Properties

Label 891.2.k.a.728.17
Level $891$
Weight $2$
Character 891.728
Analytic conductor $7.115$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [891,2,Mod(161,891)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("891.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(891, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.k (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(20\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 728.17
Character \(\chi\) \(=\) 891.728
Dual form 891.2.k.a.809.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.525662 - 1.61782i) q^{2} +(-0.722987 - 0.525281i) q^{4} +(1.67332 - 0.543696i) q^{5} +(-1.64977 + 2.27071i) q^{7} +(1.52254 - 1.10619i) q^{8} -2.99294i q^{10} +(3.04425 + 1.31627i) q^{11} +(3.13591 + 1.01892i) q^{13} +(2.80638 + 3.86266i) q^{14} +(-1.54159 - 4.74453i) q^{16} +(2.08549 + 6.41848i) q^{17} +(0.847917 + 1.16706i) q^{19} +(-1.49539 - 0.485880i) q^{20} +(3.72973 - 4.23313i) q^{22} -1.74990i q^{23} +(-1.54067 + 1.11937i) q^{25} +(3.29685 - 4.53773i) q^{26} +(2.38552 - 0.775104i) q^{28} +(-4.79604 - 3.48452i) q^{29} +(1.50617 - 4.63551i) q^{31} -4.72221 q^{32} +11.4802 q^{34} +(-1.52602 + 4.69661i) q^{35} +(-2.98102 - 2.16584i) q^{37} +(2.33381 - 0.758300i) q^{38} +(1.94628 - 2.67882i) q^{40} +(2.61178 - 1.89757i) q^{41} -8.71517i q^{43} +(-1.50954 - 2.55073i) q^{44} +(-2.83103 - 0.919856i) q^{46} +(3.45009 + 4.74864i) q^{47} +(-0.271279 - 0.834911i) q^{49} +(1.00106 + 3.08094i) q^{50} +(-1.73200 - 2.38390i) q^{52} +(3.88131 + 1.26111i) q^{53} +(5.80966 + 0.547398i) q^{55} +5.28222i q^{56} +(-8.15843 + 5.92744i) q^{58} +(1.41595 - 1.94889i) q^{59} +(5.42716 - 1.76339i) q^{61} +(-6.70769 - 4.87342i) q^{62} +(0.600895 - 1.84936i) q^{64} +5.80137 q^{65} -14.1912 q^{67} +(1.86372 - 5.73594i) q^{68} +(6.79610 + 4.93766i) q^{70} +(-7.80443 + 2.53581i) q^{71} +(5.29322 - 7.28550i) q^{73} +(-5.07094 + 3.68426i) q^{74} -1.28916i q^{76} +(-8.01117 + 4.74107i) q^{77} +(-13.7531 - 4.46865i) q^{79} +(-5.15916 - 7.10098i) q^{80} +(-1.69701 - 5.22286i) q^{82} +(0.308534 + 0.949571i) q^{83} +(6.97940 + 9.60632i) q^{85} +(-14.0996 - 4.58123i) q^{86} +(6.09104 - 1.36345i) q^{88} -14.0272i q^{89} +(-7.48719 + 5.43976i) q^{91} +(-0.919191 + 1.26516i) q^{92} +(9.49603 - 3.08545i) q^{94} +(2.05337 + 1.49186i) q^{95} +(-3.86008 + 11.8801i) q^{97} -1.49334 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 10 q^{4} + 10 q^{7} + 10 q^{13} - 10 q^{16} - 50 q^{19} + 22 q^{22} + 4 q^{25} - 20 q^{28} + 12 q^{31} + 20 q^{34} - 6 q^{37} - 30 q^{40} - 40 q^{46} + 2 q^{49} + 10 q^{52} - 18 q^{55} + 58 q^{58}+ \cdots - 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.525662 1.61782i 0.371699 1.14397i −0.573980 0.818869i \(-0.694601\pi\)
0.945679 0.325102i \(-0.105399\pi\)
\(3\) 0 0
\(4\) −0.722987 0.525281i −0.361494 0.262641i
\(5\) 1.67332 0.543696i 0.748334 0.243148i 0.0900696 0.995935i \(-0.471291\pi\)
0.658264 + 0.752787i \(0.271291\pi\)
\(6\) 0 0
\(7\) −1.64977 + 2.27071i −0.623554 + 0.858249i −0.997606 0.0691592i \(-0.977968\pi\)
0.374051 + 0.927408i \(0.377968\pi\)
\(8\) 1.52254 1.10619i 0.538300 0.391098i
\(9\) 0 0
\(10\) 2.99294i 0.946450i
