Properties

Label 891.2.n.b.460.1
Level $891$
Weight $2$
Character 891.460
Analytic conductor $7.115$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(136,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.136");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{15})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 460.1
Root \(-0.978148 + 0.207912i\) of defining polynomial
Character \(\chi\) \(=\) 891.460
Dual form 891.2.n.b.676.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.75181 + 1.94558i) q^{2} +(-0.507392 + 4.82751i) q^{4} +(0.413545 - 0.459289i) q^{5} +(-0.913545 + 0.406737i) q^{7} +(-6.04508 + 4.39201i) q^{8} +1.61803 q^{10} +(-1.84894 + 2.75344i) q^{11} +(-0.230909 + 0.0490813i) q^{13} +(-2.39169 - 1.06485i) q^{14} +(-9.63877 - 2.04878i) q^{16} +(0.354102 + 1.08981i) q^{17} +(-4.73607 + 3.44095i) q^{19} +(2.00739 + 2.22943i) q^{20} +(-8.59602 + 1.22622i) q^{22} +(0.118034 + 0.204441i) q^{23} +(0.482716 + 4.59274i) q^{25} +(-0.500000 - 0.363271i) q^{26} +(-1.50000 - 4.61653i) q^{28} +(5.48127 - 2.44042i) q^{29} +(5.95709 - 1.26622i) q^{31} +(-5.42705 - 9.39993i) q^{32} +(-1.50000 + 2.59808i) q^{34} +(-0.190983 + 0.587785i) q^{35} +(5.04508 + 3.66547i) q^{37} +(-14.9913 - 3.18650i) q^{38} +(-0.482716 + 4.59274i) q^{40} +(-0.215659 - 0.0960175i) q^{41} +(3.35410 - 5.80948i) q^{43} +(-12.3541 - 10.3229i) q^{44} +(-0.190983 + 0.587785i) q^{46} +(-1.05471 - 10.0349i) q^{47} +(-4.01478 + 4.45887i) q^{49} +(-8.08990 + 8.98475i) q^{50} +(-0.119779 - 1.13962i) q^{52} +(0.118034 - 0.363271i) q^{53} +(0.500000 + 1.98787i) q^{55} +(3.73607 - 6.47106i) q^{56} +(14.3502 + 6.38910i) q^{58} +(0.771626 - 7.34153i) q^{59} +(11.3096 + 2.40394i) q^{61} +(12.8992 + 9.37181i) q^{62} +(2.69098 - 8.28199i) q^{64} +(-0.0729490 + 0.126351i) q^{65} +(-0.927051 - 1.60570i) q^{67} +(-5.44076 + 1.15647i) q^{68} +(-1.47815 + 0.658114i) q^{70} +(-3.19098 - 9.82084i) q^{71} +(4.61803 + 3.35520i) q^{73} +(1.70656 + 16.2368i) q^{74} +(-14.2082 - 24.6093i) q^{76} +(0.569171 - 3.26742i) q^{77} +(7.36044 + 8.17459i) q^{79} +(-4.92705 + 3.57971i) q^{80} +(-0.190983 - 0.587785i) q^{82} +(1.43997 + 0.306074i) q^{83} +(0.646976 + 0.288052i) q^{85} +(17.1785 - 3.65141i) q^{86} +(-0.916102 - 24.7653i) q^{88} +8.23607 q^{89} +(0.190983 - 0.138757i) q^{91} +(-1.04683 + 0.466079i) q^{92} +(17.6760 - 19.6312i) q^{94} +(-0.378188 + 3.59821i) q^{95} +(5.25542 + 5.83674i) q^{97} -15.7082 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} + 9 q^{4} - 3 q^{5} - q^{7} - 26 q^{8} + 4 q^{10} - 11 q^{11} - 7 q^{13} - 4 q^{14} - q^{16} - 24 q^{17} - 20 q^{19} + 3 q^{20} - 4 q^{22} - 8 q^{23} - 6 q^{25} - 4 q^{26} - 12 q^{28} + 6 q^{29}+ \cdots - 72 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.75181 + 1.94558i 1.23871 + 1.37573i 0.900613 + 0.434622i \(0.143118\pi\)
0.338101 + 0.941110i \(0.390215\pi\)
\(3\) 0 0
\(4\) −0.507392 + 4.82751i −0.253696 + 2.41376i
\(5\) 0.413545 0.459289i 0.184943 0.205400i −0.643543 0.765410i \(-0.722536\pi\)
0.828486 + 0.560010i \(0.189203\pi\)
\(6\) 0 0
\(7\) −0.913545 + 0.406737i −0.345288 + 0.153732i −0.572051 0.820218i \(-0.693852\pi\)
0.226764 + 0.973950i \(0.427186\pi\)
\(8\) −6.04508 + 4.39201i −2.13726 + 1.55281i
\(9\) 0 0
\(10\) 1.61803 0.511667
\(11\) −1.84894 + 2.75344i −0.557477 + 0.830192i
\(12\) 0 0
\(13\) −0.230909 + 0.0490813i −0.0640427 + 0.0136127i −0.239822 0.970817i \(-0.577089\pi\)
0.175779 + 0.984430i \(0.443756\pi\)
\(14\) −2.39169 1.06485i −0.639207 0.284593i
\(15\) 0 0
\(16\) −9.63877 2.04878i −2.40969 0.512196i
\(17\) 0.354102 + 1.08981i 0.0858823 + 0.264319i 0.984770 0.173860i \(-0.0556239\pi\)
−0.898888 + 0.438178i \(0.855624\pi\)
\(18\) 0 0
\(19\) −4.73607 + 3.44095i −1.08653 + 0.789409i −0.978810 0.204772i \(-0.934355\pi\)
−0.107719 + 0.994181i \(0.534355\pi\)
\(20\) 2.00739 + 2.22943i 0.448866 + 0.498517i
\(21\) 0 0
\(22\) −8.59602 + 1.22622i −1.83268 + 0.261432i
\(23\) 0.118034 + 0.204441i 0.0246118 + 0.0426289i 0.878069 0.478534i \(-0.158832\pi\)
−0.853457 + 0.521163i \(0.825498\pi\)
\(24\) 0 0
\(25\) 0.482716 + 4.59274i 0.0965432 + 0.918547i
\(26\) −0.500000 0.363271i −0.0980581 0.0712434i
\(27\) 0 0
\(28\) −1.50000 4.61653i −0.283473 0.872441i
\(29\) 5.48127 2.44042i 1.01785 0.453175i 0.171147 0.985246i \(-0.445253\pi\)
0.846700 + 0.532071i \(0.178586\pi\)
\(30\) 0 0
\(31\) 5.95709 1.26622i 1.06992 0.227419i 0.360901 0.932604i \(-0.382469\pi\)
0.709023 + 0.705185i \(0.249136\pi\)
\(32\) −5.42705 9.39993i −0.959376 1.66169i
\(33\) 0 0
\(34\) −1.50000 + 2.59808i −0.257248 + 0.445566i
\(35\) −0.190983 + 0.587785i −0.0322820 + 0.0993538i
\(36\) 0 0
\(37\) 5.04508 + 3.66547i 0.829407 + 0.602599i 0.919391 0.393344i \(-0.128682\pi\)
−0.0899846 + 0.995943i \(0.528682\pi\)
\(38\) −14.9913 3.18650i −2.43191 0.516919i
\(39\) 0 0
\(40\) −0.482716 + 4.59274i −0.0763241 + 0.726175i
\(41\) −0.215659 0.0960175i −0.0336803 0.0149954i 0.389827 0.920888i \(-0.372535\pi\)
−0.423508 + 0.905893i \(0.639201\pi\)
\(42\) 0 0
\(43\) 3.35410 5.80948i 0.511496 0.885937i −0.488415 0.872611i \(-0.662425\pi\)
0.999911 0.0133254i \(-0.00424174\pi\)
\(44\) −12.3541 10.3229i −1.86245 1.55623i
\(45\) 0 0
\(46\) −0.190983 + 0.587785i −0.0281589 + 0.0866642i
\(47\) −1.05471 10.0349i −0.153845 1.46374i −0.750302 0.661095i \(-0.770092\pi\)
0.596457 0.802645i \(-0.296575\pi\)
\(48\) 0 0
\(49\) −4.01478 + 4.45887i −0.573541 + 0.636981i
\(50\) −8.08990 + 8.98475i −1.14409 + 1.27064i
\(51\) 0 0
\(52\) −0.119779 1.13962i −0.0166104 0.158037i
\(53\) 0.118034 0.363271i 0.0162132 0.0498991i −0.942623 0.333860i \(-0.891649\pi\)
0.958836 + 0.283961i \(0.0916486\pi\)
\(54\) 0 0
\(55\) 0.500000 + 1.98787i 0.0674200 + 0.268044i
\(56\) 3.73607 6.47106i 0.499253 0.864732i
\(57\) 0 0
\(58\) 14.3502 + 6.38910i 1.88427 + 0.838930i
\(59\) 0.771626 7.34153i 0.100457 0.955785i −0.821948 0.569562i \(-0.807113\pi\)
0.922405 0.386223i \(-0.126221\pi\)
\(60\) 0 0
\(61\) 11.3096 + 2.40394i 1.44805 + 0.307793i 0.863823 0.503796i \(-0.168064\pi\)
0.584229 + 0.811589i \(0.301397\pi\)
\(62\) 12.8992 + 9.37181i 1.63820 + 1.19022i
\(63\) 0 0
\(64\) 2.69098 8.28199i 0.336373 1.03525i
\(65\) −0.0729490 + 0.126351i −0.00904821 + 0.0156720i
\(66\) 0 0
\(67\) −0.927051 1.60570i −0.113257 0.196167i 0.803824 0.594867i \(-0.202795\pi\)
−0.917082 + 0.398699i \(0.869462\pi\)
\(68\) −5.44076 + 1.15647i −0.659789 + 0.140242i
\(69\) 0 0
\(70\) −1.47815 + 0.658114i −0.176672 + 0.0786596i
\(71\) −3.19098 9.82084i −0.378700 1.16552i −0.940948 0.338550i \(-0.890063\pi\)
0.562248 0.826968i \(-0.309937\pi\)
