Properties

Label 891.2.n.c.379.1
Level $891$
Weight $2$
Character 891.379
Analytic conductor $7.115$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(136,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.136");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{15})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 379.1
Root \(0.669131 - 0.743145i\) of defining polynomial
Character \(\chi\) \(=\) 891.379
Dual form 891.2.n.c.757.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.56082 + 0.544320i) q^{2} +(4.43444 + 1.97434i) q^{4} +(0.604528 - 0.128496i) q^{5} +(0.104528 + 0.994522i) q^{7} +(6.04508 + 4.39201i) q^{8} +1.61803 q^{10} +(1.46007 - 2.97795i) q^{11} +(0.157960 - 0.175433i) q^{13} +(-0.273659 + 2.60369i) q^{14} +(6.59368 + 7.32302i) q^{16} +(-0.354102 + 1.08981i) q^{17} +(-4.73607 - 3.44095i) q^{19} +(2.93444 + 0.623735i) q^{20} +(5.35995 - 6.83126i) q^{22} +(-0.118034 - 0.204441i) q^{23} +(-4.21878 + 1.87832i) q^{25} +(0.500000 - 0.363271i) q^{26} +(-1.50000 + 4.61653i) q^{28} +(0.627171 + 5.96713i) q^{29} +(-4.07512 + 4.52588i) q^{31} +(5.42705 + 9.39993i) q^{32} +(-1.50000 + 2.59808i) q^{34} +(0.190983 + 0.587785i) q^{35} +(5.04508 - 3.66547i) q^{37} +(-10.2553 - 11.3896i) q^{38} +(4.21878 + 1.87832i) q^{40} +(-0.0246758 + 0.234775i) q^{41} +(3.35410 - 5.80948i) q^{43} +(12.3541 - 10.3229i) q^{44} +(-0.190983 - 0.587785i) q^{46} +(-9.21783 + 4.10404i) q^{47} +(5.86889 - 1.24747i) q^{49} +(-11.8260 + 2.51369i) q^{50} +(1.04683 - 0.466079i) q^{52} +(-0.118034 - 0.363271i) q^{53} +(0.500000 - 1.98787i) q^{55} +(-3.73607 + 6.47106i) q^{56} +(-1.64195 + 15.6222i) q^{58} +(6.74376 + 3.00252i) q^{59} +(-7.73669 - 8.59247i) q^{61} +(-12.8992 + 9.37181i) q^{62} +(2.69098 + 8.28199i) q^{64} +(0.0729490 - 0.126351i) q^{65} +(-0.927051 - 1.60570i) q^{67} +(-3.72191 + 4.13360i) q^{68} +(0.169131 + 1.60917i) q^{70} +(3.19098 - 9.82084i) q^{71} +(4.61803 - 3.35520i) q^{73} +(14.9148 - 6.64048i) q^{74} +(-14.2082 - 24.6093i) q^{76} +(3.11426 + 1.14079i) q^{77} +(-10.7596 - 2.28703i) q^{79} +(4.92705 + 3.57971i) q^{80} +(-0.190983 + 0.587785i) q^{82} +(0.985051 + 1.09401i) q^{83} +(-0.0740275 + 0.704324i) q^{85} +(11.7515 - 13.0513i) q^{86} +(21.9055 - 11.5893i) q^{88} -8.23607 q^{89} +(0.190983 + 0.138757i) q^{91} +(-0.119779 - 1.13962i) q^{92} +(-25.8391 + 5.49228i) q^{94} +(-3.30524 - 1.47159i) q^{95} +(-7.68247 - 1.63296i) q^{97} +15.7082 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{2} + 9 q^{4} + 3 q^{5} - q^{7} + 26 q^{8} + 4 q^{10} + 11 q^{11} - 7 q^{13} + 4 q^{14} - q^{16} + 24 q^{17} - 20 q^{19} - 3 q^{20} - 4 q^{22} + 8 q^{23} - 6 q^{25} + 4 q^{26} - 12 q^{28} - 6 q^{29}+ \cdots + 72 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.56082 + 0.544320i 1.81078 + 0.384892i 0.984076 0.177750i \(-0.0568820\pi\)
0.826700 + 0.562643i \(0.190215\pi\)
\(3\) 0 0
\(4\) 4.43444 + 1.97434i 2.21722 + 0.987171i
\(5\) 0.604528 0.128496i 0.270353 0.0574654i −0.0707401 0.997495i \(-0.522536\pi\)
0.341093 + 0.940029i \(0.389203\pi\)
\(6\) 0 0
\(7\) 0.104528 + 0.994522i 0.0395080 + 0.375894i 0.996355 + 0.0853021i \(0.0271855\pi\)
−0.956847 + 0.290592i \(0.906148\pi\)
\(8\) 6.04508 + 4.39201i 2.13726 + 1.55281i
\(9\) 0 0
\(10\) 1.61803 0.511667
\(11\) 1.46007 2.97795i 0.440229 0.897886i
\(12\) 0 0
\(13\) 0.157960 0.175433i 0.0438103 0.0486563i −0.720841 0.693100i \(-0.756244\pi\)
0.764652 + 0.644444i \(0.222911\pi\)
\(14\) −0.273659 + 2.60369i −0.0731385 + 0.695866i
\(15\) 0 0
\(16\) 6.59368 + 7.32302i 1.64842 + 1.83076i
\(17\) −0.354102 + 1.08981i −0.0858823 + 0.264319i −0.984770 0.173860i \(-0.944376\pi\)
0.898888 + 0.438178i \(0.144376\pi\)
\(18\) 0 0
\(19\) −4.73607 3.44095i −1.08653 0.789409i −0.107719 0.994181i \(-0.534355\pi\)
−0.978810 + 0.204772i \(0.934355\pi\)
\(20\) 2.93444 + 0.623735i 0.656161 + 0.139471i
\(21\) 0 0
\(22\) 5.35995 6.83126i 1.14274 1.45643i
\(23\) −0.118034 0.204441i −0.0246118 0.0426289i 0.853457 0.521163i \(-0.174502\pi\)
−0.878069 + 0.478534i \(0.841168\pi\)
\(24\) 0 0
\(25\) −4.21878 + 1.87832i −0.843757 + 0.375665i
\(26\) 0.500000 0.363271i 0.0980581 0.0712434i
\(27\) 0 0
\(28\) −1.50000 + 4.61653i −0.283473 + 0.872441i
\(29\) 0.627171 + 5.96713i 0.116463 + 1.10807i 0.884137 + 0.467228i \(0.154747\pi\)
−0.767674 + 0.640840i \(0.778586\pi\)
\(30\) 0 0
\(31\) −4.07512 + 4.52588i −0.731913 + 0.812872i −0.988109 0.153753i \(-0.950864\pi\)
0.256196 + 0.966625i \(0.417531\pi\)
\(32\) 5.42705 + 9.39993i 0.959376 + 1.66169i
\(33\) 0 0
\(34\) −1.50000 + 2.59808i −0.257248 + 0.445566i
\(35\) 0.190983 + 0.587785i 0.0322820 + 0.0993538i
\(36\) 0 0
\(37\) 5.04508 3.66547i 0.829407 0.602599i −0.0899846 0.995943i \(-0.528682\pi\)
0.919391 + 0.393344i \(0.128682\pi\)
\(38\) −10.2553 11.3896i −1.66362 1.84764i
\(39\) 0 0
\(40\) 4.21878 + 1.87832i 0.667048 + 0.296989i
\(41\) −0.0246758 + 0.234775i −0.00385372 + 0.0366657i −0.996280 0.0861779i \(-0.972535\pi\)
0.992426 + 0.122844i \(0.0392013\pi\)
\(42\) 0 0
\(43\) 3.35410 5.80948i 0.511496 0.885937i −0.488415 0.872611i \(-0.662425\pi\)
0.999911 0.0133254i \(-0.00424174\pi\)
\(44\) 12.3541 10.3229i 1.86245 1.55623i
\(45\) 0 0
\(46\) −0.190983 0.587785i −0.0281589 0.0866642i
\(47\) −9.21783 + 4.10404i −1.34456 + 0.598636i −0.947676 0.319233i \(-0.896575\pi\)
−0.396882 + 0.917869i \(0.629908\pi\)
\(48\) 0 0
\(49\) 5.86889 1.24747i 0.838412 0.178210i
\(50\) −11.8260 + 2.51369i −1.67244 + 0.355489i
\(51\) 0 0
\(52\) 1.04683 0.466079i 0.145169 0.0646335i
\(53\) −0.118034 0.363271i −0.0162132 0.0498991i 0.942623 0.333860i \(-0.108351\pi\)
−0.958836 + 0.283961i \(0.908351\pi\)
\(54\) 0 0
\(55\) 0.500000 1.98787i 0.0674200 0.268044i
\(56\) −3.73607 + 6.47106i −0.499253 + 0.864732i
\(57\) 0 0
\(58\) −1.64195 + 15.6222i −0.215599 + 2.05129i
\(59\) 6.74376 + 3.00252i 0.877963 + 0.390894i 0.795682 0.605715i \(-0.207113\pi\)
0.0822812 + 0.996609i \(0.473779\pi\)
\(60\) 0 0
\(61\) −7.73669 8.59247i −0.990582 1.10015i −0.994971 0.100162i \(-0.968064\pi\)
0.00438910 0.999990i \(-0.498603\pi\)
\(62\) −12.8992 + 9.37181i −1.63820 + 1.19022i
\(63\) 0 0
\(64\) 2.69098 + 8.28199i 0.336373 + 1.03525i
\(65\) 0.0729490 0.126351i 0.00904821 0.0156720i
\(66\) 0 0
\(67\) −0.927051 1.60570i −0.113257 0.196167i 0.803824 0.594867i \(-0.202795\pi\)
−0.917082 + 0.398699i \(0.869462\pi\)
\(68\) −3.72191 + 4.13360i −0.451348 + 0.501272i
\(69\) 0 0
\(70\) 0.169131 + 1.60917i 0.0202150 + 0.192333i
\(71\) 3.19098 9.82084i 0.378700 1.16552i −0.562248 0.826968i \(-0.690063\pi\)
0.940948 0.338550i \(-0.109937\pi\)
\(72\) 0 0