\(11\) 3.04425 + 1.31627i 0.917875 + 0.396870i
\(12\) 0 0
\(13\) 3.13591 + 1.01892i 0.869744 + 0.282597i 0.709692 0.704512i \(-0.248834\pi\)
0.160052 + 0.987109i \(0.448834\pi\)
\(14\) 2.80638 + 3.86266i 0.750038 + 1.03234i
\(15\) 0 0
\(16\) −1.54159 4.74453i −0.385398 1.18613i
\(17\) 2.08549 + 6.41848i 0.505805 + 1.55671i 0.799412 + 0.600783i \(0.205144\pi\)
−0.293607 + 0.955926i \(0.594856\pi\)
\(18\) 0 0
\(19\) 0.847917 + 1.16706i 0.194526 + 0.267741i 0.895127 0.445811i \(-0.147085\pi\)
−0.700601 + 0.713553i \(0.747085\pi\)
\(20\) −1.49539 0.485880i −0.334378 0.108646i
\(21\) 0 0
\(22\) 3.72973 4.23313i 0.795181 0.902507i
\(23\) 1.74990i 0.364880i −0.983217 0.182440i \(-0.941600\pi\)
0.983217 0.182440i \(-0.0583995\pi\)
\(24\) 0 0
\(25\) −1.54067 + 1.11937i −0.308135 + 0.223873i
\(26\) 3.29685 4.53773i 0.646566 0.889921i
\(27\) 0 0
\(28\) 2.38552 0.775104i 0.450822 0.146481i
\(29\) −4.79604 3.48452i −0.890602 0.647060i 0.0454332 0.998967i \(-0.485533\pi\)
−0.936035 + 0.351907i \(0.885533\pi\)
\(30\) 0 0
\(31\) 1.50617 4.63551i 0.270516 0.832563i −0.719855 0.694124i \(-0.755792\pi\)
0.990371 0.138438i \(-0.0442083\pi\)
\(32\) −4.72221 −0.834777
\(33\) 0 0
\(34\) 11.4802 1.96884
\(35\) −1.52602 + 4.69661i −0.257945 + 0.793873i
\(36\) 0 0
\(37\) −2.98102 2.16584i −0.490077 0.356062i 0.315137 0.949046i \(-0.397950\pi\)
−0.805214 + 0.592985i \(0.797950\pi\)
\(38\) 2.33381 0.758300i 0.378593 0.123012i
\(39\) 0 0
\(40\) 1.94628 2.67882i 0.307733 0.423559i
\(41\) 2.61178 1.89757i 0.407891 0.296350i −0.364857 0.931064i \(-0.618882\pi\)
0.772747 + 0.634714i \(0.218882\pi\)
\(42\) 0 0
\(43\) 8.71517i 1.32905i −0.747266 0.664526i \(-0.768634\pi\)
0.747266 0.664526i \(-0.231366\pi\)
\(44\) −1.50954 2.55073i −0.227572 0.384537i
\(45\) 0 0
\(46\) −2.83103 0.919856i −0.417412 0.135625i
\(47\) 3.45009 + 4.74864i 0.503248 + 0.692661i 0.982762 0.184873i \(-0.0591873\pi\)
−0.479515 + 0.877534i \(0.659187\pi\)
\(48\) 0 0
\(49\) −0.271279 0.834911i −0.0387541 0.119273i
\(50\) 1.00106 + 3.08094i 0.141571 + 0.435711i
\(51\) 0 0
\(52\) −1.73200 2.38390i −0.240186 0.330587i
\(53\) 3.88131 + 1.26111i 0.533138 + 0.173227i 0.563200 0.826321i \(-0.309570\pi\)
−0.0300612 + 0.999548i \(0.509570\pi\)
\(54\) 0 0
\(55\) 5.80966 + 0.547398i 0.783375 + 0.0738112i
\(56\) 5.28222i 0.705866i
\(57\) 0 0
\(58\) −8.15843 + 5.92744i −1.07125 + 0.778311i
\(59\) 1.41595 1.94889i 0.184341 0.253724i −0.706838 0.707376i \(-0.749879\pi\)
0.891179 + 0.453652i \(0.149879\pi\)
\(60\) 0 0
\(61\) 5.42716 1.76339i 0.694877 0.225779i 0.0597797 0.998212i \(-0.480960\pi\)
0.635097 + 0.772433i \(0.280960\pi\)
\(62\) −6.70769 4.87342i −0.851877 0.618925i
\(63\) 0 0
\(64\) 0.600895 1.84936i 0.0751119 0.231171i
\(65\) 5.80137 0.719572
\(66\) 0 0
\(67\) −14.1912 −1.73373 −0.866865 0.498543i \(-0.833869\pi\)
−0.866865 + 0.498543i \(0.833869\pi\)
\(68\) 1.86372 5.73594i 0.226009 0.695585i
\(69\) 0 0
\(70\) 6.79610 + 4.93766i 0.812290 + 0.590163i
\(71\) −7.80443 + 2.53581i −0.926215 + 0.300946i −0.733014 0.680214i \(-0.761887\pi\)
−0.193201 + 0.981159i \(0.561887\pi\)
\(72\) 0 0
\(73\) 5.29322 7.28550i 0.619525 0.852703i −0.377793 0.925890i \(-0.623317\pi\)