\(72\) 0 0
\(73\) 4.61803 + 3.35520i 0.540500 + 0.392696i 0.824271 0.566196i \(-0.191585\pi\)
−0.283771 + 0.958892i \(0.591585\pi\)
\(74\) 1.70656 + 16.2368i 0.198383 + 1.88749i
\(75\) 0 0
\(76\) −14.2082 24.6093i −1.62979 2.82288i
\(77\) 0.569171 3.26742i 0.0648630 0.372357i
\(78\) 0 0
\(79\) 7.36044 + 8.17459i 0.828114 + 0.919714i 0.997834 0.0657787i \(-0.0209531\pi\)
−0.169720 + 0.985492i \(0.554286\pi\)
\(80\) −4.92705 + 3.57971i −0.550861 + 0.400224i
\(81\) 0 0
\(82\) −0.190983 0.587785i −0.0210905 0.0649100i
\(83\) 1.43997 + 0.306074i 0.158057 + 0.0335960i 0.286260 0.958152i \(-0.407588\pi\)
−0.128204 + 0.991748i \(0.540921\pi\)
\(84\) 0 0
\(85\) 0.646976 + 0.288052i 0.0701745 + 0.0312437i
\(86\) 17.1785 3.65141i 1.85241 0.393742i
\(87\) 0 0
\(88\) −0.916102 24.7653i −0.0976568 2.63999i
\(89\) 8.23607 0.873021 0.436511 0.899699i \(-0.356214\pi\)
0.436511 + 0.899699i \(0.356214\pi\)
\(90\) 0 0
\(91\) 0.190983 0.138757i 0.0200205 0.0145457i
\(92\) −1.04683 + 0.466079i −0.109140 + 0.0485921i
\(93\) 0 0
\(94\) 17.6760 19.6312i 1.82314 2.02481i
\(95\) −0.378188 + 3.59821i −0.0388012 + 0.369169i
\(96\) 0 0
\(97\) 5.25542 + 5.83674i 0.533607 + 0.592631i 0.948318 0.317323i \(-0.102784\pi\)
−0.414711 + 0.909953i \(0.636117\pi\)
\(98\) −15.7082 −1.58677
\(99\) 0 0
\(100\) −22.4164 −2.24164
\(101\) 6.84927 + 7.60688i 0.681527 + 0.756913i 0.980322 0.197404i \(-0.0632512\pi\)
−0.298795 + 0.954317i \(0.596585\pi\)
\(102\) 0 0
\(103\) 1.14399 10.8843i 0.112720 1.07246i −0.781213 0.624264i \(-0.785399\pi\)
0.893934 0.448199i \(-0.147935\pi\)
\(104\) 1.18030 1.31086i 0.115738 0.128540i
\(105\) 0 0
\(106\) 0.913545 0.406737i 0.0887314 0.0395058i
\(107\) −9.28115 + 6.74315i −0.897243 + 0.651885i −0.937756 0.347294i \(-0.887101\pi\)
0.0405134 + 0.999179i \(0.487101\pi\)
\(108\) 0 0
\(109\) −12.0000 −1.14939 −0.574696 0.818367i \(-0.694880\pi\)
−0.574696 + 0.818367i \(0.694880\pi\)
\(110\) −2.99165 + 4.45515i −0.285243 + 0.424782i
\(111\) 0 0
\(112\) 9.63877 2.04878i 0.910778 0.193592i
\(113\) −12.3074 5.47961i −1.15778 0.515478i −0.264241 0.964457i \(-0.585121\pi\)
−0.893543 + 0.448978i \(0.851788\pi\)
\(114\) 0 0
\(115\) 0.142710 + 0.0303339i 0.0133078 + 0.00282865i
\(116\) 9.00000 + 27.6992i 0.835629 + 2.57180i
\(117\) 0 0
\(118\) 15.6353 11.3597i 1.43934 1.04574i
\(119\) −0.766755 0.851568i −0.0702884 0.0780631i
\(120\) 0 0
\(121\) −4.16282 10.1819i −0.378438 0.925627i
\(122\) 15.1353 + 26.2150i 1.37028 + 2.37340i
\(123\) 0 0
\(124\) 3.09010 + 29.4004i 0.277499 + 2.64023i
\(125\) 4.80902 + 3.49396i 0.430132 + 0.312509i
\(126\) 0 0
\(127\) 2.38197 + 7.33094i 0.211365 + 0.650516i 0.999392 + 0.0348741i \(0.0111030\pi\)
−0.788026 + 0.615641i \(0.788897\pi\)
\(128\) 0.995920 0.443412i 0.0880277 0.0391925i
\(129\) 0 0
\(130\) −0.373619 + 0.0794152i −0.0327686 + 0.00696517i
\(131\) −5.89919 10.2177i −0.515414 0.892724i −0.999840 0.0178914i \(-0.994305\pi\)
0.484426 0.874832i \(-0.339029\pi\)
\(132\) 0 0
\(133\) 2.92705 5.06980i 0.253808 0.439608i
\(134\) 1.50000 4.61653i 0.129580 0.398807i
\(135\) 0 0
\(136\) −6.92705 5.03280i −0.593990 0.431559i
\(137\) 9.55057 + 2.03004i 0.815960 + 0.173438i 0.596943 0.802283i \(-0.296382\pi\)
0.219017 + 0.975721i \(0.429715\pi\)
\(138\) 0 0
\(139\) −1.52218 + 14.4825i −0.129109 + 1.22839i 0.717645 + 0.696409i \(0.245220\pi\)
−0.846755 + 0.531984i \(0.821447\pi\)
\(140\) −2.74064 1.22021i −0.231626 0.103127i
\(141\) 0 0
\(142\) 13.5172 23.4125i 1.13434 1.96473i
\(143\) 0.291796 0.726543i 0.0244012 0.0607565i
\(144\) 0 0
\(145\) 1.14590 3.52671i 0.0951617 0.292877i
\(146\) 1.56210 + 14.8624i 0.129280 + 1.23002i
\(147\) 0 0
\(148\) −20.2549 + 22.4954i −1.66494 + 1.84911i
\(149\) 2.83448 3.14801i 0.232210 0.257895i −0.615767 0.787928i \(-0.711154\pi\)
0.847977 + 0.530033i \(0.177820\pi\)
\(150\) 0 0
\(151\) −0.110354 1.04994i −0.00898045 0.0854433i 0.989114 0.147154i \(-0.0470112\pi\)
−0.998094 + 0.0617103i \(0.980345\pi\)
\(152\) 13.5172 41.6017i 1.09639 3.37435i
\(153\) 0 0
\(154\) 7.35410 4.61653i 0.592610 0.372010i
\(155\) 1.88197 3.25966i 0.151163 0.261822i
\(156\) 0 0
\(157\) 14.3502 + 6.38910i 1.14527 + 0.509906i 0.889546 0.456845i \(-0.151021\pi\)
0.255721 + 0.966751i \(0.417687\pi\)
\(158\) −3.01025 + 28.6406i −0.239483 + 2.27852i
\(159\) 0 0
\(160\) −6.56161 1.39471i −0.518741 0.110262i
\(161\) −0.190983 0.138757i −0.0150516 0.0109356i
\(162\) 0 0
\(163\) −1.59017 + 4.89404i −0.124552 + 0.383331i −0.993819 0.111011i \(-0.964591\pi\)
0.869267 + 0.494342i \(0.164591\pi\)
\(164\) 0.572949 0.992377i 0.0447398 0.0774916i
\(165\) 0 0
\(166\) 1.92705 + 3.33775i 0.149568 + 0.259060i
\(167\) 11.7715 2.50210i 0.910903 0.193618i 0.271454 0.962452i \(-0.412496\pi\)
0.639449 + 0.768833i \(0.279162\pi\)
\(168\) 0 0
\(169\) −11.8252 + 5.26491i −0.909629 + 0.404993i
\(170\) 0.572949 + 1.76336i 0.0439432 + 0.135243i
\(171\) 0 0
\(172\) 26.3435 + 19.1396i 2.00867 + 1.45938i
\(173\) −1.88511 17.9356i −0.143322 1.36362i −0.795683 0.605713i \(-0.792888\pi\)
0.652361 0.757909i \(-0.273779\pi\)
\(174\) 0 0
\(175\) −2.30902 3.99933i −0.174545 0.302321i
\(176\) 23.4627 22.7516i 1.76857 1.71497i
\(177\) 0 0
\(178\) 14.4280 + 16.0239i 1.08142 + 1.20104i
\(179\) −6.89919 + 5.01255i −0.515669 + 0.374656i −0.814970 0.579503i \(-0.803247\pi\)
0.299301 + 0.954159i \(0.403247\pi\)
\(180\) 0 0
\(181\) 0.781153 + 2.40414i 0.0580626 + 0.178698i 0.975881 0.218301i \(-0.0700515\pi\)
−0.917819 + 0.396999i \(0.870051\pi\)
\(182\) 0.604528 + 0.128496i 0.0448106 + 0.00952479i
\(183\) 0 0
\(184\) −1.61143 0.717456i −0.118796 0.0528915i
\(185\) 3.76988 0.801313i 0.277167 0.0589137i
\(186\) 0 0
\(187\) −3.65545 1.04001i −0.267313 0.0760528i
\(188\) 48.9787 3.57214
\(189\) 0 0
\(190\) −7.66312 + 5.56758i −0.555941 + 0.403915i
\(191\) 0.748797 0.333386i 0.0541810 0.0241230i −0.379467 0.925205i \(-0.623893\pi\)
0.433648 + 0.901082i \(0.357226\pi\)
\(192\) 0 0
\(193\) −2.10502 + 2.33786i −0.151522 + 0.168283i −0.814127 0.580686i \(-0.802784\pi\)
0.662605 + 0.748969i \(0.269451\pi\)
\(194\) −2.14935 + 20.4497i −0.154314 + 1.46820i
\(195\) 0 0
\(196\) −19.4882 21.6438i −1.39201 1.54599i
\(197\) −13.0344 −0.928666 −0.464333 0.885661i \(-0.653706\pi\)
−0.464333 + 0.885661i \(0.653706\pi\)
\(198\) 0 0
\(199\) 6.70820 0.475532 0.237766 0.971322i \(-0.423585\pi\)
0.237766 + 0.971322i \(0.423585\pi\)
\(200\) −23.0894 25.6434i −1.63267 1.81326i
\(201\) 0 0
\(202\) −2.80119 + 26.6516i −0.197091 + 1.87520i
\(203\) −4.01478 + 4.45887i −0.281783 + 0.312951i
\(204\) 0 0
