Properties

Label 891.2.n.b.676.1
Level $891$
Weight $2$
Character 891.676
Analytic conductor $7.115$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(136,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.136");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{15})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 676.1
Root \(-0.978148 - 0.207912i\) of defining polynomial
Character \(\chi\) \(=\) 891.676
Dual form 891.2.n.b.460.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.75181 - 1.94558i) q^{2} +(-0.507392 - 4.82751i) q^{4} +(0.413545 + 0.459289i) q^{5} +(-0.913545 - 0.406737i) q^{7} +(-6.04508 - 4.39201i) q^{8} +1.61803 q^{10} +(-1.84894 - 2.75344i) q^{11} +(-0.230909 - 0.0490813i) q^{13} +(-2.39169 + 1.06485i) q^{14} +(-9.63877 + 2.04878i) q^{16} +(0.354102 - 1.08981i) q^{17} +(-4.73607 - 3.44095i) q^{19} +(2.00739 - 2.22943i) q^{20} +(-8.59602 - 1.22622i) q^{22} +(0.118034 - 0.204441i) q^{23} +(0.482716 - 4.59274i) q^{25} +(-0.500000 + 0.363271i) q^{26} +(-1.50000 + 4.61653i) q^{28} +(5.48127 + 2.44042i) q^{29} +(5.95709 + 1.26622i) q^{31} +(-5.42705 + 9.39993i) q^{32} +(-1.50000 - 2.59808i) q^{34} +(-0.190983 - 0.587785i) q^{35} +(5.04508 - 3.66547i) q^{37} +(-14.9913 + 3.18650i) q^{38} +(-0.482716 - 4.59274i) q^{40} +(-0.215659 + 0.0960175i) q^{41} +(3.35410 + 5.80948i) q^{43} +(-12.3541 + 10.3229i) q^{44} +(-0.190983 - 0.587785i) q^{46} +(-1.05471 + 10.0349i) q^{47} +(-4.01478 - 4.45887i) q^{49} +(-8.08990 - 8.98475i) q^{50} +(-0.119779 + 1.13962i) q^{52} +(0.118034 + 0.363271i) q^{53} +(0.500000 - 1.98787i) q^{55} +(3.73607 + 6.47106i) q^{56} +(14.3502 - 6.38910i) q^{58} +(0.771626 + 7.34153i) q^{59} +(11.3096 - 2.40394i) q^{61} +(12.8992 - 9.37181i) q^{62} +(2.69098 + 8.28199i) q^{64} +(-0.0729490 - 0.126351i) q^{65} +(-0.927051 + 1.60570i) q^{67} +(-5.44076 - 1.15647i) q^{68} +(-1.47815 - 0.658114i) q^{70} +(-3.19098 + 9.82084i) q^{71} +(4.61803 - 3.35520i) q^{73} +(1.70656 - 16.2368i) q^{74} +(-14.2082 + 24.6093i) q^{76} +(0.569171 + 3.26742i) q^{77} +(7.36044 - 8.17459i) q^{79} +(-4.92705 - 3.57971i) q^{80} +(-0.190983 + 0.587785i) q^{82} +(1.43997 - 0.306074i) q^{83} +(0.646976 - 0.288052i) q^{85} +(17.1785 + 3.65141i) q^{86} +(-0.916102 + 24.7653i) q^{88} +8.23607 q^{89} +(0.190983 + 0.138757i) q^{91} +(-1.04683 - 0.466079i) q^{92} +(17.6760 + 19.6312i) q^{94} +(-0.378188 - 3.59821i) q^{95} +(5.25542 - 5.83674i) q^{97} -15.7082 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} + 9 q^{4} - 3 q^{5} - q^{7} - 26 q^{8} + 4 q^{10} - 11 q^{11} - 7 q^{13} - 4 q^{14} - q^{16} - 24 q^{17} - 20 q^{19} + 3 q^{20} - 4 q^{22} - 8 q^{23} - 6 q^{25} - 4 q^{26} - 12 q^{28} + 6 q^{29}+ \cdots - 72 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.75181 1.94558i 1.23871 1.37573i 0.338101 0.941110i \(-0.390215\pi\)
0.900613 0.434622i \(-0.143118\pi\)
\(3\) 0 0
\(4\) −0.507392 4.82751i −0.253696 2.41376i
\(5\) 0.413545 + 0.459289i 0.184943 + 0.205400i 0.828486 0.560010i \(-0.189203\pi\)
−0.643543 + 0.765410i \(0.722536\pi\)
\(6\) 0 0
\(7\) −0.913545 0.406737i −0.345288 0.153732i 0.226764 0.973950i \(-0.427186\pi\)
−0.572051 + 0.820218i \(0.693852\pi\)
\(8\) −6.04508 4.39201i −2.13726 1.55281i
\(9\) 0 0
\(10\) 1.61803 0.511667
\(11\) −1.84894 2.75344i −0.557477 0.830192i
\(12\) 0 0
\(13\) −0.230909 0.0490813i −0.0640427 0.0136127i 0.175779 0.984430i \(-0.443756\pi\)
−0.239822 + 0.970817i \(0.577089\pi\)
\(14\) −2.39169 + 1.06485i −0.639207 + 0.284593i
\(15\) 0 0
\(16\) −9.63877 + 2.04878i −2.40969 + 0.512196i
\(17\) 0.354102 1.08981i 0.0858823 0.264319i −0.898888 0.438178i \(-0.855624\pi\)
0.984770 + 0.173860i \(0.0556239\pi\)
\(18\) 0 0
\(19\) −4.73607 3.44095i −1.08653 0.789409i −0.107719 0.994181i \(-0.534355\pi\)
−0.978810 + 0.204772i \(0.934355\pi\)
\(20\) 2.00739 2.22943i 0.448866 0.498517i
\(21\) 0 0
\(22\) −8.59602 1.22622i −1.83268 0.261432i
\(23\) 0.118034 0.204441i 0.0246118 0.0426289i −0.853457 0.521163i \(-0.825498\pi\)
0.878069 + 0.478534i \(0.158832\pi\)
\(24\) 0 0
\(25\) 0.482716 4.59274i 0.0965432 0.918547i
\(26\) −0.500000 + 0.363271i −0.0980581 + 0.0712434i
\(27\) 0 0
\(28\) −1.50000 + 4.61653i −0.283473 + 0.872441i
\(29\) 5.48127 + 2.44042i 1.01785 + 0.453175i 0.846700 0.532071i \(-0.178586\pi\)
0.171147 + 0.985246i \(0.445253\pi\)
\(30\) 0 0
\(31\) 5.95709 + 1.26622i 1.06992 + 0.227419i 0.709023 0.705185i \(-0.249136\pi\)
0.360901 + 0.932604i \(0.382469\pi\)
\(32\) −5.42705 + 9.39993i −0.959376 + 1.66169i
\(33\) 0 0
\(34\) −1.50000 2.59808i −0.257248 0.445566i
\(35\) −0.190983 0.587785i −0.0322820 0.0993538i
\(36\) 0 0
\(37\) 5.04508 3.66547i 0.829407 0.602599i −0.0899846 0.995943i \(-0.528682\pi\)
0.919391 + 0.393344i \(0.128682\pi\)
\(38\) −14.9913 + 3.18650i −2.43191 + 0.516919i
\(39\) 0 0
\(40\) −0.482716 4.59274i −0.0763241 0.726175i
\(41\) −0.215659 + 0.0960175i −0.0336803 + 0.0149954i −0.423508 0.905893i \(-0.639201\pi\)
0.389827 + 0.920888i \(0.372535\pi\)
\(42\) 0 0
\(43\) 3.35410 + 5.80948i 0.511496 + 0.885937i 0.999911 + 0.0133254i \(0.00424174\pi\)
−0.488415 + 0.872611i \(0.662425\pi\)
\(44\) −12.3541 + 10.3229i −1.86245 + 1.55623i
\(45\) 0 0
\(46\) −0.190983 0.587785i −0.0281589 0.0866642i
\(47\) −1.05471 + 10.0349i −0.153845 + 1.46374i 0.596457 + 0.802645i \(0.296575\pi\)
−0.750302 + 0.661095i \(0.770092\pi\)
\(48\) 0 0
\(49\) −4.01478 4.45887i −0.573541 0.636981i
\(50\) −8.08990 8.98475i −1.14409 1.27064i
\(51\) 0 0
\(52\) −0.119779 + 1.13962i −0.0166104 + 0.158037i
\(53\) 0.118034 + 0.363271i 0.0162132 + 0.0498991i 0.958836 0.283961i \(-0.0916486\pi\)
−0.942623 + 0.333860i \(0.891649\pi\)
\(54\) 0 0
\(55\) 0.500000 1.98787i 0.0674200 0.268044i
\(56\) 3.73607 + 6.47106i 0.499253 + 0.864732i
\(57\) 0 0
\(58\) 14.3502 6.38910i 1.88427 0.838930i
\(59\) 0.771626 + 7.34153i 0.100457 + 0.955785i 0.922405 + 0.386223i \(0.126221\pi\)
−0.821948 + 0.569562i \(0.807113\pi\)
\(60\) 0 0
\(61\) 11.3096 2.40394i 1.44805 0.307793i 0.584229 0.811589i \(-0.301397\pi\)
0.863823 + 0.503796i \(0.168064\pi\)
\(62\) 12.8992 9.37181i 1.63820 1.19022i
\(63\) 0 0
\(64\) 2.69098 + 8.28199i 0.336373 + 1.03525i
\(65\) −0.0729490 0.126351i −0.00904821 0.0156720i
\(66\) 0 0
\(67\) −0.927051 + 1.60570i −0.113257 + 0.196167i −0.917082 0.398699i \(-0.869462\pi\)
0.803824 + 0.594867i \(0.202795\pi\)
\(68\) −5.44076 1.15647i −0.659789 0.140242i
\(69\) 0 0
\(70\) −1.47815 0.658114i −0.176672 0.0786596i
\(71\) −3.19098 + 9.82084i −0.378700 + 1.16552i 0.562248 + 0.826968i \(0.309937\pi\)
−0.940948 + 0.338550i \(0.890063\pi\)
\(72\) 0 0