0.997318 + 0.0731871i \(0.0233170\pi\)
\(74\) −5.07094 + 3.68426i −0.589485 + 0.428286i
\(75\) 0 0
\(76\) 1.28916i 0.147877i
\(77\) −8.01117 + 4.74107i −0.912958 + 0.540295i
\(78\) 0 0
\(79\) −13.7531 4.46865i −1.54734 0.502763i −0.593954 0.804499i \(-0.702434\pi\)
−0.953391 + 0.301736i \(0.902434\pi\)
\(80\) −5.15916 7.10098i −0.576812 0.793914i
\(81\) 0 0
\(82\) −1.69701 5.22286i −0.187403 0.576768i
\(83\) 0.308534 + 0.949571i 0.0338660 + 0.104229i 0.966561 0.256438i \(-0.0825490\pi\)
−0.932695 + 0.360667i \(0.882549\pi\)
\(84\) 0 0
\(85\) 6.97940 + 9.60632i 0.757022 + 1.04195i
\(86\) −14.0996 4.58123i −1.52040 0.494007i
\(87\) 0 0
\(88\) 6.09104 1.36345i 0.649307 0.145344i
\(89\) 14.0272i 1.48688i −0.668800 0.743442i \(-0.733192\pi\)
0.668800 0.743442i \(-0.266808\pi\)
\(90\) 0 0
\(91\) −7.48719 + 5.43976i −0.784871 + 0.570242i
\(92\) −0.919191 + 1.26516i −0.0958322 + 0.131902i
\(93\) 0 0
\(94\) 9.49603 3.08545i 0.979441 0.318240i
\(95\) 2.05337 + 1.49186i 0.210671 + 0.153061i
\(96\) 0 0
\(97\) −3.86008 + 11.8801i −0.391932 + 1.20624i 0.539393 + 0.842054i \(0.318654\pi\)
−0.931325 + 0.364188i \(0.881346\pi\)
\(98\) −1.49334 −0.150850
\(99\) 0 0
\(100\) 1.70187 0.170187
\(101\) −2.68601 + 8.26668i −0.267268 + 0.822565i 0.723895 + 0.689910i \(0.242350\pi\)
−0.991162 + 0.132655i \(0.957650\pi\)
\(102\) 0 0
\(103\) −13.0342 9.46988i −1.28430 0.933095i −0.284622 0.958640i \(-0.591868\pi\)
−0.999674 + 0.0255445i \(0.991868\pi\)
\(104\) 5.90167 1.91757i 0.578706 0.188033i
\(105\) 0 0
\(106\) 4.08051 5.61634i 0.396334 0.545507i
\(107\) 7.84961 5.70308i 0.758851 0.551337i −0.139707 0.990193i \(-0.544616\pi\)
0.898558 + 0.438856i \(0.144616\pi\)
\(108\) 0 0
\(109\) 12.3066i 1.17876i 0.807856 + 0.589380i \(0.200628\pi\)
−0.807856 + 0.589380i \(0.799372\pi\)
\(110\) 3.93951 9.11124i 0.375617 0.868723i
\(111\) 0 0
\(112\) 13.3167 + 4.32687i 1.25831 + 0.408851i
\(113\) 3.97808 + 5.47535i 0.374226 + 0.515078i 0.954043 0.299669i \(-0.0968761\pi\)
−0.579817 + 0.814746i \(0.696876\pi\)
\(114\) 0 0
\(115\) −0.951415 2.92815i −0.0887199 0.273052i
\(116\) 1.63712 + 5.03853i 0.152003 + 0.467816i
\(117\) 0 0
\(118\) −2.40864 3.31521i −0.221734 0.305190i
\(119\) −18.0151 5.85346i −1.65144 0.536586i
\(120\) 0 0
\(121\) 7.53488 + 8.01409i 0.684989 + 0.728554i
\(122\) 9.70711i 0.878841i
\(123\) 0 0
\(124\) −3.52389 + 2.56025i −0.316455 + 0.229918i
\(125\) −7.14031 + 9.82780i −0.638649 + 0.879025i
\(126\) 0 0
\(127\) 0.223004 0.0724583i 0.0197884 0.00642964i −0.299106 0.954220i \(-0.596688\pi\)
0.318894 + 0.947790i \(0.396688\pi\)
\(128\) −10.3168 7.49558i −0.911883 0.662521i
\(129\) 0 0
\(130\) 3.04956 9.38557i 0.267464 0.823169i
\(131\) −6.06671 −0.530051 −0.265025 0.964241i \(-0.585380\pi\)
−0.265025 + 0.964241i \(0.585380\pi\)
\(132\) 0 0
\(133\) −4.04892 −0.351086
\(134\) −7.45977 + 22.9588i −0.644426 + 1.98334i
\(135\) 0 0
\(136\) 10.2753 + 7.46545i 0.881101 + 0.640157i
\(137\) 15.4116 5.00753i 1.31670 0.427822i 0.435340 0.900266i \(-0.356628\pi\)
0.881361 + 0.472444i \(0.156628\pi\)
\(138\) 0 0
\(139\) −0.457452 + 0.629629i −0.0388006 + 0.0534044i −0.827977 0.560763i \(-0.810508\pi\)
0.789176 + 0.614167i \(0.210508\pi\)