\(205\) −0.133284 + 0.0593421i −0.00930899 + 0.00414463i
\(206\) 23.1803 16.8415i 1.61505 1.17340i
\(207\) 0 0
\(208\) 2.32624 0.161296
\(209\) −0.717727 19.4026i −0.0496462 1.34211i
\(210\) 0 0
\(211\) −3.53897 + 0.752232i −0.243633 + 0.0517858i −0.328109 0.944640i \(-0.606411\pi\)
0.0844767 + 0.996425i \(0.473078\pi\)
\(212\) 1.69381 + 0.754131i 0.116331 + 0.0517939i
\(213\) 0 0
\(214\) −29.3781 6.24451i −2.00825 0.426866i
\(215\) −1.28115 3.94298i −0.0873739 0.268909i
\(216\) 0 0
\(217\) −4.92705 + 3.57971i −0.334470 + 0.243007i
\(218\) −21.0217 23.3469i −1.42377 1.58125i
\(219\) 0 0
\(220\) −9.85016 + 1.40513i −0.664098 + 0.0947336i
\(221\) −0.135255 0.234268i −0.00909823 0.0157586i
\(222\) 0 0
\(223\) −0.750550 7.14101i −0.0502605 0.478197i −0.990483 0.137636i \(-0.956050\pi\)
0.940222 0.340561i \(-0.110617\pi\)
\(224\) 8.78115 + 6.37988i 0.586715 + 0.426274i
\(225\) 0 0
\(226\) −10.8992 33.5442i −0.725003 2.23133i
\(227\) −12.0408 + 5.36093i −0.799179 + 0.355817i −0.765353 0.643611i \(-0.777436\pi\)
−0.0338254 + 0.999428i \(0.510769\pi\)
\(228\) 0 0
\(229\) −0.461819 + 0.0981626i −0.0305178 + 0.00648677i −0.223145 0.974785i \(-0.571632\pi\)
0.192627 + 0.981272i \(0.438299\pi\)
\(230\) 0.190983 + 0.330792i 0.0125930 + 0.0218118i
\(231\) 0 0
\(232\) −22.4164 + 38.8264i −1.47171 + 2.54908i
\(233\) 1.28115 3.94298i 0.0839311 0.258313i −0.900280 0.435311i \(-0.856638\pi\)
0.984211 + 0.176997i \(0.0566384\pi\)
\(234\) 0 0
\(235\) −5.04508 3.66547i −0.329105 0.239109i
\(236\) 35.0498 + 7.45006i 2.28155 + 0.484958i
\(237\) 0 0
\(238\) 0.313585 2.98357i 0.0203267 0.193396i
\(239\) −0.348943 0.155360i −0.0225713 0.0100494i 0.395420 0.918500i \(-0.370599\pi\)
−0.417991 + 0.908451i \(0.637266\pi\)
\(240\) 0 0
\(241\) −4.14590 + 7.18091i −0.267061 + 0.462563i −0.968101 0.250558i \(-0.919386\pi\)
0.701041 + 0.713121i \(0.252719\pi\)
\(242\) 12.5172 25.9358i 0.804637 1.66722i
\(243\) 0 0
\(244\) −17.3435 + 53.3777i −1.11030 + 3.41716i
\(245\) 0.387613 + 3.68789i 0.0247637 + 0.235611i
\(246\) 0 0
\(247\) 0.924716 1.02700i 0.0588383 0.0653465i
\(248\) −30.4498 + 33.8180i −1.93357 + 2.14744i
\(249\) 0 0
\(250\) 1.62670 + 15.4771i 0.102882 + 0.978855i
\(251\) 6.79180 20.9030i 0.428694 1.31939i −0.470718 0.882284i \(-0.656005\pi\)
0.899412 0.437102i \(-0.143995\pi\)
\(252\) 0 0
\(253\) −0.781153 0.0530006i −0.0491107 0.00333212i
\(254\) −10.0902 + 17.4767i −0.633114 + 1.09658i
\(255\) 0 0
\(256\) −13.3033 5.92302i −0.831458 0.370189i
\(257\) 3.10895 29.5797i 0.193931 1.84513i −0.274445 0.961603i \(-0.588494\pi\)
0.468376 0.883529i \(-0.344839\pi\)
\(258\) 0 0
\(259\) −6.09979 1.29655i −0.379023 0.0805638i
\(260\) −0.572949 0.416272i −0.0355328 0.0258161i
\(261\) 0 0
\(262\) 9.54508 29.3768i 0.589697 1.81490i
\(263\) −7.63525 + 13.2246i −0.470810 + 0.815467i −0.999443 0.0333839i \(-0.989372\pi\)
0.528633 + 0.848851i \(0.322705\pi\)
\(264\) 0 0
\(265\) −0.118034 0.204441i −0.00725077 0.0125587i
\(266\) 14.9913 3.18650i 0.919177 0.195377i
\(267\) 0 0
\(268\) 8.22191 3.66063i 0.502233 0.223609i
\(269\) 7.85410 + 24.1724i 0.478873 + 1.47382i 0.840662 + 0.541560i \(0.182166\pi\)
−0.361789 + 0.932260i \(0.617834\pi\)
\(270\) 0 0
\(271\) −15.0623 10.9434i −0.914970 0.664765i 0.0272970 0.999627i \(-0.491310\pi\)
−0.942267 + 0.334863i \(0.891310\pi\)
\(272\) −1.18031 11.2299i −0.0715671 0.680915i
\(273\) 0 0
\(274\) 12.7812 + 22.1376i 0.772138 + 1.33738i
\(275\) −13.5383 7.16258i −0.816391 0.431920i
\(276\) 0 0
\(277\) −19.5485 21.7108i −1.17456 1.30448i −0.943437 0.331551i \(-0.892428\pi\)
−0.231118 0.972926i \(-0.574238\pi\)
\(278\) −30.8435 + 22.4091i −1.84987 + 1.34401i
\(279\) 0 0
\(280\) −1.42705 4.39201i −0.0852826 0.262473i
\(281\) 24.2228 + 5.14871i 1.44501 + 0.307146i 0.862657 0.505790i \(-0.168799\pi\)
0.582353 + 0.812936i \(0.302132\pi\)
\(282\) 0 0
\(283\) −5.21470 2.32174i −0.309982 0.138013i 0.245849 0.969308i \(-0.420933\pi\)
−0.555831 + 0.831295i \(0.687600\pi\)
\(284\) 49.0293 10.4215i 2.90935 0.618402i
\(285\) 0 0
\(286\) 1.92472 0.705050i 0.113811 0.0416905i
\(287\) 0.236068 0.0139347
\(288\) 0 0
\(289\) 12.6910 9.22054i 0.746528 0.542385i
\(290\) 8.86889 3.94868i 0.520799 0.231875i
\(291\) 0 0
\(292\) −18.5404 + 20.5912i −1.08500 + 1.20501i
\(293\) −2.26330 + 21.5339i −0.132223 + 1.25802i 0.704225 + 0.709976i \(0.251294\pi\)
−0.836449 + 0.548045i \(0.815372\pi\)
\(294\) 0 0
\(295\) −3.05278 3.39045i −0.177740 0.197400i
\(296\) −46.5967 −2.70838
\(297\) 0 0
\(298\) 11.0902 0.642436
\(299\) −0.0372894 0.0414140i −0.00215650 0.00239504i
\(300\) 0 0
\(301\) −0.701198 + 6.67146i −0.0404164 + 0.384536i
\(302\) 1.84943 2.05400i 0.106423 0.118195i
\(303\) 0 0
\(304\) 52.6996 23.4634i 3.02253 1.34572i
\(305\) 5.78115 4.20025i 0.331028 0.240506i
\(306\) 0 0
\(307\) 27.9787 1.59683 0.798415 0.602108i \(-0.205672\pi\)
0.798415 + 0.602108i \(0.205672\pi\)
\(308\) 15.4847 + 4.40554i 0.882324 + 0.251029i
\(309\) 0 0
\(310\) 9.63877 2.04878i 0.547445 0.116363i
\(311\) −10.6451 4.73949i −0.603626 0.268752i 0.0820850 0.996625i \(-0.473842\pi\)
−0.685711 + 0.727874i \(0.740509\pi\)
\(312\) 0 0
\(313\) 2.47262 + 0.525572i 0.139761 + 0.0297071i 0.277261 0.960795i \(-0.410573\pi\)
−0.137500 + 0.990502i \(0.543907\pi\)
\(314\) 12.7082 + 39.1118i 0.717165 + 2.20721i
\(315\) 0 0
\(316\) −43.1976 + 31.3849i −2.43005 + 1.76554i
\(317\) 4.56324 + 5.06800i 0.256297 + 0.284647i 0.857538 0.514421i \(-0.171993\pi\)
−0.601240 + 0.799068i \(0.705327\pi\)
\(318\) 0 0
\(319\) −3.41502 + 19.6045i −0.191205 + 1.09764i
\(320\) −2.69098 4.66092i −0.150431 0.260553i
\(321\) 0 0
\(322\) −0.0646021 0.614648i −0.00360014 0.0342530i
\(323\) −5.42705 3.94298i −0.301969 0.219393i
\(324\) 0 0
\(325\) −0.336881 1.03681i −0.0186868 0.0575121i
\(326\) −12.3074 + 5.47961i −0.681644 + 0.303488i
\(327\) 0 0
\(328\) 1.72539 0.366742i 0.0952685 0.0202499i
\(329\) 5.04508 + 8.73834i 0.278145 + 0.481760i
\(330\) 0 0
\(331\) −8.35410 + 14.4697i −0.459183 + 0.795328i −0.998918 0.0465067i \(-0.985191\pi\)
0.539735 + 0.841835i \(0.318524\pi\)
\(332\) −2.20820 + 6.79615i −0.121191 + 0.372987i
\(333\) 0 0
\(334\) 25.4894 + 18.5191i 1.39472 + 1.01332i
\(335\) −1.12086 0.238246i −0.0612390 0.0130167i
\(336\) 0 0
\(337\) 1.90036 18.0807i 0.103519 0.984921i −0.812275 0.583274i \(-0.801771\pi\)
0.915795 0.401647i \(-0.131562\pi\)
\(338\) −30.9587 13.7837i −1.68393 0.749735i
\(339\) 0 0
\(340\) −1.71885 + 2.97713i −0.0932176 + 0.161458i
\(341\) −7.52786 + 18.7436i −0.407657 + 1.01502i
\(342\) 0 0
\(343\) 4.01722 12.3637i 0.216910 0.667579i
