Properties

Label 891.2.n.d.433.1
Level $891$
Weight $2$
Character 891.433
Analytic conductor $7.115$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [891,2,Mod(136,891)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("891.136"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(891, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([20, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,3,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{15})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 433.1
Root \(0.913545 - 0.406737i\) of defining polynomial
Character \(\chi\) \(=\) 891.433
Dual form 891.2.n.d.784.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.169131 + 1.60917i) q^{2} +(-0.604528 - 0.128496i) q^{4} +(0.0399263 + 0.379874i) q^{5} +(2.00739 - 2.22943i) q^{7} +(-0.690983 + 2.12663i) q^{8} -0.618034 q^{10} +(0.122602 - 3.31436i) q^{11} +(5.69693 - 2.53644i) q^{13} +(3.24803 + 3.60730i) q^{14} +(-4.43444 - 1.97434i) q^{16} +(0.500000 - 0.363271i) q^{17} +(-0.263932 + 0.812299i) q^{19} +(0.0246758 - 0.234775i) q^{20} +(5.31263 + 0.757847i) q^{22} +(2.73607 - 4.73901i) q^{23} +(4.74803 - 1.00922i) q^{25} +(3.11803 + 9.59632i) q^{26} +(-1.50000 + 1.08981i) q^{28} +(-2.99244 + 3.32344i) q^{29} +(-3.52090 + 1.56760i) q^{31} +(1.69098 - 2.92887i) q^{32} +(0.500000 + 0.866025i) q^{34} +(0.927051 + 0.673542i) q^{35} +(-1.30902 - 4.02874i) q^{37} +(-1.26249 - 0.562096i) q^{38} +(-0.835438 - 0.177578i) q^{40} +(3.97749 + 4.41745i) q^{41} +(-0.881966 - 1.52761i) q^{43} +(-0.500000 + 1.98787i) q^{44} +(7.16312 + 5.20431i) q^{46} +(0.604528 - 0.128496i) q^{47} +(-0.209057 - 1.98904i) q^{49} +(0.820977 + 7.81108i) q^{50} +(-3.76988 + 0.801313i) q^{52} +(5.97214 + 4.33901i) q^{53} +(1.26393 - 0.0857567i) q^{55} +(3.35410 + 5.80948i) q^{56} +(-4.84187 - 5.37745i) q^{58} +(5.20985 + 1.10739i) q^{59} +(1.04683 + 0.466079i) q^{61} +(-1.92705 - 5.93085i) q^{62} +(-3.42705 - 2.48990i) q^{64} +(1.19098 + 2.06284i) q^{65} +(-5.28115 + 9.14723i) q^{67} +(-0.348943 + 0.155360i) q^{68} +(-1.24064 + 1.37787i) q^{70} +(-11.7812 + 8.55951i) q^{71} +(0.381966 + 1.17557i) q^{73} +(6.70432 - 1.42505i) q^{74} +(0.263932 - 0.457144i) q^{76} +(-7.14303 - 6.92655i) q^{77} +(-0.0551768 + 0.524972i) q^{79} +(0.572949 - 1.76336i) q^{80} +(-7.78115 + 5.65334i) q^{82} +(-11.6095 - 5.16889i) q^{83} +(0.157960 + 0.175433i) q^{85} +(2.60735 - 1.16087i) q^{86} +(6.96369 + 2.55089i) q^{88} +9.47214 q^{89} +(5.78115 - 17.7926i) q^{91} +(-2.26298 + 2.51329i) q^{92} +(0.104528 + 0.994522i) q^{94} +(-0.319109 - 0.0678287i) q^{95} +(-1.57153 + 14.9521i) q^{97} +3.23607 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 3 q^{2} - 3 q^{4} + q^{5} + 3 q^{7} - 10 q^{8} + 4 q^{10} - 9 q^{11} + 9 q^{13} - 6 q^{14} - 9 q^{16} + 4 q^{17} - 20 q^{19} - 3 q^{20} + 8 q^{22} + 4 q^{23} + 6 q^{25} + 16 q^{26} - 12 q^{28} + 10 q^{29}+ \cdots + 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.169131 + 1.60917i −0.119593 + 1.13786i 0.755921 + 0.654663i \(0.227189\pi\)
−0.875514 + 0.483192i \(0.839477\pi\)
\(3\) 0 0
\(4\) −0.604528 0.128496i −0.302264 0.0642482i
\(5\) 0.0399263 + 0.379874i 0.0178556 + 0.169885i 0.999816 0.0192042i \(-0.00611326\pi\)
−0.981960 + 0.189089i \(0.939447\pi\)
\(6\) 0 0
\(7\) 2.00739 2.22943i 0.758723 0.842647i −0.232807 0.972523i \(-0.574791\pi\)
0.991530 + 0.129876i \(0.0414579\pi\)
\(8\) −0.690983 + 2.12663i −0.244299 + 0.751876i
\(9\) 0 0
\(10\) −0.618034 −0.195440
\(11\) 0.122602 3.31436i 0.0369660 0.999317i
\(12\) 0 0
\(13\) 5.69693 2.53644i 1.58004 0.703481i 0.585784 0.810467i \(-0.300787\pi\)
0.994261 + 0.106986i \(0.0341200\pi\)
\(14\) 3.24803 + 3.60730i 0.868072 + 0.964092i
\(15\) 0 0
\(16\) −4.43444 1.97434i −1.10861 0.493585i
\(17\) 0.500000 0.363271i 0.121268 0.0881062i −0.525498 0.850795i \(-0.676121\pi\)
0.646766 + 0.762688i \(0.276121\pi\)
\(18\) 0 0
\(19\) −0.263932 + 0.812299i −0.0605502 + 0.186354i −0.976756 0.214353i \(-0.931236\pi\)
0.916206 + 0.400707i \(0.131236\pi\)
\(20\) 0.0246758 0.234775i 0.00551768 0.0524972i
\(21\) 0 0
\(22\) 5.31263 + 0.757847i 1.13266 + 0.161574i
\(23\) 2.73607 4.73901i 0.570510 0.988152i −0.426004 0.904721i \(-0.640079\pi\)
0.996514 0.0834304i \(-0.0265876\pi\)
\(24\) 0 0
\(25\) 4.74803 1.00922i 0.949606 0.201845i
\(26\) 3.11803 + 9.59632i 0.611497 + 1.88199i
\(27\) 0 0
\(28\) −1.50000 + 1.08981i −0.283473 + 0.205955i
\(29\) −2.99244 + 3.32344i −0.555683 + 0.617148i −0.953893 0.300146i \(-0.902965\pi\)
0.398211 + 0.917294i \(0.369631\pi\)
\(30\) 0 0
\(31\) −3.52090 + 1.56760i −0.632372 + 0.281550i −0.697784 0.716308i \(-0.745830\pi\)
0.0654122 + 0.997858i \(0.479164\pi\)
\(32\) 1.69098 2.92887i 0.298926 0.517756i
\(33\) 0 0
\(34\) 0.500000 + 0.866025i 0.0857493 + 0.148522i
\(35\) 0.927051 + 0.673542i 0.156700 + 0.113849i
\(36\) 0 0
\(37\) −1.30902 4.02874i −0.215201 0.662321i −0.999139 0.0414819i \(-0.986792\pi\)
0.783938 0.620839i \(-0.213208\pi\)
\(38\) −1.26249 0.562096i −0.204803 0.0911840i
\(39\) 0 0
\(40\) −0.835438 0.177578i −0.132094 0.0280775i
\(41\) 3.97749 + 4.41745i 0.621180 + 0.689891i 0.968828 0.247735i \(-0.0796861\pi\)
−0.347648 + 0.937625i \(0.613019\pi\)
\(42\) 0 0
\(43\) −0.881966 1.52761i −0.134499 0.232958i 0.790907 0.611936i \(-0.209609\pi\)
−0.925406 + 0.378978i \(0.876276\pi\)
\(44\) −0.500000 + 1.98787i −0.0753778 + 0.299683i
\(45\) 0 0
\(46\) 7.16312 + 5.20431i 1.05614 + 0.767334i
\(47\) 0.604528 0.128496i 0.0881795 0.0187431i −0.163611 0.986525i \(-0.552314\pi\)
0.251790 + 0.967782i \(0.418981\pi\)
\(48\) 0 0
\(49\) −0.209057 1.98904i −0.0298653 0.284149i
\(50\) 0.820977 + 7.81108i 0.116104 + 1.10465i
\(51\) 0 0
\(52\) −3.76988 + 0.801313i −0.522788 + 0.111122i
\(53\) 5.97214 + 4.33901i 0.820336 + 0.596009i 0.916809 0.399327i \(-0.130756\pi\)
−0.0964728 + 0.995336i \(0.530756\pi\)
\(54\) 0 0
\(55\) 1.26393 0.0857567i 0.170429 0.0115634i
\(56\) 3.35410 + 5.80948i 0.448211 + 0.776324i
\(57\) 0 0
\(58\) −4.84187 5.37745i −0.635769 0.706093i
\(59\) 5.20985 + 1.10739i 0.678264 + 0.144170i 0.534148 0.845391i \(-0.320633\pi\)
0.144117 + 0.989561i \(0.453966\pi\)
\(60\) 0 0
\(61\) 1.04683 + 0.466079i 0.134033 + 0.0596753i 0.472657 0.881246i \(-0.343295\pi\)
−0.338624 + 0.940922i \(0.609962\pi\)
\(62\) −1.92705 5.93085i −0.244736 0.753219i
\(63\) 0 0
\(64\) −3.42705 2.48990i −0.428381 0.311237i
\(65\) 1.19098 + 2.06284i 0.147723 + 0.255864i
\(66\) 0 0
\(67\) −5.28115 + 9.14723i −0.645196 + 1.11751i 0.339061 + 0.940764i \(0.389891\pi\)
−0.984256 + 0.176747i \(0.943443\pi\)
\(68\) −0.348943 + 0.155360i −0.0423156 + 0.0188401i