\(73\) 4.61803 3.35520i 0.540500 0.392696i −0.283771 0.958892i \(-0.591585\pi\)
0.824271 + 0.566196i \(0.191585\pi\)
\(74\) 1.70656 16.2368i 0.198383 1.88749i
\(75\) 0 0
\(76\) −14.2082 + 24.6093i −1.62979 + 2.82288i
\(77\) 0.569171 + 3.26742i 0.0648630 + 0.372357i
\(78\) 0 0
\(79\) 7.36044 8.17459i 0.828114 0.919714i −0.169720 0.985492i \(-0.554286\pi\)
0.997834 + 0.0657787i \(0.0209531\pi\)
\(80\) −4.92705 3.57971i −0.550861 0.400224i
\(81\) 0 0
\(82\) −0.190983 + 0.587785i −0.0210905 + 0.0649100i
\(83\) 1.43997 0.306074i 0.158057 0.0335960i −0.128204 0.991748i \(-0.540921\pi\)
0.286260 + 0.958152i \(0.407588\pi\)
\(84\) 0 0
\(85\) 0.646976 0.288052i 0.0701745 0.0312437i
\(86\) 17.1785 + 3.65141i 1.85241 + 0.393742i
\(87\) 0 0
\(88\) −0.916102 + 24.7653i −0.0976568 + 2.63999i
\(89\) 8.23607 0.873021 0.436511 0.899699i \(-0.356214\pi\)
0.436511 + 0.899699i \(0.356214\pi\)
\(90\) 0 0
\(91\) 0.190983 + 0.138757i 0.0200205 + 0.0145457i
\(92\) −1.04683 0.466079i −0.109140 0.0485921i
\(93\) 0 0
\(94\) 17.6760 + 19.6312i 1.82314 + 2.02481i
\(95\) −0.378188 3.59821i −0.0388012 0.369169i
\(96\) 0 0
\(97\) 5.25542 5.83674i 0.533607 0.592631i −0.414711 0.909953i \(-0.636117\pi\)
0.948318 + 0.317323i \(0.102784\pi\)
\(98\) −15.7082 −1.58677
\(99\) 0 0
\(100\) −22.4164 −2.24164
\(101\) 6.84927 7.60688i 0.681527 0.756913i −0.298795 0.954317i \(-0.596585\pi\)
0.980322 + 0.197404i \(0.0632512\pi\)
\(102\) 0 0
\(103\) 1.14399 + 10.8843i 0.112720 + 1.07246i 0.893934 + 0.448199i \(0.147935\pi\)
−0.781213 + 0.624264i \(0.785399\pi\)
\(104\) 1.18030 + 1.31086i 0.115738 + 0.128540i
\(105\) 0 0
\(106\) 0.913545 + 0.406737i 0.0887314 + 0.0395058i
\(107\) −9.28115 6.74315i −0.897243 0.651885i 0.0405134 0.999179i \(-0.487101\pi\)
−0.937756 + 0.347294i \(0.887101\pi\)
\(108\) 0 0
\(109\) −12.0000 −1.14939 −0.574696 0.818367i \(-0.694880\pi\)
−0.574696 + 0.818367i \(0.694880\pi\)
\(110\) −2.99165 4.45515i −0.285243 0.424782i
\(111\) 0 0
\(112\) 9.63877 + 2.04878i 0.910778 + 0.193592i
\(113\) −12.3074 + 5.47961i −1.15778 + 0.515478i −0.893543 0.448978i \(-0.851788\pi\)
−0.264241 + 0.964457i \(0.585121\pi\)
\(114\) 0 0
\(115\) 0.142710 0.0303339i 0.0133078 0.00282865i
\(116\) 9.00000 27.6992i 0.835629 2.57180i
\(117\) 0 0
\(118\) 15.6353 + 11.3597i 1.43934 + 1.04574i
\(119\) −0.766755 + 0.851568i −0.0702884 + 0.0780631i
\(120\) 0 0
\(121\) −4.16282 + 10.1819i −0.378438 + 0.925627i
\(122\) 15.1353 26.2150i 1.37028 2.37340i
\(123\) 0 0
\(124\) 3.09010 29.4004i 0.277499 2.64023i
\(125\) 4.80902 3.49396i 0.430132 0.312509i
\(126\) 0 0
\(127\) 2.38197 7.33094i 0.211365 0.650516i −0.788026 0.615641i \(-0.788897\pi\)
0.999392 0.0348741i \(-0.0111030\pi\)
\(128\) 0.995920 + 0.443412i 0.0880277 + 0.0391925i
\(129\) 0 0
\(130\) −0.373619 0.0794152i −0.0327686 0.00696517i
\(131\) −5.89919 + 10.2177i −0.515414 + 0.892724i 0.484426 + 0.874832i \(0.339029\pi\)
−0.999840 + 0.0178914i \(0.994305\pi\)
\(132\) 0 0
\(133\) 2.92705 + 5.06980i 0.253808 + 0.439608i
\(134\) 1.50000 + 4.61653i 0.129580 + 0.398807i
\(135\) 0 0
\(136\) −6.92705 + 5.03280i −0.593990 + 0.431559i
\(137\) 9.55057 2.03004i 0.815960 0.173438i 0.219017 0.975721i \(-0.429715\pi\)
0.596943 + 0.802283i \(0.296382\pi\)
\(138\) 0 0
\(139\) −1.52218 14.4825i −0.129109 1.22839i −0.846755 0.531984i \(-0.821447\pi\)
0.717645 0.696409i \(-0.245220\pi\)
\(140\) −2.74064 + 1.22021i −0.231626 + 0.103127i
\(141\) 0 0
\(142\) 13.5172 + 23.4125i 1.13434 + 1.96473i
\(143\) 0.291796 + 0.726543i 0.0244012 + 0.0607565i
\(144\) 0 0
\(145\) 1.14590 + 3.52671i 0.0951617 + 0.292877i
\(146\) 1.56210 14.8624i 0.129280 1.23002i
\(147\) 0 0
\(148\) −20.2549 22.4954i −1.66494 1.84911i
\(149\) 2.83448 + 3.14801i 0.232210 + 0.257895i 0.847977 0.530033i \(-0.177820\pi\)
−0.615767 + 0.787928i \(0.711154\pi\)
\(150\) 0 0
\(151\) −0.110354 + 1.04994i −0.00898045 + 0.0854433i −0.998094 0.0617103i \(-0.980345\pi\)
0.989114 + 0.147154i \(0.0470112\pi\)
\(152\) 13.5172 + 41.6017i 1.09639 + 3.37435i
\(153\) 0 0
\(154\) 7.35410 + 4.61653i 0.592610 + 0.372010i
\(155\) 1.88197 + 3.25966i 0.151163 + 0.261822i
\(156\) 0 0
\(157\) 14.3502 6.38910i 1.14527 0.509906i 0.255721 0.966751i \(-0.417687\pi\)
0.889546 + 0.456845i \(0.151021\pi\)
\(158\) −3.01025 28.6406i −0.239483 2.27852i
\(159\) 0 0
\(160\) −6.56161 + 1.39471i −0.518741 + 0.110262i
\(161\) −0.190983 + 0.138757i −0.0150516 + 0.0109356i
\(162\) 0 0
\(163\) −1.59017 4.89404i −0.124552 0.383331i 0.869267 0.494342i \(-0.164591\pi\)
−0.993819 + 0.111011i \(0.964591\pi\)
\(164\) 0.572949 + 0.992377i 0.0447398 + 0.0774916i
\(165\) 0 0
\(166\) 1.92705 3.33775i 0.149568 0.259060i
\(167\) 11.7715 + 2.50210i 0.910903 + 0.193618i 0.639449 0.768833i \(-0.279162\pi\)
0.271454 + 0.962452i \(0.412496\pi\)
\(168\) 0 0
\(169\) −11.8252 5.26491i −0.909629 0.404993i
\(170\) 0.572949 1.76336i 0.0439432 0.135243i
\(171\) 0 0
\(172\) 26.3435 19.1396i 2.00867 1.45938i
\(173\) −1.88511 + 17.9356i −0.143322 + 1.36362i 0.652361 + 0.757909i \(0.273779\pi\)
−0.795683 + 0.605713i \(0.792888\pi\)
\(174\) 0 0
\(175\) −2.30902 + 3.99933i −0.174545 + 0.302321i
\(176\) 23.4627 + 22.7516i 1.76857 + 1.71497i
\(177\) 0 0
\(178\) 14.4280 16.0239i 1.08142 1.20104i
\(179\) −6.89919 5.01255i −0.515669 0.374656i 0.299301 0.954159i \(-0.403247\pi\)
−0.814970 + 0.579503i \(0.803247\pi\)
\(180\) 0 0
\(181\) 0.781153 2.40414i 0.0580626 0.178698i −0.917819 0.396999i \(-0.870051\pi\)
0.975881 + 0.218301i \(0.0700515\pi\)
\(182\) 0.604528 0.128496i 0.0448106 0.00952479i
\(183\) 0 0
\(184\) −1.61143 + 0.717456i −0.118796 + 0.0528915i
\(185\) 3.76988 + 0.801313i 0.277167 + 0.0589137i
\(186\) 0 0
\(187\) −3.65545 + 1.04001i −0.267313 + 0.0760528i
\(188\) 48.9787 3.57214
\(189\) 0 0
\(190\) −7.66312 5.56758i −0.555941 0.403915i
\(191\) 0.748797 + 0.333386i 0.0541810 + 0.0241230i 0.433648 0.901082i \(-0.357226\pi\)
−0.379467 + 0.925205i \(0.623893\pi\)
\(192\) 0 0
\(193\) −2.10502 2.33786i −0.151522 0.168283i 0.662605 0.748969i \(-0.269451\pi\)
−0.814127 + 0.580686i \(0.802784\pi\)
\(194\) −2.14935 20.4497i −0.154314 1.46820i
\(195\) 0 0
\(196\) −19.4882 + 21.6438i −1.39201 + 1.54599i
\(197\) −13.0344 −0.928666 −0.464333 0.885661i \(-0.653706\pi\)
−0.464333 + 0.885661i \(0.653706\pi\)
\(198\) 0 0
\(199\) 6.70820 0.475532 0.237766 0.971322i \(-0.423585\pi\)
0.237766 + 0.971322i \(0.423585\pi\)
\(200\) −23.0894 + 25.6434i −1.63267 + 1.81326i
\(201\) 0 0
\(202\) −2.80119 26.6516i −0.197091 1.87520i
\(203\) −4.01478 4.45887i −0.281783 0.312951i
\(204\) 0 0
\(205\) −0.133284 0.0593421i −0.00930899 0.00414463i