\(344\) 5.23945 + 49.8500i 0.282492 + 2.68773i
\(345\) 0 0
\(346\) 31.5929 35.0874i 1.69844 1.88631i
\(347\) 1.02234 1.13542i 0.0548821 0.0609528i −0.715079 0.699044i \(-0.753609\pi\)
0.769961 + 0.638091i \(0.220276\pi\)
\(348\) 0 0
\(349\) −1.32837 12.6386i −0.0711060 0.676528i −0.970781 0.239968i \(-0.922863\pi\)
0.899675 0.436560i \(-0.143803\pi\)
\(350\) 3.73607 11.4984i 0.199701 0.614617i
\(351\) 0 0
\(352\) 35.9164 + 2.43690i 1.91435 + 0.129887i
\(353\) −6.00000 + 10.3923i −0.319348 + 0.553127i −0.980352 0.197256i \(-0.936797\pi\)
0.661004 + 0.750382i \(0.270130\pi\)
\(354\) 0 0
\(355\) −5.83022 2.59578i −0.309436 0.137770i
\(356\) −4.17891 + 39.7597i −0.221482 + 2.10726i
\(357\) 0 0
\(358\) −21.8384 4.64189i −1.15419 0.245331i
\(359\) −7.85410 5.70634i −0.414524 0.301169i 0.360907 0.932602i \(-0.382467\pi\)
−0.775431 + 0.631433i \(0.782467\pi\)
\(360\) 0 0
\(361\) 4.71885 14.5231i 0.248360 0.764375i
\(362\) −3.30902 + 5.73139i −0.173918 + 0.301235i
\(363\) 0 0
\(364\) 0.572949 + 0.992377i 0.0300307 + 0.0520147i
\(365\) 3.45077 0.733484i 0.180622 0.0383923i
\(366\) 0 0
\(367\) 20.2313 9.00755i 1.05606 0.470190i 0.196121 0.980580i \(-0.437165\pi\)
0.859943 + 0.510389i \(0.170499\pi\)
\(368\) −0.718847 2.21238i −0.0374725 0.115328i
\(369\) 0 0
\(370\) 8.16312 + 5.93085i 0.424380 + 0.308330i
\(371\) 0.0399263 + 0.379874i 0.00207287 + 0.0197221i
\(372\) 0 0
\(373\) −0.444272 0.769502i −0.0230035 0.0398433i 0.854294 0.519789i \(-0.173990\pi\)
−0.877298 + 0.479946i \(0.840656\pi\)
\(374\) −4.38022 8.93385i −0.226496 0.461958i
\(375\) 0 0
\(376\) 50.4492 + 56.0295i 2.60172 + 2.88950i
\(377\) −1.14590 + 0.832544i −0.0590168 + 0.0428782i
\(378\) 0 0
\(379\) −7.69098 23.6704i −0.395059 1.21587i −0.928915 0.370292i \(-0.879258\pi\)
0.533856 0.845575i \(-0.320742\pi\)
\(380\) −17.1785 3.65141i −0.881240 0.187313i
\(381\) 0 0
\(382\) 1.96038 + 0.872815i 0.100302 + 0.0446571i
\(383\) −12.4305 + 2.64218i −0.635169 + 0.135009i −0.514232 0.857651i \(-0.671923\pi\)
−0.120937 + 0.992660i \(0.538590\pi\)
\(384\) 0 0
\(385\) −1.26531 1.61264i −0.0644863 0.0821878i
\(386\) −8.23607 −0.419205
\(387\) 0 0
\(388\) −30.8435 + 22.4091i −1.56584 + 1.13765i
\(389\) 33.5661 14.9446i 1.70187 0.757720i 0.702948 0.711241i \(-0.251866\pi\)
0.998919 0.0464795i \(-0.0148002\pi\)
\(390\) 0 0
\(391\) −0.181006 + 0.201028i −0.00915389 + 0.0101664i
\(392\) 4.68631 44.5872i 0.236694 2.25199i
\(393\) 0 0
\(394\) −22.8338 25.3595i −1.15035 1.27759i
\(395\) 6.79837 0.342063
\(396\) 0 0
\(397\) −18.7082 −0.938938 −0.469469 0.882949i \(-0.655555\pi\)
−0.469469 + 0.882949i \(0.655555\pi\)
\(398\) 11.7515 + 13.0513i 0.589048 + 0.654204i
\(399\) 0 0
\(400\) 4.75673 45.2573i 0.237837 2.26286i
\(401\) 21.2027 23.5480i 1.05881 1.17593i 0.0749152 0.997190i \(-0.476131\pi\)
0.983896 0.178740i \(-0.0572019\pi\)
\(402\) 0 0
\(403\) −1.31340 + 0.584763i −0.0654251 + 0.0291291i
\(404\) −40.1976 + 29.2052i −1.99990 + 1.45301i
\(405\) 0 0
\(406\) −15.7082 −0.779585
\(407\) −19.4207 + 7.11407i −0.962649 + 0.352632i
\(408\) 0 0
\(409\) 6.33070 1.34563i 0.313033 0.0665373i −0.0487161 0.998813i \(-0.515513\pi\)
0.361749 + 0.932275i \(0.382180\pi\)
\(410\) −0.348943 0.155360i −0.0172331 0.00767266i
\(411\) 0 0
\(412\) 51.9637 + 11.0452i 2.56007 + 0.544159i
\(413\) 2.28115 + 7.02067i 0.112248 + 0.345464i
\(414\) 0 0
\(415\) 0.736068 0.534785i 0.0361322 0.0262515i
\(416\) 1.71452 + 1.90416i 0.0840611 + 0.0933593i
\(417\) 0 0
\(418\) 36.4919 35.3860i 1.78488 1.73078i
\(419\) 15.7254 + 27.2372i 0.768237 + 1.33063i 0.938518 + 0.345230i \(0.112199\pi\)
−0.170281 + 0.985396i \(0.554467\pi\)
\(420\) 0 0
\(421\) −1.09824 10.4490i −0.0535248 0.509254i −0.988136 0.153583i \(-0.950919\pi\)
0.934611 0.355671i \(-0.115748\pi\)
\(422\) −7.66312 5.56758i −0.373035 0.271026i
\(423\) 0 0
\(424\) 0.881966 + 2.71441i 0.0428321 + 0.131824i
\(425\) −4.83430 + 2.15237i −0.234498 + 0.104405i
\(426\) 0 0
\(427\) −11.3096 + 2.40394i −0.547312 + 0.116335i
\(428\) −27.8435 48.2263i −1.34586 2.33111i
\(429\) 0 0
\(430\) 5.42705 9.39993i 0.261716 0.453305i
\(431\) 1.82624 5.62058i 0.0879668 0.270734i −0.897390 0.441238i \(-0.854540\pi\)
0.985357 + 0.170504i \(0.0545395\pi\)
\(432\) 0 0
\(433\) −28.5623 20.7517i −1.37262 0.997264i −0.997528 0.0702758i \(-0.977612\pi\)
−0.375089 0.926989i \(-0.622388\pi\)
\(434\) −15.5959 3.31500i −0.748625 0.159125i
\(435\) 0 0
\(436\) 6.08870 57.9301i 0.291596 2.77435i
\(437\) −1.26249 0.562096i −0.0603930 0.0268887i
\(438\) 0 0
\(439\) −11.6459 + 20.1713i −0.555828 + 0.962723i 0.442010 + 0.897010i \(0.354266\pi\)
−0.997839 + 0.0657130i \(0.979068\pi\)
\(440\) −11.7533 9.82084i −0.560316 0.468190i
\(441\) 0 0
\(442\) 0.218847 0.673542i 0.0104095 0.0320371i
\(443\) −3.30276 31.4237i −0.156919 1.49298i −0.735593 0.677424i \(-0.763096\pi\)
0.578674 0.815559i \(-0.303570\pi\)
\(444\) 0 0
\(445\) 3.40599 3.78273i 0.161459 0.179319i
\(446\) 12.5786 13.9699i 0.595612 0.661495i
\(447\) 0 0
\(448\) 0.910255 + 8.66050i 0.0430055 + 0.409170i
\(449\) 2.79837 8.61251i 0.132063 0.406449i −0.863058 0.505104i \(-0.831454\pi\)
0.995122 + 0.0986549i \(0.0314540\pi\)
\(450\) 0 0
\(451\) 0.663119 0.416272i 0.0312251 0.0196015i
\(452\) 32.6976 56.6338i 1.53796 2.66383i
\(453\) 0 0
\(454\) −31.5233 14.0351i −1.47946 0.658699i
\(455\) 0.0152505 0.145099i 0.000714954 0.00680234i
\(456\) 0 0
\(457\) −23.4547 4.98545i −1.09717 0.233210i −0.376447 0.926438i \(-0.622854\pi\)
−0.720718 + 0.693228i \(0.756188\pi\)
\(458\) −1.00000 0.726543i −0.0467269 0.0339491i
\(459\) 0 0
\(460\) −0.218847 + 0.673542i −0.0102038 + 0.0314041i
\(461\) 4.63525 8.02850i 0.215885 0.373924i −0.737661 0.675172i \(-0.764070\pi\)
0.953546 + 0.301247i \(0.0974029\pi\)
\(462\) 0 0
\(463\) −0.864745 1.49778i −0.0401881 0.0696079i 0.845232 0.534400i \(-0.179462\pi\)
−0.885420 + 0.464792i \(0.846129\pi\)
\(464\) −57.8326 + 12.2927i −2.68481 + 0.570674i
\(465\) 0 0
\(466\) 9.91572 4.41476i 0.459337 0.204510i
\(467\) −6.45492 19.8662i −0.298698 0.919297i −0.981954 0.189119i \(-0.939437\pi\)
0.683256 0.730179i \(-0.260563\pi\)
\(468\) 0 0
\(469\) 1.50000 + 1.08981i 0.0692636 + 0.0503229i
\(470\) −1.70656 16.2368i −0.0787176 0.748948i
\(471\) 0 0
\(472\) 27.5795 + 47.7691i 1.26945 + 2.19875i
\(473\) 9.79447 + 19.9767i 0.450350 + 0.918529i
\(474\) 0 0
\(475\) −18.0896 20.0905i −0.830007 0.921816i
\(476\) 4.50000 3.26944i 0.206257 0.149855i
\(477\) 0 0
\(478\) −0.309017 0.951057i −0.0141341 0.0435003i
\(479\) −27.7618 5.90094i −1.26847 0.269621i −0.475951 0.879472i \(-0.657896\pi\)