\(73\) 4.61803 3.35520i 0.540500 0.392696i −0.283771 0.958892i \(-0.591585\pi\)
0.824271 + 0.566196i \(0.191585\pi\)
\(74\) 14.9148 6.64048i 1.73381 0.771940i
\(75\) 0 0
\(76\) −14.2082 24.6093i −1.62979 2.82288i
\(77\) 3.11426 + 1.14079i 0.354902 + 0.130006i
\(78\) 0 0
\(79\) −10.7596 2.28703i −1.21055 0.257311i −0.441951 0.897039i \(-0.645714\pi\)
−0.768601 + 0.639728i \(0.779047\pi\)
\(80\) 4.92705 + 3.57971i 0.550861 + 0.400224i
\(81\) 0 0
\(82\) −0.190983 + 0.587785i −0.0210905 + 0.0649100i
\(83\) 0.985051 + 1.09401i 0.108123 + 0.120083i 0.794777 0.606901i \(-0.207588\pi\)
−0.686654 + 0.726985i \(0.740921\pi\)
\(84\) 0 0
\(85\) −0.0740275 + 0.704324i −0.00802941 + 0.0763947i
\(86\) 11.7515 13.0513i 1.26719 1.40736i
\(87\) 0 0
\(88\) 21.9055 11.5893i 2.33513 1.23542i
\(89\) −8.23607 −0.873021 −0.436511 0.899699i \(-0.643786\pi\)
−0.436511 + 0.899699i \(0.643786\pi\)
\(90\) 0 0
\(91\) 0.190983 + 0.138757i 0.0200205 + 0.0145457i
\(92\) −0.119779 1.13962i −0.0124878 0.118814i
\(93\) 0 0
\(94\) −25.8391 + 5.49228i −2.66510 + 0.566485i
\(95\) −3.30524 1.47159i −0.339110 0.150982i
\(96\) 0 0
\(97\) −7.68247 1.63296i −0.780037 0.165802i −0.199349 0.979928i \(-0.563883\pi\)
−0.580687 + 0.814127i \(0.697216\pi\)
\(98\) 15.7082 1.58677
\(99\) 0 0
\(100\) −22.4164 −2.24164
\(101\) 10.0124 + 2.12820i 0.996270 + 0.211764i 0.677066 0.735922i \(-0.263251\pi\)
0.319204 + 0.947686i \(0.396585\pi\)
\(102\) 0 0
\(103\) −9.99809 4.45144i −0.985141 0.438613i −0.150022 0.988683i \(-0.547935\pi\)
−0.835119 + 0.550070i \(0.814601\pi\)
\(104\) 1.72539 0.366742i 0.169188 0.0359620i
\(105\) 0 0
\(106\) −0.104528 0.994522i −0.0101527 0.0965965i
\(107\) 9.28115 + 6.74315i 0.897243 + 0.651885i 0.937756 0.347294i \(-0.112899\pi\)
−0.0405134 + 0.999179i \(0.512899\pi\)
\(108\) 0 0
\(109\) −12.0000 −1.14939 −0.574696 0.818367i \(-0.694880\pi\)
−0.574696 + 0.818367i \(0.694880\pi\)
\(110\) 2.36245 4.81842i 0.225251 0.459419i
\(111\) 0 0
\(112\) −6.59368 + 7.32302i −0.623044 + 0.691961i
\(113\) −1.40822 + 13.3983i −0.132474 + 1.26041i 0.703124 + 0.711068i \(0.251788\pi\)
−0.835598 + 0.549342i \(0.814879\pi\)
\(114\) 0 0
\(115\) −0.0976248 0.108423i −0.00910356 0.0101105i
\(116\) −9.00000 + 27.6992i −0.835629 + 2.57180i
\(117\) 0 0
\(118\) 15.6353 + 11.3597i 1.43934 + 1.04574i
\(119\) −1.12086 0.238246i −0.102749 0.0218399i
\(120\) 0 0
\(121\) −6.73637 8.69605i −0.612397 0.790550i
\(122\) −15.1353 26.2150i −1.37028 2.37340i
\(123\) 0 0
\(124\) −27.0065 + 12.0241i −2.42526 + 1.07979i
\(125\) −4.80902 + 3.49396i −0.430132 + 0.312509i
\(126\) 0 0
\(127\) 2.38197 7.33094i 0.211365 0.650516i −0.788026 0.615641i \(-0.788897\pi\)
0.999392 0.0348741i \(-0.0111030\pi\)
\(128\) 0.113954 + 1.08420i 0.0100722 + 0.0958305i
\(129\) 0 0
\(130\) 0.255585 0.283856i 0.0224163 0.0248958i
\(131\) 5.89919 + 10.2177i 0.515414 + 0.892724i 0.999840 + 0.0178914i \(0.00569531\pi\)
−0.484426 + 0.874832i \(0.660971\pi\)
\(132\) 0 0
\(133\) 2.92705 5.06980i 0.253808 0.439608i
\(134\) −1.50000 4.61653i −0.129580 0.398807i
\(135\) 0 0
\(136\) −6.92705 + 5.03280i −0.593990 + 0.431559i
\(137\) 6.53335 + 7.25602i 0.558181 + 0.619923i 0.954508 0.298187i \(-0.0963817\pi\)
−0.396326 + 0.918110i \(0.629715\pi\)
\(138\) 0 0
\(139\) 13.3033 + 5.92302i 1.12837 + 0.502384i 0.884089 0.467319i \(-0.154780\pi\)
0.244285 + 0.969703i \(0.421447\pi\)
\(140\) −0.313585 + 2.98357i −0.0265028 + 0.252157i
\(141\) 0 0
\(142\) 13.5172 23.4125i 1.13434 1.96473i
\(143\) −0.291796 0.726543i −0.0244012 0.0607565i
\(144\) 0 0
\(145\) 1.14590 + 3.52671i 0.0951617 + 0.292877i
\(146\) 13.6523 6.07838i 1.12987 0.503051i
\(147\) 0 0
\(148\) 29.6090 6.29359i 2.43385 0.517330i
\(149\) 4.14350 0.880728i 0.339449 0.0721521i −0.0350335 0.999386i \(-0.511154\pi\)
0.374482 + 0.927234i \(0.377820\pi\)
\(150\) 0 0
\(151\) 0.964456 0.429403i 0.0784863 0.0349443i −0.367118 0.930174i \(-0.619655\pi\)
0.445604 + 0.895230i \(0.352989\pi\)
\(152\) −13.5172 41.6017i −1.09639 3.37435i
\(153\) 0 0
\(154\) 7.35410 + 4.61653i 0.592610 + 0.372010i
\(155\) −1.88197 + 3.25966i −0.151163 + 0.261822i
\(156\) 0 0
\(157\) −1.64195 + 15.6222i −0.131042 + 1.24678i 0.709370 + 0.704836i \(0.248979\pi\)
−0.840412 + 0.541947i \(0.817687\pi\)
\(158\) −26.3086 11.7134i −2.09300 0.931864i
\(159\) 0 0
\(160\) 4.48866 + 4.98517i 0.354860 + 0.394112i
\(161\) 0.190983 0.138757i 0.0150516 0.0109356i
\(162\) 0 0
\(163\) −1.59017 4.89404i −0.124552 0.383331i 0.869267 0.494342i \(-0.164591\pi\)
−0.993819 + 0.111011i \(0.964591\pi\)
\(164\) −0.572949 + 0.992377i −0.0447398 + 0.0774916i
\(165\) 0 0
\(166\) 1.92705 + 3.33775i 0.149568 + 0.259060i
\(167\) 8.05261 8.94333i 0.623130 0.692056i −0.346104 0.938196i \(-0.612496\pi\)
0.969234 + 0.246140i \(0.0791623\pi\)
\(168\) 0 0
\(169\) 1.35304 + 12.8734i 0.104080 + 0.990259i
\(170\) −0.572949 + 1.76336i −0.0439432 + 0.135243i
\(171\) 0 0
\(172\) 26.3435 19.1396i 2.00867 1.45938i
\(173\) −16.4753 + 7.33527i −1.25259 + 0.557690i −0.922405 0.386225i \(-0.873779\pi\)
−0.330188 + 0.943915i \(0.607112\pi\)
\(174\) 0 0
\(175\) −2.30902 3.99933i −0.174545 0.302321i
\(176\) 31.4349 8.94350i 2.36949 0.674141i
\(177\) 0 0
\(178\) −21.0911 4.48306i −1.58085 0.336019i
\(179\) 6.89919 + 5.01255i 0.515669 + 0.374656i 0.814970 0.579503i \(-0.196753\pi\)
−0.299301 + 0.954159i \(0.596753\pi\)
\(180\) 0 0
\(181\) 0.781153 2.40414i 0.0580626 0.178698i −0.917819 0.396999i \(-0.870051\pi\)
0.975881 + 0.218301i \(0.0700515\pi\)
\(182\) 0.413545 + 0.459289i 0.0306540 + 0.0340447i
\(183\) 0 0
\(184\) 0.184381 1.75427i 0.0135928 0.129326i
\(185\) 2.57890 2.86416i 0.189604 0.210577i
\(186\) 0 0
\(187\) 2.72840 + 2.64571i 0.199520 + 0.193473i
\(188\) −48.9787 −3.57214
\(189\) 0 0
\(190\) −7.66312 5.56758i −0.555941 0.403915i
\(191\) 0.0856778 + 0.815170i 0.00619943 + 0.0589836i 0.997184 0.0749907i \(-0.0238927\pi\)
−0.990985 + 0.133974i \(0.957226\pi\)
\(192\) 0 0
\(193\) 3.07715 0.654069i 0.221498 0.0470809i −0.0958256 0.995398i \(-0.530549\pi\)
0.317324 + 0.948317i \(0.397216\pi\)
\(194\) −18.7846 8.36344i −1.34866 0.600460i
\(195\) 0 0
\(196\) 28.4882 + 6.05535i 2.03487 + 0.432525i
\(197\) 13.0344 0.928666 0.464333 0.885661i \(-0.346294\pi\)
0.464333 + 0.885661i \(0.346294\pi\)
\(198\) 0 0
\(199\) 6.70820 0.475532 0.237766 0.971322i \(-0.423585\pi\)
0.237766 + 0.971322i \(0.423585\pi\)
\(200\) −33.7525 7.17432i −2.38666 0.507301i
\(201\) 0 0
\(202\) 24.4815 + 10.8999i 1.72251 + 0.766913i
\(203\) −5.86889 + 1.24747i −0.411915 + 0.0875552i
\(204\) 0 0
\(205\) 0.0152505 + 0.145099i 0.00106514 + 0.0101341i