\(140\) 3.57034 2.59400i 0.301749 0.219233i
\(141\) 0 0
\(142\) 13.9591i 1.17142i
\(143\) 8.20530 + 7.22953i 0.686162 + 0.604564i
\(144\) 0 0
\(145\) −9.91985 3.22315i −0.823799 0.267668i
\(146\) −9.00418 12.3932i −0.745191 1.02567i
\(147\) 0 0
\(148\) 1.01757 + 3.13175i 0.0836434 + 0.257428i
\(149\) 3.96515 + 12.2035i 0.324838 + 0.999747i 0.971514 + 0.236983i \(0.0761585\pi\)
−0.646676 + 0.762765i \(0.723841\pi\)
\(150\) 0 0
\(151\) 6.03914 + 8.31217i 0.491458 + 0.676435i 0.980656 0.195738i \(-0.0627103\pi\)
−0.489198 + 0.872173i \(0.662710\pi\)
\(152\) 2.58198 + 0.838936i 0.209426 + 0.0680467i
\(153\) 0 0
\(154\) 3.45904 + 15.4528i 0.278737 + 1.24522i
\(155\) 8.57562i 0.688810i
\(156\) 0 0
\(157\) −14.9493 + 10.8613i −1.19309 + 0.866827i −0.993587 0.113071i \(-0.963931\pi\)
−0.199498 + 0.979898i \(0.563931\pi\)
\(158\) −14.4590 + 19.9010i −1.15029 + 1.58324i
\(159\) 0 0
\(160\) −7.90180 + 2.56745i −0.624692 + 0.202975i
\(161\) 3.97353 + 2.88694i 0.313158 + 0.227522i
\(162\) 0 0
\(163\) −2.49626 + 7.68270i −0.195522 + 0.601756i 0.804448 + 0.594023i \(0.202461\pi\)
−0.999970 + 0.00773239i \(0.997539\pi\)
\(164\) −2.88504 −0.225283
\(165\) 0 0
\(166\) 1.69842 0.131823
\(167\) 2.09374 6.44386i 0.162018 0.498641i −0.836786 0.547530i \(-0.815568\pi\)
0.998804 + 0.0488894i \(0.0155682\pi\)
\(168\) 0 0
\(169\) −1.72150 1.25075i −0.132423 0.0962113i
\(170\) 19.2101 6.24174i 1.47335 0.478720i
\(171\) 0 0
\(172\) −4.57791 + 6.30096i −0.349063 + 0.480444i
\(173\) 4.04350 2.93777i 0.307422 0.223355i −0.423368 0.905958i \(-0.639152\pi\)
0.730789 + 0.682603i \(0.239152\pi\)
\(174\) 0 0
\(175\) 5.34513i 0.404054i
\(176\) 1.55209 16.4727i 0.116993 1.24167i
\(177\) 0 0
\(178\) −22.6935 7.37358i −1.70095 0.552673i
\(179\) −2.07499 2.85598i −0.155092 0.213466i 0.724400 0.689380i \(-0.242117\pi\)
−0.879491 + 0.475915i \(0.842117\pi\)
\(180\) 0 0
\(181\) −4.32686 13.3167i −0.321613 0.989823i −0.972946 0.231031i \(-0.925790\pi\)
0.651333 0.758792i \(-0.274210\pi\)
\(182\) 4.86483 + 14.9724i 0.360605 + 1.10983i
\(183\) 0 0
\(184\) −1.93573 2.66430i −0.142704 0.196415i
\(185\) −6.16577 2.00338i −0.453317 0.147292i
\(186\) 0 0
\(187\) −2.09969 + 22.2845i −0.153545 + 1.62960i
\(188\) 5.24548i 0.382566i
\(189\) 0 0
\(190\) 3.49293 2.53776i 0.253404 0.184109i
\(191\) −3.42667 + 4.71641i −0.247945 + 0.341268i −0.914790 0.403929i \(-0.867644\pi\)
0.666845 + 0.745196i \(0.267644\pi\)
\(192\) 0 0
\(193\) 0.117302 0.0381136i 0.00844355 0.00274347i −0.304792 0.952419i \(-0.598587\pi\)
0.313236 + 0.949675i \(0.398587\pi\)
\(194\) 17.1908 + 12.4898i 1.23423 + 0.896718i
\(195\) 0 0
\(196\) −0.242431 + 0.746127i −0.0173165 + 0.0532948i
\(197\) 2.67501 0.190586 0.0952932 0.995449i \(-0.469621\pi\)
0.0952932 + 0.995449i \(0.469621\pi\)
\(198\) 0 0
\(199\) −23.4261 −1.66063 −0.830314 0.557295i \(-0.811839\pi\)
−0.830314 + 0.557295i \(0.811839\pi\)
\(200\) −1.10751 + 3.40857i −0.0783128 + 0.241022i
\(201\) 0 0
\(202\) 11.9621 + 8.69095i 0.841648 + 0.611493i
\(203\) 15.8247 5.14176i 1.11068 0.360881i
\(204\) 0 0
\(205\) 3.33865 4.59526i 0.233181 0.320947i
\(206\) −22.1721 + 16.1090i −1.54481 + 1.12237i
\(207\) 0 0
\(208\) 16.4492i 1.14054i
\(209\) 1.04511 + 4.66890i 0.0722916 + 0.322954i