−0.792516 + 0.609851i \(0.791229\pi\)
\(480\) 0 0
\(481\) −1.34486 0.598772i −0.0613205 0.0273016i
\(482\) −21.2338 + 4.51339i −0.967174 + 0.205579i
\(483\) 0 0
\(484\) 51.2654 14.9298i 2.33024 0.678629i
\(485\) 4.85410 0.220413
\(486\) 0 0
\(487\) 10.2812 7.46969i 0.465884 0.338484i −0.329951 0.943998i \(-0.607032\pi\)
0.795835 + 0.605514i \(0.207032\pi\)
\(488\) −78.9259 + 35.1401i −3.57281 + 1.59072i
\(489\) 0 0
\(490\) −6.49606 + 7.21460i −0.293462 + 0.325922i
\(491\) −1.87209 + 17.8117i −0.0844861 + 0.803832i 0.867448 + 0.497528i \(0.165759\pi\)
−0.951934 + 0.306303i \(0.900908\pi\)
\(492\) 0 0
\(493\) 4.60053 + 5.10941i 0.207198 + 0.230116i
\(494\) 3.61803 0.162783
\(495\) 0 0
\(496\) −60.0132 −2.69467
\(497\) 6.90960 + 7.67389i 0.309938 + 0.344221i
\(498\) 0 0
\(499\) 1.89676 18.0465i 0.0849108 0.807872i −0.866340 0.499454i \(-0.833534\pi\)
0.951251 0.308418i \(-0.0997994\pi\)
\(500\) −19.3072 + 21.4428i −0.863443 + 0.958950i
\(501\) 0 0
\(502\) 52.5663 23.4040i 2.34615 1.04457i
\(503\) 7.00000 5.08580i 0.312115 0.226765i −0.420689 0.907205i \(-0.638212\pi\)
0.732803 + 0.680441i \(0.238212\pi\)
\(504\) 0 0
\(505\) 6.32624 0.281514
\(506\) −1.26531 1.61264i −0.0562500 0.0716906i
\(507\) 0 0
\(508\) −36.5988 + 7.77931i −1.62381 + 0.345151i
\(509\) −35.3932 15.7581i −1.56877 0.698463i −0.575888 0.817529i \(-0.695344\pi\)
−0.992886 + 0.119065i \(0.962010\pi\)
\(510\) 0 0
\(511\) −5.58347 1.18680i −0.246998 0.0525010i
\(512\) −12.4549 38.3323i −0.550435 1.69406i
\(513\) 0 0
\(514\) 62.9959 45.7692i 2.77863 2.01879i
\(515\) −4.52595 5.02658i −0.199437 0.221498i
\(516\) 0 0
\(517\) 29.5805 + 15.6499i 1.30095 + 0.688281i
\(518\) −8.16312 14.1389i −0.358667 0.621229i
\(519\) 0 0
\(520\) −0.113954 1.08420i −0.00499720 0.0475452i
\(521\) 7.23607 + 5.25731i 0.317018 + 0.230327i 0.734902 0.678173i \(-0.237228\pi\)
−0.417884 + 0.908500i \(0.637228\pi\)
\(522\) 0 0
\(523\) 5.64590 + 17.3763i 0.246878 + 0.759812i 0.995322 + 0.0966140i \(0.0308013\pi\)
−0.748444 + 0.663198i \(0.769199\pi\)
\(524\) 52.3192 23.2940i 2.28558 1.01760i
\(525\) 0 0
\(526\) −39.1051 + 8.31204i −1.70506 + 0.362422i
\(527\) 3.48936 + 6.04374i 0.151999 + 0.263270i
\(528\) 0 0
\(529\) 11.4721 19.8703i 0.498789 0.863927i
\(530\) 0.190983 0.587785i 0.00829577 0.0255318i
\(531\) 0 0
\(532\) 22.9894 + 16.7027i 0.996715 + 0.724156i
\(533\) 0.0545103 + 0.0115865i 0.00236110 + 0.000501868i
\(534\) 0 0
\(535\) −0.741125 + 7.05133i −0.0320416 + 0.304856i
\(536\) 12.6564 + 5.63497i 0.546671 + 0.243394i
\(537\) 0 0
\(538\) −33.2705 + 57.6262i −1.43439 + 2.48444i
\(539\) −4.85410 19.2986i −0.209081 0.831251i
\(540\) 0 0
\(541\) −2.31559 + 7.12667i −0.0995552 + 0.306399i −0.988414 0.151782i \(-0.951499\pi\)
0.888859 + 0.458181i \(0.151499\pi\)
\(542\) −5.09499 48.4756i −0.218849 2.08221i
\(543\) 0 0
\(544\) 8.32244 9.24301i 0.356822 0.396291i
\(545\) −4.96255 + 5.51147i −0.212572 + 0.236085i
\(546\) 0 0
\(547\) 3.21348 + 30.5742i 0.137399 + 1.30726i 0.818260 + 0.574848i \(0.194939\pi\)
−0.680862 + 0.732412i \(0.738395\pi\)
\(548\) −14.6459 + 45.0754i −0.625642 + 1.92553i
\(549\) 0 0
\(550\) −9.78115 38.8873i −0.417070 1.65816i
\(551\) −17.5623 + 30.4188i −0.748179 + 1.29588i
\(552\) 0 0
\(553\) −10.0490 4.47410i −0.427327 0.190258i
\(554\) 7.99489 76.0663i 0.339670 3.23175i
\(555\) 0 0
\(556\) −69.1422 14.6966i −2.93228 0.623276i
\(557\) 30.4443 + 22.1191i 1.28997 + 0.937215i 0.999805 0.0197634i \(-0.00629130\pi\)
0.290161 + 0.956978i \(0.406291\pi\)
\(558\) 0 0
\(559\) −0.489357 + 1.50609i −0.0206976 + 0.0637006i
\(560\) 3.04508 5.27424i 0.128678 0.222877i
\(561\) 0 0
\(562\) 32.4164 + 56.1469i 1.36740 + 2.36841i
\(563\) 39.7096 8.44054i 1.67356 0.355726i 0.729114 0.684392i \(-0.239932\pi\)
0.944446 + 0.328666i \(0.106599\pi\)
\(564\) 0 0
\(565\) −7.60640 + 3.38659i −0.320004 + 0.142475i
\(566\) −4.61803 14.2128i −0.194110 0.597411i
\(567\) 0 0
\(568\) 62.4230 + 45.3530i 2.61921 + 1.90297i
\(569\) 3.57282 + 33.9931i 0.149780 + 1.42506i 0.768700 + 0.639610i \(0.220904\pi\)
−0.618919 + 0.785455i \(0.712429\pi\)
\(570\) 0 0
\(571\) 4.54508 + 7.87232i 0.190206 + 0.329446i 0.945318 0.326149i \(-0.105751\pi\)
−0.755112 + 0.655595i \(0.772418\pi\)
\(572\) 3.35934 + 1.77729i 0.140461 + 0.0743122i
\(573\) 0 0
\(574\) 0.413545 + 0.459289i 0.0172611 + 0.0191703i
\(575\) −0.881966 + 0.640786i −0.0367805 + 0.0267226i
\(576\) 0 0
\(577\) 9.79837 + 30.1563i 0.407912 + 1.25542i 0.918439 + 0.395562i \(0.129450\pi\)
−0.510528 + 0.859861i \(0.670550\pi\)
\(578\) 40.1714 + 8.53870i 1.67091 + 0.355163i
\(579\) 0 0
\(580\) 16.4438 + 7.32126i 0.682792 + 0.303999i
\(581\) −1.43997 + 0.306074i −0.0597399 + 0.0126981i
\(582\) 0 0
\(583\) 0.782006 + 0.996667i 0.0323874 + 0.0412777i
\(584\) −42.6525 −1.76497
\(585\) 0 0
\(586\) −45.8607 + 33.3197i −1.89449 + 1.37643i
\(587\) 1.94093 0.864157i 0.0801107 0.0356676i −0.366290 0.930501i \(-0.619372\pi\)
0.446401 + 0.894833i \(0.352706\pi\)
\(588\) 0 0
\(589\) −23.8562 + 26.4950i −0.982976 + 1.09171i
\(590\) 1.24852 11.8788i 0.0514006 0.489044i
\(591\) 0 0
\(592\) −41.1186 45.6669i −1.68997 1.87690i
\(593\) 14.0344 0.576325 0.288163 0.957581i \(-0.406956\pi\)
0.288163 + 0.957581i \(0.406956\pi\)
\(594\) 0 0
\(595\) −0.708204 −0.0290335
\(596\) 13.7589 + 15.2808i 0.563585 + 0.625925i
\(597\) 0 0
\(598\) 0.0152505 0.145099i 0.000623639 0.00593353i
\(599\) −8.46616 + 9.40262i −0.345918 + 0.384181i −0.890849 0.454300i \(-0.849889\pi\)
0.544931 + 0.838481i \(0.316556\pi\)
\(600\) 0 0
\(601\) −6.29300 + 2.80182i −0.256697 + 0.114289i −0.531051 0.847340i \(-0.678203\pi\)
0.274354 + 0.961629i \(0.411536\pi\)
\(602\) −14.2082 + 10.3229i −0.579083 + 0.420729i
\(603\) 0 0
\(604\) 5.12461 0.208517
\(605\) −6.39794 2.29874i −0.260113 0.0934571i
\(606\) 0 0
\(607\) 16.2004 3.44350i 0.657553 0.139767i 0.132961 0.991121i \(-0.457551\pi\)
0.524592 + 0.851354i \(0.324218\pi\)
\(608\) 58.0476 + 25.8445i 2.35414 + 1.04813i
\(609\) 0 0
\(610\) 18.2994 + 3.88965i 0.740920 + 0.157487i
\(611\) 0.736068 + 2.26538i 0.0297781 + 0.0916476i
\(612\) 0 0
\(613\) 11.5623 8.40051i 0.466997 0.339293i −0.329273 0.944235i \(-0.606804\pi\)
0.796270 + 0.604942i \(0.206804\pi\)
\(614\) 49.0133 + 54.4348i 1.97802 + 2.19681i
\(615\) 0 0
\(616\) 10.9099 + 22.2516i 0.439571 + 0.896544i
\(617\) 5.59017 + 9.68246i 0.225052 + 0.389801i 0.956335 0.292273i \(-0.0944115\pi\)
−0.731283 + 0.682074i \(0.761078\pi\)
\(618\) 0 0
\(619\) −2.52171 23.9925i −0.101356 0.964338i −0.920498 0.390747i \(-0.872217\pi\)
0.819142 0.573591i \(-0.194450\pi\)