\(206\) −23.1803 16.8415i −1.61505 1.17340i
\(207\) 0 0
\(208\) 2.32624 0.161296
\(209\) −17.1620 + 9.07973i −1.18712 + 0.628058i
\(210\) 0 0
\(211\) 2.42094 2.68872i 0.166664 0.185099i −0.654027 0.756471i \(-0.726922\pi\)
0.820691 + 0.571372i \(0.193589\pi\)
\(212\) 0.193806 1.84395i 0.0133107 0.126643i
\(213\) 0 0
\(214\) 20.0970 + 22.3199i 1.37380 + 1.52576i
\(215\) 1.28115 3.94298i 0.0873739 0.268909i
\(216\) 0 0
\(217\) −4.92705 3.57971i −0.334470 0.243007i
\(218\) −30.7299 6.53184i −2.08129 0.442392i
\(219\) 0 0
\(220\) 6.14195 7.82792i 0.414090 0.527759i
\(221\) 0.135255 + 0.234268i 0.00909823 + 0.0157586i
\(222\) 0 0
\(223\) 6.55957 2.92051i 0.439261 0.195572i −0.175177 0.984537i \(-0.556050\pi\)
0.614438 + 0.788965i \(0.289383\pi\)
\(224\) −8.78115 + 6.37988i −0.586715 + 0.426274i
\(225\) 0 0
\(226\) −10.8992 + 33.5442i −0.725003 + 2.23133i
\(227\) −1.37772 13.1081i −0.0914425 0.870018i −0.940060 0.341010i \(-0.889231\pi\)
0.848617 0.529008i \(-0.177436\pi\)
\(228\) 0 0
\(229\) 0.315921 0.350865i 0.0208766 0.0231858i −0.732616 0.680642i \(-0.761701\pi\)
0.753493 + 0.657456i \(0.228368\pi\)
\(230\) −0.190983 0.330792i −0.0125930 0.0218118i
\(231\) 0 0
\(232\) −22.4164 + 38.8264i −1.47171 + 2.54908i
\(233\) −1.28115 3.94298i −0.0839311 0.258313i 0.900280 0.435311i \(-0.143362\pi\)
−0.984211 + 0.176997i \(0.943362\pi\)
\(234\) 0 0
\(235\) −5.04508 + 3.66547i −0.329105 + 0.239109i
\(236\) 23.9768 + 26.6290i 1.56076 + 1.73340i
\(237\) 0 0
\(238\) −2.74064 1.22021i −0.177649 0.0790945i
\(239\) −0.0399263 + 0.379874i −0.00258262 + 0.0245720i −0.995737 0.0922345i \(-0.970599\pi\)
0.993155 + 0.116806i \(0.0372657\pi\)
\(240\) 0 0
\(241\) −4.14590 + 7.18091i −0.267061 + 0.462563i −0.968101 0.250558i \(-0.919386\pi\)
0.701041 + 0.713121i \(0.252719\pi\)
\(242\) −12.5172 25.9358i −0.804637 1.66722i
\(243\) 0 0
\(244\) −17.3435 53.3777i −1.11030 3.41716i
\(245\) 3.38761 1.50826i 0.216427 0.0963594i
\(246\) 0 0
\(247\) −1.35177 + 0.287327i −0.0860109 + 0.0182822i
\(248\) −44.5121 + 9.46135i −2.82652 + 0.600796i
\(249\) 0 0
\(250\) −14.2169 + 6.32976i −0.899154 + 0.400329i
\(251\) −6.79180 20.9030i −0.428694 1.31939i −0.899412 0.437102i \(-0.856005\pi\)
0.470718 0.882284i \(-0.343995\pi\)
\(252\) 0 0
\(253\) −0.781153 + 0.0530006i −0.0491107 + 0.00333212i
\(254\) 10.0902 17.4767i 0.633114 1.09658i
\(255\) 0 0
\(256\) 1.52218 14.4825i 0.0951360 0.905158i
\(257\) 27.1713 + 12.0974i 1.69490 + 0.754617i 0.999347 + 0.0361387i \(0.0115058\pi\)
0.695550 + 0.718478i \(0.255161\pi\)
\(258\) 0 0
\(259\) 4.17274 + 4.63430i 0.259282 + 0.287961i
\(260\) 0.572949 0.416272i 0.0355328 0.0258161i
\(261\) 0 0
\(262\) 9.54508 + 29.3768i 0.589697 + 1.81490i
\(263\) 7.63525 13.2246i 0.470810 0.815467i −0.528633 0.848851i \(-0.677295\pi\)
0.999443 + 0.0333839i \(0.0106284\pi\)
\(264\) 0 0
\(265\) −0.118034 0.204441i −0.00725077 0.0125587i
\(266\) 10.2553 11.3896i 0.628790 0.698342i
\(267\) 0 0
\(268\) −0.940756 8.95070i −0.0574658 0.546751i
\(269\) −7.85410 + 24.1724i −0.478873 + 1.47382i 0.361789 + 0.932260i \(0.382166\pi\)
−0.840662 + 0.541560i \(0.817834\pi\)
\(270\) 0 0
\(271\) −15.0623 + 10.9434i −0.914970 + 0.664765i −0.942267 0.334863i \(-0.891310\pi\)
0.0272970 + 0.999627i \(0.491310\pi\)
\(272\) −10.3156 + 4.59279i −0.625473 + 0.278479i
\(273\) 0 0
\(274\) 12.7812 + 22.1376i 0.772138 + 1.33738i
\(275\) −0.566182 + 15.3058i −0.0341421 + 0.922976i
\(276\) 0 0
\(277\) 28.5764 + 6.07409i 1.71699 + 0.364957i 0.958138 0.286308i \(-0.0924282\pi\)
0.758850 + 0.651265i \(0.225762\pi\)
\(278\) 30.8435 + 22.4091i 1.84987 + 1.34401i
\(279\) 0 0
\(280\) −1.42705 + 4.39201i −0.0852826 + 0.262473i
\(281\) 16.5703 + 18.4032i 0.988502 + 1.09784i 0.995200 + 0.0978646i \(0.0312012\pi\)
−0.00669823 + 0.999978i \(0.502132\pi\)
\(282\) 0 0
\(283\) 0.596670 5.67693i 0.0354683 0.337459i −0.962370 0.271742i \(-0.912400\pi\)
0.997838 0.0657162i \(-0.0209332\pi\)
\(284\) 33.5399 37.2498i 1.99023 2.21037i
\(285\) 0 0
\(286\) −0.351767 2.01938i −0.0208004 0.119408i
\(287\) −0.236068 −0.0139347
\(288\) 0 0
\(289\) 12.6910 + 9.22054i 0.746528 + 0.542385i
\(290\) 1.01478 + 9.65502i 0.0595901 + 0.566962i
\(291\) 0 0
\(292\) 27.1027 5.76086i 1.58607 0.337129i
\(293\) −19.7805 8.80686i −1.15559 0.514502i −0.262745 0.964865i \(-0.584628\pi\)
−0.892845 + 0.450363i \(0.851294\pi\)
\(294\) 0 0
\(295\) 4.46261 + 0.948557i 0.259823 + 0.0552271i
\(296\) 46.5967 2.70838
\(297\) 0 0
\(298\) 11.0902 0.642436
\(299\) −0.0545103 0.0115865i −0.00315241 0.000670066i
\(300\) 0 0
\(301\) 6.12825 + 2.72847i 0.353226 + 0.157267i
\(302\) 2.70353 0.574654i 0.155571 0.0330676i
\(303\) 0 0
\(304\) −6.02992 57.3709i −0.345840 3.29045i
\(305\) −5.78115 4.20025i −0.331028 0.240506i
\(306\) 0 0
\(307\) 27.9787 1.59683 0.798415 0.602108i \(-0.205672\pi\)
0.798415 + 0.602108i \(0.205672\pi\)
\(308\) 11.5577 + 11.2074i 0.658559 + 0.638600i
\(309\) 0 0
\(310\) −6.59368 + 7.32302i −0.374496 + 0.415920i
\(311\) −1.21802 + 11.5886i −0.0690673 + 0.657132i 0.904145 + 0.427225i \(0.140509\pi\)
−0.973213 + 0.229907i \(0.926158\pi\)
\(312\) 0 0
\(313\) −1.69147 1.87857i −0.0956076 0.106183i 0.693442 0.720512i \(-0.256093\pi\)
−0.789050 + 0.614329i \(0.789427\pi\)
\(314\) −12.7082 + 39.1118i −0.717165 + 2.20721i
\(315\) 0 0
\(316\) −43.1976 31.3849i −2.43005 1.76554i
\(317\) 6.67063 + 1.41789i 0.374660 + 0.0796365i 0.391393 0.920224i \(-0.371993\pi\)
−0.0167331 + 0.999860i \(0.505327\pi\)
\(318\) 0 0
\(319\) 18.6855 + 6.84477i 1.04619 + 0.383233i
\(320\) 2.69098 + 4.66092i 0.150431 + 0.260553i
\(321\) 0 0
\(322\) 0.564602 0.251377i 0.0314640 0.0140087i
\(323\) 5.42705 3.94298i 0.301969 0.219393i
\(324\) 0 0
\(325\) −0.336881 + 1.03681i −0.0186868 + 0.0575121i
\(326\) −1.40822 13.3983i −0.0779942 0.742065i
\(327\) 0 0
\(328\) −1.18030 + 1.31086i −0.0651712 + 0.0723800i
\(329\) −5.04508 8.73834i −0.278145 0.481760i
\(330\) 0 0
\(331\) −8.35410 + 14.4697i −0.459183 + 0.795328i −0.998918 0.0465067i \(-0.985191\pi\)
0.539735 + 0.841835i \(0.318524\pi\)
\(332\) 2.20820 + 6.79615i 0.121191 + 0.372987i
\(333\) 0 0
\(334\) 25.4894 18.5191i 1.39472 1.01332i
\(335\) −0.766755 0.851568i −0.0418923 0.0465261i
\(336\) 0 0
\(337\) −16.6086 7.39461i −0.904726 0.402810i −0.0989927 0.995088i \(-0.531562\pi\)
−0.805734 + 0.592278i \(0.798229\pi\)
\(338\) −3.54232 + 33.7029i −0.192677 + 1.83320i
\(339\) 0 0
\(340\) −1.71885 + 2.97713i −0.0932176 + 0.161458i
\(341\) 7.52786 + 18.7436i 0.407657 + 1.01502i
\(342\) 0 0
\(343\) 4.01722 + 12.3637i 0.216910 + 0.667579i