\(210\) 0 0
\(211\) −8.87623 2.88406i −0.611065 0.198547i −0.0128957 0.999917i \(-0.504105\pi\)
−0.598169 + 0.801370i \(0.704105\pi\)
\(212\) −2.14370 2.95054i −0.147230 0.202644i
\(213\) 0 0
\(214\) −5.10031 15.6972i −0.348650 1.07304i
\(215\) −4.73841 14.5833i −0.323157 0.994574i
\(216\) 0 0
\(217\) 8.04109 + 11.0676i 0.545865 + 0.751318i
\(218\) 19.9099 + 6.46912i 1.34847 + 0.438144i
\(219\) 0 0
\(220\) −3.91277 3.44747i −0.263799 0.232428i
\(221\) 22.2527i 1.49688i
\(222\) 0 0
\(223\) −2.77960 + 2.01949i −0.186136 + 0.135235i −0.676951 0.736028i \(-0.736699\pi\)
0.490815 + 0.871264i \(0.336699\pi\)
\(224\) 7.79056 10.7228i 0.520529 0.716447i
\(225\) 0 0
\(226\) 10.9493 3.55763i 0.728334 0.236650i
\(227\) 19.4288 + 14.1159i 1.28954 + 0.936904i 0.999796 0.0202014i \(-0.00643075\pi\)
0.289741 + 0.957105i \(0.406431\pi\)
\(228\) 0 0
\(229\) −0.582877 + 1.79391i −0.0385176 + 0.118545i −0.968467 0.249144i \(-0.919851\pi\)
0.929949 + 0.367689i \(0.119851\pi\)
\(230\) −5.23735 −0.345341
\(231\) 0 0
\(232\) −11.1567 −0.732475
\(233\) 2.04683 6.29949i 0.134092 0.412693i −0.861356 0.508003i \(-0.830384\pi\)
0.995448 + 0.0953094i \(0.0303841\pi\)
\(234\) 0 0
\(235\) 8.35494 + 6.07022i 0.545017 + 0.395978i
\(236\) −2.04743 + 0.665251i −0.133276 + 0.0433041i
\(237\) 0 0
\(238\) −18.9397 + 26.0682i −1.22768 + 1.68975i
\(239\) 17.5417 12.7448i 1.13468 0.824391i 0.148309 0.988941i \(-0.452617\pi\)
0.986369 + 0.164550i \(0.0526171\pi\)
\(240\) 0 0
\(241\) 4.85401i 0.312674i −0.987704 0.156337i \(-0.950031\pi\)
0.987704 0.156337i \(-0.0499686\pi\)
\(242\) 16.9261 7.97738i 1.08805 0.512805i
\(243\) 0 0
\(244\) −4.85004 1.57587i −0.310492 0.100885i
\(245\) −0.907875 1.24958i −0.0580020 0.0798329i
\(246\) 0 0
\(247\) 1.46985 + 4.52374i 0.0935245 + 0.287839i
\(248\) −2.83456 8.72388i −0.179995 0.553967i
\(249\) 0 0
\(250\) 12.1462 + 16.7178i 0.768194 + 1.05733i
\(251\) −8.17445 2.65604i −0.515967 0.167648i 0.0394474 0.999222i \(-0.487440\pi\)
−0.555414 + 0.831574i \(0.687440\pi\)
\(252\) 0 0
\(253\) 2.30334 5.32713i 0.144810 0.334914i
\(254\) 0.398869i 0.0250272i
\(255\) 0 0
\(256\) −14.4033 + 10.4646i −0.900206 + 0.654038i
\(257\) 3.12245 4.29769i 0.194773 0.268082i −0.700449 0.713703i \(-0.747017\pi\)
0.895222 + 0.445620i \(0.147017\pi\)
\(258\) 0 0
\(259\) 9.83599 3.19591i 0.611179 0.198584i
\(260\) −4.19432 3.04735i −0.260121 0.188989i
\(261\) 0 0
\(262\) −3.18903 + 9.81484i −0.197019 + 0.606363i
\(263\) −16.1706 −0.997121 −0.498560 0.866855i \(-0.666138\pi\)
−0.498560 + 0.866855i \(0.666138\pi\)
\(264\) 0 0
\(265\) 7.18035 0.441085
\(266\) −2.12836 + 6.55043i −0.130498 + 0.401632i
\(267\) 0 0
\(268\) 10.2601 + 7.45436i 0.626732 + 0.455348i
\(269\) 10.0420 3.26285i 0.612274 0.198940i 0.0135667 0.999908i \(-0.495681\pi\)
0.598707 + 0.800968i \(0.295681\pi\)
\(270\) 0 0
\(271\) 2.99871 4.12736i 0.182158 0.250719i −0.708166 0.706046i \(-0.750477\pi\)
0.890325 + 0.455326i \(0.150477\pi\)
\(272\) 27.2377 19.7893i 1.65153 1.19990i
\(273\) 0 0
\(274\) 27.5654i 1.66529i
\(275\) −6.16358 + 1.37968i −0.371678 + 0.0831981i
\(276\) 0 0
\(277\) 22.9515 + 7.45740i 1.37902 + 0.448071i 0.902348 0.431009i \(-0.141842\pi\)