\(620\) 14.7812 + 10.7391i 0.593625 + 0.431294i
\(621\) 0 0
\(622\) −9.42705 29.0135i −0.377990 1.16333i
\(623\) −7.52402 + 3.34991i −0.301444 + 0.134211i
\(624\) 0 0
\(625\) −18.9921 + 4.03690i −0.759685 + 0.161476i
\(626\) 3.30902 + 5.73139i 0.132255 + 0.229072i
\(627\) 0 0
\(628\) −38.1246 + 66.0338i −1.52134 + 2.63503i
\(629\) −2.20820 + 6.79615i −0.0880469 + 0.270980i
\(630\) 0 0
\(631\) −15.5451 11.2942i −0.618840 0.449614i 0.233676 0.972314i \(-0.424924\pi\)
−0.852516 + 0.522701i \(0.824924\pi\)
\(632\) −80.3974 17.0890i −3.19804 0.679763i
\(633\) 0 0
\(634\) −1.86626 + 17.7563i −0.0741187 + 0.705193i
\(635\) 4.35207 + 1.93767i 0.172707 + 0.0768939i
\(636\) 0 0
\(637\) 0.708204 1.22665i 0.0280601 0.0486015i
\(638\) −44.1246 + 27.6992i −1.74691 + 1.09662i
\(639\) 0 0
\(640\) 0.208204 0.640786i 0.00822998 0.0253293i
\(641\) −2.62264 24.9527i −0.103588 0.985573i −0.915643 0.401992i \(-0.868318\pi\)
0.812055 0.583581i \(-0.198349\pi\)
\(642\) 0 0
\(643\) 13.9541 15.4976i 0.550297 0.611166i −0.402261 0.915525i \(-0.631775\pi\)
0.952557 + 0.304359i \(0.0984422\pi\)
\(644\) 0.766755 0.851568i 0.0302144 0.0335565i
\(645\) 0 0
\(646\) −1.83576 17.4661i −0.0722270 0.687194i
\(647\) −13.9164 + 42.8303i −0.547110 + 1.68383i 0.168808 + 0.985649i \(0.446008\pi\)
−0.715918 + 0.698184i \(0.753992\pi\)
\(648\) 0 0
\(649\) 18.7877 + 15.6987i 0.737483 + 0.616227i
\(650\) 1.42705 2.47172i 0.0559735 0.0969490i
\(651\) 0 0
\(652\) −22.8192 10.1598i −0.893668 0.397887i
\(653\) −0.587244 + 5.58726i −0.0229807 + 0.218646i 0.977005 + 0.213218i \(0.0683945\pi\)
−0.999985 + 0.00542814i \(0.998272\pi\)
\(654\) 0 0
\(655\) −7.13245 1.51605i −0.278688 0.0592370i
\(656\) 1.88197 + 1.36733i 0.0734784 + 0.0533852i
\(657\) 0 0
\(658\) −8.16312 + 25.1235i −0.318232 + 0.979416i
\(659\) −20.5623 + 35.6150i −0.800994 + 1.38736i 0.117969 + 0.993017i \(0.462362\pi\)
−0.918963 + 0.394345i \(0.870972\pi\)
\(660\) 0 0
\(661\) −18.2812 31.6639i −0.711054 1.23158i −0.964462 0.264223i \(-0.914885\pi\)
0.253407 0.967360i \(-0.418449\pi\)
\(662\) −42.7868 + 9.09461i −1.66295 + 0.353472i
\(663\) 0 0
\(664\) −10.0490 + 4.47410i −0.389977 + 0.173629i
\(665\) −1.11803 3.44095i −0.0433555 0.133435i
\(666\) 0 0
\(667\) 1.14590 + 0.832544i 0.0443693 + 0.0322362i
\(668\) 6.10618 + 58.0964i 0.236255 + 2.24782i
\(669\) 0 0
\(670\) −1.50000 2.59808i −0.0579501 0.100372i
\(671\) −27.5300 + 26.6956i −1.06278 + 1.03057i
\(672\) 0 0
\(673\) 23.9768 + 26.6290i 0.924239 + 1.02647i 0.999570 + 0.0293129i \(0.00933191\pi\)
−0.0753313 + 0.997159i \(0.524001\pi\)
\(674\) 38.5066 27.9767i 1.48322 1.07762i
\(675\) 0 0
\(676\) −19.4164 59.7576i −0.746785 2.29837i
\(677\) 13.2322 + 2.81260i 0.508557 + 0.108097i 0.455042 0.890470i \(-0.349624\pi\)
0.0535147 + 0.998567i \(0.482958\pi\)
\(678\) 0 0
\(679\) −7.17508 3.19455i −0.275354 0.122596i
\(680\) −5.17616 + 1.10023i −0.198497 + 0.0421918i
\(681\) 0 0
\(682\) −49.6545 + 18.1891i −1.90137 + 0.696498i
\(683\) −9.06888 −0.347011 −0.173506 0.984833i \(-0.555509\pi\)
−0.173506 + 0.984833i \(0.555509\pi\)
\(684\) 0 0
\(685\) 4.88197 3.54696i 0.186530 0.135522i
\(686\) 31.0920 13.8431i 1.18710 0.528530i
\(687\) 0 0
\(688\) −44.2318 + 49.1243i −1.68632 + 1.87285i
\(689\) −0.00942533 + 0.0896760i −0.000359076 + 0.00341638i
\(690\) 0 0
\(691\) 0.901670 + 1.00141i 0.0343011 + 0.0380953i 0.760051 0.649863i \(-0.225174\pi\)
−0.725750 + 0.687958i \(0.758507\pi\)
\(692\) 87.5410 3.32781
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) 6.02218 + 6.68830i 0.228434 + 0.253702i
\(696\) 0 0
\(697\) 0.0282760 0.269028i 0.00107103 0.0101902i
\(698\) 22.2623 24.7248i 0.842641 0.935848i
\(699\) 0 0
\(700\) 20.4784 9.11757i 0.774011 0.344612i
\(701\) −28.1525 + 20.4540i −1.06330 + 0.772536i −0.974697 0.223531i \(-0.928242\pi\)
−0.0886075 + 0.996067i \(0.528242\pi\)
\(702\) 0 0
\(703\) −36.5066 −1.37687
\(704\) 17.8285 + 22.7224i 0.671936 + 0.856382i
\(705\) 0 0
\(706\) −30.7299 + 6.53184i −1.15653 + 0.245829i
\(707\) −9.35111 4.16338i −0.351685 0.156580i
\(708\) 0 0
\(709\) −10.9697 2.33168i −0.411976 0.0875682i −0.00273893 0.999996i \(-0.500872\pi\)
−0.409237 + 0.912428i \(0.634205\pi\)
\(710\) −5.16312 15.8904i −0.193768 0.596358i
\(711\) 0 0
\(712\) −49.7877 + 36.1729i −1.86587 + 1.35564i
\(713\) 0.962005 + 1.06841i 0.0360274 + 0.0400125i
\(714\) 0 0
\(715\) −0.213022 0.434477i −0.00796657 0.0162485i
\(716\) −20.6976 35.8492i −0.773504 1.33975i
\(717\) 0 0
\(718\) −2.65674 25.2772i −0.0991486 0.943336i
\(719\) −31.1353 22.6211i −1.16115 0.843624i −0.171226 0.985232i \(-0.554773\pi\)
−0.989923 + 0.141608i \(0.954773\pi\)
\(720\) 0 0
\(721\) 3.38197 + 10.4086i 0.125951 + 0.387637i
\(722\) 36.5224 16.2608i 1.35922 0.605165i
\(723\) 0 0
\(724\) −12.0024 + 2.55118i −0.446065 + 0.0948139i
\(725\) 13.8541 + 23.9960i 0.514528 + 0.891189i
\(726\) 0 0
\(727\) 4.57295 7.92058i 0.169601 0.293758i −0.768678 0.639635i \(-0.779085\pi\)
0.938280 + 0.345877i \(0.112419\pi\)
\(728\) −0.545085 + 1.67760i −0.0202022 + 0.0621760i
\(729\) 0 0
\(730\) 7.47214 + 5.42882i 0.276556 + 0.200930i
\(731\) 7.51894 + 1.59820i 0.278098 + 0.0591116i
\(732\) 0 0
\(733\) 0.0421513 0.401043i 0.00155690 0.0148129i −0.993716 0.111932i \(-0.964296\pi\)
0.995273 + 0.0971191i \(0.0309628\pi\)
\(734\) 52.9662 + 23.5821i 1.95502 + 0.870430i
\(735\) 0 0
\(736\) 1.28115 2.21902i 0.0472239 0.0817942i
\(737\) 6.13525 + 0.416272i 0.225995 + 0.0153336i
\(738\) 0 0
\(739\) 0.927051 2.85317i 0.0341021 0.104956i −0.932557 0.361024i \(-0.882427\pi\)
0.966659 + 0.256068i \(0.0824272\pi\)
\(740\) 1.95554 + 18.6057i 0.0718871 + 0.683960i
\(741\) 0 0
\(742\) −0.669131 + 0.743145i −0.0245646 + 0.0272817i
\(743\) 28.6980 31.8724i 1.05283 1.16928i 0.0676581 0.997709i \(-0.478447\pi\)
0.985171 0.171576i \(-0.0548860\pi\)
\(744\) 0 0
\(745\) −0.273659 2.60369i −0.0100261 0.0953919i
\(746\) 0.718847 2.21238i 0.0263189 0.0810011i
\(747\) 0 0
\(748\) 6.87539 17.1190i 0.251389 0.625933i
\(749\) 5.73607 9.93516i 0.209591 0.363023i
\(750\) 0 0
\(751\) 14.7500 + 6.56713i 0.538236 + 0.239638i 0.657805 0.753188i \(-0.271485\pi\)
−0.119570 + 0.992826i \(0.538152\pi\)
\(752\) −10.3932 + 98.8849i −0.379002 + 3.60596i
\(753\) 0 0
\(754\) −3.62717 0.770979i −0.132094 0.0280774i
\(755\) −0.527864 0.383516i −0.0192109 0.0139576i
\(756\) 0 0
\(757\) 1.54508 4.75528i 0.0561571 0.172834i −0.919044 0.394156i \(-0.871037\pi\)
0.975201 + 0.221322i \(0.0710371\pi\)
\(758\) 32.5795 56.4294i 1.18334 2.04961i
\(759\) 0 0
\(760\) −13.5172 23.4125i −0.490321 0.849261i