\(206\) 23.1803 + 16.8415i 1.61505 + 1.17340i
\(207\) 0 0
\(208\) 2.32624 0.161296
\(209\) −0.717727 + 19.4026i −0.0496462 + 1.34211i
\(210\) 0 0
\(211\) −3.53897 0.752232i −0.243633 0.0517858i 0.0844767 0.996425i \(-0.473078\pi\)
−0.328109 + 0.944640i \(0.606411\pi\)
\(212\) 1.69381 0.754131i 0.116331 0.0517939i
\(213\) 0 0
\(214\) −29.3781 + 6.24451i −2.00825 + 0.426866i
\(215\) −1.28115 + 3.94298i −0.0873739 + 0.268909i
\(216\) 0 0
\(217\) −4.92705 3.57971i −0.334470 0.243007i
\(218\) −21.0217 + 23.3469i −1.42377 + 1.58125i
\(219\) 0 0
\(220\) −9.85016 1.40513i −0.664098 0.0947336i
\(221\) −0.135255 + 0.234268i −0.00909823 + 0.0157586i
\(222\) 0 0
\(223\) −0.750550 + 7.14101i −0.0502605 + 0.478197i 0.940222 + 0.340561i \(0.110617\pi\)
−0.990483 + 0.137636i \(0.956050\pi\)
\(224\) 8.78115 6.37988i 0.586715 0.426274i
\(225\) 0 0
\(226\) −10.8992 + 33.5442i −0.725003 + 2.23133i
\(227\) −12.0408 5.36093i −0.799179 0.355817i −0.0338254 0.999428i \(-0.510769\pi\)
−0.765353 + 0.643611i \(0.777436\pi\)
\(228\) 0 0
\(229\) −0.461819 0.0981626i −0.0305178 0.00648677i 0.192627 0.981272i \(-0.438299\pi\)
−0.223145 + 0.974785i \(0.571632\pi\)
\(230\) 0.190983 0.330792i 0.0125930 0.0218118i
\(231\) 0 0
\(232\) −22.4164 38.8264i −1.47171 2.54908i
\(233\) 1.28115 + 3.94298i 0.0839311 + 0.258313i 0.984211 0.176997i \(-0.0566384\pi\)
−0.900280 + 0.435311i \(0.856638\pi\)
\(234\) 0 0
\(235\) −5.04508 + 3.66547i −0.329105 + 0.239109i
\(236\) 35.0498 7.45006i 2.28155 0.484958i
\(237\) 0 0
\(238\) 0.313585 + 2.98357i 0.0203267 + 0.193396i
\(239\) −0.348943 + 0.155360i −0.0225713 + 0.0100494i −0.417991 0.908451i \(-0.637266\pi\)
0.395420 + 0.918500i \(0.370599\pi\)
\(240\) 0 0
\(241\) −4.14590 7.18091i −0.267061 0.462563i 0.701041 0.713121i \(-0.252719\pi\)
−0.968101 + 0.250558i \(0.919386\pi\)
\(242\) 12.5172 + 25.9358i 0.804637 + 1.66722i
\(243\) 0 0
\(244\) −17.3435 53.3777i −1.11030 3.41716i
\(245\) 0.387613 3.68789i 0.0247637 0.235611i
\(246\) 0 0
\(247\) 0.924716 + 1.02700i 0.0588383 + 0.0653465i
\(248\) −30.4498 33.8180i −1.93357 2.14744i
\(249\) 0 0
\(250\) 1.62670 15.4771i 0.102882 0.978855i
\(251\) 6.79180 + 20.9030i 0.428694 + 1.31939i 0.899412 + 0.437102i \(0.143995\pi\)
−0.470718 + 0.882284i \(0.656005\pi\)
\(252\) 0 0
\(253\) −0.781153 + 0.0530006i −0.0491107 + 0.00333212i
\(254\) −10.0902 17.4767i −0.633114 1.09658i
\(255\) 0 0
\(256\) −13.3033 + 5.92302i −0.831458 + 0.370189i
\(257\) 3.10895 + 29.5797i 0.193931 + 1.84513i 0.468376 + 0.883529i \(0.344839\pi\)
−0.274445 + 0.961603i \(0.588494\pi\)
\(258\) 0 0
\(259\) −6.09979 + 1.29655i −0.379023 + 0.0805638i
\(260\) −0.572949 + 0.416272i −0.0355328 + 0.0258161i
\(261\) 0 0
\(262\) 9.54508 + 29.3768i 0.589697 + 1.81490i
\(263\) −7.63525 13.2246i −0.470810 0.815467i 0.528633 0.848851i \(-0.322705\pi\)
−0.999443 + 0.0333839i \(0.989372\pi\)
\(264\) 0 0
\(265\) −0.118034 + 0.204441i −0.00725077 + 0.0125587i
\(266\) 14.9913 + 3.18650i 0.919177 + 0.195377i
\(267\) 0 0
\(268\) 8.22191 + 3.66063i 0.502233 + 0.223609i
\(269\) 7.85410 24.1724i 0.478873 1.47382i −0.361789 0.932260i \(-0.617834\pi\)
0.840662 0.541560i \(-0.182166\pi\)
\(270\) 0 0
\(271\) −15.0623 + 10.9434i −0.914970 + 0.664765i −0.942267 0.334863i \(-0.891310\pi\)
0.0272970 + 0.999627i \(0.491310\pi\)
\(272\) −1.18031 + 11.2299i −0.0715671 + 0.680915i
\(273\) 0 0
\(274\) 12.7812 22.1376i 0.772138 1.33738i
\(275\) −13.5383 + 7.16258i −0.816391 + 0.431920i
\(276\) 0 0
\(277\) −19.5485 + 21.7108i −1.17456 + 1.30448i −0.231118 + 0.972926i \(0.574238\pi\)
−0.943437 + 0.331551i \(0.892428\pi\)
\(278\) −30.8435 22.4091i −1.84987 1.34401i
\(279\) 0 0
\(280\) −1.42705 + 4.39201i −0.0852826 + 0.262473i
\(281\) 24.2228 5.14871i 1.44501 0.307146i 0.582353 0.812936i \(-0.302132\pi\)
0.862657 + 0.505790i \(0.168799\pi\)
\(282\) 0 0
\(283\) −5.21470 + 2.32174i −0.309982 + 0.138013i −0.555831 0.831295i \(-0.687600\pi\)
0.245849 + 0.969308i \(0.420933\pi\)
\(284\) 49.0293 + 10.4215i 2.90935 + 0.618402i
\(285\) 0 0
\(286\) 1.92472 + 0.705050i 0.113811 + 0.0416905i
\(287\) 0.236068 0.0139347
\(288\) 0 0
\(289\) 12.6910 + 9.22054i 0.746528 + 0.542385i
\(290\) 8.86889 + 3.94868i 0.520799 + 0.231875i
\(291\) 0 0
\(292\) −18.5404 20.5912i −1.08500 1.20501i
\(293\) −2.26330 21.5339i −0.132223 1.25802i −0.836449 0.548045i \(-0.815372\pi\)
0.704225 0.709976i \(-0.251294\pi\)
\(294\) 0 0
\(295\) −3.05278 + 3.39045i −0.177740 + 0.197400i
\(296\) −46.5967 −2.70838
\(297\) 0 0
\(298\) 11.0902 0.642436
\(299\) −0.0372894 + 0.0414140i −0.00215650 + 0.00239504i
\(300\) 0 0
\(301\) −0.701198 6.67146i −0.0404164 0.384536i
\(302\) 1.84943 + 2.05400i 0.106423 + 0.118195i
\(303\) 0 0
\(304\) 52.6996 + 23.4634i 3.02253 + 1.34572i
\(305\) 5.78115 + 4.20025i 0.331028 + 0.240506i
\(306\) 0 0
\(307\) 27.9787 1.59683 0.798415 0.602108i \(-0.205672\pi\)
0.798415 + 0.602108i \(0.205672\pi\)
\(308\) 15.4847 4.40554i 0.882324 0.251029i
\(309\) 0 0
\(310\) 9.63877 + 2.04878i 0.547445 + 0.116363i
\(311\) −10.6451 + 4.73949i −0.603626 + 0.268752i −0.685711 0.727874i \(-0.740509\pi\)
0.0820850 + 0.996625i \(0.473842\pi\)
\(312\) 0 0
\(313\) 2.47262 0.525572i 0.139761 0.0297071i −0.137500 0.990502i \(-0.543907\pi\)
0.277261 + 0.960795i \(0.410573\pi\)
\(314\) 12.7082 39.1118i 0.717165 2.20721i
\(315\) 0 0
\(316\) −43.1976 31.3849i −2.43005 1.76554i
\(317\) 4.56324 5.06800i 0.256297 0.284647i −0.601240 0.799068i \(-0.705327\pi\)
0.857538 + 0.514421i \(0.171993\pi\)
\(318\) 0 0
\(319\) −3.41502 19.6045i −0.191205 1.09764i
\(320\) −2.69098 + 4.66092i −0.150431 + 0.260553i
\(321\) 0 0
\(322\) −0.0646021 + 0.614648i −0.00360014 + 0.0342530i
\(323\) −5.42705 + 3.94298i −0.301969 + 0.219393i
\(324\) 0 0
\(325\) −0.336881 + 1.03681i −0.0186868 + 0.0575121i
\(326\) −12.3074 5.47961i −0.681644 0.303488i
\(327\) 0 0
\(328\) 1.72539 + 0.366742i 0.0952685 + 0.0202499i
\(329\) 5.04508 8.73834i 0.278145 0.481760i
\(330\) 0 0
\(331\) −8.35410 14.4697i −0.459183 0.795328i 0.539735 0.841835i \(-0.318524\pi\)
−0.998918 + 0.0465067i \(0.985191\pi\)
\(332\) −2.20820 6.79615i −0.121191 0.372987i
\(333\) 0 0
\(334\) 25.4894 18.5191i 1.39472 1.01332i
\(335\) −1.12086 + 0.238246i −0.0612390 + 0.0130167i
\(336\) 0 0
\(337\) 1.90036 + 18.0807i 0.103519 + 0.984921i 0.915795 + 0.401647i \(0.131562\pi\)
−0.812275 + 0.583274i \(0.801771\pi\)
\(338\) −30.9587 + 13.7837i −1.68393 + 0.749735i
\(339\) 0 0
\(340\) −1.71885 2.97713i −0.0932176 0.161458i
\(341\) −7.52786 18.7436i −0.407657 1.01502i
\(342\) 0 0
\(343\) 4.01722 + 12.3637i 0.216910 + 0.667579i