\(69\) 0 0
\(70\) −1.24064 + 1.37787i −0.148284 + 0.164687i
\(71\) −11.7812 + 8.55951i −1.39817 + 1.01583i −0.403253 + 0.915089i \(0.632120\pi\)
−0.994913 + 0.100738i \(0.967880\pi\)
\(72\) 0 0
\(73\) 0.381966 + 1.17557i 0.0447057 + 0.137590i 0.970918 0.239412i \(-0.0769548\pi\)
−0.926212 + 0.377003i \(0.876955\pi\)
\(74\) 6.70432 1.42505i 0.779362 0.165658i
\(75\) 0 0
\(76\) 0.263932 0.457144i 0.0302751 0.0524380i
\(77\) −7.14303 6.92655i −0.814024 0.789354i
\(78\) 0 0
\(79\) −0.0551768 + 0.524972i −0.00620788 + 0.0590640i −0.997187 0.0749504i \(-0.976120\pi\)
0.990979 + 0.134014i \(0.0427868\pi\)
\(80\) 0.572949 1.76336i 0.0640576 0.197149i
\(81\) 0 0
\(82\) −7.78115 + 5.65334i −0.859285 + 0.624307i
\(83\) −11.6095 5.16889i −1.27431 0.567360i −0.345676 0.938354i \(-0.612350\pi\)
−0.928635 + 0.370994i \(0.879017\pi\)
\(84\) 0 0
\(85\) 0.157960 + 0.175433i 0.0171332 + 0.0190283i
\(86\) 2.60735 1.16087i 0.281158 0.125180i
\(87\) 0 0
\(88\) 6.96369 + 2.55089i 0.742332 + 0.271926i
\(89\) 9.47214 1.00404 0.502022 0.864855i \(-0.332590\pi\)
0.502022 + 0.864855i \(0.332590\pi\)
\(90\) 0 0
\(91\) 5.78115 17.7926i 0.606029 1.86517i
\(92\) −2.26298 + 2.51329i −0.235932 + 0.262029i
\(93\) 0 0
\(94\) 0.104528 + 0.994522i 0.0107813 + 0.102577i
\(95\) −0.319109 0.0678287i −0.0327399 0.00695908i
\(96\) 0 0
\(97\) −1.57153 + 14.9521i −0.159564 + 1.51815i 0.562772 + 0.826612i \(0.309735\pi\)
−0.722336 + 0.691542i \(0.756932\pi\)
\(98\) 3.23607 0.326892
\(99\) 0 0
\(100\) −3.00000 −0.300000
\(101\) 0.313585 2.98357i 0.0312029 0.296876i −0.967780 0.251796i \(-0.918979\pi\)
0.998983 0.0450803i \(-0.0143544\pi\)
\(102\) 0 0
\(103\) 5.86889 + 1.24747i 0.578278 + 0.122917i 0.487760 0.872978i \(-0.337814\pi\)
0.0905187 + 0.995895i \(0.471148\pi\)
\(104\) 1.45757 + 13.8679i 0.142927 + 1.35986i
\(105\) 0 0
\(106\) −7.99228 + 8.87632i −0.776279 + 0.862145i
\(107\) 0.0729490 0.224514i 0.00705225 0.0217046i −0.947468 0.319849i \(-0.896368\pi\)
0.954521 + 0.298145i \(0.0963678\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) −0.0757724 + 2.04839i −0.00722462 + 0.195306i
\(111\) 0 0
\(112\) −13.3033 + 5.92302i −1.25705 + 0.559673i
\(113\) −8.50345 9.44404i −0.799937 0.888420i 0.195801 0.980644i \(-0.437269\pi\)
−0.995738 + 0.0922234i \(0.970603\pi\)
\(114\) 0 0
\(115\) 1.90947 + 0.850149i 0.178059 + 0.0792768i
\(116\) 2.23607 1.62460i 0.207614 0.150840i
\(117\) 0 0
\(118\) −2.66312 + 8.19624i −0.245160 + 0.754525i
\(119\) 0.193806 1.84395i 0.0177662 0.169034i
\(120\) 0 0
\(121\) −10.9699 0.812696i −0.997267 0.0738815i
\(122\) −0.927051 + 1.60570i −0.0839313 + 0.145373i
\(123\) 0 0
\(124\) 2.32991 0.495239i 0.209232 0.0444737i
\(125\) 1.16312 + 3.57971i 0.104033 + 0.320179i
\(126\) 0 0
\(127\) −7.85410 + 5.70634i −0.696939 + 0.506356i −0.878934 0.476944i \(-0.841745\pi\)
0.181995 + 0.983299i \(0.441745\pi\)
\(128\) 9.11224 10.1202i 0.805416 0.894505i
\(129\) 0 0
\(130\) −3.52090 + 1.56760i −0.308803 + 0.137488i
\(131\) 6.92705 11.9980i 0.605219 1.04827i −0.386798 0.922165i \(-0.626419\pi\)
0.992017 0.126106i \(-0.0402479\pi\)
\(132\) 0 0
\(133\) 1.28115 + 2.21902i 0.111090 + 0.192414i
\(134\) −13.8262 10.0453i −1.19441 0.867786i
\(135\) 0 0
\(136\) 0.427051 + 1.31433i 0.0366193 + 0.112703i
\(137\) −1.34486 0.598772i −0.114899 0.0511565i 0.348482 0.937316i \(-0.386697\pi\)
−0.463381 + 0.886159i \(0.653364\pi\)
\(138\) 0 0
\(139\) −5.72618 1.21714i −0.485688 0.103236i −0.0414417 0.999141i \(-0.513195\pi\)
−0.444246 + 0.895905i \(0.646528\pi\)
\(140\) −0.473881 0.526298i −0.0400502 0.0444803i
\(141\) 0 0
\(142\) −11.7812 20.4056i −0.988652 1.71240i
\(143\) −7.70820 19.1926i −0.644592 1.60497i
\(144\) 0 0
\(145\) −1.38197 1.00406i −0.114766 0.0833824i
\(146\) −1.95630 + 0.415823i −0.161904 + 0.0344138i
\(147\) 0 0
\(148\) 0.273659 + 2.60369i 0.0224946 + 0.214022i
\(149\) −1.56793 14.9178i −0.128450 1.22212i −0.848879 0.528588i \(-0.822722\pi\)
0.720429 0.693529i \(-0.243945\pi\)
\(150\) 0 0
\(151\) −1.95630 + 0.415823i −0.159201 + 0.0338392i −0.286823 0.957984i \(-0.592599\pi\)
0.127622 + 0.991823i \(0.459266\pi\)
\(152\) −1.54508 1.12257i −0.125323 0.0910524i
\(153\) 0 0
\(154\) 12.3541 10.3229i 0.995522 0.831840i
\(155\) −0.736068 1.27491i −0.0591224 0.102403i
\(156\) 0 0
\(157\) 6.49606 + 7.21460i 0.518442 + 0.575788i 0.944335 0.328986i \(-0.106707\pi\)
−0.425893 + 0.904773i \(0.640040\pi\)
\(158\) −0.835438 0.177578i −0.0664639 0.0141273i
\(159\) 0 0
\(160\) 1.18011 + 0.525421i 0.0932962 + 0.0415382i
\(161\) −5.07295 15.6129i −0.399804 1.23047i
\(162\) 0 0
\(163\) 12.3541 + 8.97578i 0.967648 + 0.703037i 0.954914 0.296882i \(-0.0959467\pi\)
0.0127336 + 0.999919i \(0.495947\pi\)
\(164\) −1.83688 3.18157i −0.143436 0.248439i
\(165\) 0 0
\(166\) 10.2812 17.8075i 0.797972 1.38213i
\(167\) −17.3888 + 7.74200i −1.34559 + 0.599094i −0.947942 0.318444i \(-0.896840\pi\)
−0.397646 + 0.917539i \(0.630173\pi\)
\(168\) 0 0
\(169\) 17.3228 19.2389i 1.33252 1.47992i
\(170\) −0.309017 + 0.224514i −0.0237005 + 0.0172194i
\(171\) 0 0
\(172\) 0.336881 + 1.03681i 0.0256869 + 0.0790563i
\(173\) −17.2330 + 3.66300i −1.31020 + 0.278492i −0.809497 0.587124i \(-0.800260\pi\)
−0.500707 + 0.865617i \(0.666927\pi\)
\(174\) 0 0
\(175\) 7.28115 12.6113i 0.550403 0.953327i
\(176\) −7.08735 + 14.4553i −0.534229 + 1.08961i
\(177\) 0 0
\(178\) −1.60203 + 15.2423i −0.120077 + 1.14246i
\(179\) 0.690983 2.12663i 0.0516465 0.158952i −0.921907 0.387412i \(-0.873369\pi\)
0.973553 + 0.228460i \(0.0733691\pi\)
\(180\) 0 0
\(181\) 6.89919 5.01255i 0.512813 0.372580i −0.301077 0.953600i \(-0.597346\pi\)
0.813889 + 0.581020i \(0.197346\pi\)
\(182\) 27.6535 + 12.3121i 2.04981 + 0.912635i
\(183\) 0 0
\(184\) 8.18753 + 9.09317i 0.603593 + 0.670357i
\(185\) 1.47815 0.658114i 0.108676 0.0483855i
\(186\) 0 0
\(187\) −1.14271 1.70172i −0.0835632 0.124442i
\(188\) −0.381966 −0.0278577
\(189\) 0 0
\(190\) 0.163119 0.502029i 0.0118339 0.0364210i
\(191\) 0.985051 1.09401i 0.0712758 0.0791598i −0.706452 0.707761i \(-0.749705\pi\)
0.777728 + 0.628601i \(0.216372\pi\)
\(192\) 0 0
\(193\) −0.163305 1.55375i −0.0117550 0.111841i 0.987071 0.160284i \(-0.0512409\pi\)
−0.998826 + 0.0484425i \(0.984574\pi\)
\(194\) −23.7947 5.05771i −1.70836 0.363122i
\(195\) 0 0
\(196\) −0.129204 + 1.22930i −0.00922888 + 0.0878069i
\(197\) 26.6180 1.89646 0.948228 0.317590i \(-0.102873\pi\)
0.948228 + 0.317590i \(0.102873\pi\)
\(198\) 0 0
\(199\) −3.29180 −0.233349 −0.116675 0.993170i \(-0.537223\pi\)
−0.116675 + 0.993170i \(0.537223\pi\)
\(200\) −1.13456 + 10.7946i −0.0802257 + 0.763296i