\(761\) 28.6517 6.09011i 1.03862 0.220766i 0.343122 0.939291i \(-0.388516\pi\)
0.695501 + 0.718525i \(0.255182\pi\)
\(762\) 0 0
\(763\) 10.9625 4.88084i 0.396871 0.176698i
\(764\) 1.22949 + 3.78398i 0.0444814 + 0.136900i
\(765\) 0 0
\(766\) −26.9164 19.5559i −0.972529 0.706584i
\(767\) 0.182156 + 1.73310i 0.00657728 + 0.0625786i
\(768\) 0 0
\(769\) 17.2533 + 29.8836i 0.622170 + 1.07763i 0.989081 + 0.147373i \(0.0470819\pi\)
−0.366911 + 0.930256i \(0.619585\pi\)
\(770\) 0.920937 5.28680i 0.0331883 0.190523i
\(771\) 0 0
\(772\) −10.2180 11.3482i −0.367753 0.408431i
\(773\) 21.9894 15.9762i 0.790902 0.574624i −0.117329 0.993093i \(-0.537433\pi\)
0.908231 + 0.418469i \(0.137433\pi\)
\(774\) 0 0
\(775\) 8.69098 + 26.7481i 0.312189 + 0.960820i
\(776\) −57.4045 12.2017i −2.06070 0.438015i
\(777\) 0 0
\(778\) 87.8771 + 39.1254i 3.15055 + 1.40271i
\(779\) 1.35177 0.287327i 0.0484321 0.0102946i
\(780\) 0 0
\(781\) 32.9410 + 9.37200i 1.17872 + 0.335357i
\(782\) −0.708204 −0.0253253
\(783\) 0 0
\(784\) 47.8328 34.7526i 1.70831 1.24116i
\(785\) 8.86889 3.94868i 0.316544 0.140935i
\(786\) 0 0
\(787\) −6.49606 + 7.21460i −0.231559 + 0.257173i −0.847715 0.530451i \(-0.822022\pi\)
0.616156 + 0.787624i \(0.288689\pi\)
\(788\) 6.61357 62.9239i 0.235599 2.24157i
\(789\) 0 0
\(790\) 11.9094 + 13.2268i 0.423719 + 0.470587i
\(791\) 13.4721 0.479014
\(792\) 0 0
\(793\) −2.72949 −0.0969270
\(794\) −32.7732 36.3983i −1.16308 1.29173i
\(795\) 0 0
\(796\) −3.40369 + 32.3839i −0.120641 + 1.14782i
\(797\) −12.4064 + 13.7787i −0.439456 + 0.488065i −0.921663 0.387992i \(-0.873169\pi\)
0.482207 + 0.876057i \(0.339835\pi\)
\(798\) 0 0
\(799\) 10.5627 4.70281i 0.373681 0.166374i
\(800\) 40.5517 29.4625i 1.43372 1.04166i
\(801\) 0 0
\(802\) 82.9574 2.92933
\(803\) −17.7768 + 6.51189i −0.627330 + 0.229800i
\(804\) 0 0
\(805\) −0.142710 + 0.0303339i −0.00502986 + 0.00106913i
\(806\) −3.43852 1.53093i −0.121117 0.0539247i
\(807\) 0 0
\(808\) −74.8139 15.9022i −2.63194 0.559437i
\(809\) −8.37132 25.7643i −0.294320 0.905824i −0.983449 0.181185i \(-0.942007\pi\)
0.689129 0.724639i \(-0.257993\pi\)
\(810\) 0 0
\(811\) −29.5795 + 21.4908i −1.03868 + 0.754644i −0.970027 0.242997i \(-0.921869\pi\)
−0.0686507 + 0.997641i \(0.521869\pi\)
\(812\) −19.4882 21.6438i −0.683901 0.759549i
\(813\) 0 0
\(814\) −47.8623 25.3220i −1.67757 0.887537i
\(815\) 1.59017 + 2.75426i 0.0557012 + 0.0964773i
\(816\) 0 0
\(817\) 4.10489 + 39.0554i 0.143612 + 1.36637i
\(818\) 13.7082 + 9.95959i 0.479296 + 0.348229i
\(819\) 0 0
\(820\) −0.218847 0.673542i −0.00764247 0.0235211i
\(821\) −37.0870 + 16.5122i −1.29434 + 0.576279i −0.934244 0.356634i \(-0.883924\pi\)
−0.360100 + 0.932914i \(0.617258\pi\)
\(822\) 0 0
\(823\) 27.2246 5.78677i 0.948990 0.201714i 0.292684 0.956209i \(-0.405452\pi\)
0.656306 + 0.754495i \(0.272118\pi\)
\(824\) 40.8885 + 70.8210i 1.42442 + 2.46717i
\(825\) 0 0
\(826\) −9.66312 + 16.7370i −0.336223 + 0.582355i
\(827\) 3.29180 10.1311i 0.114467 0.352293i −0.877369 0.479817i \(-0.840703\pi\)
0.991835 + 0.127524i \(0.0407030\pi\)
\(828\) 0 0
\(829\) 25.3992 + 18.4536i 0.882150 + 0.640920i 0.933819 0.357745i \(-0.116454\pi\)
−0.0516692 + 0.998664i \(0.516454\pi\)
\(830\) 2.32991 + 0.495239i 0.0808725 + 0.0171900i
\(831\) 0 0
\(832\) −0.214882 + 2.04447i −0.00744970 + 0.0708791i
\(833\) −6.28098 2.79647i −0.217623 0.0968920i
\(834\) 0 0
\(835\) 3.71885 6.44123i 0.128696 0.222908i
\(836\) 94.0304 + 6.37988i 3.25211 + 0.220653i
\(837\) 0 0
\(838\) −25.4443 + 78.3094i −0.878958 + 2.70515i
\(839\) −1.86404 17.7351i −0.0643537 0.612285i −0.978407 0.206690i \(-0.933731\pi\)
0.914053 0.405595i \(-0.132936\pi\)
\(840\) 0 0
\(841\) 4.68391 5.20201i 0.161514 0.179380i
\(842\) 18.4055 20.4414i 0.634295 0.704456i
\(843\) 0 0
\(844\) −1.83576 17.4661i −0.0631895 0.601208i
\(845\) −2.47214 + 7.60845i −0.0850441 + 0.261739i
\(846\) 0 0
\(847\) 7.94427 + 7.60845i 0.272968 + 0.261430i
\(848\) −1.88197 + 3.25966i −0.0646270 + 0.111937i
\(849\) 0 0
\(850\) −12.6564 5.63497i −0.434109 0.193278i
\(851\) −0.153880 + 1.46407i −0.00527494 + 0.0501877i
\(852\) 0 0
\(853\) 54.6127 + 11.6083i 1.86990 + 0.397460i 0.996055 0.0887365i \(-0.0282829\pi\)
0.873849 + 0.486197i \(0.161616\pi\)
\(854\) −24.4894 17.7926i −0.838009 0.608849i
\(855\) 0 0
\(856\) 26.4894 81.5259i 0.905388 2.78650i
\(857\) 13.8820 24.0443i 0.474199 0.821337i −0.525365 0.850877i \(-0.676071\pi\)
0.999564 + 0.0295405i \(0.00940442\pi\)
\(858\) 0 0
\(859\) 17.2082 + 29.8055i 0.587136 + 1.01695i 0.994605 + 0.103731i \(0.0330781\pi\)
−0.407469 + 0.913219i \(0.633589\pi\)
\(860\) 19.6848 4.18414i 0.671247 0.142678i
\(861\) 0 0
\(862\) 14.1345 6.29308i 0.481423 0.214343i
\(863\) −0.0344419 0.106001i −0.00117241 0.00360832i 0.950469 0.310821i \(-0.100604\pi\)
−0.951641 + 0.307212i \(0.900604\pi\)
\(864\) 0 0
\(865\) −9.01722 6.55139i −0.306595 0.222754i
\(866\) −9.66152 91.9232i −0.328312 3.12368i
\(867\) 0 0
\(868\) −14.7812 25.6017i −0.501705 0.868979i
\(869\) −36.1172 + 5.15213i −1.22519 + 0.174774i
\(870\) 0 0
\(871\) 0.292875 + 0.325270i 0.00992367 + 0.0110214i
\(872\) 72.5410 52.7041i 2.45655 1.78479i
\(873\) 0 0
\(874\) −1.11803 3.44095i −0.0378181 0.116392i
\(875\) −5.81438 1.23588i −0.196562 0.0417805i
\(876\) 0 0
\(877\) −52.9347 23.5681i −1.78748 0.795837i −0.977975 0.208722i \(-0.933070\pi\)
−0.809504 0.587115i \(-0.800264\pi\)
\(878\) −59.6462 + 12.6782i −2.01296 + 0.427868i
\(879\) 0 0
\(880\) −0.746669 20.1850i −0.0251702 0.680436i
\(881\) −6.20163 −0.208938 −0.104469 0.994528i \(-0.533314\pi\)
−0.104469 + 0.994528i \(0.533314\pi\)
\(882\) 0 0
\(883\) −0.854102 + 0.620541i −0.0287428 + 0.0208829i −0.602064 0.798448i \(-0.705655\pi\)
0.573321 + 0.819331i \(0.305655\pi\)
\(884\) 1.19956 0.534079i 0.0403456 0.0179630i
\(885\) 0 0
\(886\) 55.3514 61.4740i 1.85957 2.06526i
\(887\) −5.69526 + 54.1868i −0.191228 + 1.81942i 0.306264 + 0.951947i \(0.400921\pi\)
−0.497492 + 0.867469i \(0.665746\pi\)
\(888\) 0 0
\(889\) −5.15780 5.72831i −0.172987 0.192121i
\(890\) 13.3262 0.446697
\(891\) 0 0
\(892\) 34.8541 1.16700
\(893\) 39.5248 + 43.8967i 1.32265 + 1.46895i
\(894\) 0 0
\(895\) −0.550918 + 5.24164i −0.0184152 + 0.175209i
\(896\) −0.729466 + 0.810154i −0.0243698 + 0.0270654i
\(897\) 0 0
\(898\) 21.6585 9.64300i 0.722754 0.321791i
\(899\) 29.5623 21.4783i 0.985958 0.716340i
\(900\) 0 0
\(901\) 0.437694 0.0145817
\(902\) 1.97155 + 0.560922i 0.0656453 + 0.0186767i
\(903\) 0 0
\(904\) 98.4658 20.9296i 3.27493 0.696107i
\(905\) 1.42724 + 0.635447i 0.0474430 + 0.0211230i
\(906\) 0 0