\(344\) 5.23945 49.8500i 0.282492 2.68773i
\(345\) 0 0
\(346\) 31.5929 + 35.0874i 1.69844 + 1.88631i
\(347\) 1.02234 + 1.13542i 0.0548821 + 0.0609528i 0.769961 0.638091i \(-0.220276\pi\)
−0.715079 + 0.699044i \(0.753609\pi\)
\(348\) 0 0
\(349\) −1.32837 + 12.6386i −0.0711060 + 0.676528i 0.899675 + 0.436560i \(0.143803\pi\)
−0.970781 + 0.239968i \(0.922863\pi\)
\(350\) 3.73607 + 11.4984i 0.199701 + 0.614617i
\(351\) 0 0
\(352\) 35.9164 2.43690i 1.91435 0.129887i
\(353\) −6.00000 10.3923i −0.319348 0.553127i 0.661004 0.750382i \(-0.270130\pi\)
−0.980352 + 0.197256i \(0.936797\pi\)
\(354\) 0 0
\(355\) −5.83022 + 2.59578i −0.309436 + 0.137770i
\(356\) −4.17891 39.7597i −0.221482 2.10726i
\(357\) 0 0
\(358\) −21.8384 + 4.64189i −1.15419 + 0.245331i
\(359\) −7.85410 + 5.70634i −0.414524 + 0.301169i −0.775431 0.631433i \(-0.782467\pi\)
0.360907 + 0.932602i \(0.382467\pi\)
\(360\) 0 0
\(361\) 4.71885 + 14.5231i 0.248360 + 0.764375i
\(362\) −3.30902 5.73139i −0.173918 0.301235i
\(363\) 0 0
\(364\) 0.572949 0.992377i 0.0300307 0.0520147i
\(365\) 3.45077 + 0.733484i 0.180622 + 0.0383923i
\(366\) 0 0
\(367\) 20.2313 + 9.00755i 1.05606 + 0.470190i 0.859943 0.510389i \(-0.170499\pi\)
0.196121 + 0.980580i \(0.437165\pi\)
\(368\) −0.718847 + 2.21238i −0.0374725 + 0.115328i
\(369\) 0 0
\(370\) 8.16312 5.93085i 0.424380 0.308330i
\(371\) 0.0399263 0.379874i 0.00207287 0.0197221i
\(372\) 0 0
\(373\) −0.444272 + 0.769502i −0.0230035 + 0.0398433i −0.877298 0.479946i \(-0.840656\pi\)
0.854294 + 0.519789i \(0.173990\pi\)
\(374\) −4.38022 + 8.93385i −0.226496 + 0.461958i
\(375\) 0 0
\(376\) 50.4492 56.0295i 2.60172 2.88950i
\(377\) −1.14590 0.832544i −0.0590168 0.0428782i
\(378\) 0 0
\(379\) −7.69098 + 23.6704i −0.395059 + 1.21587i 0.533856 + 0.845575i \(0.320742\pi\)
−0.928915 + 0.370292i \(0.879258\pi\)
\(380\) −17.1785 + 3.65141i −0.881240 + 0.187313i
\(381\) 0 0
\(382\) 1.96038 0.872815i 0.100302 0.0446571i
\(383\) −12.4305 2.64218i −0.635169 0.135009i −0.120937 0.992660i \(-0.538590\pi\)
−0.514232 + 0.857651i \(0.671923\pi\)
\(384\) 0 0
\(385\) −1.26531 + 1.61264i −0.0644863 + 0.0821878i
\(386\) −8.23607 −0.419205
\(387\) 0 0
\(388\) −30.8435 22.4091i −1.56584 1.13765i
\(389\) 33.5661 + 14.9446i 1.70187 + 0.757720i 0.998919 + 0.0464795i \(0.0148002\pi\)
0.702948 + 0.711241i \(0.251866\pi\)
\(390\) 0 0
\(391\) −0.181006 0.201028i −0.00915389 0.0101664i
\(392\) 4.68631 + 44.5872i 0.236694 + 2.25199i
\(393\) 0 0
\(394\) −22.8338 + 25.3595i −1.15035 + 1.27759i
\(395\) 6.79837 0.342063
\(396\) 0 0
\(397\) −18.7082 −0.938938 −0.469469 0.882949i \(-0.655555\pi\)
−0.469469 + 0.882949i \(0.655555\pi\)
\(398\) 11.7515 13.0513i 0.589048 0.654204i
\(399\) 0 0
\(400\) 4.75673 + 45.2573i 0.237837 + 2.26286i
\(401\) 21.2027 + 23.5480i 1.05881 + 1.17593i 0.983896 + 0.178740i \(0.0572019\pi\)
0.0749152 + 0.997190i \(0.476131\pi\)
\(402\) 0 0
\(403\) −1.31340 0.584763i −0.0654251 0.0291291i
\(404\) −40.1976 29.2052i −1.99990 1.45301i
\(405\) 0 0
\(406\) −15.7082 −0.779585
\(407\) −19.4207 7.11407i −0.962649 0.352632i
\(408\) 0 0
\(409\) 6.33070 + 1.34563i 0.313033 + 0.0665373i 0.361749 0.932275i \(-0.382180\pi\)
−0.0487161 + 0.998813i \(0.515513\pi\)
\(410\) −0.348943 + 0.155360i −0.0172331 + 0.00767266i
\(411\) 0 0
\(412\) 51.9637 11.0452i 2.56007 0.544159i
\(413\) 2.28115 7.02067i 0.112248 0.345464i
\(414\) 0 0
\(415\) 0.736068 + 0.534785i 0.0361322 + 0.0262515i
\(416\) 1.71452 1.90416i 0.0840611 0.0933593i
\(417\) 0 0
\(418\) 36.4919 + 35.3860i 1.78488 + 1.73078i
\(419\) 15.7254 27.2372i 0.768237 1.33063i −0.170281 0.985396i \(-0.554467\pi\)
0.938518 0.345230i \(-0.112199\pi\)
\(420\) 0 0
\(421\) −1.09824 + 10.4490i −0.0535248 + 0.509254i 0.934611 + 0.355671i \(0.115748\pi\)
−0.988136 + 0.153583i \(0.950919\pi\)
\(422\) −7.66312 + 5.56758i −0.373035 + 0.271026i
\(423\) 0 0
\(424\) 0.881966 2.71441i 0.0428321 0.131824i
\(425\) −4.83430 2.15237i −0.234498 0.104405i
\(426\) 0 0
\(427\) −11.3096 2.40394i −0.547312 0.116335i
\(428\) −27.8435 + 48.2263i −1.34586 + 2.33111i
\(429\) 0 0
\(430\) 5.42705 + 9.39993i 0.261716 + 0.453305i
\(431\) 1.82624 + 5.62058i 0.0879668 + 0.270734i 0.985357 0.170504i \(-0.0545395\pi\)
−0.897390 + 0.441238i \(0.854540\pi\)
\(432\) 0 0
\(433\) −28.5623 + 20.7517i −1.37262 + 0.997264i −0.375089 + 0.926989i \(0.622388\pi\)
−0.997528 + 0.0702758i \(0.977612\pi\)
\(434\) −15.5959 + 3.31500i −0.748625 + 0.159125i
\(435\) 0 0
\(436\) 6.08870 + 57.9301i 0.291596 + 2.77435i
\(437\) −1.26249 + 0.562096i −0.0603930 + 0.0268887i
\(438\) 0 0
\(439\) −11.6459 20.1713i −0.555828 0.962723i −0.997839 0.0657130i \(-0.979068\pi\)
0.442010 0.897010i \(-0.354266\pi\)
\(440\) −11.7533 + 9.82084i −0.560316 + 0.468190i
\(441\) 0 0
\(442\) 0.218847 + 0.673542i 0.0104095 + 0.0320371i
\(443\) −3.30276 + 31.4237i −0.156919 + 1.49298i 0.578674 + 0.815559i \(0.303570\pi\)
−0.735593 + 0.677424i \(0.763096\pi\)
\(444\) 0 0
\(445\) 3.40599 + 3.78273i 0.161459 + 0.179319i
\(446\) 12.5786 + 13.9699i 0.595612 + 0.661495i
\(447\) 0 0
\(448\) 0.910255 8.66050i 0.0430055 0.409170i
\(449\) 2.79837 + 8.61251i 0.132063 + 0.406449i 0.995122 0.0986549i \(-0.0314540\pi\)
−0.863058 + 0.505104i \(0.831454\pi\)
\(450\) 0 0
\(451\) 0.663119 + 0.416272i 0.0312251 + 0.0196015i
\(452\) 32.6976 + 56.6338i 1.53796 + 2.66383i
\(453\) 0 0
\(454\) −31.5233 + 14.0351i −1.47946 + 0.658699i
\(455\) 0.0152505 + 0.145099i 0.000714954 + 0.00680234i
\(456\) 0 0
\(457\) −23.4547 + 4.98545i −1.09717 + 0.233210i −0.720718 0.693228i \(-0.756188\pi\)
−0.376447 + 0.926438i \(0.622854\pi\)
\(458\) −1.00000 + 0.726543i −0.0467269 + 0.0339491i
\(459\) 0 0
\(460\) −0.218847 0.673542i −0.0102038 0.0314041i
\(461\) 4.63525 + 8.02850i 0.215885 + 0.373924i 0.953546 0.301247i \(-0.0974029\pi\)
−0.737661 + 0.675172i \(0.764070\pi\)
\(462\) 0 0
\(463\) −0.864745 + 1.49778i −0.0401881 + 0.0696079i −0.885420 0.464792i \(-0.846129\pi\)
0.845232 + 0.534400i \(0.179462\pi\)
\(464\) −57.8326 12.2927i −2.68481 0.570674i
\(465\) 0 0
\(466\) 9.91572 + 4.41476i 0.459337 + 0.204510i
\(467\) −6.45492 + 19.8662i −0.298698 + 0.919297i 0.683256 + 0.730179i \(0.260563\pi\)
−0.981954 + 0.189119i \(0.939437\pi\)
\(468\) 0 0
\(469\) 1.50000 1.08981i 0.0692636 0.0503229i
\(470\) −1.70656 + 16.2368i −0.0787176 + 0.748948i
\(471\) 0 0
\(472\) 27.5795 47.7691i 1.26945 2.19875i
\(473\) 9.79447 19.9767i 0.450350 0.918529i
\(474\) 0 0
\(475\) −18.0896 + 20.0905i −0.830007 + 0.921816i
\(476\) 4.50000 + 3.26944i 0.206257 + 0.149855i
\(477\) 0 0
\(478\) −0.309017 + 0.951057i −0.0141341 + 0.0435003i