\(201\) 0 0
\(202\) 4.74803 + 1.00922i 0.334070 + 0.0710088i
\(203\) 1.40240 + 13.3429i 0.0984289 + 0.936489i
\(204\) 0 0
\(205\) −1.51927 + 1.68732i −0.106110 + 0.117847i
\(206\) −3.00000 + 9.23305i −0.209020 + 0.643297i
\(207\) 0 0
\(208\) −30.2705 −2.09888
\(209\) 2.65989 + 0.974355i 0.183989 + 0.0673975i
\(210\) 0 0
\(211\) 10.2961 4.58413i 0.708814 0.315584i −0.0204746 0.999790i \(-0.506518\pi\)
0.729289 + 0.684206i \(0.239851\pi\)
\(212\) −3.05278 3.39045i −0.209666 0.232857i
\(213\) 0 0
\(214\) 0.348943 + 0.155360i 0.0238533 + 0.0106202i
\(215\) 0.545085 0.396027i 0.0371745 0.0270088i
\(216\) 0 0
\(217\) −3.57295 + 10.9964i −0.242548 + 0.746485i
\(218\) 0 0
\(219\) 0 0
\(220\) −0.775102 0.110568i −0.0522574 0.00745452i
\(221\) 1.92705 3.33775i 0.129627 0.224521i
\(222\) 0 0
\(223\) 12.4305 2.64218i 0.832408 0.176934i 0.228053 0.973649i \(-0.426764\pi\)
0.604355 + 0.796715i \(0.293431\pi\)
\(224\) −3.13525 9.64932i −0.209483 0.644722i
\(225\) 0 0
\(226\) 16.6353 12.0862i 1.10656 0.803963i
\(227\) 7.28586 8.09176i 0.483579 0.537069i −0.451141 0.892453i \(-0.648983\pi\)
0.934721 + 0.355383i \(0.115650\pi\)
\(228\) 0 0
\(229\) 9.13545 4.06737i 0.603688 0.268779i −0.0820495 0.996628i \(-0.526147\pi\)
0.685737 + 0.727849i \(0.259480\pi\)
\(230\) −1.69098 + 2.92887i −0.111500 + 0.193124i
\(231\) 0 0
\(232\) −5.00000 8.66025i −0.328266 0.568574i
\(233\) −7.01722 5.09831i −0.459713 0.334001i 0.333705 0.942677i \(-0.391701\pi\)
−0.793419 + 0.608676i \(0.791701\pi\)
\(234\) 0 0
\(235\) 0.0729490 + 0.224514i 0.00475867 + 0.0146457i
\(236\) −3.00721 1.33889i −0.195752 0.0871546i
\(237\) 0 0
\(238\) 2.93444 + 0.623735i 0.190212 + 0.0404307i
\(239\) −11.7515 13.0513i −0.760140 0.844221i 0.231557 0.972821i \(-0.425618\pi\)
−0.991696 + 0.128601i \(0.958951\pi\)
\(240\) 0 0
\(241\) −8.56231 14.8303i −0.551547 0.955307i −0.998163 0.0605813i \(-0.980705\pi\)
0.446617 0.894725i \(-0.352629\pi\)
\(242\) 3.16312 17.5150i 0.203333 1.12591i
\(243\) 0 0
\(244\) −0.572949 0.416272i −0.0366793 0.0266491i
\(245\) 0.747238 0.158830i 0.0477393 0.0101473i
\(246\) 0 0
\(247\) 0.556743 + 5.29706i 0.0354247 + 0.337044i
\(248\) −0.900830 8.57082i −0.0572028 0.544248i
\(249\) 0 0
\(250\) −5.95709 + 1.26622i −0.376759 + 0.0800826i
\(251\) −13.5902 9.87384i −0.857804 0.623231i 0.0694827 0.997583i \(-0.477865\pi\)
−0.927287 + 0.374352i \(0.877865\pi\)
\(252\) 0 0
\(253\) −15.3713 9.64932i −0.966387 0.606648i
\(254\) −7.85410 13.6037i −0.492810 0.853572i
\(255\) 0 0
\(256\) 9.07495 + 10.0788i 0.567185 + 0.629922i
\(257\) 26.7291 + 5.68144i 1.66732 + 0.354399i 0.942413 0.334453i \(-0.108551\pi\)
0.724903 + 0.688851i \(0.241885\pi\)
\(258\) 0 0
\(259\) −11.6095 5.16889i −0.721381 0.321179i
\(260\) −0.454915 1.40008i −0.0282126 0.0868296i
\(261\) 0 0
\(262\) 18.1353 + 13.1760i 1.12040 + 0.814018i
\(263\) 0.336881 + 0.583495i 0.0207730 + 0.0359798i 0.876225 0.481902i \(-0.160054\pi\)
−0.855452 + 0.517882i \(0.826721\pi\)
\(264\) 0 0
\(265\) −1.40983 + 2.44190i −0.0866052 + 0.150005i
\(266\) −3.78747 + 1.68629i −0.232224 + 0.103393i
\(267\) 0 0
\(268\) 4.36799 4.85115i 0.266818 0.296331i
\(269\) −19.7984 + 14.3844i −1.20713 + 0.877030i −0.994967 0.100205i \(-0.968050\pi\)
−0.212161 + 0.977235i \(0.568050\pi\)
\(270\) 0 0
\(271\) 1.93769 + 5.96361i 0.117707 + 0.362263i 0.992502 0.122229i \(-0.0390043\pi\)
−0.874795 + 0.484493i \(0.839004\pi\)
\(272\) −2.93444 + 0.623735i −0.177927 + 0.0378195i
\(273\) 0 0
\(274\) 1.19098 2.06284i 0.0719499 0.124621i
\(275\) −2.76281 15.8604i −0.166604 0.956418i
\(276\) 0 0
\(277\) −1.09104 + 10.3805i −0.0655540 + 0.623705i 0.911586 + 0.411109i \(0.134858\pi\)
−0.977140 + 0.212596i \(0.931808\pi\)
\(278\) 2.92705 9.00854i 0.175553 0.540296i
\(279\) 0 0
\(280\) −2.07295 + 1.50609i −0.123882 + 0.0900058i
\(281\) −4.78339 2.12970i −0.285353 0.127047i 0.259069 0.965859i \(-0.416584\pi\)
−0.544422 + 0.838812i \(0.683251\pi\)
\(282\) 0 0
\(283\) −14.8415 16.4832i −0.882238 0.979825i 0.117674 0.993052i \(-0.462456\pi\)
−0.999913 + 0.0132274i \(0.995789\pi\)
\(284\) 8.22191 3.66063i 0.487881 0.217218i
\(285\) 0 0
\(286\) 32.1879 9.15775i 1.90331 0.541509i
\(287\) 17.8328 1.05264
\(288\) 0 0
\(289\) −5.13525 + 15.8047i −0.302074 + 0.929688i
\(290\) 1.84943 2.05400i 0.108602 0.120615i
\(291\) 0 0
\(292\) −0.0798526 0.759747i −0.00467302 0.0444608i
\(293\) −17.5521 3.73082i −1.02541 0.217957i −0.335642 0.941990i \(-0.608953\pi\)
−0.689766 + 0.724033i \(0.742286\pi\)
\(294\) 0 0
\(295\) −0.212657 + 2.02330i −0.0123814 + 0.117801i
\(296\) 9.47214 0.550557
\(297\) 0 0
\(298\) 24.2705 1.40595
\(299\) 3.56699 33.9377i 0.206285 1.96267i
\(300\) 0 0
\(301\) −5.17616 1.10023i −0.298349 0.0634160i
\(302\) −0.338261 3.21834i −0.0194647 0.185195i
\(303\) 0 0
\(304\) 2.77415 3.08100i 0.159108 0.176708i
\(305\) −0.135255 + 0.416272i −0.00774467 + 0.0238357i
\(306\) 0 0
\(307\) −19.5623 −1.11648 −0.558240 0.829680i \(-0.688523\pi\)
−0.558240 + 0.829680i \(0.688523\pi\)
\(308\) 3.42813 + 5.10515i 0.195336 + 0.290893i
\(309\) 0 0
\(310\) 2.17603 0.968833i 0.123590 0.0550260i
\(311\) 7.67636 + 8.52546i 0.435286 + 0.483434i 0.920379 0.391029i \(-0.127881\pi\)
−0.485092 + 0.874463i \(0.661214\pi\)
\(312\) 0 0
\(313\) −25.4265 11.3206i −1.43719 0.639880i −0.467453 0.884018i \(-0.654828\pi\)
−0.969740 + 0.244138i \(0.921495\pi\)
\(314\) −12.7082 + 9.23305i −0.717165 + 0.521051i
\(315\) 0 0
\(316\) 0.100813 0.310271i 0.00567118 0.0174541i
\(317\) −2.65091 + 25.2218i −0.148890 + 1.41659i 0.623687 + 0.781674i \(0.285634\pi\)
−0.772577 + 0.634921i \(0.781033\pi\)
\(318\) 0 0
\(319\) 10.6482 + 10.3255i 0.596185 + 0.578116i
\(320\) 0.809017 1.40126i 0.0452254 0.0783327i
\(321\) 0 0
\(322\) 25.9819 5.52261i 1.44791 0.307763i
\(323\) 0.163119 + 0.502029i 0.00907618 + 0.0279336i
\(324\) 0 0
\(325\) 24.4894 17.7926i 1.35843 0.986954i
\(326\) −16.5330 + 18.3618i −0.915679 + 1.01696i
\(327\) 0 0
\(328\) −12.1427 + 5.40626i −0.670466 + 0.298511i
\(329\) 0.927051 1.60570i 0.0511100 0.0885251i
\(330\) 0 0
\(331\) 11.2984 + 19.5694i 0.621015 + 1.07563i 0.989297 + 0.145915i \(0.0466127\pi\)
−0.368282 + 0.929714i \(0.620054\pi\)
\(332\) 6.35410 + 4.61653i 0.348727 + 0.253365i
\(333\) 0 0
\(334\) −9.51722 29.2910i −0.520759 1.60273i
\(335\) −3.68565 1.64096i −0.201368 0.0896550i
\(336\) 0 0
\(337\) 13.4086 + 2.85010i 0.730416 + 0.155255i 0.558084 0.829784i \(-0.311537\pi\)
0.172331 + 0.985039i \(0.444870\pi\)
\(338\) 28.0289 + 31.1293i 1.52457 + 1.69321i
\(339\) 0 0
\(340\) −0.0729490 0.126351i −0.00395622 0.00685237i
\(341\) 4.76393 + 11.8617i 0.257981 + 0.642347i