0.476674 + 0.879080i \(0.341842\pi\)
\(278\) 0.778161 + 1.07105i 0.0466710 + 0.0642371i
\(279\) 0 0
\(280\) 2.87192 + 8.83887i 0.171630 + 0.528224i
\(281\) 3.58653 + 11.0382i 0.213955 + 0.658485i 0.999226 + 0.0393333i \(0.0125234\pi\)
−0.785271 + 0.619152i \(0.787477\pi\)
\(282\) 0 0
\(283\) 8.68055 + 11.9477i 0.516005 + 0.710220i 0.984917 0.173025i \(-0.0553540\pi\)
−0.468913 + 0.883245i \(0.655354\pi\)
\(284\) 6.97452 + 2.26616i 0.413861 + 0.134472i
\(285\) 0 0
\(286\) 16.0093 9.47442i 0.946649 0.560234i
\(287\) 9.06114i 0.534862i
\(288\) 0 0
\(289\) −23.0943 + 16.7790i −1.35849 + 0.986999i
\(290\) −10.4290 + 14.3542i −0.612410 + 0.842910i
\(291\) 0 0
\(292\) −7.65387 + 2.48689i −0.447909 + 0.145534i
\(293\) −16.6443 12.0928i −0.972370 0.706468i −0.0163792 0.999866i \(-0.505214\pi\)
−0.955990 + 0.293398i \(0.905214\pi\)
\(294\) 0 0
\(295\) 1.30974 4.03098i 0.0762562 0.234692i
\(296\) −6.93457 −0.403063
\(297\) 0 0
\(298\) 21.8273 1.26442
\(299\) 1.78301 5.48753i 0.103114 0.317352i
\(300\) 0 0
\(301\) 19.7897 + 14.3780i 1.14066 + 0.828736i
\(302\) 16.6221 5.40086i 0.956496 0.310785i
\(303\) 0 0
\(304\) 4.23000 5.82209i 0.242607 0.333920i
\(305\) 8.12265 5.90145i 0.465102 0.337916i
\(306\) 0 0
\(307\) 5.48347i 0.312958i −0.987681 0.156479i \(-0.949986\pi\)
0.987681 0.156479i \(-0.0500144\pi\)
\(308\) 8.28237 + 0.780382i 0.471932 + 0.0444664i
\(309\) 0 0
\(310\) −13.8738 4.50787i −0.787979 0.256030i
\(311\) −6.49912 8.94527i −0.368531 0.507240i 0.583970 0.811775i \(-0.301499\pi\)
−0.952501 + 0.304536i \(0.901499\pi\)
\(312\) 0 0
\(313\) 0.408904 + 1.25848i 0.0231126 + 0.0711334i 0.961948 0.273234i \(-0.0880934\pi\)
−0.938835 + 0.344368i \(0.888093\pi\)
\(314\) 9.71337 + 29.8947i 0.548157 + 1.68705i
\(315\) 0 0
\(316\) 7.59602 + 10.4550i 0.427309 + 0.588141i
\(317\) 6.32513 + 2.05516i 0.355255 + 0.115429i 0.481207 0.876607i \(-0.340199\pi\)
−0.125952 + 0.992036i \(0.540199\pi\)
\(318\) 0 0
\(319\) −10.0138 16.9206i −0.560662 0.947373i
\(320\) 3.42129i 0.191256i
\(321\) 0 0
\(322\) 6.75927 4.91090i 0.376680 0.273674i
\(323\) −5.72241 + 7.87622i −0.318403 + 0.438245i
\(324\) 0 0
\(325\) −5.97195 + 1.94041i −0.331264 + 0.107634i
\(326\) 11.1170 + 8.07700i 0.615716 + 0.447344i
\(327\) 0 0
\(328\) 1.87747 5.77825i 0.103666 0.319051i
\(329\) −16.4747 −0.908278
\(330\) 0 0
\(331\) −23.5556 −1.29473 −0.647366 0.762179i \(-0.724130\pi\)
−0.647366 + 0.762179i \(0.724130\pi\)
\(332\) 0.275725 0.848595i 0.0151324 0.0465727i
\(333\) 0 0
\(334\) −9.32441 6.77458i −0.510209 0.370688i
\(335\) −23.7465 + 7.71570i −1.29741 + 0.421554i
\(336\) 0 0
\(337\) 8.87735 12.2186i 0.483580 0.665591i −0.495608 0.868546i \(-0.665055\pi\)
0.979188 + 0.202956i \(0.0650547\pi\)
\(338\) −2.92841 + 2.12762i −0.159285 + 0.115727i
\(339\) 0 0
\(340\) 10.6114i 0.575484i
\(341\) 10.6867 12.1291i 0.578719 0.656829i
\(342\) 0 0
\(343\) −16.3423 5.30993i −0.882401 0.286709i
\(344\) −9.64065 13.2692i −0.519789 0.715429i
\(345\) 0 0
\(346\) −2.62728 8.08593i −0.141243 0.434702i
\(347\) 6.68288 + 20.5678i 0.358756 + 1.10414i 0.953800 + 0.300444i \(0.0971348\pi\)
−0.595044 + 0.803693i \(0.702865\pi\)
\(348\) 0 0