\(479\) −27.7618 + 5.90094i −1.26847 + 0.269621i −0.792516 0.609851i \(-0.791229\pi\)
−0.475951 + 0.879472i \(0.657896\pi\)
\(480\) 0 0
\(481\) −1.34486 + 0.598772i −0.0613205 + 0.0273016i
\(482\) −21.2338 4.51339i −0.967174 0.205579i
\(483\) 0 0
\(484\) 51.2654 + 14.9298i 2.33024 + 0.678629i
\(485\) 4.85410 0.220413
\(486\) 0 0
\(487\) 10.2812 + 7.46969i 0.465884 + 0.338484i 0.795835 0.605514i \(-0.207032\pi\)
−0.329951 + 0.943998i \(0.607032\pi\)
\(488\) −78.9259 35.1401i −3.57281 1.59072i
\(489\) 0 0
\(490\) −6.49606 7.21460i −0.293462 0.325922i
\(491\) −1.87209 17.8117i −0.0844861 0.803832i −0.951934 0.306303i \(-0.900908\pi\)
0.867448 0.497528i \(-0.165759\pi\)
\(492\) 0 0
\(493\) 4.60053 5.10941i 0.207198 0.230116i
\(494\) 3.61803 0.162783
\(495\) 0 0
\(496\) −60.0132 −2.69467
\(497\) 6.90960 7.67389i 0.309938 0.344221i
\(498\) 0 0
\(499\) 1.89676 + 18.0465i 0.0849108 + 0.807872i 0.951251 + 0.308418i \(0.0997994\pi\)
−0.866340 + 0.499454i \(0.833534\pi\)
\(500\) −19.3072 21.4428i −0.863443 0.958950i
\(501\) 0 0
\(502\) 52.5663 + 23.4040i 2.34615 + 1.04457i
\(503\) 7.00000 + 5.08580i 0.312115 + 0.226765i 0.732803 0.680441i \(-0.238212\pi\)
−0.420689 + 0.907205i \(0.638212\pi\)
\(504\) 0 0
\(505\) 6.32624 0.281514
\(506\) −1.26531 + 1.61264i −0.0562500 + 0.0716906i
\(507\) 0 0
\(508\) −36.5988 7.77931i −1.62381 0.345151i
\(509\) −35.3932 + 15.7581i −1.56877 + 0.698463i −0.992886 0.119065i \(-0.962010\pi\)
−0.575888 + 0.817529i \(0.695344\pi\)
\(510\) 0 0
\(511\) −5.58347 + 1.18680i −0.246998 + 0.0525010i
\(512\) −12.4549 + 38.3323i −0.550435 + 1.69406i
\(513\) 0 0
\(514\) 62.9959 + 45.7692i 2.77863 + 2.01879i
\(515\) −4.52595 + 5.02658i −0.199437 + 0.221498i
\(516\) 0 0
\(517\) 29.5805 15.6499i 1.30095 0.688281i
\(518\) −8.16312 + 14.1389i −0.358667 + 0.621229i
\(519\) 0 0
\(520\) −0.113954 + 1.08420i −0.00499720 + 0.0475452i
\(521\) 7.23607 5.25731i 0.317018 0.230327i −0.417884 0.908500i \(-0.637228\pi\)
0.734902 + 0.678173i \(0.237228\pi\)
\(522\) 0 0
\(523\) 5.64590 17.3763i 0.246878 0.759812i −0.748444 0.663198i \(-0.769199\pi\)
0.995322 0.0966140i \(-0.0308013\pi\)
\(524\) 52.3192 + 23.2940i 2.28558 + 1.01760i
\(525\) 0 0
\(526\) −39.1051 8.31204i −1.70506 0.362422i
\(527\) 3.48936 6.04374i 0.151999 0.263270i
\(528\) 0 0
\(529\) 11.4721 + 19.8703i 0.498789 + 0.863927i
\(530\) 0.190983 + 0.587785i 0.00829577 + 0.0255318i
\(531\) 0 0
\(532\) 22.9894 16.7027i 0.996715 0.724156i
\(533\) 0.0545103 0.0115865i 0.00236110 0.000501868i
\(534\) 0 0
\(535\) −0.741125 7.05133i −0.0320416 0.304856i
\(536\) 12.6564 5.63497i 0.546671 0.243394i
\(537\) 0 0
\(538\) −33.2705 57.6262i −1.43439 2.48444i
\(539\) −4.85410 + 19.2986i −0.209081 + 0.831251i
\(540\) 0 0
\(541\) −2.31559 7.12667i −0.0995552 0.306399i 0.888859 0.458181i \(-0.151499\pi\)
−0.988414 + 0.151782i \(0.951499\pi\)
\(542\) −5.09499 + 48.4756i −0.218849 + 2.08221i
\(543\) 0 0
\(544\) 8.32244 + 9.24301i 0.356822 + 0.396291i
\(545\) −4.96255 5.51147i −0.212572 0.236085i
\(546\) 0 0
\(547\) 3.21348 30.5742i 0.137399 1.30726i −0.680862 0.732412i \(-0.738395\pi\)
0.818260 0.574848i \(-0.194939\pi\)
\(548\) −14.6459 45.0754i −0.625642 1.92553i
\(549\) 0 0
\(550\) −9.78115 + 38.8873i −0.417070 + 1.65816i
\(551\) −17.5623 30.4188i −0.748179 1.29588i
\(552\) 0 0
\(553\) −10.0490 + 4.47410i −0.427327 + 0.190258i
\(554\) 7.99489 + 76.0663i 0.339670 + 3.23175i
\(555\) 0 0
\(556\) −69.1422 + 14.6966i −2.93228 + 0.623276i
\(557\) 30.4443 22.1191i 1.28997 0.937215i 0.290161 0.956978i \(-0.406291\pi\)
0.999805 + 0.0197634i \(0.00629130\pi\)
\(558\) 0 0
\(559\) −0.489357 1.50609i −0.0206976 0.0637006i
\(560\) 3.04508 + 5.27424i 0.128678 + 0.222877i
\(561\) 0 0
\(562\) 32.4164 56.1469i 1.36740 2.36841i
\(563\) 39.7096 + 8.44054i 1.67356 + 0.355726i 0.944446 0.328666i \(-0.106599\pi\)
0.729114 + 0.684392i \(0.239932\pi\)
\(564\) 0 0
\(565\) −7.60640 3.38659i −0.320004 0.142475i
\(566\) −4.61803 + 14.2128i −0.194110 + 0.597411i
\(567\) 0 0
\(568\) 62.4230 45.3530i 2.61921 1.90297i
\(569\) 3.57282 33.9931i 0.149780 1.42506i −0.618919 0.785455i \(-0.712429\pi\)
0.768700 0.639610i \(-0.220904\pi\)
\(570\) 0 0
\(571\) 4.54508 7.87232i 0.190206 0.329446i −0.755112 0.655595i \(-0.772418\pi\)
0.945318 + 0.326149i \(0.105751\pi\)
\(572\) 3.35934 1.77729i 0.140461 0.0743122i
\(573\) 0 0
\(574\) 0.413545 0.459289i 0.0172611 0.0191703i
\(575\) −0.881966 0.640786i −0.0367805 0.0267226i
\(576\) 0 0
\(577\) 9.79837 30.1563i 0.407912 1.25542i −0.510528 0.859861i \(-0.670550\pi\)
0.918439 0.395562i \(-0.129450\pi\)
\(578\) 40.1714 8.53870i 1.67091 0.355163i
\(579\) 0 0
\(580\) 16.4438 7.32126i 0.682792 0.303999i
\(581\) −1.43997 0.306074i −0.0597399 0.0126981i
\(582\) 0 0
\(583\) 0.782006 0.996667i 0.0323874 0.0412777i
\(584\) −42.6525 −1.76497
\(585\) 0 0
\(586\) −45.8607 33.3197i −1.89449 1.37643i
\(587\) 1.94093 + 0.864157i 0.0801107 + 0.0356676i 0.446401 0.894833i \(-0.352706\pi\)
−0.366290 + 0.930501i \(0.619372\pi\)
\(588\) 0 0
\(589\) −23.8562 26.4950i −0.982976 1.09171i
\(590\) 1.24852 + 11.8788i 0.0514006 + 0.489044i
\(591\) 0 0
\(592\) −41.1186 + 45.6669i −1.68997 + 1.87690i
\(593\) 14.0344 0.576325 0.288163 0.957581i \(-0.406956\pi\)
0.288163 + 0.957581i \(0.406956\pi\)
\(594\) 0 0
\(595\) −0.708204 −0.0290335
\(596\) 13.7589 15.2808i 0.563585 0.625925i
\(597\) 0 0
\(598\) 0.0152505 + 0.145099i 0.000623639 + 0.00593353i
\(599\) −8.46616 9.40262i −0.345918 0.384181i 0.544931 0.838481i \(-0.316556\pi\)
−0.890849 + 0.454300i \(0.849889\pi\)
\(600\) 0 0
\(601\) −6.29300 2.80182i −0.256697 0.114289i 0.274354 0.961629i \(-0.411536\pi\)
−0.531051 + 0.847340i \(0.678203\pi\)
\(602\) −14.2082 10.3229i −0.579083 0.420729i
\(603\) 0 0
\(604\) 5.12461 0.208517
\(605\) −6.39794 + 2.29874i −0.260113 + 0.0934571i
\(606\) 0 0
\(607\) 16.2004 + 3.44350i 0.657553 + 0.139767i 0.524592 0.851354i \(-0.324218\pi\)
0.132961 + 0.991121i \(0.457551\pi\)
\(608\) 58.0476 25.8445i 2.35414 1.04813i
\(609\) 0 0
\(610\) 18.2994 3.88965i 0.740920 0.157487i
\(611\) 0.736068 2.26538i 0.0297781 0.0916476i
\(612\) 0 0
\(613\) 11.5623 + 8.40051i 0.466997 + 0.339293i 0.796270 0.604942i \(-0.206804\pi\)
−0.329273 + 0.944235i \(0.606804\pi\)
\(614\) 49.0133 54.4348i 1.97802 2.19681i
\(615\) 0 0
\(616\) 10.9099 22.2516i 0.439571 0.896544i
\(617\) 5.59017 9.68246i 0.225052 0.389801i −0.731283 0.682074i \(-0.761078\pi\)
0.956335 + 0.292273i \(0.0944115\pi\)
\(618\) 0 0
\(619\) −2.52171 + 23.9925i −0.101356 + 0.964338i 0.819142 + 0.573591i \(0.194450\pi\)
−0.920498 + 0.390747i \(0.872217\pi\)