\(342\) 0 0
\(343\) 12.1353 + 8.81678i 0.655242 + 0.476061i
\(344\) 3.85808 0.820060i 0.208014 0.0442147i
\(345\) 0 0
\(346\) −2.97975 28.3504i −0.160192 1.52413i
\(347\) 0.319411 + 3.03899i 0.0171469 + 0.163141i 0.999744 0.0226055i \(-0.00719618\pi\)
−0.982598 + 0.185747i \(0.940530\pi\)
\(348\) 0 0
\(349\) −29.4663 + 6.26326i −1.57730 + 0.335265i −0.911638 0.410993i \(-0.865182\pi\)
−0.665657 + 0.746258i \(0.731849\pi\)
\(350\) 19.0623 + 13.8496i 1.01892 + 0.740291i
\(351\) 0 0
\(352\) −9.50000 5.96361i −0.506352 0.317861i
\(353\) 0.763932 + 1.32317i 0.0406600 + 0.0704252i 0.885639 0.464374i \(-0.153721\pi\)
−0.844979 + 0.534799i \(0.820387\pi\)
\(354\) 0 0
\(355\) −3.72191 4.13360i −0.197538 0.219389i
\(356\) −5.72618 1.21714i −0.303487 0.0645081i
\(357\) 0 0
\(358\) 3.30524 + 1.47159i 0.174687 + 0.0777758i
\(359\) −5.32624 16.3925i −0.281108 0.865162i −0.987538 0.157379i \(-0.949696\pi\)
0.706430 0.707783i \(-0.250304\pi\)
\(360\) 0 0
\(361\) 14.7812 + 10.7391i 0.777955 + 0.565218i
\(362\) 6.89919 + 11.9497i 0.362613 + 0.628065i
\(363\) 0 0
\(364\) −5.78115 + 10.0133i −0.303015 + 0.524837i
\(365\) −0.431318 + 0.192035i −0.0225762 + 0.0100516i
\(366\) 0 0
\(367\) −9.74408 + 10.8219i −0.508637 + 0.564899i −0.941695 0.336467i \(-0.890768\pi\)
0.433058 + 0.901366i \(0.357435\pi\)
\(368\) −21.4894 + 15.6129i −1.12021 + 0.813880i
\(369\) 0 0
\(370\) 0.809017 + 2.48990i 0.0420588 + 0.129444i
\(371\) 21.6620 4.60439i 1.12463 0.239048i
\(372\) 0 0
\(373\) −11.2082 + 19.4132i −0.580339 + 1.00518i 0.415100 + 0.909776i \(0.363747\pi\)
−0.995439 + 0.0954006i \(0.969587\pi\)
\(374\) 2.93162 1.55100i 0.151590 0.0802004i
\(375\) 0 0
\(376\) −0.144455 + 1.37440i −0.00744969 + 0.0708790i
\(377\) −8.61803 + 26.5236i −0.443851 + 1.36603i
\(378\) 0 0
\(379\) −22.9894 + 16.7027i −1.18088 + 0.857962i −0.992271 0.124089i \(-0.960399\pi\)
−0.188613 + 0.982052i \(0.560399\pi\)
\(380\) 0.184195 + 0.0820087i 0.00944899 + 0.00420696i
\(381\) 0 0
\(382\) 1.59385 + 1.77015i 0.0815483 + 0.0905685i
\(383\) −8.12009 + 3.61530i −0.414917 + 0.184733i −0.603569 0.797311i \(-0.706255\pi\)
0.188651 + 0.982044i \(0.439588\pi\)
\(384\) 0 0
\(385\) 2.34602 2.99000i 0.119564 0.152385i
\(386\) 2.52786 0.128665
\(387\) 0 0
\(388\) 2.87132 8.83702i 0.145769 0.448632i
\(389\) −6.20318 + 6.88933i −0.314514 + 0.349303i −0.879587 0.475738i \(-0.842181\pi\)
0.565073 + 0.825041i \(0.308848\pi\)
\(390\) 0 0
\(391\) −0.353512 3.36344i −0.0178779 0.170096i
\(392\) 4.37441 + 0.929809i 0.220941 + 0.0469625i
\(393\) 0 0
\(394\) −4.50192 + 42.8329i −0.226804 + 2.15789i
\(395\) −0.201626 −0.0101449
\(396\) 0 0
\(397\) −25.2918 −1.26936 −0.634679 0.772776i \(-0.718868\pi\)
−0.634679 + 0.772776i \(0.718868\pi\)
\(398\) 0.556743 5.29706i 0.0279070 0.265518i
\(399\) 0 0
\(400\) −23.0474 4.89888i −1.15237 0.244944i
\(401\) 1.55850 + 14.8282i 0.0778279 + 0.740483i 0.961950 + 0.273226i \(0.0880908\pi\)
−0.884122 + 0.467256i \(0.845243\pi\)
\(402\) 0 0
\(403\) −16.0822 + 17.8611i −0.801110 + 0.889723i
\(404\) −0.572949 + 1.76336i −0.0285053 + 0.0877302i
\(405\) 0 0
\(406\) −21.7082 −1.07736
\(407\) −13.5132 + 3.84462i −0.669823 + 0.190571i
\(408\) 0 0
\(409\) −26.4419 + 11.7727i −1.30747 + 0.582122i −0.937843 0.347059i \(-0.887180\pi\)
−0.369625 + 0.929181i \(0.620514\pi\)
\(410\) −2.45823 2.73014i −0.121403 0.134832i
\(411\) 0 0
\(412\) −3.38761 1.50826i −0.166896 0.0743068i
\(413\) 12.9271 9.39205i 0.636099 0.462153i
\(414\) 0 0
\(415\) 1.50000 4.61653i 0.0736321 0.226616i
\(416\) 2.20452 20.9746i 0.108086 1.02837i
\(417\) 0 0
\(418\) −2.01777 + 4.11543i −0.0986925 + 0.201292i
\(419\) 10.7533 18.6252i 0.525333 0.909903i −0.474232 0.880400i \(-0.657274\pi\)
0.999565 0.0295028i \(-0.00939240\pi\)
\(420\) 0 0
\(421\) 3.64799 0.775405i 0.177792 0.0377909i −0.118155 0.992995i \(-0.537698\pi\)
0.295947 + 0.955204i \(0.404365\pi\)
\(422\) 5.63525 + 17.3435i 0.274320 + 0.844270i
\(423\) 0 0
\(424\) −13.3541 + 9.70232i −0.648533 + 0.471186i
\(425\) 2.00739 2.22943i 0.0973728 0.108143i
\(426\) 0 0
\(427\) 3.14049 1.39824i 0.151979 0.0676654i
\(428\) −0.0729490 + 0.126351i −0.00352612 + 0.00610743i
\(429\) 0 0
\(430\) 0.545085 + 0.944115i 0.0262863 + 0.0455293i
\(431\) 1.20820 + 0.877812i 0.0581971 + 0.0422827i 0.616503 0.787352i \(-0.288549\pi\)
−0.558306 + 0.829635i \(0.688549\pi\)
\(432\) 0 0
\(433\) −1.85410 5.70634i −0.0891025 0.274229i 0.896569 0.442903i \(-0.146051\pi\)
−0.985672 + 0.168674i \(0.946051\pi\)
\(434\) −17.0908 7.60931i −0.820384 0.365259i
\(435\) 0 0
\(436\) 0 0
\(437\) 3.12736 + 3.47328i 0.149602 + 0.166150i
\(438\) 0 0
\(439\) −8.35410 14.4697i −0.398720 0.690602i 0.594849 0.803838i \(-0.297212\pi\)
−0.993568 + 0.113235i \(0.963879\pi\)
\(440\) −0.690983 + 2.74717i −0.0329413 + 0.130966i
\(441\) 0 0
\(442\) 5.04508 + 3.66547i 0.239970 + 0.174349i
\(443\) 0.856259 0.182003i 0.0406821 0.00864724i −0.187526 0.982260i \(-0.560047\pi\)
0.228208 + 0.973612i \(0.426713\pi\)
\(444\) 0 0
\(445\) 0.378188 + 3.59821i 0.0179278 + 0.170572i
\(446\) 2.14935 + 20.4497i 0.101774 + 0.968320i
\(447\) 0 0
\(448\) −12.4305 + 2.64218i −0.587286 + 0.124831i
\(449\) 12.5623 + 9.12705i 0.592852 + 0.430732i 0.843334 0.537389i \(-0.180589\pi\)
−0.250483 + 0.968121i \(0.580589\pi\)
\(450\) 0 0
\(451\) 15.1287 12.6412i 0.712382 0.595253i
\(452\) 3.92705 + 6.80185i 0.184713 + 0.319932i
\(453\) 0 0
\(454\) 11.7888 + 13.0928i 0.553274 + 0.614473i
\(455\) 6.98974 + 1.48572i 0.327684 + 0.0696514i
\(456\) 0 0
\(457\) 29.9628 + 13.3403i 1.40160 + 0.624033i 0.961723 0.274025i \(-0.0883549\pi\)
0.439878 + 0.898057i \(0.355022\pi\)
\(458\) 5.00000 + 15.3884i 0.233635 + 0.719054i
\(459\) 0 0
\(460\) −1.04508 0.759299i −0.0487273 0.0354025i
\(461\) 4.95492 + 8.58216i 0.230773 + 0.399711i 0.958036 0.286648i \(-0.0925411\pi\)
−0.727263 + 0.686359i \(0.759208\pi\)
\(462\) 0 0
\(463\) −4.39919 + 7.61962i −0.204448 + 0.354114i −0.949957 0.312382i \(-0.898873\pi\)
0.745509 + 0.666496i \(0.232206\pi\)
\(464\) 19.8314 8.82952i 0.920651 0.409900i
\(465\) 0 0
\(466\) 9.39087 10.4296i 0.435024 0.483143i
\(467\) 11.5172 8.36775i 0.532953 0.387213i −0.288508 0.957478i \(-0.593159\pi\)
0.821461 + 0.570264i \(0.193159\pi\)
\(468\) 0 0
\(469\) 9.79180 + 30.1360i 0.452143 + 1.39155i
\(470\) −0.373619 + 0.0794152i −0.0172338 + 0.00366315i
\(471\) 0 0
\(472\) −5.95492 + 10.3142i −0.274097 + 0.474750i
\(473\) −5.17118 + 2.73586i −0.237771 + 0.125795i
\(474\) 0 0
\(475\) −0.433364 + 4.12319i −0.0198841 + 0.189185i
\(476\) −0.354102 + 1.08981i −0.0162302 + 0.0499515i
\(477\) 0 0