\(344\) 45.7911 20.3875i 2.46889 1.09922i
\(345\) 0 0
\(346\) −46.1830 + 9.81651i −2.48281 + 0.527739i
\(347\) 1.49448 0.317661i 0.0802277 0.0170529i −0.167623 0.985851i \(-0.553609\pi\)
0.247851 + 0.968798i \(0.420276\pi\)
\(348\) 0 0
\(349\) 11.6095 5.16889i 0.621443 0.276684i −0.0717650 0.997422i \(-0.522863\pi\)
0.693208 + 0.720737i \(0.256197\pi\)
\(350\) −3.73607 11.4984i −0.199701 0.614617i
\(351\) 0 0
\(352\) 35.9164 2.43690i 1.91435 0.129887i
\(353\) 6.00000 10.3923i 0.319348 0.553127i −0.661004 0.750382i \(-0.729870\pi\)
0.980352 + 0.197256i \(0.0632029\pi\)
\(354\) 0 0
\(355\) 0.667097 6.34700i 0.0354058 0.336864i
\(356\) −36.5224 16.2608i −1.93568 0.861821i
\(357\) 0 0
\(358\) 14.9392 + 16.5916i 0.789560 + 0.876895i
\(359\) 7.85410 5.70634i 0.414524 0.301169i −0.360907 0.932602i \(-0.617533\pi\)
0.775431 + 0.631433i \(0.217533\pi\)
\(360\) 0 0
\(361\) 4.71885 + 14.5231i 0.248360 + 0.764375i
\(362\) 3.30902 5.73139i 0.173918 0.301235i
\(363\) 0 0
\(364\) 0.572949 + 0.992377i 0.0300307 + 0.0520147i
\(365\) 2.36060 2.62171i 0.123560 0.137227i
\(366\) 0 0
\(367\) −2.31488 22.0246i −0.120836 1.14967i −0.871982 0.489538i \(-0.837165\pi\)
0.751146 0.660136i \(-0.229501\pi\)
\(368\) 0.718847 2.21238i 0.0374725 0.115328i
\(369\) 0 0
\(370\) 8.16312 5.93085i 0.424380 0.308330i
\(371\) 0.348943 0.155360i 0.0181162 0.00806587i
\(372\) 0 0
\(373\) −0.444272 0.769502i −0.0230035 0.0398433i 0.854294 0.519789i \(-0.173990\pi\)
−0.877298 + 0.479946i \(0.840656\pi\)
\(374\) 5.54683 + 8.26031i 0.286820 + 0.427130i
\(375\) 0 0
\(376\) −73.7476 15.6755i −3.80324 0.808404i
\(377\) 1.14590 + 0.832544i 0.0590168 + 0.0428782i
\(378\) 0 0
\(379\) −7.69098 + 23.6704i −0.395059 + 1.21587i 0.533856 + 0.845575i \(0.320742\pi\)
−0.928915 + 0.370292i \(0.879258\pi\)
\(380\) −11.7515 13.0513i −0.602838 0.669519i
\(381\) 0 0
\(382\) −0.224307 + 2.13414i −0.0114766 + 0.109192i
\(383\) −8.50345 + 9.44404i −0.434506 + 0.482568i −0.920137 0.391596i \(-0.871923\pi\)
0.485631 + 0.874164i \(0.338590\pi\)
\(384\) 0 0
\(385\) 2.02924 + 0.289472i 0.103420 + 0.0147529i
\(386\) 8.23607 0.419205
\(387\) 0 0
\(388\) −30.8435 22.4091i −1.56584 1.13765i
\(389\) 3.84065 + 36.5414i 0.194729 + 1.85272i 0.459207 + 0.888329i \(0.348134\pi\)
−0.264478 + 0.964392i \(0.585200\pi\)
\(390\) 0 0
\(391\) 0.264599 0.0562422i 0.0133813 0.00284429i
\(392\) 40.9568 + 18.2351i 2.06863 + 0.921014i
\(393\) 0 0
\(394\) 33.3789 + 7.09491i 1.68161 + 0.357436i
\(395\) −6.79837 −0.342063
\(396\) 0 0
\(397\) −18.7082 −0.938938 −0.469469 0.882949i \(-0.655555\pi\)
−0.469469 + 0.882949i \(0.655555\pi\)
\(398\) 17.1785 + 3.65141i 0.861082 + 0.183029i
\(399\) 0 0
\(400\) −41.5723 18.5092i −2.07862 0.925460i
\(401\) 30.9945 6.58808i 1.54779 0.328993i 0.646741 0.762710i \(-0.276131\pi\)
0.901049 + 0.433716i \(0.142798\pi\)
\(402\) 0 0
\(403\) 0.150280 + 1.42982i 0.00748598 + 0.0712243i
\(404\) 40.1976 + 29.2052i 1.99990 + 1.45301i
\(405\) 0 0
\(406\) −15.7082 −0.779585
\(407\) −3.54939 20.3759i −0.175937 1.00999i
\(408\) 0 0
\(409\) −4.33070 + 4.80973i −0.214140 + 0.237826i −0.840639 0.541596i \(-0.817820\pi\)
0.626500 + 0.779422i \(0.284487\pi\)
\(410\) −0.0399263 + 0.379874i −0.00197182 + 0.0187606i
\(411\) 0 0
\(412\) −35.5473 39.4793i −1.75129 1.94500i
\(413\) −2.28115 + 7.02067i −0.112248 + 0.345464i
\(414\) 0 0
\(415\) 0.736068 + 0.534785i 0.0361322 + 0.0262515i
\(416\) 2.50631 + 0.532733i 0.122882 + 0.0261194i
\(417\) 0 0
\(418\) −48.8911 + 13.9100i −2.39134 + 0.680358i
\(419\) −15.7254 27.2372i −0.768237 1.33063i −0.938518 0.345230i \(-0.887801\pi\)
0.170281 0.985396i \(-0.445533\pi\)
\(420\) 0 0
\(421\) 9.59824 4.27341i 0.467789 0.208273i −0.159285 0.987233i \(-0.550919\pi\)
0.627074 + 0.778959i \(0.284252\pi\)
\(422\) 7.66312 5.56758i 0.373035 0.271026i
\(423\) 0 0
\(424\) 0.881966 2.71441i 0.0428321 0.131824i
\(425\) −0.553143 5.26281i −0.0268314 0.255284i
\(426\) 0 0
\(427\) 7.73669 8.59247i 0.374405 0.415819i
\(428\) 27.8435 + 48.2263i 1.34586 + 2.33111i
\(429\) 0 0
\(430\) 5.42705 9.39993i 0.261716 0.453305i
\(431\) −1.82624 5.62058i −0.0879668 0.270734i 0.897390 0.441238i \(-0.145460\pi\)
−0.985357 + 0.170504i \(0.945460\pi\)
\(432\) 0 0
\(433\) −28.5623 + 20.7517i −1.37262 + 0.997264i −0.375089 + 0.926989i \(0.622388\pi\)
−0.997528 + 0.0702758i \(0.977612\pi\)
\(434\) −10.6688 11.8489i −0.512119 0.568766i
\(435\) 0 0
\(436\) −53.2133 23.6921i −2.54846 1.13465i
\(437\) −0.144455 + 1.37440i −0.00691021 + 0.0657463i
\(438\) 0 0
\(439\) −11.6459 + 20.1713i −0.555828 + 0.962723i 0.442010 + 0.897010i \(0.354266\pi\)
−0.997839 + 0.0657130i \(0.979068\pi\)
\(440\) 11.7533 9.82084i 0.560316 0.468190i
\(441\) 0 0
\(442\) 0.218847 + 0.673542i 0.0104095 + 0.0320371i
\(443\) −28.8651 + 12.8516i −1.37142 + 0.610596i −0.954463 0.298330i \(-0.903570\pi\)
−0.416958 + 0.908926i \(0.636904\pi\)
\(444\) 0 0
\(445\) −4.97894 + 1.05831i −0.236024 + 0.0501685i
\(446\) 18.3876 3.90840i 0.870677 0.185068i
\(447\) 0 0
\(448\) −7.95534 + 3.54195i −0.375854 + 0.167341i
\(449\) −2.79837 8.61251i −0.132063 0.406449i 0.863058 0.505104i \(-0.168546\pi\)
−0.995122 + 0.0986549i \(0.968546\pi\)
\(450\) 0 0
\(451\) 0.663119 + 0.416272i 0.0312251 + 0.0196015i
\(452\) −32.6976 + 56.6338i −1.53796 + 2.66383i
\(453\) 0 0
\(454\) 3.60692 34.3175i 0.169281 1.61060i
\(455\) 0.133284 + 0.0593421i 0.00624847 + 0.00278200i
\(456\) 0 0
\(457\) 16.0449 + 17.8197i 0.750548 + 0.833568i 0.990543 0.137206i \(-0.0438122\pi\)
−0.239994 + 0.970774i \(0.577146\pi\)
\(458\) 1.00000 0.726543i 0.0467269 0.0339491i
\(459\) 0 0
\(460\) −0.218847 0.673542i −0.0102038 0.0314041i
\(461\) −4.63525 + 8.02850i −0.215885 + 0.373924i −0.953546 0.301247i \(-0.902597\pi\)
0.737661 + 0.675172i \(0.235930\pi\)
\(462\) 0 0
\(463\) −0.864745 1.49778i −0.0401881 0.0696079i 0.845232 0.534400i \(-0.179462\pi\)
−0.885420 + 0.464792i \(0.846129\pi\)
\(464\) −39.5621 + 43.9381i −1.83662 + 2.03978i
\(465\) 0 0
\(466\) −1.13456 10.7946i −0.0525576 0.500052i
\(467\) 6.45492 19.8662i 0.298698 0.919297i −0.683256 0.730179i \(-0.739437\pi\)
0.981954 0.189119i \(-0.0605631\pi\)
\(468\) 0 0
\(469\) 1.50000 1.08981i 0.0692636 0.0503229i
\(470\) −14.9148 + 6.64048i −0.687967 + 0.306302i
\(471\) 0 0
\(472\) 27.5795 + 47.7691i 1.26945 + 2.19875i
\(473\) −12.4031 18.4706i −0.570295 0.849279i
\(474\) 0 0
\(475\) 26.4437 + 5.62078i 1.21332 + 0.257899i
\(476\) −4.50000 3.26944i −0.206257 0.149855i
\(477\) 0 0
\(478\) −0.309017 + 0.951057i −0.0141341 + 0.0435003i