\(620\) 14.7812 10.7391i 0.593625 0.431294i
\(621\) 0 0
\(622\) −9.42705 + 29.0135i −0.377990 + 1.16333i
\(623\) −7.52402 3.34991i −0.301444 0.134211i
\(624\) 0 0
\(625\) −18.9921 4.03690i −0.759685 0.161476i
\(626\) 3.30902 5.73139i 0.132255 0.229072i
\(627\) 0 0
\(628\) −38.1246 66.0338i −1.52134 2.63503i
\(629\) −2.20820 6.79615i −0.0880469 0.270980i
\(630\) 0 0
\(631\) −15.5451 + 11.2942i −0.618840 + 0.449614i −0.852516 0.522701i \(-0.824924\pi\)
0.233676 + 0.972314i \(0.424924\pi\)
\(632\) −80.3974 + 17.0890i −3.19804 + 0.679763i
\(633\) 0 0
\(634\) −1.86626 17.7563i −0.0741187 0.705193i
\(635\) 4.35207 1.93767i 0.172707 0.0768939i
\(636\) 0 0
\(637\) 0.708204 + 1.22665i 0.0280601 + 0.0486015i
\(638\) −44.1246 27.6992i −1.74691 1.09662i
\(639\) 0 0
\(640\) 0.208204 + 0.640786i 0.00822998 + 0.0253293i
\(641\) −2.62264 + 24.9527i −0.103588 + 0.985573i 0.812055 + 0.583581i \(0.198349\pi\)
−0.915643 + 0.401992i \(0.868318\pi\)
\(642\) 0 0
\(643\) 13.9541 + 15.4976i 0.550297 + 0.611166i 0.952557 0.304359i \(-0.0984422\pi\)
−0.402261 + 0.915525i \(0.631775\pi\)
\(644\) 0.766755 + 0.851568i 0.0302144 + 0.0335565i
\(645\) 0 0
\(646\) −1.83576 + 17.4661i −0.0722270 + 0.687194i
\(647\) −13.9164 42.8303i −0.547110 1.68383i −0.715918 0.698184i \(-0.753992\pi\)
0.168808 0.985649i \(-0.446008\pi\)
\(648\) 0 0
\(649\) 18.7877 15.6987i 0.737483 0.616227i
\(650\) 1.42705 + 2.47172i 0.0559735 + 0.0969490i
\(651\) 0 0
\(652\) −22.8192 + 10.1598i −0.893668 + 0.397887i
\(653\) −0.587244 5.58726i −0.0229807 0.218646i −0.999985 0.00542814i \(-0.998272\pi\)
0.977005 0.213218i \(-0.0683945\pi\)
\(654\) 0 0
\(655\) −7.13245 + 1.51605i −0.278688 + 0.0592370i
\(656\) 1.88197 1.36733i 0.0734784 0.0533852i
\(657\) 0 0
\(658\) −8.16312 25.1235i −0.318232 0.979416i
\(659\) −20.5623 35.6150i −0.800994 1.38736i −0.918963 0.394345i \(-0.870972\pi\)
0.117969 0.993017i \(-0.462362\pi\)
\(660\) 0 0
\(661\) −18.2812 + 31.6639i −0.711054 + 1.23158i 0.253407 + 0.967360i \(0.418449\pi\)
−0.964462 + 0.264223i \(0.914885\pi\)
\(662\) −42.7868 9.09461i −1.66295 0.353472i
\(663\) 0 0
\(664\) −10.0490 4.47410i −0.389977 0.173629i
\(665\) −1.11803 + 3.44095i −0.0433555 + 0.133435i
\(666\) 0 0
\(667\) 1.14590 0.832544i 0.0443693 0.0322362i
\(668\) 6.10618 58.0964i 0.236255 2.24782i
\(669\) 0 0
\(670\) −1.50000 + 2.59808i −0.0579501 + 0.100372i
\(671\) −27.5300 26.6956i −1.06278 1.03057i
\(672\) 0 0
\(673\) 23.9768 26.6290i 0.924239 1.02647i −0.0753313 0.997159i \(-0.524001\pi\)
0.999570 0.0293129i \(-0.00933191\pi\)
\(674\) 38.5066 + 27.9767i 1.48322 + 1.07762i
\(675\) 0 0
\(676\) −19.4164 + 59.7576i −0.746785 + 2.29837i
\(677\) 13.2322 2.81260i 0.508557 0.108097i 0.0535147 0.998567i \(-0.482958\pi\)
0.455042 + 0.890470i \(0.349624\pi\)
\(678\) 0 0
\(679\) −7.17508 + 3.19455i −0.275354 + 0.122596i
\(680\) −5.17616 1.10023i −0.198497 0.0421918i
\(681\) 0 0
\(682\) −49.6545 18.1891i −1.90137 0.696498i
\(683\) −9.06888 −0.347011 −0.173506 0.984833i \(-0.555509\pi\)
−0.173506 + 0.984833i \(0.555509\pi\)
\(684\) 0 0
\(685\) 4.88197 + 3.54696i 0.186530 + 0.135522i
\(686\) 31.0920 + 13.8431i 1.18710 + 0.528530i
\(687\) 0 0
\(688\) −44.2318 49.1243i −1.68632 1.87285i
\(689\) −0.00942533 0.0896760i −0.000359076 0.00341638i
\(690\) 0 0
\(691\) 0.901670 1.00141i 0.0343011 0.0380953i −0.725750 0.687958i \(-0.758507\pi\)
0.760051 + 0.649863i \(0.225174\pi\)
\(692\) 87.5410 3.32781
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) 6.02218 6.68830i 0.228434 0.253702i
\(696\) 0 0
\(697\) 0.0282760 + 0.269028i 0.00107103 + 0.0101902i
\(698\) 22.2623 + 24.7248i 0.842641 + 0.935848i
\(699\) 0 0
\(700\) 20.4784 + 9.11757i 0.774011 + 0.344612i
\(701\) −28.1525 20.4540i −1.06330 0.772536i −0.0886075 0.996067i \(-0.528242\pi\)
−0.974697 + 0.223531i \(0.928242\pi\)
\(702\) 0 0
\(703\) −36.5066 −1.37687
\(704\) 17.8285 22.7224i 0.671936 0.856382i
\(705\) 0 0
\(706\) −30.7299 6.53184i −1.15653 0.245829i
\(707\) −9.35111 + 4.16338i −0.351685 + 0.156580i
\(708\) 0 0
\(709\) −10.9697 + 2.33168i −0.411976 + 0.0875682i −0.409237 0.912428i \(-0.634205\pi\)
−0.00273893 + 0.999996i \(0.500872\pi\)
\(710\) −5.16312 + 15.8904i −0.193768 + 0.596358i
\(711\) 0 0
\(712\) −49.7877 36.1729i −1.86587 1.35564i
\(713\) 0.962005 1.06841i 0.0360274 0.0400125i
\(714\) 0 0
\(715\) −0.213022 + 0.434477i −0.00796657 + 0.0162485i
\(716\) −20.6976 + 35.8492i −0.773504 + 1.33975i
\(717\) 0 0
\(718\) −2.65674 + 25.2772i −0.0991486 + 0.943336i
\(719\) −31.1353 + 22.6211i −1.16115 + 0.843624i −0.989923 0.141608i \(-0.954773\pi\)
−0.171226 + 0.985232i \(0.554773\pi\)
\(720\) 0 0
\(721\) 3.38197 10.4086i 0.125951 0.387637i
\(722\) 36.5224 + 16.2608i 1.35922 + 0.605165i
\(723\) 0 0
\(724\) −12.0024 2.55118i −0.446065 0.0948139i
\(725\) 13.8541 23.9960i 0.514528 0.891189i
\(726\) 0 0
\(727\) 4.57295 + 7.92058i 0.169601 + 0.293758i 0.938280 0.345877i \(-0.112419\pi\)
−0.768678 + 0.639635i \(0.779085\pi\)
\(728\) −0.545085 1.67760i −0.0202022 0.0621760i
\(729\) 0 0
\(730\) 7.47214 5.42882i 0.276556 0.200930i
\(731\) 7.51894 1.59820i 0.278098 0.0591116i
\(732\) 0 0
\(733\) 0.0421513 + 0.401043i 0.00155690 + 0.0148129i 0.995273 0.0971191i \(-0.0309628\pi\)
−0.993716 + 0.111932i \(0.964296\pi\)
\(734\) 52.9662 23.5821i 1.95502 0.870430i
\(735\) 0 0
\(736\) 1.28115 + 2.21902i 0.0472239 + 0.0817942i
\(737\) 6.13525 0.416272i 0.225995 0.0153336i
\(738\) 0 0
\(739\) 0.927051 + 2.85317i 0.0341021 + 0.104956i 0.966659 0.256068i \(-0.0824272\pi\)
−0.932557 + 0.361024i \(0.882427\pi\)
\(740\) 1.95554 18.6057i 0.0718871 0.683960i
\(741\) 0 0
\(742\) −0.669131 0.743145i −0.0245646 0.0272817i
\(743\) 28.6980 + 31.8724i 1.05283 + 1.16928i 0.985171 + 0.171576i \(0.0548860\pi\)
0.0676581 + 0.997709i \(0.478447\pi\)
\(744\) 0 0
\(745\) −0.273659 + 2.60369i −0.0100261 + 0.0953919i
\(746\) 0.718847 + 2.21238i 0.0263189 + 0.0810011i
\(747\) 0 0
\(748\) 6.87539 + 17.1190i 0.251389 + 0.625933i
\(749\) 5.73607 + 9.93516i 0.209591 + 0.363023i
\(750\) 0 0
\(751\) 14.7500 6.56713i 0.538236 0.239638i −0.119570 0.992826i \(-0.538152\pi\)
0.657805 + 0.753188i \(0.271485\pi\)
\(752\) −10.3932 98.8849i −0.379002 3.60596i
\(753\) 0 0
\(754\) −3.62717 + 0.770979i −0.132094 + 0.0280774i
\(755\) −0.527864 + 0.383516i −0.0192109 + 0.0139576i
\(756\) 0 0
\(757\) 1.54508 + 4.75528i 0.0561571 + 0.172834i 0.975201 0.221322i \(-0.0710371\pi\)
−0.919044 + 0.394156i \(0.871037\pi\)
\(758\) 32.5795 + 56.4294i 1.18334 + 2.04961i
\(759\) 0 0
\(760\) −13.5172 + 23.4125i −0.490321 + 0.849261i
\(761\) 28.6517 + 6.09011i 1.03862 + 0.220766i 0.695501 0.718525i \(-0.255182\pi\)