\(478\) 22.9894 16.7027i 1.05151 0.763966i
\(479\) −15.4479 6.87785i −0.705832 0.314257i 0.0222442 0.999753i \(-0.492919\pi\)
−0.728077 + 0.685496i \(0.759586\pi\)
\(480\) 0 0
\(481\) −17.6760 19.6312i −0.805957 0.895106i
\(482\) 25.3127 11.2699i 1.15296 0.513332i
\(483\) 0 0
\(484\) 6.52721 + 1.90090i 0.296691 + 0.0864044i
\(485\) −5.74265 −0.260760
\(486\) 0 0
\(487\) 12.1074 37.2627i 0.548638 1.68853i −0.163540 0.986537i \(-0.552291\pi\)
0.712179 0.701998i \(-0.247709\pi\)
\(488\) −1.71452 + 1.90416i −0.0776126 + 0.0861975i
\(489\) 0 0
\(490\) 0.129204 + 1.22930i 0.00583685 + 0.0555340i
\(491\) 25.6419 + 5.45036i 1.15720 + 0.245971i 0.746238 0.665679i \(-0.231858\pi\)
0.410966 + 0.911651i \(0.365191\pi\)
\(492\) 0 0
\(493\) −0.288910 + 2.74879i −0.0130118 + 0.123799i
\(494\) −8.61803 −0.387744
\(495\) 0 0
\(496\) 18.7082 0.840023
\(497\) −4.56653 + 43.4476i −0.204837 + 1.94889i
\(498\) 0 0
\(499\) −2.50631 0.532733i −0.112198 0.0238484i 0.151470 0.988462i \(-0.451599\pi\)
−0.263668 + 0.964613i \(0.584932\pi\)
\(500\) −0.243158 2.31349i −0.0108744 0.103463i
\(501\) 0 0
\(502\) 18.1872 20.1989i 0.811734 0.901522i
\(503\) −9.29180 + 28.5972i −0.414301 + 1.27509i 0.498574 + 0.866847i \(0.333857\pi\)
−0.912875 + 0.408239i \(0.866143\pi\)
\(504\) 0 0
\(505\) 1.14590 0.0509918
\(506\) 18.1272 23.1031i 0.805851 1.02706i
\(507\) 0 0
\(508\) 5.48127 2.44042i 0.243192 0.108276i
\(509\) 14.3073 + 15.8899i 0.634161 + 0.704307i 0.971490 0.237079i \(-0.0761902\pi\)
−0.337329 + 0.941387i \(0.609524\pi\)
\(510\) 0 0
\(511\) 3.38761 + 1.50826i 0.149859 + 0.0667216i
\(512\) 4.28115 3.11044i 0.189202 0.137463i
\(513\) 0 0
\(514\) −13.6631 + 42.0508i −0.602654 + 1.85478i
\(515\) −0.239558 + 2.27924i −0.0105562 + 0.100435i
\(516\) 0 0
\(517\) −0.351767 2.01938i −0.0154707 0.0888121i
\(518\) 10.2812 17.8075i 0.451728 0.782416i
\(519\) 0 0
\(520\) −5.20985 + 1.10739i −0.228467 + 0.0485621i
\(521\) 12.0000 + 36.9322i 0.525730 + 1.61803i 0.762869 + 0.646553i \(0.223790\pi\)
−0.237139 + 0.971476i \(0.576210\pi\)
\(522\) 0 0
\(523\) −28.2984 + 20.5600i −1.23740 + 0.899025i −0.997422 0.0717533i \(-0.977141\pi\)
−0.239979 + 0.970778i \(0.577141\pi\)
\(524\) −5.72930 + 6.36303i −0.250286 + 0.277970i
\(525\) 0 0
\(526\) −0.995920 + 0.443412i −0.0434242 + 0.0193337i
\(527\) −1.19098 + 2.06284i −0.0518800 + 0.0898589i
\(528\) 0 0
\(529\) −3.47214 6.01392i −0.150962 0.261475i
\(530\) −3.69098 2.68166i −0.160326 0.116484i
\(531\) 0 0
\(532\) −0.489357 1.50609i −0.0212163 0.0652971i
\(533\) 33.8641 + 15.0773i 1.46682 + 0.653069i
\(534\) 0 0
\(535\) 0.0881995 + 0.0187474i 0.00381320 + 0.000810520i
\(536\) −15.8035 17.5516i −0.682609 0.758115i
\(537\) 0 0
\(538\) −19.7984 34.2918i −0.853569 1.47842i
\(539\) −6.61803 + 0.449028i −0.285059 + 0.0193410i
\(540\) 0 0
\(541\) 0.454915 + 0.330515i 0.0195583 + 0.0142100i 0.597521 0.801853i \(-0.296152\pi\)
−0.577963 + 0.816063i \(0.696152\pi\)
\(542\) −9.92419 + 2.10945i −0.426280 + 0.0906087i
\(543\) 0 0
\(544\) −0.218482 2.07872i −0.00936735 0.0891244i
\(545\) 0 0
\(546\) 0 0
\(547\) −18.9584 + 4.02974i −0.810604 + 0.172299i −0.594525 0.804077i \(-0.702660\pi\)
−0.216078 + 0.976376i \(0.569327\pi\)
\(548\) 0.736068 + 0.534785i 0.0314433 + 0.0228449i
\(549\) 0 0
\(550\) 25.9894 1.76336i 1.10819 0.0751897i
\(551\) −1.90983 3.30792i −0.0813615 0.140922i
\(552\) 0 0
\(553\) 1.05963 + 1.17684i 0.0450600 + 0.0500443i
\(554\) −16.5195 3.51133i −0.701846 0.149182i
\(555\) 0 0
\(556\) 3.30524 + 1.47159i 0.140173 + 0.0624092i
\(557\) 8.06231 + 24.8132i 0.341611 + 1.05137i 0.963373 + 0.268164i \(0.0864170\pi\)
−0.621762 + 0.783206i \(0.713583\pi\)
\(558\) 0 0
\(559\) −8.89919 6.46564i −0.376396 0.273467i
\(560\) −2.78115 4.81710i −0.117525 0.203560i
\(561\) 0 0
\(562\) 4.23607 7.33708i 0.178688 0.309496i
\(563\) 24.5639 10.9366i 1.03525 0.460921i 0.182477 0.983210i \(-0.441589\pi\)
0.852768 + 0.522289i \(0.174922\pi\)
\(564\) 0 0
\(565\) 3.24803 3.60730i 0.136646 0.151760i
\(566\) 29.0344 21.0948i 1.22041 0.886679i
\(567\) 0 0
\(568\) −10.0623 30.9686i −0.422205 1.29941i
\(569\) −33.3244 + 7.08332i −1.39703 + 0.296948i −0.844059 0.536251i \(-0.819840\pi\)
−0.552973 + 0.833199i \(0.686507\pi\)
\(570\) 0 0
\(571\) 12.8435 22.2455i 0.537482 0.930946i −0.461557 0.887111i \(-0.652709\pi\)
0.999039 0.0438355i \(-0.0139577\pi\)
\(572\) 2.19364 + 12.5930i 0.0917208 + 0.526539i
\(573\) 0 0
\(574\) −3.01607 + 28.6960i −0.125889 + 1.19775i
\(575\) 8.20820 25.2623i 0.342306 1.05351i
\(576\) 0 0
\(577\) −12.3262 + 8.95554i −0.513148 + 0.372824i −0.814016 0.580842i \(-0.802723\pi\)
0.300868 + 0.953666i \(0.402723\pi\)
\(578\) −24.5639 10.9366i −1.02172 0.454901i
\(579\) 0 0
\(580\) 0.706420 + 0.784559i 0.0293325 + 0.0325770i
\(581\) −34.8286 + 15.5067i −1.44493 + 0.643325i
\(582\) 0 0
\(583\) 15.1132 19.2618i 0.625926 0.797743i
\(584\) −2.76393 −0.114372
\(585\) 0 0
\(586\) 8.97214 27.6134i 0.370636 1.14070i
\(587\) 16.2632 18.0621i 0.671254 0.745503i −0.307273 0.951621i \(-0.599417\pi\)
0.978527 + 0.206119i \(0.0660833\pi\)
\(588\) 0 0
\(589\) −0.344086 3.27376i −0.0141778 0.134893i
\(590\) −3.21986 0.684403i −0.132560 0.0281764i
\(591\) 0 0
\(592\) −2.14935 + 20.4497i −0.0883376 + 0.840476i
\(593\) −29.2148 −1.19971 −0.599854 0.800110i \(-0.704775\pi\)
−0.599854 + 0.800110i \(0.704775\pi\)
\(594\) 0 0
\(595\) 0.708204 0.0290335
\(596\) −0.969032 + 9.21973i −0.0396931 + 0.377655i
\(597\) 0 0
\(598\) 54.0082 + 11.4798i 2.20856 + 0.469444i
\(599\) 2.26913 + 21.5893i 0.0927139 + 0.882114i 0.937728 + 0.347370i \(0.112925\pi\)
−0.845014 + 0.534744i \(0.820408\pi\)
\(600\) 0 0
\(601\) −13.2707 + 14.7387i −0.541325 + 0.601202i −0.950297 0.311345i \(-0.899221\pi\)
0.408972 + 0.912547i \(0.365887\pi\)
\(602\) 2.64590 8.14324i 0.107839 0.331894i
\(603\) 0 0
\(604\) 1.23607 0.0502949
\(605\) −0.129267 4.19964i −0.00525547 0.170740i
\(606\) 0 0
\(607\) −2.12512 + 0.946166i −0.0862561 + 0.0384037i −0.449411 0.893325i \(-0.648366\pi\)
0.363155 + 0.931729i \(0.381700\pi\)
\(608\) 1.93281 + 2.14661i 0.0783859 + 0.0870564i
\(609\) 0 0
\(610\) −0.646976 0.288052i −0.0261953 0.0116629i
\(611\) 3.11803 2.26538i 0.126142 0.0916476i
\(612\) 0 0
\(613\) 1.03444 3.18368i 0.0417807 0.128588i −0.927990 0.372604i \(-0.878465\pi\)
0.969771 + 0.244016i \(0.0784650\pi\)
\(614\) 3.30858 31.4791i 0.133524 1.27039i
\(615\) 0 0
\(616\) 19.6659 10.4044i 0.792362 0.419207i
\(617\) −23.2082 + 40.1978i −0.934327 + 1.61830i −0.158498 + 0.987359i \(0.550665\pi\)
−0.775829 + 0.630943i \(0.782668\pi\)
\(618\) 0 0
