
\(946\) −25.5066 + 48.5164i −0.829290 + 1.57740i
\(947\) −12.6682 + 21.9420i −0.411662 + 0.713020i −0.995072 0.0991584i \(-0.968385\pi\)
0.583410 + 0.812178i \(0.301718\pi\)
\(948\) 0 0
\(949\) −2.86579 + 27.2662i −0.0930276 + 0.885099i
\(950\) 17.0463 + 7.58951i 0.553055 + 0.246236i
\(951\) 0 0
\(952\) −2.34636 2.60590i −0.0760459 0.0844575i
\(953\) −37.6834 + 27.3786i −1.22068 + 0.886879i −0.996157 0.0875894i \(-0.972084\pi\)
−0.224527 + 0.974468i \(0.572084\pi\)
\(954\) 0 0
\(955\) 1.75329 + 5.39607i 0.0567351 + 0.174613i
\(956\) 3.04372 5.27188i 0.0984409 0.170505i
\(957\) 0 0
\(958\) 28.4098 + 49.2073i 0.917880 + 1.58981i
\(959\) 1.67096 1.85579i 0.0539581 0.0599266i
\(960\) 0 0
\(961\) 2.64731 + 25.1875i 0.0853972 + 0.812500i
\(962\) −12.5986 + 38.7746i −0.406197 + 1.25014i
\(963\) 0 0
\(964\) −4.32624 + 3.14320i −0.139339 + 0.101236i
\(965\) −13.5608 + 6.03764i −0.436537 + 0.194359i
\(966\) 0 0
\(967\) −21.3435 36.9680i −0.686359 1.18881i −0.973008 0.230773i \(-0.925874\pi\)
0.286648 0.958036i \(-0.407459\pi\)
\(968\) 27.2365 + 3.56864i 0.875415 + 0.114700i
\(969\) 0 0
\(970\) −29.8191 6.33825i −0.957434 0.203509i
\(971\) 10.5784 + 7.68563i 0.339476 + 0.246644i 0.744441 0.667689i \(-0.232716\pi\)
−0.404965 + 0.914332i \(0.632716\pi\)
\(972\) 0 0
\(973\) −0.993422 + 3.05744i −0.0318477 + 0.0980170i
\(974\) −17.4410 19.3702i −0.558845 0.620660i
\(975\) 0 0
\(976\) 2.08834 19.8693i 0.0668463 0.636000i
\(977\) 19.1695 21.2899i 0.613286 0.681124i −0.353873 0.935293i \(-0.615136\pi\)
0.967160 + 0.254170i \(0.0818022\pi\)
\(978\) 0 0
\(979\) 53.8457 13.6928i 1.72092 0.437623i
\(980\) 4.09373 0.130769
\(981\) 0 0
\(982\) −38.6074 28.0499i −1.23201 0.895109i
\(983\) −4.12940 39.2886i −0.131707 1.25311i −0.838188 0.545381i \(-0.816385\pi\)
0.706481 0.707732i \(-0.250282\pi\)
\(984\) 0 0
\(985\) −18.2994 + 3.88965i −0.583067 + 0.123935i
\(986\) −15.9992 7.12332i −0.509519 0.226853i
\(987\) 0 0
\(988\) −7.30885 1.55354i −0.232526 0.0494248i
\(989\) 80.2220 2.55091
\(990\) 0 0
\(991\) −24.7295 −0.785558 −0.392779 0.919633i \(-0.628486\pi\)
−0.392779 + 0.919633i \(0.628486\pi\)
\(992\) −4.96941 1.05628i −0.157779 0.0335370i
\(993\) 0 0
\(994\) 2.56846 + 1.14355i 0.0814666 + 0.0362713i
\(995\) −39.8792 + 8.47658i −1.26425 + 0.268726i
\(996\) 0 0
\(997\) 0.391213 + 3.72214i 0.0123898 + 0.117881i 0.998969 0.0454040i \(-0.0144575\pi\)
−0.986579 + 0.163285i \(0.947791\pi\)
\(998\) 12.1647 + 8.83819i 0.385068 + 0.279768i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.n.e.379.1 16
3.2 odd 2 inner 891.2.n.e.379.2 16
9.2 odd 6 99.2.f.c.82.1 yes 8
9.4 even 3 inner 891.2.n.e.676.2 16
9.5 odd 6 inner 891.2.n.e.676.1 16
9.7 even 3 99.2.f.c.82.2 yes 8
11.9 even 5 inner 891.2.n.e.460.2 16
33.20 odd 10 inner 891.2.n.e.460.1 16
99.20 odd 30 99.2.f.c.64.1 8
99.25 even 15 1089.2.a.v.1.3 4
99.31 even 15 inner 891.2.n.e.757.1 16
99.47 odd 30 1089.2.a.v.1.2 4
99.52 odd 30 1089.2.a.w.1.2 4
99.74 even 30 1089.2.a.w.1.3 4
99.86 odd 30 inner 891.2.n.e.757.2 16
99.97 even 15 99.2.f.c.64.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.f.c.64.1 8 99.20 odd 30
99.2.f.c.64.2 yes 8 99.97 even 15
99.2.f.c.82.1 yes 8 9.2 odd 6
99.2.f.c.82.2 yes 8 9.7 even 3
891.2.n.e.379.1 16 1.1 even 1 trivial
891.2.n.e.379.2 16 3.2 odd 2 inner
891.2.n.e.460.1 16 33.20 odd 10 inner
891.2.n.e.460.2 16 11.9 even 5 inner
891.2.n.e.676.1 16 9.5 odd 6 inner
891.2.n.e.676.2 16 9.4 even 3 inner
891.2.n.e.757.1 16 99.31 even 15 inner
891.2.n.e.757.2 16 99.86 odd 30 inner
1089.2.a.v.1.2 4 99.47 odd 30
1089.2.a.v.1.3 4 99.25 even 15
1089.2.a.w.1.2 4 99.52 odd 30
1089.2.a.w.1.3 4 99.74 even 30