\(349\) −11.0228 15.1716i −0.590038 0.812118i 0.404712 0.914444i \(-0.367372\pi\)
−0.994751 + 0.102326i \(0.967372\pi\)
\(350\) −8.64745 2.80973i −0.462226 0.150186i
\(351\) 0 0
\(352\) −14.3756 6.21570i −0.766221 0.331298i
\(353\) 28.7268i 1.52897i −0.644641 0.764485i \(-0.722993\pi\)
0.644641 0.764485i \(-0.277007\pi\)
\(354\) 0 0
\(355\) −11.6806 + 8.48648i −0.619944 + 0.450415i
\(356\) −7.36824 + 10.1415i −0.390516 + 0.537499i
\(357\) 0 0
\(358\) −5.71120 + 1.85568i −0.301846 + 0.0980758i
\(359\) 0.595876 + 0.432930i 0.0314492 + 0.0228491i 0.603399 0.797440i \(-0.293813\pi\)
−0.571950 + 0.820289i \(0.693813\pi\)
\(360\) 0 0
\(361\) 5.22826 16.0909i 0.275172 0.846891i
\(362\) −23.8185 −1.25187
\(363\) 0 0
\(364\) 8.27055 0.433495
\(365\) 4.89618 15.0689i 0.256278 0.788743i
\(366\) 0 0
\(367\) −4.17759 3.03520i −0.218069 0.158436i 0.473388 0.880854i \(-0.343031\pi\)
−0.691457 + 0.722418i \(0.743031\pi\)
\(368\) −8.30246 + 2.69763i −0.432796 + 0.140624i
\(369\) 0 0
\(370\) −6.48222 + 8.92201i −0.336995 + 0.463833i
\(371\) −9.26689 + 6.73279i −0.481113 + 0.349549i
\(372\) 0 0
\(373\) 11.9302i 0.617722i −0.951107 0.308861i \(-0.900052\pi\)
0.951107 0.308861i \(-0.0999478\pi\)
\(374\) 34.9486 + 15.1110i 1.80715 + 0.781372i
\(375\) 0 0
\(376\) 10.5058 + 3.41355i 0.541797 + 0.176040i
\(377\) −11.4895 15.8139i −0.591738 0.814458i
\(378\) 0 0
\(379\) 2.53286 + 7.79533i 0.130104 + 0.400419i 0.994796 0.101883i \(-0.0324866\pi\)
−0.864692 + 0.502302i \(0.832487\pi\)
\(380\) −0.700913 2.15719i −0.0359561 0.110661i
\(381\) 0 0
\(382\) 5.82903 + 8.02298i 0.298239 + 0.410491i
\(383\) −22.1441 7.19505i −1.13151 0.367650i −0.317360 0.948305i \(-0.602796\pi\)
−0.814150 + 0.580655i \(0.802796\pi\)
\(384\) 0 0
\(385\) −10.8276 + 12.2890i −0.551825 + 0.626305i
\(386\) 0.209808i 0.0106789i
\(387\) 0 0
\(388\) 9.03119 6.56154i 0.458489 0.333112i
\(389\) 7.61146 10.4763i 0.385917 0.531169i −0.571223 0.820795i \(-0.693531\pi\)
0.957140 + 0.289626i \(0.0935310\pi\)
\(390\) 0 0
\(391\) 11.2317 3.64940i 0.568012 0.184558i
\(392\) −1.33661 0.971101i −0.0675088 0.0490480i
\(393\) 0 0
\(394\) 1.40615 4.32768i 0.0708408 0.218025i
\(395\) −25.4430 −1.28018
\(396\) 0 0
\(397\) 10.8950 0.546802 0.273401 0.961900i \(-0.411851\pi\)
0.273401 + 0.961900i \(0.411851\pi\)
\(398\) −12.3142 + 37.8991i −0.617254 + 1.89971i
\(399\) 0 0
\(400\) 7.68595 + 5.58417i 0.384298 + 0.279209i
\(401\) −29.9517 + 9.73188i −1.49571 + 0.485987i −0.938765 0.344559i \(-0.888028\pi\)
−0.556950 + 0.830546i \(0.688028\pi\)
\(402\) 0 0
\(403\) 9.44641 13.0019i 0.470559 0.647669i
\(404\) 6.28428 4.56579i 0.312654 0.227157i
\(405\) 0 0
\(406\) 28.3044i 1.40472i
\(407\) −6.22414 10.5172i −0.308519 0.521317i
\(408\) 0 0
\(409\) 15.9979 + 5.19804i 0.791046 + 0.257026i 0.676549 0.736397i \(-0.263475\pi\)
0.114497 + 0.993424i \(0.463475\pi\)
\(410\) −5.67930 7.81688i −0.280480 0.386048i
\(411\) 0 0
\(412\) 4.44919 + 13.6932i 0.219196 + 0.674616i
\(413\) 2.08938 + 6.43044i 0.102812 + 0.316421i
\(414\) 0 0
\(415\) 1.03256 + 1.42119i 0.0506862 + 0.0697635i
\(416\) −14.8084 4.81155i −0.726043 0.235906i
\(417\) 0 0
\(418\) 8.10281 + 0.763463i 0.396321 + 0.0373422i
\(419\) 10.9051i 0.532748i −0.963870 0.266374i \(-0.914174\pi\)