\(619\) 30.4990 6.48276i 1.22586 0.260564i 0.450898 0.892575i \(-0.351104\pi\)
0.774959 + 0.632011i \(0.217770\pi\)
\(620\) 0.281153 + 0.865300i 0.0112914 + 0.0347513i
\(621\) 0 0
\(622\) −15.0172 + 10.9106i −0.602136 + 0.437477i
\(623\) 19.0143 21.1175i 0.761791 0.846055i
\(624\) 0 0
\(625\) 20.8588 9.28694i 0.834353 0.371478i
\(626\) 22.5172 39.0010i 0.899969 1.55879i
\(627\) 0 0
\(628\) −3.00000 5.19615i −0.119713 0.207349i
\(629\) −2.11803 1.53884i −0.0844515 0.0613576i
\(630\) 0 0
\(631\) 3.93363 + 12.1065i 0.156595 + 0.481951i 0.998319 0.0579577i \(-0.0184589\pi\)
−0.841724 + 0.539908i \(0.818459\pi\)
\(632\) −1.07829 0.480087i −0.0428922 0.0190969i
\(633\) 0 0
\(634\) −40.1377 8.53154i −1.59407 0.338831i
\(635\) −2.48127 2.75573i −0.0984663 0.109358i
\(636\) 0 0
\(637\) −6.23607 10.8012i −0.247082 0.427959i
\(638\) −18.4164 + 15.3884i −0.729113 + 0.609233i
\(639\) 0 0
\(640\) 4.20820 + 3.05744i 0.166344 + 0.120856i
\(641\) 6.59530 1.40187i 0.260499 0.0553707i −0.0758108 0.997122i \(-0.524154\pi\)
0.336310 + 0.941751i \(0.390821\pi\)
\(642\) 0 0
\(643\) 1.92726 + 18.3367i 0.0760039 + 0.723128i 0.964471 + 0.264188i \(0.0851041\pi\)
−0.888467 + 0.458940i \(0.848229\pi\)
\(644\) 1.06054 + 10.0903i 0.0417909 + 0.397614i
\(645\) 0 0
\(646\) −0.835438 + 0.177578i −0.0328699 + 0.00698670i
\(647\) −2.59017 1.88187i −0.101830 0.0739839i 0.535705 0.844405i \(-0.320046\pi\)
−0.637535 + 0.770421i \(0.720046\pi\)
\(648\) 0 0
\(649\) 4.30902 17.1315i 0.169144 0.672471i
\(650\) 24.4894 + 42.4168i 0.960552 + 1.66372i
\(651\) 0 0
\(652\) −6.31505 7.01357i −0.247316 0.274673i
\(653\) −21.4856 4.56690i −0.840795 0.178716i −0.232668 0.972556i \(-0.574746\pi\)
−0.608127 + 0.793840i \(0.708079\pi\)
\(654\) 0 0
\(655\) 4.83430 + 2.15237i 0.188892 + 0.0841000i
\(656\) −8.91641 27.4419i −0.348127 1.07143i
\(657\) 0 0
\(658\) 2.42705 + 1.76336i 0.0946163 + 0.0687428i
\(659\) −10.3262 17.8856i −0.402253 0.696723i 0.591744 0.806126i \(-0.298439\pi\)
−0.993997 + 0.109403i \(0.965106\pi\)
\(660\) 0 0
\(661\) 10.5451 18.2646i 0.410156 0.710411i −0.584750 0.811213i \(-0.698807\pi\)
0.994907 + 0.100802i \(0.0321408\pi\)
\(662\) −33.4013 + 14.8712i −1.29818 + 0.577987i
\(663\) 0 0
\(664\) 19.0143 21.1175i 0.737897 0.819518i
\(665\) −0.791796 + 0.575274i −0.0307045 + 0.0223082i
\(666\) 0 0
\(667\) 7.56231 + 23.2744i 0.292814 + 0.901188i
\(668\) 11.5069 2.44586i 0.445214 0.0946331i
\(669\) 0 0
\(670\) 3.26393 5.65330i 0.126097 0.218406i
\(671\) 1.67310 3.41243i 0.0645891 0.131735i
\(672\) 0 0
\(673\) 1.50692 14.3374i 0.0580877 0.552667i −0.926317 0.376746i \(-0.877043\pi\)
0.984404 0.175921i \(-0.0562904\pi\)
\(674\) −6.85410 + 21.0948i −0.264010 + 0.812540i
\(675\) 0 0
\(676\) −12.9443 + 9.40456i −0.497857 + 0.361714i
\(677\) 20.5293 + 9.14024i 0.789006 + 0.351288i 0.761360 0.648330i \(-0.224532\pi\)
0.0276461 + 0.999618i \(0.491199\pi\)
\(678\) 0 0
\(679\) 30.1800 + 33.5183i 1.15820 + 1.28631i
\(680\) −0.482228 + 0.214702i −0.0184926 + 0.00823343i
\(681\) 0 0
\(682\) −19.8932 + 5.65980i −0.761751 + 0.216725i
\(683\) −38.8885 −1.48803 −0.744014 0.668164i \(-0.767081\pi\)
−0.744014 + 0.668164i \(0.767081\pi\)
\(684\) 0 0
\(685\) 0.173762 0.534785i 0.00663911 0.0204331i
\(686\) −16.2401 + 18.0365i −0.620051 + 0.688637i
\(687\) 0 0
\(688\) 0.895005 + 8.51540i 0.0341217 + 0.324647i
\(689\) 45.0285 + 9.57110i 1.71545 + 0.364630i
\(690\) 0 0
\(691\) 4.15064 39.4907i 0.157898 1.50230i −0.572857 0.819656i \(-0.694165\pi\)
0.730754 0.682641i \(-0.239169\pi\)
\(692\) 10.8885 0.413920
\(693\) 0 0
\(694\) −4.94427 −0.187682
\(695\) 0.233733 2.22382i 0.00886599 0.0843542i
\(696\) 0 0
\(697\) 3.59348 + 0.763818i 0.136113 + 0.0289317i
\(698\) −5.09499 48.4756i −0.192848 1.83483i
\(699\) 0 0
\(700\) −6.02218 + 6.68830i −0.227617 + 0.252794i
\(701\) 15.3541 47.2551i 0.579916 1.78480i −0.0388752 0.999244i \(-0.512377\pi\)
0.618792 0.785555i \(-0.287623\pi\)
\(702\) 0 0
\(703\) 3.61803 0.136457
\(704\) −8.67258 + 11.0532i −0.326860 + 0.416583i
\(705\) 0 0
\(706\) −2.25841 + 1.00551i −0.0849963 + 0.0378428i
\(707\) −6.02218 6.68830i −0.226487 0.251540i
\(708\) 0 0
\(709\) 5.71638 + 2.54510i 0.214683 + 0.0955831i 0.511261 0.859426i \(-0.329179\pi\)
−0.296578 + 0.955009i \(0.595845\pi\)
\(710\) 7.28115 5.29007i 0.273257 0.198533i
\(711\) 0 0
\(712\) −6.54508 + 20.1437i −0.245287 + 0.754917i
\(713\) −2.20452 + 20.9746i −0.0825600 + 0.785506i
\(714\) 0 0
\(715\) 6.98302 3.69443i 0.261150 0.138164i
\(716\) −0.690983 + 1.19682i −0.0258232 + 0.0447272i
\(717\) 0 0
\(718\) 27.2791 5.79835i 1.01805 0.216393i
\(719\) −8.78115 27.0256i −0.327482 1.00789i −0.970308 0.241873i \(-0.922238\pi\)
0.642826 0.766012i \(-0.277762\pi\)
\(720\) 0 0
\(721\) 14.5623 10.5801i 0.542329 0.394025i
\(722\) −19.7810 + 21.9691i −0.736174 + 0.817604i
\(723\) 0 0
\(724\) −4.81485 + 2.14371i −0.178943 + 0.0796703i
\(725\) −10.8541 + 18.7999i −0.403111 + 0.698209i
\(726\) 0 0
\(727\) −16.0729 27.8392i −0.596113 1.03250i −0.993389 0.114798i \(-0.963378\pi\)
0.397276 0.917699i \(-0.369956\pi\)
\(728\) 33.8435 + 24.5887i 1.25432 + 0.911318i
\(729\) 0 0
\(730\) −0.236068 0.726543i −0.00873727 0.0268905i
\(731\) −0.995920 0.443412i −0.0368354 0.0164002i
\(732\) 0 0
\(733\) 23.7610 + 5.05055i 0.877631 + 0.186546i 0.624631 0.780920i \(-0.285249\pi\)
0.253000 + 0.967466i \(0.418583\pi\)
\(734\) −15.7663 17.5102i −0.581943 0.646313i
\(735\) 0 0
\(736\) −9.25329 16.0272i −0.341081 0.590769i
\(737\) 29.6697 + 18.6251i 1.09290 + 0.686064i
\(738\) 0 0
\(739\) 20.2254 + 14.6946i 0.744004 + 0.540551i 0.893963 0.448142i \(-0.147914\pi\)
−0.149958 + 0.988692i \(0.547914\pi\)
\(740\) −0.978148 + 0.207912i −0.0359574 + 0.00764299i
\(741\) 0 0
\(742\) 3.74555 + 35.6365i 0.137503 + 1.30826i
\(743\) −1.34002 12.7494i −0.0491605 0.467731i −0.991214 0.132268i \(-0.957774\pi\)
0.942053 0.335463i \(-0.108893\pi\)
\(744\) 0 0
\(745\) 5.60429 1.19123i 0.205325 0.0436432i
\(746\) −29.3435 21.3193i −1.07434 0.780554i
\(747\) 0 0
\(748\) 0.472136 + 1.17557i 0.0172630 + 0.0429831i
\(749\) −0.354102 0.613323i −0.0129386 0.0224103i
\(750\) 0 0
\(751\) −35.4124 39.3294i −1.29222 1.43515i −0.839367 0.543565i \(-0.817074\pi\)
−0.452849 0.891587i \(-0.649592\pi\)
\(752\) −2.93444 0.623735i −0.107008 0.0227453i
\(753\) 0 0
\(754\) −41.2234 18.3538i −1.50127 0.668407i
\(755\) −0.236068 0.726543i −0.00859139 0.0264416i
\(756\) 0 0
\(757\) 12.8992 + 9.37181i 0.468829 + 0.340624i 0.796985 0.603999i \(-0.206427\pi\)
−0.328156 + 0.944624i \(0.606427\pi\)
\(758\) −22.9894 39.8187i −0.835011 1.44628i
\(759\) 0 0
\(760\) 0.364745 0.631757i 0.0132307 0.0229162i