\(479\) −18.9912 21.0919i −0.867732 0.963714i 0.131888 0.991265i \(-0.457896\pi\)
−0.999620 + 0.0275505i \(0.991229\pi\)
\(480\) 0 0
\(481\) 0.153880 1.46407i 0.00701633 0.0667559i
\(482\) −14.5256 + 16.1323i −0.661624 + 0.734808i
\(483\) 0 0
\(484\) −12.7031 51.8620i −0.577412 2.35737i
\(485\) −4.85410 −0.220413
\(486\) 0 0
\(487\) 10.2812 + 7.46969i 0.465884 + 0.338484i 0.795835 0.605514i \(-0.207032\pi\)
−0.329951 + 0.943998i \(0.607032\pi\)
\(488\) −9.03075 85.9218i −0.408803 3.88950i
\(489\) 0 0
\(490\) 9.49606 2.01845i 0.428988 0.0911842i
\(491\) −16.3614 7.28458i −0.738382 0.328749i 0.00285189 0.999996i \(-0.499092\pi\)
−0.741234 + 0.671247i \(0.765759\pi\)
\(492\) 0 0
\(493\) −6.72514 1.42947i −0.302885 0.0643803i
\(494\) −3.61803 −0.162783
\(495\) 0 0
\(496\) −60.0132 −2.69467
\(497\) 10.1006 + 2.14695i 0.453073 + 0.0963037i
\(498\) 0 0
\(499\) −16.5771 7.38060i −0.742093 0.330401i 0.000630054 1.00000i \(-0.499799\pi\)
−0.742723 + 0.669599i \(0.766466\pi\)
\(500\) −28.2236 + 5.99911i −1.26220 + 0.268288i
\(501\) 0 0
\(502\) −6.01467 57.2258i −0.268448 2.55411i
\(503\) −7.00000 5.08580i −0.312115 0.226765i 0.420689 0.907205i \(-0.361788\pi\)
−0.732803 + 0.680441i \(0.761788\pi\)
\(504\) 0 0
\(505\) 6.32624 0.281514
\(506\) −2.02924 0.289472i −0.0902109 0.0128686i
\(507\) 0 0
\(508\) 25.0365 27.8058i 1.11081 1.23368i
\(509\) −4.04971 + 38.5304i −0.179500 + 1.70783i 0.420056 + 0.907498i \(0.362010\pi\)
−0.599557 + 0.800332i \(0.704656\pi\)
\(510\) 0 0
\(511\) 3.81953 + 4.24202i 0.168966 + 0.187656i
\(512\) 12.4549 38.3323i 0.550435 1.69406i
\(513\) 0 0
\(514\) 62.9959 + 45.7692i 2.77863 + 2.01879i
\(515\) −6.61612 1.40630i −0.291541 0.0619690i
\(516\) 0 0
\(517\) −1.23708 + 33.4424i −0.0544067 + 1.47080i
\(518\) 8.16312 + 14.1389i 0.358667 + 0.621229i
\(519\) 0 0
\(520\) 0.995920 0.443412i 0.0436740 0.0194449i
\(521\) −7.23607 + 5.25731i −0.317018 + 0.230327i −0.734902 0.678173i \(-0.762772\pi\)
0.417884 + 0.908500i \(0.362772\pi\)
\(522\) 0 0
\(523\) 5.64590 17.3763i 0.246878 0.759812i −0.748444 0.663198i \(-0.769199\pi\)
0.995322 0.0966140i \(-0.0308013\pi\)
\(524\) 5.98640 + 56.9568i 0.261517 + 2.48817i
\(525\) 0 0
\(526\) 26.7510 29.7100i 1.16640 1.29542i
\(527\) −3.48936 6.04374i −0.151999 0.263270i
\(528\) 0 0
\(529\) 11.4721 19.8703i 0.498789 0.863927i
\(530\) −0.190983 0.587785i −0.00829577 0.0255318i
\(531\) 0 0
\(532\) 22.9894 16.7027i 0.996715 0.724156i
\(533\) 0.0372894 + 0.0414140i 0.00161518 + 0.00179384i
\(534\) 0 0
\(535\) 6.47719 + 2.88383i 0.280033 + 0.124679i
\(536\) 1.44815 13.7782i 0.0625505 0.595128i
\(537\) 0 0
\(538\) −33.2705 + 57.6262i −1.43439 + 2.48444i
\(539\) 4.85410 19.2986i 0.209081 0.831251i
\(540\) 0 0
\(541\) −2.31559 7.12667i −0.0995552 0.306399i 0.888859 0.458181i \(-0.151499\pi\)
−0.988414 + 0.151782i \(0.951499\pi\)
\(542\) −44.5286 + 19.8254i −1.91267 + 0.851575i
\(543\) 0 0
\(544\) −12.1659 + 2.58594i −0.521609 + 0.110871i
\(545\) −7.25434 + 1.54196i −0.310742 + 0.0660502i
\(546\) 0 0
\(547\) −28.0848 + 12.5042i −1.20082 + 0.534639i −0.906963 0.421210i \(-0.861605\pi\)
−0.293857 + 0.955850i \(0.594939\pi\)
\(548\) 14.6459 + 45.0754i 0.625642 + 1.92553i
\(549\) 0 0
\(550\) −9.78115 + 38.8873i −0.417070 + 1.65816i
\(551\) 17.5623 30.4188i 0.748179 1.29588i
\(552\) 0 0
\(553\) 1.14981 10.9397i 0.0488950 0.465205i
\(554\) 69.8728 + 31.1094i 2.96861 + 1.32171i
\(555\) 0 0
\(556\) 47.2988 + 52.5306i 2.00592 + 2.22779i
\(557\) −30.4443 + 22.1191i −1.28997 + 0.937215i −0.999805 0.0197634i \(-0.993709\pi\)
−0.290161 + 0.956978i \(0.593709\pi\)
\(558\) 0 0
\(559\) −0.489357 1.50609i −0.0206976 0.0637006i
\(560\) −3.04508 + 5.27424i −0.128678 + 0.222877i
\(561\) 0 0
\(562\) 32.4164 + 56.1469i 1.36740 + 2.36841i
\(563\) 27.1645 30.1693i 1.14485 1.27148i 0.187590 0.982247i \(-0.439932\pi\)
0.957258 0.289235i \(-0.0934011\pi\)
\(564\) 0 0
\(565\) 0.870329 + 8.28063i 0.0366150 + 0.348369i
\(566\) 4.61803 14.2128i 0.194110 0.597411i
\(567\) 0 0
\(568\) 62.4230 45.3530i 2.61921 1.90297i
\(569\) 31.2253 13.9024i 1.30903 0.582819i 0.370764 0.928727i \(-0.379096\pi\)
0.938268 + 0.345908i \(0.112429\pi\)
\(570\) 0 0
\(571\) 4.54508 + 7.87232i 0.190206 + 0.329446i 0.945318 0.326149i \(-0.105751\pi\)
−0.755112 + 0.655595i \(0.772418\pi\)
\(572\) 0.140490 3.79792i 0.00587417 0.158799i
\(573\) 0 0
\(574\) −0.604528 0.128496i −0.0252325 0.00536334i
\(575\) 0.881966 + 0.640786i 0.0367805 + 0.0267226i
\(576\) 0 0
\(577\) 9.79837 30.1563i 0.407912 1.25542i −0.510528 0.859861i \(-0.670550\pi\)
0.918439 0.395562i \(-0.129450\pi\)
\(578\) 27.4804 + 30.5201i 1.14304 + 1.26947i
\(579\) 0 0
\(580\) −1.88151 + 17.9014i −0.0781255 + 0.743315i
\(581\) −0.985051 + 1.09401i −0.0408668 + 0.0453872i
\(582\) 0 0
\(583\) −1.25414 0.178904i −0.0519413 0.00740943i
\(584\) 42.6525 1.76497
\(585\) 0 0
\(586\) −45.8607 33.3197i −1.89449 1.37643i
\(587\) 0.222082 + 2.11297i 0.00916632 + 0.0872117i 0.998149 0.0608221i \(-0.0193722\pi\)
−0.988982 + 0.148034i \(0.952706\pi\)
\(588\) 0 0
\(589\) 34.8734 7.41257i 1.43693 0.305429i
\(590\) 10.9116 + 4.85817i 0.449225 + 0.200008i
\(591\) 0 0
\(592\) 60.1080 + 12.7764i 2.47042 + 0.525105i
\(593\) −14.0344 −0.576325 −0.288163 0.957581i \(-0.593044\pi\)
−0.288163 + 0.957581i \(0.593044\pi\)
\(594\) 0 0
\(595\) −0.708204 −0.0290335
\(596\) 20.1130 + 4.27514i 0.823859 + 0.175117i
\(597\) 0 0
\(598\) −0.133284 0.0593421i −0.00545041 0.00242668i
\(599\) −12.3760 + 2.63060i −0.505669 + 0.107483i −0.453681 0.891164i \(-0.649889\pi\)
−0.0519886 + 0.998648i \(0.516556\pi\)
\(600\) 0 0
\(601\) 0.720049 + 6.85081i 0.0293714 + 0.279450i 0.999343 + 0.0362334i \(0.0115360\pi\)
−0.969972 + 0.243217i \(0.921797\pi\)
\(602\) 14.2082 + 10.3229i 0.579083 + 0.420729i
\(603\) 0 0
\(604\) 5.12461 0.208517
\(605\) −5.18974 4.39141i −0.210993 0.178536i
\(606\) 0 0
\(607\) −11.0823 + 12.3082i −0.449819 + 0.499574i −0.924817 0.380413i \(-0.875782\pi\)
0.474998 + 0.879987i \(0.342449\pi\)
\(608\) 6.64185 63.1929i 0.269362 2.56281i
\(609\) 0 0
\(610\) −12.5182 13.9029i −0.506848 0.562912i
\(611\) −0.736068 + 2.26538i −0.0297781 + 0.0916476i
\(612\) 0 0
\(613\) 11.5623 + 8.40051i 0.466997 + 0.339293i 0.796270 0.604942i \(-0.206804\pi\)
−0.329273 + 0.944235i \(0.606804\pi\)
\(614\) 71.6486 + 15.2294i 2.89150 + 0.614607i
\(615\) 0 0
\(616\) 13.8156 + 20.5740i 0.556645 + 0.828952i
\(617\) −5.59017 9.68246i −0.225052 0.389801i 0.731283 0.682074i \(-0.238922\pi\)
−0.956335 + 0.292273i \(0.905588\pi\)
\(618\) 0 0
\(619\) 22.0389 9.81236i 0.885819 0.394392i 0.0871733 0.996193i \(-0.472217\pi\)