0.343122 + 0.939291i \(0.388516\pi\)
\(762\) 0 0
\(763\) 10.9625 + 4.88084i 0.396871 + 0.176698i
\(764\) 1.22949 3.78398i 0.0444814 0.136900i
\(765\) 0 0
\(766\) −26.9164 + 19.5559i −0.972529 + 0.706584i
\(767\) 0.182156 1.73310i 0.00657728 0.0625786i
\(768\) 0 0
\(769\) 17.2533 29.8836i 0.622170 1.07763i −0.366911 0.930256i \(-0.619585\pi\)
0.989081 0.147373i \(-0.0470819\pi\)
\(770\) 0.920937 + 5.28680i 0.0331883 + 0.190523i
\(771\) 0 0
\(772\) −10.2180 + 11.3482i −0.367753 + 0.408431i
\(773\) 21.9894 + 15.9762i 0.790902 + 0.574624i 0.908231 0.418469i \(-0.137433\pi\)
−0.117329 + 0.993093i \(0.537433\pi\)
\(774\) 0 0
\(775\) 8.69098 26.7481i 0.312189 0.960820i
\(776\) −57.4045 + 12.2017i −2.06070 + 0.438015i
\(777\) 0 0
\(778\) 87.8771 39.1254i 3.15055 1.40271i
\(779\) 1.35177 + 0.287327i 0.0484321 + 0.0102946i
\(780\) 0 0
\(781\) 32.9410 9.37200i 1.17872 0.335357i
\(782\) −0.708204 −0.0253253
\(783\) 0 0
\(784\) 47.8328 + 34.7526i 1.70831 + 1.24116i
\(785\) 8.86889 + 3.94868i 0.316544 + 0.140935i
\(786\) 0 0
\(787\) −6.49606 7.21460i −0.231559 0.257173i 0.616156 0.787624i \(-0.288689\pi\)
−0.847715 + 0.530451i \(0.822022\pi\)
\(788\) 6.61357 + 62.9239i 0.235599 + 2.24157i
\(789\) 0 0
\(790\) 11.9094 13.2268i 0.423719 0.470587i
\(791\) 13.4721 0.479014
\(792\) 0 0
\(793\) −2.72949 −0.0969270
\(794\) −32.7732 + 36.3983i −1.16308 + 1.29173i
\(795\) 0 0
\(796\) −3.40369 32.3839i −0.120641 1.14782i
\(797\) −12.4064 13.7787i −0.439456 0.488065i 0.482207 0.876057i \(-0.339835\pi\)
−0.921663 + 0.387992i \(0.873169\pi\)
\(798\) 0 0
\(799\) 10.5627 + 4.70281i 0.373681 + 0.166374i
\(800\) 40.5517 + 29.4625i 1.43372 + 1.04166i
\(801\) 0 0
\(802\) 82.9574 2.92933
\(803\) −17.7768 6.51189i −0.627330 0.229800i
\(804\) 0 0
\(805\) −0.142710 0.0303339i −0.00502986 0.00106913i
\(806\) −3.43852 + 1.53093i −0.121117 + 0.0539247i
\(807\) 0 0
\(808\) −74.8139 + 15.9022i −2.63194 + 0.559437i
\(809\) −8.37132 + 25.7643i −0.294320 + 0.905824i 0.689129 + 0.724639i \(0.257993\pi\)
−0.983449 + 0.181185i \(0.942007\pi\)
\(810\) 0 0
\(811\) −29.5795 21.4908i −1.03868 0.754644i −0.0686507 0.997641i \(-0.521869\pi\)
−0.970027 + 0.242997i \(0.921869\pi\)
\(812\) −19.4882 + 21.6438i −0.683901 + 0.759549i
\(813\) 0 0
\(814\) −47.8623 + 25.3220i −1.67757 + 0.887537i
\(815\) 1.59017 2.75426i 0.0557012 0.0964773i
\(816\) 0 0
\(817\) 4.10489 39.0554i 0.143612 1.36637i
\(818\) 13.7082 9.95959i 0.479296 0.348229i
\(819\) 0 0
\(820\) −0.218847 + 0.673542i −0.00764247 + 0.0235211i
\(821\) −37.0870 16.5122i −1.29434 0.576279i −0.360100 0.932914i \(-0.617258\pi\)
−0.934244 + 0.356634i \(0.883924\pi\)
\(822\) 0 0
\(823\) 27.2246 + 5.78677i 0.948990 + 0.201714i 0.656306 0.754495i \(-0.272118\pi\)
0.292684 + 0.956209i \(0.405452\pi\)
\(824\) 40.8885 70.8210i 1.42442 2.46717i
\(825\) 0 0
\(826\) −9.66312 16.7370i −0.336223 0.582355i
\(827\) 3.29180 + 10.1311i 0.114467 + 0.352293i 0.991835 0.127524i \(-0.0407030\pi\)
−0.877369 + 0.479817i \(0.840703\pi\)
\(828\) 0 0
\(829\) 25.3992 18.4536i 0.882150 0.640920i −0.0516692 0.998664i \(-0.516454\pi\)
0.933819 + 0.357745i \(0.116454\pi\)
\(830\) 2.32991 0.495239i 0.0808725 0.0171900i
\(831\) 0 0
\(832\) −0.214882 2.04447i −0.00744970 0.0708791i
\(833\) −6.28098 + 2.79647i −0.217623 + 0.0968920i
\(834\) 0 0
\(835\) 3.71885 + 6.44123i 0.128696 + 0.222908i
\(836\) 94.0304 6.37988i 3.25211 0.220653i
\(837\) 0 0
\(838\) −25.4443 78.3094i −0.878958 2.70515i
\(839\) −1.86404 + 17.7351i −0.0643537 + 0.612285i 0.914053 + 0.405595i \(0.132936\pi\)
−0.978407 + 0.206690i \(0.933731\pi\)
\(840\) 0 0
\(841\) 4.68391 + 5.20201i 0.161514 + 0.179380i
\(842\) 18.4055 + 20.4414i 0.634295 + 0.704456i
\(843\) 0 0
\(844\) −1.83576 + 17.4661i −0.0631895 + 0.601208i
\(845\) −2.47214 7.60845i −0.0850441 0.261739i
\(846\) 0 0
\(847\) 7.94427 7.60845i 0.272968 0.261430i
\(848\) −1.88197 3.25966i −0.0646270 0.111937i
\(849\) 0 0
\(850\) −12.6564 + 5.63497i −0.434109 + 0.193278i
\(851\) −0.153880 1.46407i −0.00527494 0.0501877i
\(852\) 0 0
\(853\) 54.6127 11.6083i 1.86990 0.397460i 0.873849 0.486197i \(-0.161616\pi\)
0.996055 + 0.0887365i \(0.0282829\pi\)
\(854\) −24.4894 + 17.7926i −0.838009 + 0.608849i
\(855\) 0 0
\(856\) 26.4894 + 81.5259i 0.905388 + 2.78650i
\(857\) 13.8820 + 24.0443i 0.474199 + 0.821337i 0.999564 0.0295405i \(-0.00940442\pi\)
−0.525365 + 0.850877i \(0.676071\pi\)
\(858\) 0 0
\(859\) 17.2082 29.8055i 0.587136 1.01695i −0.407469 0.913219i \(-0.633589\pi\)
0.994605 0.103731i \(-0.0330781\pi\)
\(860\) 19.6848 + 4.18414i 0.671247 + 0.142678i
\(861\) 0 0
\(862\) 14.1345 + 6.29308i 0.481423 + 0.214343i
\(863\) −0.0344419 + 0.106001i −0.00117241 + 0.00360832i −0.951641 0.307212i \(-0.900604\pi\)
0.950469 + 0.310821i \(0.100604\pi\)
\(864\) 0 0
\(865\) −9.01722 + 6.55139i −0.306595 + 0.222754i
\(866\) −9.66152 + 91.9232i −0.328312 + 3.12368i
\(867\) 0 0
\(868\) −14.7812 + 25.6017i −0.501705 + 0.868979i
\(869\) −36.1172 5.15213i −1.22519 0.174774i
\(870\) 0 0
\(871\) 0.292875 0.325270i 0.00992367 0.0110214i
\(872\) 72.5410 + 52.7041i 2.45655 + 1.78479i
\(873\) 0 0
\(874\) −1.11803 + 3.44095i −0.0378181 + 0.116392i
\(875\) −5.81438 + 1.23588i −0.196562 + 0.0417805i
\(876\) 0 0
\(877\) −52.9347 + 23.5681i −1.78748 + 0.795837i −0.809504 + 0.587115i \(0.800264\pi\)
−0.977975 + 0.208722i \(0.933070\pi\)
\(878\) −59.6462 12.6782i −2.01296 0.427868i
\(879\) 0 0
\(880\) −0.746669 + 20.1850i −0.0251702 + 0.680436i
\(881\) −6.20163 −0.208938 −0.104469 0.994528i \(-0.533314\pi\)
−0.104469 + 0.994528i \(0.533314\pi\)
\(882\) 0 0
\(883\) −0.854102 0.620541i −0.0287428 0.0208829i 0.573321 0.819331i \(-0.305655\pi\)
−0.602064 + 0.798448i \(0.705655\pi\)
\(884\) 1.19956 + 0.534079i 0.0403456 + 0.0179630i
\(885\) 0 0
\(886\) 55.3514 + 61.4740i 1.85957 + 2.06526i
\(887\) −5.69526 54.1868i −0.191228 1.81942i −0.497492 0.867469i \(-0.665746\pi\)
0.306264 0.951947i \(-0.400921\pi\)
\(888\) 0 0
\(889\) −5.15780 + 5.72831i −0.172987 + 0.192121i
\(890\) 13.3262 0.446697
\(891\) 0 0
\(892\) 34.8541 1.16700
\(893\) 39.5248 43.8967i 1.32265 1.46895i
\(894\) 0 0
\(895\) −0.550918 5.24164i −0.0184152 0.175209i
\(896\) −0.729466 0.810154i −0.0243698 0.0270654i
\(897\) 0 0
\(898\) 21.6585 + 9.64300i 0.722754 + 0.321791i
\(899\) 29.5623 + 21.4783i 0.985958 + 0.716340i
\(900\) 0 0
\(901\) 0.437694 0.0145817
\(902\) 1.97155 0.560922i 0.0656453 0.0186767i
\(903\) 0 0
\(904\) 98.4658 + 20.9296i 3.27493 + 0.696107i
\(905\) 1.42724 0.635447i 0.0474430 0.0211230i
\(906\) 0 0