\(761\) 4.46591 1.98835i 0.161889 0.0720776i −0.324192 0.945991i \(-0.605093\pi\)
0.486081 + 0.873914i \(0.338426\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −0.736068 + 0.534785i −0.0266300 + 0.0193478i
\(765\) 0 0
\(766\) −4.44427 13.6781i −0.160578 0.494208i
\(767\) 32.4890 6.90574i 1.17311 0.249352i
\(768\) 0 0
\(769\) 23.8435 41.2981i 0.859817 1.48925i −0.0122858 0.999925i \(-0.503911\pi\)
0.872103 0.489322i \(-0.162756\pi\)
\(770\) 4.41464 + 4.28084i 0.159092 + 0.154271i
\(771\) 0 0
\(772\) −0.100928 + 0.960269i −0.00363249 + 0.0345608i
\(773\) 15.2188 46.8388i 0.547384 1.68467i −0.167870 0.985809i \(-0.553689\pi\)
0.715253 0.698865i \(-0.246311\pi\)
\(774\) 0 0
\(775\) −15.1353 + 10.9964i −0.543674 + 0.395003i
\(776\) −30.7116 13.6737i −1.10248 0.490857i
\(777\) 0 0
\(778\) −10.0370 11.1472i −0.359842 0.399645i
\(779\) −4.63808 + 2.06501i −0.166177 + 0.0739866i
\(780\) 0 0
\(781\) 26.9249 + 40.0964i 0.963448 + 1.43476i
\(782\) 5.47214 0.195683
\(783\) 0 0
\(784\) −3.00000 + 9.23305i −0.107143 + 0.329752i
\(785\) −2.48127 + 2.75573i −0.0885604 + 0.0983563i
\(786\) 0 0
\(787\) 2.47818 + 23.5783i 0.0883377 + 0.840477i 0.945542 + 0.325500i \(0.105533\pi\)
−0.857204 + 0.514976i \(0.827801\pi\)
\(788\) −16.0914 3.42032i −0.573231 0.121844i
\(789\) 0 0
\(790\) 0.0341011 0.324451i 0.00121326 0.0115434i
\(791\) −38.1246 −1.35556
\(792\) 0 0
\(793\) 7.14590 0.253758
\(794\) 4.27762 40.6988i 0.151807 1.44435i
\(795\) 0 0
\(796\) 1.98998 + 0.422984i 0.0705331 + 0.0149923i
\(797\) −1.59260 15.1526i −0.0564129 0.536733i −0.985835 0.167716i \(-0.946361\pi\)
0.929423 0.369017i \(-0.120306\pi\)
\(798\) 0 0
\(799\) 0.255585 0.283856i 0.00904195 0.0100421i
\(800\) 5.07295 15.6129i 0.179356 0.552000i
\(801\) 0 0
\(802\) −24.1246 −0.851870
\(803\) 3.94309 1.12184i 0.139149 0.0395890i
\(804\) 0 0
\(805\) 5.72840 2.55045i 0.201899 0.0898914i
\(806\) −26.0215 28.8998i −0.916569 1.01795i
\(807\) 0 0
\(808\) 6.12825 + 2.72847i 0.215591 + 0.0959873i
\(809\) −20.4894 + 14.8864i −0.720367 + 0.523378i −0.886502 0.462726i \(-0.846872\pi\)
0.166134 + 0.986103i \(0.446872\pi\)
\(810\) 0 0
\(811\) 14.1353 43.5038i 0.496356 1.52763i −0.318477 0.947931i \(-0.603171\pi\)
0.814833 0.579696i \(-0.196829\pi\)
\(812\) 0.866729 8.24637i 0.0304162 0.289391i
\(813\) 0 0
\(814\) −3.90115 22.3952i −0.136735 0.784953i
\(815\) −2.91641 + 5.05137i −0.102157 + 0.176942i
\(816\) 0 0
\(817\) 1.47366 0.313235i 0.0515567 0.0109587i
\(818\) −14.4721 44.5407i −0.506006 1.55733i
\(819\) 0 0
\(820\) 1.13525 0.824811i 0.0396448 0.0288036i
\(821\) 9.08920 10.0946i 0.317215 0.352303i −0.563358 0.826213i \(-0.690491\pi\)
0.880574 + 0.473910i \(0.157158\pi\)
\(822\) 0 0
\(823\) −24.2344 + 10.7899i −0.844758 + 0.376111i −0.783031 0.621982i \(-0.786328\pi\)
−0.0617272 + 0.998093i \(0.519661\pi\)
\(824\) −6.70820 + 11.6190i −0.233691 + 0.404765i
\(825\) 0 0
\(826\) 12.9271 + 22.3903i 0.449790 + 0.779058i
\(827\) −10.4164 7.56796i −0.362214 0.263164i 0.391761 0.920067i \(-0.371866\pi\)
−0.753975 + 0.656903i \(0.771866\pi\)
\(828\) 0 0
\(829\) −13.1910 40.5977i −0.458142 1.41002i −0.867407 0.497600i \(-0.834215\pi\)
0.409265 0.912416i \(-0.365785\pi\)
\(830\) 7.17508 + 3.19455i 0.249051 + 0.110884i
\(831\) 0 0
\(832\) −25.8391 5.49228i −0.895811 0.190411i
\(833\) −0.827091 0.918578i −0.0286570 0.0318268i
\(834\) 0 0
\(835\) −3.63525 6.29645i −0.125803 0.217898i
\(836\) −1.48278 0.930812i −0.0512830 0.0321928i
\(837\) 0 0
\(838\) 28.1525 + 20.4540i 0.972511 + 0.706571i
\(839\) 22.7828 4.84264i 0.786550 0.167186i 0.202908 0.979198i \(-0.434961\pi\)
0.583642 + 0.812011i \(0.301627\pi\)
\(840\) 0 0
\(841\) 0.940756 + 8.95070i 0.0324399 + 0.308645i
\(842\) 0.630771 + 6.00138i 0.0217378 + 0.206821i
\(843\) 0 0
\(844\) −6.81334 + 1.44822i −0.234525 + 0.0498498i
\(845\) 8.00000 + 5.81234i 0.275208 + 0.199951i
\(846\) 0 0
\(847\) −23.8328 + 22.8254i −0.818905 + 0.784289i
\(848\) −17.9164 31.0321i −0.615252 1.06565i
\(849\) 0 0
\(850\) 3.24803 + 3.60730i 0.111406 + 0.123729i
\(851\) −22.6738 4.81946i −0.777248 0.165209i
\(852\) 0 0
\(853\) 7.25745 + 3.23123i 0.248490 + 0.110635i 0.527203 0.849740i \(-0.323241\pi\)
−0.278712 + 0.960375i \(0.589908\pi\)
\(854\) 1.71885 + 5.29007i 0.0588177 + 0.181022i
\(855\) 0 0
\(856\) 0.427051 + 0.310271i 0.0145963 + 0.0106048i
\(857\) 20.8607 + 36.1318i 0.712587 + 1.23424i 0.963883 + 0.266327i \(0.0858101\pi\)
−0.251296 + 0.967910i \(0.580857\pi\)
\(858\) 0 0
\(859\) −21.4443 + 37.1426i −0.731669 + 1.26729i 0.224500 + 0.974474i \(0.427925\pi\)
−0.956169 + 0.292814i \(0.905408\pi\)
\(860\) −0.380408 + 0.169368i −0.0129718 + 0.00577541i
\(861\) 0 0
\(862\) −1.61689 + 1.79574i −0.0550716 + 0.0611632i
\(863\) 19.3262 14.0413i 0.657873 0.477973i −0.208071 0.978114i \(-0.566719\pi\)
0.865944 + 0.500141i \(0.166719\pi\)
\(864\) 0 0
\(865\) −2.07953 6.40013i −0.0707060 0.217611i
\(866\) 9.49606 2.01845i 0.322689 0.0685897i
\(867\) 0 0
\(868\) 3.57295 6.18853i 0.121274 0.210052i
\(869\) 1.73318 + 0.247239i 0.0587942 + 0.00838699i
\(870\) 0 0
\(871\) −6.88500 + 65.5064i −0.233289 + 2.21960i
\(872\) 0 0
\(873\) 0 0
\(874\) −6.11803 + 4.44501i −0.206946 + 0.150355i
\(875\) 10.3156 + 4.59279i 0.348730 + 0.155265i
\(876\) 0 0
\(877\) −13.6612 15.1723i −0.461307 0.512334i 0.466944 0.884287i \(-0.345355\pi\)
−0.928252 + 0.371953i \(0.878688\pi\)
\(878\) 24.6972 10.9959i 0.833490 0.371094i
\(879\) 0 0
\(880\) −5.77415 2.11515i −0.194646 0.0713017i
\(881\) 25.0902 0.845309 0.422655 0.906291i \(-0.361098\pi\)
0.422655 + 0.906291i \(0.361098\pi\)
\(882\) 0 0
\(883\) 11.5623 35.5851i 0.389103 1.19753i −0.544358 0.838853i \(-0.683226\pi\)
0.933460 0.358681i \(-0.116774\pi\)
\(884\) −1.59385 + 1.77015i −0.0536069 + 0.0595364i
\(885\) 0 0
\(886\) 0.148055 + 1.40865i 0.00497400 + 0.0473245i
\(887\) −2.93444 0.623735i −0.0985289 0.0209430i 0.158383 0.987378i \(-0.449372\pi\)
−0.256912 + 0.966435i \(0.582705\pi\)
\(888\) 0 0
\(889\) −3.04435 + 28.9651i −0.102104 + 0.971457i
\(890\) −5.85410 −0.196230
\(891\) 0 0
\(892\) −7.85410 −0.262975
\(893\) −0.0551768 + 0.524972i −0.00184642 + 0.0175675i
\(894\) 0 0
\(895\) 0.835438 + 0.177578i 0.0279256 + 0.00593577i
\(896\) −4.27042 40.6303i −0.142665 1.35736i
\(897\) 0 0
\(898\) −16.8116 + 18.6712i −0.561012 + 0.623067i
\(899\) 5.32624 16.3925i 0.177640 0.546720i
\(900\) 0 0
\(901\) 4.56231 0.151992
\(902\) 17.7832 + 26.4826i 0.592116 + 0.881775i
\(903\) 0 0
\(904\) 25.9597 11.5580i 0.863406 0.384413i
\(905\) 2.17960 + 2.42069i 0.0724522 + 0.0804663i
\(906\) 0 0