0.798646 + 0.601801i \(0.205550\pi\)
\(620\) −14.7812 + 10.7391i −0.593625 + 0.431294i
\(621\) 0 0
\(622\) −9.42705 + 29.0135i −0.377990 + 1.16333i
\(623\) −0.860904 8.19095i −0.0344914 0.328163i
\(624\) 0 0
\(625\) 12.9921 14.4292i 0.519685 0.577168i
\(626\) −3.30902 5.73139i −0.132255 0.229072i
\(627\) 0 0
\(628\) −38.1246 + 66.0338i −1.52134 + 2.63503i
\(629\) 2.20820 + 6.79615i 0.0880469 + 0.270980i
\(630\) 0 0
\(631\) −15.5451 + 11.2942i −0.618840 + 0.449614i −0.852516 0.522701i \(-0.824924\pi\)
0.233676 + 0.972314i \(0.424924\pi\)
\(632\) −54.9982 61.0817i −2.18771 2.42970i
\(633\) 0 0
\(634\) 16.3105 + 7.26192i 0.647774 + 0.288408i
\(635\) 0.497966 4.73783i 0.0197612 0.188015i
\(636\) 0 0
\(637\) 0.708204 1.22665i 0.0280601 0.0486015i
\(638\) 44.1246 + 27.6992i 1.74691 + 1.09662i
\(639\) 0 0
\(640\) 0.208204 + 0.640786i 0.00822998 + 0.0253293i
\(641\) −22.9210 + 10.2051i −0.905325 + 0.403077i −0.805957 0.591974i \(-0.798349\pi\)
−0.0993683 + 0.995051i \(0.531682\pi\)
\(642\) 0 0
\(643\) −20.3984 + 4.33581i −0.804434 + 0.170988i −0.591738 0.806131i \(-0.701558\pi\)
−0.212696 + 0.977118i \(0.568225\pi\)
\(644\) 1.12086 0.238246i 0.0441680 0.00938819i
\(645\) 0 0
\(646\) 16.0440 7.14323i 0.631241 0.281047i
\(647\) 13.9164 + 42.8303i 0.547110 + 1.68383i 0.715918 + 0.698184i \(0.246008\pi\)
−0.168808 + 0.985649i \(0.553992\pi\)
\(648\) 0 0
\(649\) 18.7877 15.6987i 0.737483 0.616227i
\(650\) −1.42705 + 2.47172i −0.0559735 + 0.0969490i
\(651\) 0 0
\(652\) 2.61099 24.8419i 0.102254 0.972883i
\(653\) −5.13233 2.28506i −0.200844 0.0894213i 0.303850 0.952720i \(-0.401728\pi\)
−0.504694 + 0.863299i \(0.668395\pi\)
\(654\) 0 0
\(655\) 4.87916 + 5.41886i 0.190645 + 0.211732i
\(656\) −1.88197 + 1.36733i −0.0734784 + 0.0533852i
\(657\) 0 0
\(658\) −8.16312 25.1235i −0.318232 0.979416i
\(659\) 20.5623 35.6150i 0.800994 1.38736i −0.117969 0.993017i \(-0.537638\pi\)
0.918963 0.394345i \(-0.129028\pi\)
\(660\) 0 0
\(661\) −18.2812 31.6639i −0.711054 1.23158i −0.964462 0.264223i \(-0.914885\pi\)
0.253407 0.967360i \(-0.418449\pi\)
\(662\) −29.2695 + 32.5071i −1.13759 + 1.26343i
\(663\) 0 0
\(664\) 1.14981 + 10.9397i 0.0446214 + 0.424544i
\(665\) 1.11803 3.44095i 0.0433555 0.133435i
\(666\) 0 0
\(667\) 1.14590 0.832544i 0.0443693 0.0322362i
\(668\) 53.3660 23.7601i 2.06479 0.919306i
\(669\) 0 0
\(670\) −1.50000 2.59808i −0.0579501 0.100372i
\(671\) −36.8841 + 10.4938i −1.42389 + 0.405110i
\(672\) 0 0
\(673\) −35.0498 7.45006i −1.35107 0.287179i −0.525171 0.850997i \(-0.675999\pi\)
−0.825899 + 0.563818i \(0.809332\pi\)
\(674\) −38.5066 27.9767i −1.48322 1.07762i
\(675\) 0 0
\(676\) −19.4164 + 59.7576i −0.746785 + 2.29837i
\(677\) 9.05191 + 10.0532i 0.347893 + 0.386374i 0.891542 0.452938i \(-0.149624\pi\)
−0.543649 + 0.839313i \(0.682958\pi\)
\(678\) 0 0
\(679\) 0.820977 7.81108i 0.0315062 0.299762i
\(680\) −3.54090 + 3.93257i −0.135787 + 0.150807i
\(681\) 0 0
\(682\) 9.07501 + 52.0967i 0.347500 + 1.99488i
\(683\) 9.06888 0.347011 0.173506 0.984833i \(-0.444491\pi\)
0.173506 + 0.984833i \(0.444491\pi\)
\(684\) 0 0
\(685\) 4.88197 + 3.54696i 0.186530 + 0.135522i
\(686\) 3.55757 + 33.8480i 0.135829 + 1.29232i
\(687\) 0 0
\(688\) 64.6588 13.7437i 2.46509 0.523972i
\(689\) −0.0823743 0.0366754i −0.00313821 0.00139722i
\(690\) 0 0
\(691\) −1.31808 0.280166i −0.0501420 0.0106580i 0.182772 0.983155i \(-0.441493\pi\)
−0.232914 + 0.972497i \(0.574826\pi\)
\(692\) −87.5410 −3.32781
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) 8.80333 + 1.87121i 0.333929 + 0.0709789i
\(696\) 0 0
\(697\) −0.247123 0.110026i −0.00936045 0.00416754i
\(698\) 32.5435 6.91733i 1.23179 0.261825i
\(699\) 0 0
\(700\) −2.34315 22.2936i −0.0885628 0.842619i
\(701\) 28.1525 + 20.4540i 1.06330 + 0.772536i 0.974697 0.223531i \(-0.0717583\pi\)
0.0886075 + 0.996067i \(0.471758\pi\)
\(702\) 0 0
\(703\) −36.5066 −1.37687
\(704\) 28.5924 + 4.07871i 1.07762 + 0.153722i
\(705\) 0 0
\(706\) 21.0217 23.3469i 0.791161 0.878674i
\(707\) −1.06996 + 10.1800i −0.0402400 + 0.382858i
\(708\) 0 0
\(709\) 7.50415 + 8.33421i 0.281824 + 0.312998i 0.867392 0.497626i \(-0.165795\pi\)
−0.585567 + 0.810624i \(0.699128\pi\)
\(710\) 5.16312 15.8904i 0.193768 0.596358i
\(711\) 0 0
\(712\) −49.7877 36.1729i −1.86587 1.35564i
\(713\) 1.40628 + 0.298913i 0.0526655 + 0.0111944i
\(714\) 0 0
\(715\) −0.269757 0.401721i −0.0100883 0.0150235i
\(716\) 20.6976 + 35.8492i 0.773504 + 1.33975i
\(717\) 0 0
\(718\) 23.2190 10.3378i 0.866527 0.385803i
\(719\) 31.1353 22.6211i 1.16115 0.843624i 0.171226 0.985232i \(-0.445227\pi\)
0.989923 + 0.141608i \(0.0452271\pi\)
\(720\) 0 0
\(721\) 3.38197 10.4086i 0.125951 0.387637i
\(722\) 4.17891 + 39.7597i 0.155523 + 1.47970i
\(723\) 0 0
\(724\) 8.21057 9.11877i 0.305144 0.338896i
\(725\) −13.8541 23.9960i −0.514528 0.891189i
\(726\) 0 0
\(727\) 4.57295 7.92058i 0.169601 0.293758i −0.768678 0.639635i \(-0.779085\pi\)
0.938280 + 0.345877i \(0.112419\pi\)
\(728\) 0.545085 + 1.67760i 0.0202022 + 0.0621760i
\(729\) 0 0
\(730\) 7.47214 5.42882i 0.276556 0.200930i
\(731\) 5.14355 + 5.71249i 0.190241 + 0.211284i
\(732\) 0 0
\(733\) −0.368389 0.164017i −0.0136068 0.00605812i 0.399922 0.916549i \(-0.369037\pi\)
−0.413529 + 0.910491i \(0.635704\pi\)
\(734\) 6.06043 57.6611i 0.223694 2.12831i
\(735\) 0 0
\(736\) 1.28115 2.21902i 0.0472239 0.0817942i
\(737\) −6.13525 + 0.416272i −0.225995 + 0.0153336i
\(738\) 0 0
\(739\) 0.927051 + 2.85317i 0.0341021 + 0.104956i 0.966659 0.256068i \(-0.0824272\pi\)
−0.932557 + 0.361024i \(0.882427\pi\)
\(740\) 17.0908 7.60931i 0.628270 0.279724i
\(741\) 0 0
\(742\) 0.978148 0.207912i 0.0359089 0.00763268i
\(743\) 41.9513 8.91703i 1.53904 0.327134i 0.641175 0.767395i \(-0.278447\pi\)
0.897870 + 0.440261i \(0.145114\pi\)
\(744\) 0 0
\(745\) 2.39169 1.06485i 0.0876249 0.0390131i
\(746\) −0.718847 2.21238i −0.0263189 0.0810011i
\(747\) 0 0
\(748\) 6.87539 + 17.1190i 0.251389 + 0.625933i
\(749\) −5.73607 + 9.93516i −0.209591 + 0.363023i
\(750\) 0 0
\(751\) −1.68771 + 16.0574i −0.0615853 + 0.585945i 0.919597 + 0.392862i \(0.128515\pi\)
−0.981183 + 0.193082i \(0.938152\pi\)
\(752\) −90.8334 40.4416i −3.31235 1.47476i
\(753\) 0 0
\(754\) 2.48127 + 2.75573i 0.0903626 + 0.100358i
\(755\) 0.527864 0.383516i 0.0192109 0.0139576i
\(756\) 0 0
\(757\) 1.54508 + 4.75528i 0.0561571 + 0.172834i 0.975201 0.221322i \(-0.0710371\pi\)
−0.919044 + 0.394156i \(0.871037\pi\)
\(758\) −32.5795 + 56.4294i −1.18334 + 2.04961i
\(759\) 0 0
\(760\) −13.5172 23.4125i −0.490321 0.849261i