\(907\) 41.4687 8.81444i 1.37695 0.292679i 0.540783 0.841162i \(-0.318128\pi\)
0.836162 + 0.548483i \(0.184794\pi\)
\(908\) −19.7705 + 60.8474i −0.656107 + 2.01929i
\(909\) 0 0
\(910\) 0.309017 + 0.224514i 0.0102438 + 0.00744257i
\(911\) −25.8263 + 28.6830i −0.855662 + 0.950309i −0.999226 0.0393318i \(-0.987477\pi\)
0.143564 + 0.989641i \(0.454144\pi\)
\(912\) 0 0
\(913\) −3.50517 3.39894i −0.116004 0.112489i
\(914\) −31.3885 + 54.3666i −1.03824 + 1.79829i
\(915\) 0 0
\(916\) −0.239558 + 2.27924i −0.00791522 + 0.0753083i
\(917\) 9.54508 6.93491i 0.315206 0.229011i
\(918\) 0 0
\(919\) 7.92705 24.3970i 0.261489 0.804781i −0.730992 0.682386i \(-0.760942\pi\)
0.992481 0.122395i \(-0.0390576\pi\)
\(920\) −0.995920 0.443412i −0.0328345 0.0146189i
\(921\) 0 0
\(922\) 23.7401 + 5.04612i 0.781840 + 0.166185i
\(923\) 1.21885 2.11111i 0.0401188 0.0694879i
\(924\) 0 0
\(925\) −14.3992 24.9401i −0.473442 0.820026i
\(926\) 1.39919 + 4.30625i 0.0459801 + 0.141512i
\(927\) 0 0
\(928\) −52.6869 + 38.2793i −1.72953 + 1.25658i
\(929\) −12.4305 + 2.64218i −0.407831 + 0.0866873i −0.407259 0.913313i \(-0.633515\pi\)
−0.000572170 1.00000i \(0.500182\pi\)
\(930\) 0 0
\(931\) 3.67152 + 34.9322i 0.120329 + 1.14486i
\(932\) 18.3847 8.18542i 0.602212 0.268122i
\(933\) 0 0
\(934\) 27.3435 + 47.3603i 0.894705 + 1.54968i
\(935\) −1.98936 1.24882i −0.0650589 0.0408406i
\(936\) 0 0
\(937\) 12.8713 + 39.6139i 0.420488 + 1.29413i 0.907249 + 0.420593i \(0.138178\pi\)
−0.486761 + 0.873535i \(0.661822\pi\)
\(938\) 0.507392 4.82751i 0.0165669 0.157624i
\(939\) 0 0
\(940\) 20.2549 + 22.4954i 0.660643 + 0.733718i
\(941\) 9.66951 + 10.7391i 0.315217 + 0.350084i 0.879844 0.475262i \(-0.157647\pi\)
−0.564627 + 0.825346i \(0.690980\pi\)
\(942\) 0 0
\(943\) −0.00582517 + 0.0554228i −0.000189694 + 0.00180481i
\(944\) −22.4787 69.1824i −0.731620 2.25169i
\(945\) 0 0
\(946\) −21.7082 54.0512i −0.705795 1.75736i
\(947\) −16.1976 28.0550i −0.526350 0.911665i −0.999529 0.0306985i \(-0.990227\pi\)
0.473179 0.880966i \(-0.343106\pi\)
\(948\) 0 0
\(949\) −1.23102 + 0.548087i −0.0399607 + 0.0177917i
\(950\) 7.39822 + 70.3894i 0.240030 + 2.28373i
\(951\) 0 0
\(952\) 8.37520 1.78020i 0.271442 0.0576967i
\(953\) 9.18034 6.66991i 0.297380 0.216059i −0.429082 0.903265i \(-0.641163\pi\)
0.726463 + 0.687206i \(0.241163\pi\)
\(954\) 0 0
\(955\) 0.156541 + 0.481784i 0.00506555 + 0.0155902i
\(956\) 0.927051 + 1.60570i 0.0299830 + 0.0519320i
\(957\) 0 0
\(958\) −37.1525 + 64.3500i −1.20034 + 2.07905i
\(959\) −9.55057 2.03004i −0.308404 0.0655533i
\(960\) 0 0
\(961\) 5.56365 + 2.47710i 0.179472 + 0.0799063i
\(962\) −1.19098 + 3.66547i −0.0383988 + 0.118179i
\(963\) 0 0
\(964\) −32.5623 + 23.6579i −1.04876 + 0.761970i
\(965\) 0.203232 1.93362i 0.00654226 0.0622455i
\(966\) 0 0
\(967\) −21.9615 + 38.0384i −0.706234 + 1.22323i 0.260010 + 0.965606i \(0.416274\pi\)
−0.966244 + 0.257627i \(0.917059\pi\)
\(968\) 69.8836 43.2673i 2.24614 1.39066i
\(969\) 0 0
\(970\) 8.50345 9.44404i 0.273029 0.303230i
\(971\) −33.9787 24.6870i −1.09043 0.792243i −0.110957 0.993825i \(-0.535392\pi\)
−0.979472 + 0.201582i \(0.935392\pi\)
\(972\) 0 0
\(973\) −4.50000 + 13.8496i −0.144263 + 0.443997i
\(974\) 32.5435 6.91733i 1.04276 0.221645i
\(975\) 0 0
\(976\) −104.086 + 46.3420i −3.33171 + 1.48337i
\(977\) −0.583707 0.124071i −0.0186745 0.00396938i 0.198565 0.980088i \(-0.436372\pi\)
−0.217239 + 0.976118i \(0.569705\pi\)
\(978\) 0 0
\(979\) −15.2280 22.6775i −0.486690 0.724776i
\(980\) −18.0000 −0.574989
\(981\) 0 0
\(982\) −37.9336 27.5604i −1.21051 0.879488i
\(983\) 7.41018 + 3.29923i 0.236348 + 0.105229i 0.521493 0.853255i \(-0.325375\pi\)
−0.285145 + 0.958484i \(0.592042\pi\)
\(984\) 0 0
\(985\) −5.39033 5.98657i −0.171750 0.190748i
\(986\) −1.88151 17.9014i −0.0599196 0.570097i
\(987\) 0 0
\(988\) 4.48866 4.98517i 0.142803 0.158599i
\(989\) 1.58359 0.0503553
\(990\) 0 0
\(991\) 3.74265 0.118889 0.0594445 0.998232i \(-0.481067\pi\)
0.0594445 + 0.998232i \(0.481067\pi\)
\(992\) −44.2318 + 49.1243i −1.40436 + 1.55970i
\(993\) 0 0
\(994\) −2.82587 26.8863i −0.0896311 0.852783i
\(995\) 2.77415 + 3.08100i 0.0879464 + 0.0976744i
\(996\) 0 0
\(997\) −19.3686 8.62348i −0.613411 0.273108i 0.0764231 0.997075i \(-0.475650\pi\)
−0.689834 + 0.723967i \(0.742317\pi\)
\(998\) 38.4336 + 27.9237i 1.21660 + 0.883908i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.n.b.676.1 8
3.2 odd 2 891.2.n.c.676.1 8
9.2 odd 6 891.2.n.c.379.1 8
9.4 even 3 99.2.f.a.82.1 4
9.5 odd 6 33.2.e.b.16.1 4
9.7 even 3 inner 891.2.n.b.379.1 8
11.9 even 5 inner 891.2.n.b.757.1 8
33.20 odd 10 891.2.n.c.757.1 8
36.23 even 6 528.2.y.b.49.1 4
45.14 odd 6 825.2.n.c.676.1 4
45.23 even 12 825.2.bx.d.49.1 8
45.32 even 12 825.2.bx.d.49.2 8
99.5 odd 30 363.2.e.k.202.1 4
99.14 odd 30 363.2.a.d.1.1 2
99.20 odd 30 891.2.n.c.460.1 8
99.31 even 15 99.2.f.a.64.1 4
99.32 even 6 363.2.e.f.148.1 4
99.41 even 30 363.2.a.i.1.2 2
99.50 even 30 363.2.e.b.202.1 4
99.58 even 15 1089.2.a.t.1.2 2
99.59 odd 30 363.2.e.k.124.1 4
99.68 even 30 363.2.e.f.130.1 4
99.85 odd 30 1089.2.a.l.1.1 2
99.86 odd 30 33.2.e.b.31.1 yes 4
99.95 even 30 363.2.e.b.124.1 4
99.97 even 15 inner 891.2.n.b.460.1 8
396.239 odd 30 5808.2.a.ci.1.1 2
396.311 even 30 5808.2.a.cj.1.1 2
396.383 even 30 528.2.y.b.97.1 4
495.14 odd 30 9075.2.a.cb.1.2 2
495.239 even 30 9075.2.a.u.1.1 2
495.284 odd 30 825.2.n.c.526.1 4
495.383 even 60 825.2.bx.d.724.2 8
495.482 even 60 825.2.bx.d.724.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.2.e.b.16.1 4 9.5 odd 6
33.2.e.b.31.1 yes 4 99.86 odd 30
99.2.f.a.64.1 4 99.31 even 15
99.2.f.a.82.1 4 9.4 even 3
363.2.a.d.1.1 2 99.14 odd 30
363.2.a.i.1.2 2 99.41 even 30
363.2.e.b.124.1 4 99.95 even 30
363.2.e.b.202.1 4 99.50 even 30
363.2.e.f.130.1 4 99.68 even 30
363.2.e.f.148.1 4 99.32 even 6
363.2.e.k.124.1 4 99.59 odd 30
363.2.e.k.202.1 4 99.5 odd 30
528.2.y.b.49.1 4 36.23 even 6
528.2.y.b.97.1 4 396.383 even 30
825.2.n.c.526.1 4 495.284 odd 30
825.2.n.c.676.1 4 45.14 odd 6
825.2.bx.d.49.1 8 45.23 even 12
825.2.bx.d.49.2 8 45.32 even 12
825.2.bx.d.724.1 8 495.482 even 60
825.2.bx.d.724.2 8 495.383 even 60
891.2.n.b.379.1 8 9.7 even 3 inner
891.2.n.b.460.1 8 99.97 even 15 inner
891.2.n.b.676.1 8 1.1 even 1 trivial
891.2.n.b.757.1 8 11.9 even 5 inner
891.2.n.c.379.1 8 9.2 odd 6
891.2.n.c.460.1 8 99.20 odd 30
891.2.n.c.676.1 8 3.2 odd 2
891.2.n.c.757.1 8 33.20 odd 10
1089.2.a.l.1.1 2 99.85 odd 30
1089.2.a.t.1.2 2 99.58 even 15
5808.2.a.ci.1.1 2 396.239 odd 30
5808.2.a.cj.1.1 2 396.311 even 30
9075.2.a.u.1.1 2 495.239 even 30
9075.2.a.cb.1.2 2 495.14 odd 30