\(907\) 41.4687 + 8.81444i 1.37695 + 0.292679i 0.836162 0.548483i \(-0.184794\pi\)
0.540783 + 0.841162i \(0.318128\pi\)
\(908\) −19.7705 60.8474i −0.656107 2.01929i
\(909\) 0 0
\(910\) 0.309017 0.224514i 0.0102438 0.00744257i
\(911\) −25.8263 28.6830i −0.855662 0.950309i 0.143564 0.989641i \(-0.454144\pi\)
−0.999226 + 0.0393318i \(0.987477\pi\)
\(912\) 0 0
\(913\) −3.50517 + 3.39894i −0.116004 + 0.112489i
\(914\) −31.3885 54.3666i −1.03824 1.79829i
\(915\) 0 0
\(916\) −0.239558 2.27924i −0.00791522 0.0753083i
\(917\) 9.54508 + 6.93491i 0.315206 + 0.229011i
\(918\) 0 0
\(919\) 7.92705 + 24.3970i 0.261489 + 0.804781i 0.992481 + 0.122395i \(0.0390576\pi\)
−0.730992 + 0.682386i \(0.760942\pi\)
\(920\) −0.995920 + 0.443412i −0.0328345 + 0.0146189i
\(921\) 0 0
\(922\) 23.7401 5.04612i 0.781840 0.166185i
\(923\) 1.21885 + 2.11111i 0.0401188 + 0.0694879i
\(924\) 0 0
\(925\) −14.3992 + 24.9401i −0.473442 + 0.820026i
\(926\) 1.39919 4.30625i 0.0459801 0.141512i
\(927\) 0 0
\(928\) −52.6869 38.2793i −1.72953 1.25658i
\(929\) −12.4305 2.64218i −0.407831 0.0866873i −0.000572170 1.00000i \(-0.500182\pi\)
−0.407259 + 0.913313i \(0.633515\pi\)
\(930\) 0 0
\(931\) 3.67152 34.9322i 0.120329 1.14486i
\(932\) 18.3847 + 8.18542i 0.602212 + 0.268122i
\(933\) 0 0
\(934\) 27.3435 47.3603i 0.894705 1.54968i
\(935\) −1.98936 + 1.24882i −0.0650589 + 0.0408406i
\(936\) 0 0
\(937\) 12.8713 39.6139i 0.420488 1.29413i −0.486761 0.873535i \(-0.661822\pi\)
0.907249 0.420593i \(-0.138178\pi\)
\(938\) 0.507392 + 4.82751i 0.0165669 + 0.157624i
\(939\) 0 0
\(940\) 20.2549 22.4954i 0.660643 0.733718i
\(941\) 9.66951 10.7391i 0.315217 0.350084i −0.564627 0.825346i \(-0.690980\pi\)
0.879844 + 0.475262i \(0.157647\pi\)
\(942\) 0 0
\(943\) −0.00582517 0.0554228i −0.000189694 0.00180481i
\(944\) −22.4787 + 69.1824i −0.731620 + 2.25169i
\(945\) 0 0
\(946\) −21.7082 + 54.0512i −0.705795 + 1.75736i
\(947\) −16.1976 + 28.0550i −0.526350 + 0.911665i 0.473179 + 0.880966i \(0.343106\pi\)
−0.999529 + 0.0306985i \(0.990227\pi\)
\(948\) 0 0
\(949\) −1.23102 0.548087i −0.0399607 0.0177917i
\(950\) 7.39822 70.3894i 0.240030 2.28373i
\(951\) 0 0
\(952\) 8.37520 + 1.78020i 0.271442 + 0.0576967i
\(953\) 9.18034 + 6.66991i 0.297380 + 0.216059i 0.726463 0.687206i \(-0.241163\pi\)
−0.429082 + 0.903265i \(0.641163\pi\)
\(954\) 0 0
\(955\) 0.156541 0.481784i 0.00506555 0.0155902i
\(956\) 0.927051 1.60570i 0.0299830 0.0519320i
\(957\) 0 0
\(958\) −37.1525 64.3500i −1.20034 2.07905i
\(959\) −9.55057 + 2.03004i −0.308404 + 0.0655533i
\(960\) 0 0
\(961\) 5.56365 2.47710i 0.179472 0.0799063i
\(962\) −1.19098 3.66547i −0.0383988 0.118179i
\(963\) 0 0
\(964\) −32.5623 23.6579i −1.04876 0.761970i
\(965\) 0.203232 + 1.93362i 0.00654226 + 0.0622455i
\(966\) 0 0
\(967\) −21.9615 38.0384i −0.706234 1.22323i −0.966244 0.257627i \(-0.917059\pi\)
0.260010 0.965606i \(-0.416274\pi\)
\(968\) 69.8836 + 43.2673i 2.24614 + 1.39066i
\(969\) 0 0
\(970\) 8.50345 + 9.44404i 0.273029 + 0.303230i
\(971\) −33.9787 + 24.6870i −1.09043 + 0.792243i −0.979472 0.201582i \(-0.935392\pi\)
−0.110957 + 0.993825i \(0.535392\pi\)
\(972\) 0 0
\(973\) −4.50000 13.8496i −0.144263 0.443997i
\(974\) 32.5435 + 6.91733i 1.04276 + 0.221645i
\(975\) 0 0
\(976\) −104.086 46.3420i −3.33171 1.48337i
\(977\) −0.583707 + 0.124071i −0.0186745 + 0.00396938i −0.217239 0.976118i \(-0.569705\pi\)
0.198565 + 0.980088i \(0.436372\pi\)
\(978\) 0 0
\(979\) −15.2280 + 22.6775i −0.486690 + 0.724776i
\(980\) −18.0000 −0.574989
\(981\) 0 0
\(982\) −37.9336 + 27.5604i −1.21051 + 0.879488i
\(983\) 7.41018 3.29923i 0.236348 0.105229i −0.285145 0.958484i \(-0.592042\pi\)
0.521493 + 0.853255i \(0.325375\pi\)
\(984\) 0 0
\(985\) −5.39033 + 5.98657i −0.171750 + 0.190748i
\(986\) −1.88151 + 17.9014i −0.0599196 + 0.570097i
\(987\) 0 0
\(988\) 4.48866 + 4.98517i 0.142803 + 0.158599i
\(989\) 1.58359 0.0503553
\(990\) 0 0
\(991\) 3.74265 0.118889 0.0594445 0.998232i \(-0.481067\pi\)
0.0594445 + 0.998232i \(0.481067\pi\)
\(992\) −44.2318 49.1243i −1.40436 1.55970i
\(993\) 0 0
\(994\) −2.82587 + 26.8863i −0.0896311 + 0.852783i
\(995\) 2.77415 3.08100i 0.0879464 0.0976744i
\(996\) 0 0
\(997\) −19.3686 + 8.62348i −0.613411 + 0.273108i −0.689834 0.723967i \(-0.742317\pi\)
0.0764231 + 0.997075i \(0.475650\pi\)
\(998\) 38.4336 27.9237i 1.21660 0.883908i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.n.b.460.1 8
3.2 odd 2 891.2.n.c.460.1 8
9.2 odd 6 33.2.e.b.31.1 yes 4
9.4 even 3 inner 891.2.n.b.757.1 8
9.5 odd 6 891.2.n.c.757.1 8
9.7 even 3 99.2.f.a.64.1 4
11.5 even 5 inner 891.2.n.b.379.1 8
33.5 odd 10 891.2.n.c.379.1 8
36.11 even 6 528.2.y.b.97.1 4
45.2 even 12 825.2.bx.d.724.1 8
45.29 odd 6 825.2.n.c.526.1 4
45.38 even 12 825.2.bx.d.724.2 8
99.2 even 30 363.2.e.b.124.1 4
99.5 odd 30 891.2.n.c.676.1 8
99.7 odd 30 1089.2.a.l.1.1 2
99.16 even 15 99.2.f.a.82.1 4
99.20 odd 30 363.2.e.k.124.1 4
99.29 even 30 363.2.a.i.1.2 2
99.38 odd 30 33.2.e.b.16.1 4
99.47 odd 30 363.2.e.k.202.1 4
99.49 even 15 inner 891.2.n.b.676.1 8
99.65 even 6 363.2.e.f.130.1 4
99.70 even 15 1089.2.a.t.1.2 2
99.74 even 30 363.2.e.b.202.1 4
99.83 even 30 363.2.e.f.148.1 4
99.92 odd 30 363.2.a.d.1.1 2
396.191 even 30 5808.2.a.cj.1.1 2
396.227 odd 30 5808.2.a.ci.1.1 2
396.335 even 30 528.2.y.b.49.1 4
495.29 even 30 9075.2.a.u.1.1 2
495.38 even 60 825.2.bx.d.49.1 8
495.137 even 60 825.2.bx.d.49.2 8
495.389 odd 30 9075.2.a.cb.1.2 2
495.434 odd 30 825.2.n.c.676.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.2.e.b.16.1 4 99.38 odd 30
33.2.e.b.31.1 yes 4 9.2 odd 6
99.2.f.a.64.1 4 9.7 even 3
99.2.f.a.82.1 4 99.16 even 15
363.2.a.d.1.1 2 99.92 odd 30
363.2.a.i.1.2 2 99.29 even 30
363.2.e.b.124.1 4 99.2 even 30
363.2.e.b.202.1 4 99.74 even 30
363.2.e.f.130.1 4 99.65 even 6
363.2.e.f.148.1 4 99.83 even 30
363.2.e.k.124.1 4 99.20 odd 30
363.2.e.k.202.1 4 99.47 odd 30
528.2.y.b.49.1 4 396.335 even 30
528.2.y.b.97.1 4 36.11 even 6
825.2.n.c.526.1 4 45.29 odd 6
825.2.n.c.676.1 4 495.434 odd 30
825.2.bx.d.49.1 8 495.38 even 60
825.2.bx.d.49.2 8 495.137 even 60
825.2.bx.d.724.1 8 45.2 even 12
825.2.bx.d.724.2 8 45.38 even 12
891.2.n.b.379.1 8 11.5 even 5 inner
891.2.n.b.460.1 8 1.1 even 1 trivial
891.2.n.b.676.1 8 99.49 even 15 inner
891.2.n.b.757.1 8 9.4 even 3 inner
891.2.n.c.379.1 8 33.5 odd 10
891.2.n.c.460.1 8 3.2 odd 2
891.2.n.c.676.1 8 99.5 odd 30
891.2.n.c.757.1 8 9.5 odd 6
1089.2.a.l.1.1 2 99.7 odd 30
1089.2.a.t.1.2 2 99.70 even 15
5808.2.a.ci.1.1 2 396.227 odd 30
5808.2.a.cj.1.1 2 396.191 even 30
9075.2.a.u.1.1 2 495.29 even 30
9075.2.a.cb.1.2 2 495.389 odd 30