\(907\) 3.63474 + 1.61829i 0.120689 + 0.0537344i 0.466193 0.884683i \(-0.345625\pi\)
−0.345504 + 0.938417i \(0.612292\pi\)
\(908\) −5.44427 + 3.95550i −0.180675 + 0.131268i
\(909\) 0 0
\(910\) −3.57295 + 10.9964i −0.118442 + 0.364527i
\(911\) −3.75720 + 35.7474i −0.124482 + 1.18436i 0.736755 + 0.676159i \(0.236357\pi\)
−0.861237 + 0.508204i \(0.830310\pi\)
\(912\) 0 0
\(913\) −18.5549 + 37.8444i −0.614078 + 1.25247i
\(914\) −26.5344 + 45.9590i −0.877681 + 1.52019i
\(915\) 0 0
\(916\) −6.04528 + 1.28496i −0.199742 + 0.0424564i
\(917\) −12.8435 39.5281i −0.424128 1.30533i
\(918\) 0 0
\(919\) 37.9894 27.6009i 1.25315 0.910469i 0.254753 0.967006i \(-0.418006\pi\)
0.998400 + 0.0565371i \(0.0180059\pi\)
\(920\) −3.12736 + 3.47328i −0.103106 + 0.114511i
\(921\) 0 0
\(922\) −14.6482 + 6.52180i −0.482412 + 0.214784i
\(923\) −45.4058 + 78.6451i −1.49455 + 2.58863i
\(924\) 0 0
\(925\) −10.2812 17.8075i −0.338042 0.585506i
\(926\) −11.5172 8.36775i −0.378479 0.274981i
\(927\) 0 0
\(928\) 4.67376 + 14.3844i 0.153424 + 0.472190i
\(929\) 2.63882 + 1.17488i 0.0865767 + 0.0385465i 0.449568 0.893246i \(-0.351578\pi\)
−0.362991 + 0.931792i \(0.618245\pi\)
\(930\) 0 0
\(931\) 1.67088 + 0.355156i 0.0547607 + 0.0116398i
\(932\) 3.58699 + 3.98376i 0.117496 + 0.130492i
\(933\) 0 0
\(934\) 11.5172 + 19.9484i 0.376855 + 0.652732i
\(935\) 0.600813 0.502029i 0.0196487 0.0164181i
\(936\) 0 0
\(937\) −26.3713 19.1599i −0.861514 0.625926i 0.0667827 0.997768i \(-0.478727\pi\)
−0.928296 + 0.371841i \(0.878727\pi\)
\(938\) −50.1501 + 10.6597i −1.63746 + 0.348053i
\(939\) 0 0
\(940\) −0.0152505 0.145099i −0.000497416 0.00473260i
\(941\) −3.51542 33.4470i −0.114599 1.09034i −0.889083 0.457746i \(-0.848657\pi\)
0.774484 0.632594i \(-0.218010\pi\)
\(942\) 0 0
\(943\) 31.8171 6.76292i 1.03611 0.220231i
\(944\) −20.9164 15.1967i −0.680771 0.494609i
\(945\) 0 0
\(946\) −3.52786 8.78402i −0.114701 0.285593i
\(947\) −1.33688 2.31555i −0.0434428 0.0752451i 0.843486 0.537151i \(-0.180499\pi\)
−0.886929 + 0.461905i \(0.847166\pi\)
\(948\) 0 0
\(949\) 5.15780 + 5.72831i 0.167429 + 0.185949i
\(950\) −6.56161 1.39471i −0.212887 0.0452505i
\(951\) 0 0
\(952\) 3.78747 + 1.68629i 0.122752 + 0.0546529i
\(953\) 18.5967 + 57.2349i 0.602408 + 1.85402i 0.513714 + 0.857961i \(0.328269\pi\)
0.0886937 + 0.996059i \(0.471731\pi\)
\(954\) 0 0
\(955\) 0.454915 + 0.330515i 0.0147207 + 0.0106952i
\(956\) 5.42705 + 9.39993i 0.175523 + 0.304015i
\(957\) 0 0
\(958\) 13.6803 23.6950i 0.441992 0.765552i
\(959\) −4.03459 + 1.79631i −0.130284 + 0.0580060i
\(960\) 0 0
\(961\) −10.8037 + 11.9987i −0.348507 + 0.387056i
\(962\) 34.5795 25.1235i 1.11489 0.810014i
\(963\) 0 0
\(964\) 3.27051 + 10.0656i 0.105336 + 0.324191i
\(965\) 0.583707 0.124071i 0.0187902 0.00399398i
\(966\) 0 0
\(967\) −12.8435 + 22.2455i −0.413018 + 0.715368i −0.995218 0.0976776i \(-0.968859\pi\)
0.582200 + 0.813045i \(0.302192\pi\)
\(968\) 9.30834 22.7674i 0.299181 0.731772i
\(969\) 0 0
\(970\) 0.971257 9.24089i 0.0311852 0.296707i
\(971\) −10.4377 + 32.1239i −0.334962 + 1.03091i 0.631779 + 0.775148i \(0.282325\pi\)
−0.966741 + 0.255757i \(0.917675\pi\)
\(972\) 0 0
\(973\) −14.2082 + 10.3229i −0.455494 + 0.330936i
\(974\) 57.9143 + 25.7851i 1.85569 + 0.826209i
\(975\) 0 0
\(976\) −3.72191 4.13360i −0.119135 0.132313i
\(977\) −45.0932 + 20.0768i −1.44266 + 0.642314i −0.970916 0.239422i \(-0.923042\pi\)
−0.471744 + 0.881735i \(0.656375\pi\)
\(978\) 0 0
\(979\) 1.16131 31.3940i 0.0371155 1.00336i
\(980\) −0.472136 −0.0150818
\(981\) 0 0
\(982\) −13.1074 + 40.3404i −0.418274 + 1.28731i
\(983\) 23.6236 26.2367i 0.753477 0.836821i −0.237425 0.971406i \(-0.576304\pi\)
0.990902 + 0.134585i \(0.0429702\pi\)
\(984\) 0 0
\(985\) 1.06276 + 10.1115i 0.0338624 + 0.322179i
\(986\) −4.37441 0.929809i −0.139310 0.0296112i
\(987\) 0 0
\(988\) 0.344086 3.27376i 0.0109468 0.104152i
\(989\) −9.65248 −0.306931
\(990\) 0 0
\(991\) −12.2705 −0.389786 −0.194893 0.980825i \(-0.562436\pi\)
−0.194893 + 0.980825i \(0.562436\pi\)
\(992\) −1.36247 + 12.9630i −0.0432585 + 0.411577i
\(993\) 0 0
\(994\) −69.1422 14.6966i −2.19306 0.466149i
\(995\) −0.131429 1.25047i −0.00416659 0.0396424i
\(996\) 0 0
\(997\) 22.7362 25.2511i 0.720063 0.799711i −0.266371 0.963871i \(-0.585825\pi\)
0.986434 + 0.164160i \(0.0524913\pi\)
\(998\) 1.28115 3.94298i 0.0405542 0.124813i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.n.d.433.1 8
3.2 odd 2 891.2.n.a.433.1 8
9.2 odd 6 891.2.n.a.136.1 8
9.4 even 3 33.2.e.a.4.1 4
9.5 odd 6 99.2.f.b.37.1 4
9.7 even 3 inner 891.2.n.d.136.1 8
11.3 even 5 inner 891.2.n.d.190.1 8
33.14 odd 10 891.2.n.a.190.1 8
36.31 odd 6 528.2.y.f.433.1 4
45.4 even 6 825.2.n.f.301.1 4
45.13 odd 12 825.2.bx.b.499.1 8
45.22 odd 12 825.2.bx.b.499.2 8
99.4 even 15 363.2.e.h.130.1 4
99.5 odd 30 1089.2.a.m.1.1 2
99.13 odd 30 363.2.e.c.148.1 4
99.14 odd 30 99.2.f.b.91.1 4
99.25 even 15 inner 891.2.n.d.784.1 8
99.31 even 15 363.2.e.h.148.1 4
99.40 odd 30 363.2.e.c.130.1 4
99.47 odd 30 891.2.n.a.784.1 8
99.49 even 15 363.2.a.h.1.2 2
99.50 even 30 1089.2.a.s.1.2 2
99.58 even 15 33.2.e.a.25.1 yes 4
99.76 odd 6 363.2.e.j.202.1 4
99.85 odd 30 363.2.e.j.124.1 4
99.94 odd 30 363.2.a.e.1.1 2
396.247 odd 30 5808.2.a.bl.1.2 2
396.355 odd 30 528.2.y.f.289.1 4
396.391 even 30 5808.2.a.bm.1.2 2
495.49 even 30 9075.2.a.x.1.1 2
495.58 odd 60 825.2.bx.b.124.2 8
495.94 odd 30 9075.2.a.bv.1.2 2
495.157 odd 60 825.2.bx.b.124.1 8
495.454 even 30 825.2.n.f.751.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.2.e.a.4.1 4 9.4 even 3
33.2.e.a.25.1 yes 4 99.58 even 15
99.2.f.b.37.1 4 9.5 odd 6
99.2.f.b.91.1 4 99.14 odd 30
363.2.a.e.1.1 2 99.94 odd 30
363.2.a.h.1.2 2 99.49 even 15
363.2.e.c.130.1 4 99.40 odd 30
363.2.e.c.148.1 4 99.13 odd 30
363.2.e.h.130.1 4 99.4 even 15
363.2.e.h.148.1 4 99.31 even 15
363.2.e.j.124.1 4 99.85 odd 30
363.2.e.j.202.1 4 99.76 odd 6
528.2.y.f.289.1 4 396.355 odd 30
528.2.y.f.433.1 4 36.31 odd 6
825.2.n.f.301.1 4 45.4 even 6
825.2.n.f.751.1 4 495.454 even 30
825.2.bx.b.124.1 8 495.157 odd 60
825.2.bx.b.124.2 8 495.58 odd 60
825.2.bx.b.499.1 8 45.13 odd 12
825.2.bx.b.499.2 8 45.22 odd 12
891.2.n.a.136.1 8 9.2 odd 6
891.2.n.a.190.1 8 33.14 odd 10
891.2.n.a.433.1 8 3.2 odd 2
891.2.n.a.784.1 8 99.47 odd 30
891.2.n.d.136.1 8 9.7 even 3 inner
891.2.n.d.190.1 8 11.3 even 5 inner
891.2.n.d.433.1 8 1.1 even 1 trivial
891.2.n.d.784.1 8 99.25 even 15 inner
1089.2.a.m.1.1 2 99.5 odd 30
1089.2.a.s.1.2 2 99.50 even 30
5808.2.a.bl.1.2 2 396.247 odd 30
5808.2.a.bm.1.2 2 396.391 even 30
9075.2.a.x.1.1 2 495.49 even 30
9075.2.a.bv.1.2 2 495.94 odd 30