\(761\) 19.6000 21.7680i 0.710501 0.789091i −0.274510 0.961584i \(-0.588516\pi\)
0.985011 + 0.172493i \(0.0551823\pi\)
\(762\) 0 0
\(763\) −1.25434 11.9343i −0.0454102 0.432049i
\(764\) −1.22949 + 3.78398i −0.0444814 + 0.136900i
\(765\) 0 0
\(766\) −26.9164 + 19.5559i −0.972529 + 0.706584i
\(767\) 1.59199 0.708798i 0.0574833 0.0255932i
\(768\) 0 0
\(769\) 17.2533 + 29.8836i 0.622170 + 1.07763i 0.989081 + 0.147373i \(0.0470819\pi\)
−0.366911 + 0.930256i \(0.619585\pi\)
\(770\) 5.03897 + 1.84584i 0.181592 + 0.0665196i
\(771\) 0 0
\(772\) 14.9368 + 3.17492i 0.537588 + 0.114268i
\(773\) −21.9894 15.9762i −0.790902 0.574624i 0.117329 0.993093i \(-0.462567\pi\)
−0.908231 + 0.418469i \(0.862567\pi\)
\(774\) 0 0
\(775\) 8.69098 26.7481i 0.312189 0.960820i
\(776\) −39.2692 43.6129i −1.40968 1.56561i
\(777\) 0 0
\(778\) −10.0550 + 95.6665i −0.360488 + 3.42981i
\(779\) 0.924716 1.02700i 0.0331314 0.0367961i
\(780\) 0 0
\(781\) −24.5869 23.8417i −0.879788 0.853124i
\(782\) 0.708204 0.0253253
\(783\) 0 0
\(784\) 47.8328 + 34.7526i 1.70831 + 1.24116i
\(785\) 1.01478 + 9.65502i 0.0362192 + 0.344602i
\(786\) 0 0
\(787\) 9.49606 2.01845i 0.338498 0.0719499i −0.0355267 0.999369i \(-0.511311\pi\)
0.374025 + 0.927419i \(0.377978\pi\)
\(788\) 57.8005 + 25.7344i 2.05906 + 0.916751i
\(789\) 0 0
\(790\) −17.4094 3.70049i −0.619400 0.131658i
\(791\) −13.4721 −0.479014
\(792\) 0 0
\(793\) −2.72949 −0.0969270
\(794\) −47.9084 10.1832i −1.70021 0.361390i
\(795\) 0 0
\(796\) 29.7471 + 13.2443i 1.05436 + 0.469431i
\(797\) −18.1359 + 3.85489i −0.642405 + 0.136547i −0.517585 0.855632i \(-0.673169\pi\)
−0.124820 + 0.992179i \(0.539835\pi\)
\(798\) 0 0
\(799\) −1.20859 11.4990i −0.0427568 0.406804i
\(800\) −40.5517 29.4625i −1.43372 1.04166i
\(801\) 0 0
\(802\) 82.9574 2.92933
\(803\) −3.24894 18.6511i −0.114653 0.658183i
\(804\) 0 0
\(805\) 0.0976248 0.108423i 0.00344082 0.00382142i
\(806\) −0.393438 + 3.74331i −0.0138583 + 0.131853i
\(807\) 0 0
\(808\) 51.1786 + 56.8396i 1.80046 + 1.99961i
\(809\) 8.37132 25.7643i 0.294320 0.905824i −0.689129 0.724639i \(-0.742007\pi\)
0.983449 0.181185i \(-0.0579933\pi\)
\(810\) 0 0
\(811\) −29.5795 21.4908i −1.03868 0.754644i −0.0686507 0.997641i \(-0.521869\pi\)
−0.970027 + 0.242997i \(0.921869\pi\)
\(812\) −28.4882 6.05535i −0.999739 0.212501i
\(813\) 0 0
\(814\) 2.00164 54.1110i 0.0701573 1.89659i
\(815\) −1.59017 2.75426i −0.0557012 0.0964773i
\(816\) 0 0
\(817\) −35.8754 + 15.9728i −1.25512 + 0.558816i
\(818\) −13.7082 + 9.95959i −0.479296 + 0.348229i
\(819\) 0 0
\(820\) −0.218847 + 0.673542i −0.00764247 + 0.0235211i
\(821\) −4.24352 40.3744i −0.148100 1.40907i −0.775976 0.630762i \(-0.782742\pi\)
0.627877 0.778313i \(-0.283924\pi\)
\(822\) 0 0
\(823\) −18.6238 + 20.6838i −0.649184 + 0.720992i −0.974444 0.224633i \(-0.927882\pi\)
0.325259 + 0.945625i \(0.394548\pi\)
\(824\) −40.8885 70.8210i −1.42442 2.46717i
\(825\) 0 0
\(826\) −9.66312 + 16.7370i −0.336223 + 0.582355i
\(827\) −3.29180 10.1311i −0.114467 0.352293i 0.877369 0.479817i \(-0.159297\pi\)
−0.991835 + 0.127524i \(0.959297\pi\)
\(828\) 0 0
\(829\) 25.3992 18.4536i 0.882150 0.640920i −0.0516692 0.998664i \(-0.516454\pi\)
0.933819 + 0.357745i \(0.116454\pi\)
\(830\) 1.59385 + 1.77015i 0.0553232 + 0.0614427i
\(831\) 0 0
\(832\) 1.87800 + 0.836140i 0.0651080 + 0.0289879i
\(833\) −0.718674 + 6.83772i −0.0249006 + 0.236913i
\(834\) 0 0
\(835\) 3.71885 6.44123i 0.128696 0.222908i
\(836\) −94.0304 + 6.37988i −3.25211 + 0.220653i
\(837\) 0 0
\(838\) −25.4443 78.3094i −0.878958 2.70515i
\(839\) −16.2911 + 7.25326i −0.562431 + 0.250410i −0.668202 0.743980i \(-0.732936\pi\)
0.105771 + 0.994391i \(0.466269\pi\)
\(840\) 0 0
\(841\) −6.84703 + 1.45538i −0.236105 + 0.0501856i
\(842\) 26.9055 5.71894i 0.927225 0.197088i
\(843\) 0 0
\(844\) 16.0440 7.14323i 0.552256 0.245880i
\(845\) 2.47214 + 7.60845i 0.0850441 + 0.261739i
\(846\) 0 0
\(847\) 7.94427 7.60845i 0.272968 0.261430i
\(848\) 1.88197 3.25966i 0.0646270 0.111937i
\(849\) 0 0
\(850\) 1.44815 13.7782i 0.0496711 0.472589i
\(851\) −1.34486 0.598772i −0.0461013 0.0205256i
\(852\) 0 0
\(853\) −37.3594 41.4919i −1.27916 1.42065i −0.857984 0.513677i \(-0.828283\pi\)
−0.421180 0.906977i \(-0.638384\pi\)
\(854\) 24.4894 17.7926i 0.838009 0.608849i
\(855\) 0 0
\(856\) 26.4894 + 81.5259i 0.905388 + 2.78650i
\(857\) −13.8820 + 24.0443i −0.474199 + 0.821337i −0.999564 0.0295405i \(-0.990596\pi\)
0.525365 + 0.850877i \(0.323929\pi\)
\(858\) 0 0
\(859\) 17.2082 + 29.8055i 0.587136 + 1.01695i 0.994605 + 0.103731i \(0.0330781\pi\)
−0.407469 + 0.913219i \(0.633589\pi\)
\(860\) 13.4660 14.9555i 0.459187 0.509978i
\(861\) 0 0
\(862\) −1.61728 15.3874i −0.0550847 0.524096i
\(863\) 0.0344419 0.106001i 0.00117241 0.00360832i −0.950469 0.310821i \(-0.899396\pi\)
0.951641 + 0.307212i \(0.0993962\pi\)
\(864\) 0 0
\(865\) −9.01722 + 6.55139i −0.306595 + 0.222754i
\(866\) −84.4386 + 37.5945i −2.86934 + 1.27751i
\(867\) 0 0
\(868\) −14.7812 25.6017i −0.501705 0.868979i
\(869\) −22.5205 + 28.7024i −0.763956 + 0.973662i
\(870\) 0 0
\(871\) −0.428129 0.0910017i −0.0145066 0.00308348i
\(872\) −72.5410 52.7041i −2.45655 1.78479i
\(873\) 0 0
\(874\) −1.11803 + 3.44095i −0.0378181 + 0.116392i
\(875\) −3.97749 4.41745i −0.134464 0.149337i
\(876\) 0 0
\(877\) 6.05683 57.6268i 0.204524 1.94592i −0.103704 0.994608i \(-0.533070\pi\)
0.308229 0.951312i \(-0.400264\pi\)
\(878\) −40.8027 + 45.3160i −1.37703 + 1.52934i
\(879\) 0 0
\(880\) 17.8541 9.44587i 0.601860 0.318420i
\(881\) 6.20163 0.208938 0.104469 0.994528i \(-0.466686\pi\)
0.104469 + 0.994528i \(0.466686\pi\)
\(882\) 0 0
\(883\) −0.854102 0.620541i −0.0287428 0.0208829i 0.573321 0.819331i \(-0.305655\pi\)
−0.602064 + 0.798448i \(0.705655\pi\)
\(884\) 0.137254 + 1.30589i 0.00461637 + 0.0439218i
\(885\) 0 0
\(886\) −80.9137 + 17.1987i −2.71835 + 0.577803i
\(887\) −49.7748 22.1612i −1.67127 0.744099i −0.999996 0.00289349i \(-0.999079\pi\)
−0.671278 0.741206i \(-0.734254\pi\)
\(888\) 0 0
\(889\) 7.53976 + 1.60263i 0.252875 + 0.0537503i
\(890\) −13.3262 −0.446697
\(891\) 0 0
\(892\) 34.8541 1.16700
\(893\) 57.7781 + 12.2811i 1.93347 + 0.410972i
\(894\) 0 0
\(895\) 4.81485 + 2.14371i 0.160943 + 0.0716563i
\(896\) −1.06635 + 0.226659i −0.0356242 + 0.00757215i
\(897\) 0 0
\(898\) −2.47818 23.5783i −0.0826980 0.786819i
\(899\) −29.5623 21.4783i −0.985958 0.716340i
\(900\) 0 0
\(901\) 0.437694 0.0145817
\(902\) 1.47155 + 1.42695i 0.0489971 + 0.0475122i
\(903\) 0 0
\(904\) −67.3585 + 74.8091i −2.24031 + 2.48812i
\(905\) 0.163305 1.55375i 0.00542846 0.0516483i
\(906\) 0 0
\(907\) −28.3679 31.5057i −0.941940 1.04613i −0.998859 0.0477513i \(-0.984794\pi\)
0.0569195 0.998379i \(-0.481872\pi\)
\(908\) 19.7705 60.8474i 0.656107 2.01929i
\(909\) 0 0
\(910\) 0.309017 + 0.224514i 0.0102438 + 0.00744257i
\(911\) −37.7533 8.02472i −1.25082 0.265871i −0.465551 0.885021i \(-0.654144\pi\)
−0.785272 + 0.619150i \(0.787477\pi\)
\(912\) 0 0
\(913\) 4.69615 1.33610i 0.155420 0.0442184i
\(914\) 31.3885 + 54.3666i 1.03824 + 1.79829i
\(915\) 0 0
\(916\) 2.09366 0.932157i 0.0691765 0.0307993i
\(917\) −9.54508 + 6.93491i −0.315206 + 0.229011i
\(918\) 0 0
\(919\) 7.92705 24.3970i 0.261489 0.804781i −0.730992 0.682386i \(-0.760942\pi\)
0.992481 0.122395i \(-0.0390576\pi\)
\(920\) −0.113954 1.08420i −0.00375695 0.0357449i
\(921\) 0 0
\(922\) −16.2401 + 18.0365i −0.534841 + 0.594001i
\(923\) −1.21885 2.11111i −0.0401188 0.0694879i
\(924\) 0 0
\(925\) −14.3992 + 24.9401i −0.473442 + 0.820026i
\(926\) −1.39919 4.30625i −0.0459801 0.141512i
\(927\) 0 0
\(928\) −52.6869 + 38.2793i −1.72953 + 1.25658i
\(929\) −8.50345 9.44404i −0.278989 0.309849i 0.587322 0.809353i \(-0.300182\pi\)
−0.866311 + 0.499504i \(0.833515\pi\)
\(930\) 0 0
\(931\) −32.0879 14.2865i −1.05164 0.468220i
\(932\) 2.10359 20.0144i 0.0689055 0.655592i
\(933\) 0 0
\(934\) 27.3435 47.3603i 0.894705 1.54968i
\(935\) 1.98936 + 1.24882i 0.0650589 + 0.0408406i
\(936\) 0 0
\(937\) 12.8713 + 39.6139i 0.420488 + 1.29413i 0.907249 + 0.420593i \(0.138178\pi\)
−0.486761 + 0.873535i \(0.661822\pi\)
\(938\) 4.43444 1.97434i 0.144790 0.0644645i
\(939\) 0 0
\(940\) −29.6090 + 6.29359i −0.965740 + 0.205274i
\(941\) 14.1351 3.00450i 0.460790 0.0979439i 0.0283330 0.999599i \(-0.490980\pi\)
0.432457 + 0.901655i \(0.357647\pi\)
\(942\) 0 0
\(943\) 0.0509101 0.0226667i 0.00165786 0.000738128i
\(944\) 22.4787 + 69.1824i 0.731620 + 2.25169i
\(945\) 0 0
\(946\) −21.7082 54.0512i −0.705795 1.75736i
\(947\) 16.1976 28.0550i 0.526350 0.911665i −0.473179 0.880966i \(-0.656894\pi\)
0.999529 0.0306985i \(-0.00977316\pi\)
\(948\) 0 0
\(949\) 0.140855 1.34014i 0.00457233 0.0435029i
\(950\) 64.6581 + 28.7876i 2.09779 + 0.933994i
\(951\) 0 0
\(952\) −5.72930 6.36303i −0.185688 0.206227i
\(953\) −9.18034 + 6.66991i −0.297380 + 0.216059i −0.726463 0.687206i \(-0.758837\pi\)
0.429082 + 0.903265i \(0.358837\pi\)
\(954\) 0 0
\(955\) 0.156541 + 0.481784i 0.00506555 + 0.0155902i
\(956\) −0.927051 + 1.60570i −0.0299830 + 0.0519320i
\(957\) 0 0
\(958\) −37.1525 64.3500i −1.20034 2.07905i
\(959\) −6.53335 + 7.25602i −0.210973 + 0.234309i
\(960\) 0 0
\(961\) −0.636596 6.05681i −0.0205354 0.195381i
\(962\) 1.19098 3.66547i 0.0383988 0.118179i
\(963\) 0 0
\(964\) −32.5623 + 23.6579i −1.04876 + 0.761970i
\(965\) 1.77618 0.790807i 0.0571773 0.0254570i
\(966\) 0 0
\(967\) −21.9615 38.0384i −0.706234 1.22323i −0.966244 0.257627i \(-0.917059\pi\)
0.260010 0.965606i \(-0.416274\pi\)
\(968\) −2.52877 82.1546i −0.0812777 2.64055i
\(969\) 0 0
\(970\) −12.4305 2.64218i −0.399119 0.0848354i
\(971\) 33.9787 + 24.6870i 1.09043 + 0.792243i 0.979472 0.201582i \(-0.0646083\pi\)
0.110957 + 0.993825i \(0.464608\pi\)
\(972\) 0 0
\(973\) −4.50000 + 13.8496i −0.144263 + 0.443997i
\(974\) 22.2623 + 24.7248i 0.713331 + 0.792234i
\(975\) 0 0
\(976\) 11.9096 113.312i 0.381216 3.62703i
\(977\) −0.399302 + 0.443470i −0.0127748 + 0.0141879i −0.749498 0.662006i \(-0.769705\pi\)
0.736724 + 0.676194i \(0.236372\pi\)
\(978\) 0 0
\(979\) −12.0253 + 24.5266i −0.384329 + 0.783873i
\(980\) 18.0000 0.574989
\(981\) 0 0
\(982\) −37.9336 27.5604i −1.21051 0.879488i
\(983\) 0.847878 + 8.06702i 0.0270431 + 0.257298i 0.999687 + 0.0249988i \(0.00795819\pi\)
−0.972644 + 0.232299i \(0.925375\pi\)
\(984\) 0 0
\(985\) 7.87969 1.67488i 0.251068 0.0533661i
\(986\) −16.4438 7.32126i −0.523678 0.233156i
\(987\) 0 0
\(988\) −6.56161 1.39471i −0.208753 0.0443718i
\(989\) −1.58359 −0.0503553
\(990\) 0 0
\(991\) 3.74265 0.118889 0.0594445 0.998232i \(-0.481067\pi\)
0.0594445 + 0.998232i \(0.481067\pi\)
\(992\) −64.6588 13.7437i −2.05292 0.436361i
\(993\) 0 0
\(994\) 24.6972 + 10.9959i 0.783347 + 0.348769i
\(995\) 4.05530 0.861981i 0.128562 0.0273266i
\(996\) 0 0
\(997\) 2.21617 + 21.0855i 0.0701869 + 0.667784i 0.971891 + 0.235431i \(0.0756500\pi\)
−0.901704 + 0.432353i \(0.857683\pi\)
\(998\) −38.4336 27.9237i −1.21660 0.883908i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.n.c.379.1 8
3.2 odd 2 891.2.n.b.379.1 8
9.2 odd 6 99.2.f.a.82.1 4
9.4 even 3 inner 891.2.n.c.676.1 8
9.5 odd 6 891.2.n.b.676.1 8
9.7 even 3 33.2.e.b.16.1 4
11.9 even 5 inner 891.2.n.c.460.1 8
33.20 odd 10 891.2.n.b.460.1 8
36.7 odd 6 528.2.y.b.49.1 4
45.7 odd 12 825.2.bx.d.49.2 8
45.34 even 6 825.2.n.c.676.1 4
45.43 odd 12 825.2.bx.d.49.1 8
99.7 odd 30 363.2.e.b.124.1 4
99.16 even 15 363.2.e.k.202.1 4
99.20 odd 30 99.2.f.a.64.1 4
99.25 even 15 363.2.a.d.1.1 2
99.31 even 15 inner 891.2.n.c.757.1 8
99.43 odd 6 363.2.e.f.148.1 4
99.47 odd 30 1089.2.a.t.1.2 2
99.52 odd 30 363.2.a.i.1.2 2
99.61 odd 30 363.2.e.b.202.1 4
99.70 even 15 363.2.e.k.124.1 4
99.74 even 30 1089.2.a.l.1.1 2
99.79 odd 30 363.2.e.f.130.1 4
99.86 odd 30 891.2.n.b.757.1 8
99.97 even 15 33.2.e.b.31.1 yes 4
396.151 even 30 5808.2.a.ci.1.1 2
396.223 odd 30 5808.2.a.cj.1.1 2
396.295 odd 30 528.2.y.b.97.1 4
495.97 odd 60 825.2.bx.d.724.1 8
495.124 even 30 9075.2.a.cb.1.2 2
495.349 odd 30 9075.2.a.u.1.1 2
495.394 even 30 825.2.n.c.526.1 4
495.493 odd 60 825.2.bx.d.724.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.2.e.b.16.1 4 9.7 even 3
33.2.e.b.31.1 yes 4 99.97 even 15
99.2.f.a.64.1 4 99.20 odd 30
99.2.f.a.82.1 4 9.2 odd 6
363.2.a.d.1.1 2 99.25 even 15
363.2.a.i.1.2 2 99.52 odd 30
363.2.e.b.124.1 4 99.7 odd 30
363.2.e.b.202.1 4 99.61 odd 30
363.2.e.f.130.1 4 99.79 odd 30
363.2.e.f.148.1 4 99.43 odd 6
363.2.e.k.124.1 4 99.70 even 15
363.2.e.k.202.1 4 99.16 even 15
528.2.y.b.49.1 4 36.7 odd 6
528.2.y.b.97.1 4 396.295 odd 30
825.2.n.c.526.1 4 495.394 even 30
825.2.n.c.676.1 4 45.34 even 6
825.2.bx.d.49.1 8 45.43 odd 12
825.2.bx.d.49.2 8 45.7 odd 12
825.2.bx.d.724.1 8 495.97 odd 60
825.2.bx.d.724.2 8 495.493 odd 60
891.2.n.b.379.1 8 3.2 odd 2
891.2.n.b.460.1 8 33.20 odd 10
891.2.n.b.676.1 8 9.5 odd 6
891.2.n.b.757.1 8 99.86 odd 30
891.2.n.c.379.1 8 1.1 even 1 trivial
891.2.n.c.460.1 8 11.9 even 5 inner
891.2.n.c.676.1 8 9.4 even 3 inner
891.2.n.c.757.1 8 99.31 even 15 inner
1089.2.a.l.1.1 2 99.74 even 30
1089.2.a.t.1.2 2 99.47 odd 30
5808.2.a.ci.1.1 2 396.151 even 30
5808.2.a.cj.1.1 2 396.223 odd 30
9075.2.a.u.1.1 2 495.349 odd 30
9075.2.a.cb.1.2 2 495.124 even 30