0.963870 0.266374i \(-0.0858257\pi\)
\(420\) 0 0
\(421\) −18.9365 + 13.7582i −0.922909 + 0.670533i −0.944246 0.329239i \(-0.893208\pi\)
0.0213370 + 0.999772i \(0.493208\pi\)
\(422\) −9.33179 + 12.8441i −0.454264 + 0.625241i
\(423\) 0 0
\(424\) 7.30449 2.37337i 0.354737 0.115261i
\(425\) −10.3977 7.55436i −0.504362 0.366440i
\(426\) 0 0
\(427\) −4.94941 + 15.2327i −0.239519 + 0.737162i
\(428\) −8.67089 −0.419123
\(429\) 0 0
\(430\) −26.0840 −1.25788
\(431\) 1.11900 3.44393i 0.0539004 0.165888i −0.920482 0.390784i \(-0.872204\pi\)
0.974383 + 0.224895i \(0.0722040\pi\)
\(432\) 0 0
\(433\) 3.61240 + 2.62456i 0.173601 + 0.126128i 0.671193 0.741283i \(-0.265782\pi\)
−0.497592 + 0.867411i \(0.665782\pi\)
\(434\) 22.1323 7.19122i 1.06238 0.345189i
\(435\) 0 0
\(436\) 6.46443 8.89753i 0.309590 0.426114i
\(437\) 2.04224 1.48377i 0.0976935 0.0709785i
\(438\) 0 0
\(439\) 1.62672i 0.0776393i 0.999246 + 0.0388196i \(0.0123598\pi\)
−0.999246 + 0.0388196i \(0.987640\pi\)
\(440\) 9.45099 5.59317i 0.450558 0.266644i
\(441\) 0 0
\(442\) 36.0008 + 11.6974i 1.71239 + 0.556388i
\(443\) 10.1890 + 14.0239i 0.484093 + 0.666297i 0.979285 0.202487i \(-0.0649023\pi\)
−0.495192 + 0.868784i \(0.664902\pi\)
\(444\) 0 0
\(445\) −7.62656 23.4721i −0.361533 1.11269i
\(446\) 1.80605 + 5.55846i 0.0855190 + 0.263201i
\(447\) 0 0
\(448\) 3.20804 + 4.41549i 0.151566 + 0.208612i
\(449\) −37.5369 12.1965i −1.77147 0.575587i −0.773192 0.634172i \(-0.781341\pi\)
−0.998282 + 0.0585850i \(0.981341\pi\)
\(450\) 0 0
\(451\) 10.4486 2.33886i 0.492005 0.110133i
\(452\) 6.04822i 0.284484i
\(453\) 0 0
\(454\) 33.0499 24.0122i 1.55111 1.12695i
\(455\) −9.57093 + 13.1732i −0.448692 + 0.617571i
\(456\) 0 0
\(457\) 25.7436 8.36460i 1.20423 0.391279i 0.362917 0.931821i \(-0.381781\pi\)
0.841317 + 0.540542i \(0.181781\pi\)
\(458\) 2.59583 + 1.88598i 0.121295 + 0.0881261i
\(459\) 0 0
\(460\) −0.850243 + 2.61678i −0.0396428 + 0.122008i
\(461\) −25.6359 −1.19398 −0.596990 0.802248i \(-0.703637\pi\)
−0.596990 + 0.802248i \(0.703637\pi\)
\(462\) 0 0
\(463\) −9.64491 −0.448237 −0.224118 0.974562i \(-0.571950\pi\)
−0.224118 + 0.974562i \(0.571950\pi\)
\(464\) −9.13890 + 28.1266i −0.424263 + 1.30575i
\(465\) 0 0
\(466\) −9.11550 6.62280i −0.422267 0.306795i
\(467\) −2.74419 + 0.891640i −0.126986 + 0.0412602i −0.371820 0.928305i \(-0.621266\pi\)
0.244835 + 0.969565i \(0.421266\pi\)
\(468\) 0 0
\(469\) 23.4122 32.2241i 1.08107 1.48797i
\(470\) 14.2124 10.3259i 0.655569 0.476299i
\(471\) 0 0
\(472\) 4.53359i 0.208675i
\(473\) 11.4715 26.5311i 0.527460 1.21990i
\(474\) 0 0
\(475\) −2.61273 0.848927i −0.119880 0.0389514i
\(476\) 9.94997 + 13.6950i 0.456056 + 0.627708i
\(477\) 0 0
\(478\) −11.3978 35.0787i −0.521322 1.60446i
\(479\) 0.932416 + 2.86968i 0.0426032 + 0.131119i 0.970096 0.242722i \(-0.0780404\pi\)
−0.927493 + 0.373841i \(0.878040\pi\)
\(480\) 0 0
\(481\) −7.14139 9.82928i −0.325619 0.448177i
\(482\) −7.85291 2.55157i −0.357690 0.116221i
\(483\) 0 0
\(484\) −1.23797 9.75201i −0.0562714 0.443273i
\(485\) 21.9780i 0.997969i
\(486\) 0 0
\(487\) 20.5362 14.9204i 0.930584 0.676109i −0.0155521 0.999879i \(-0.504951\pi\)
0.946136 + 0.323771i \(0.104951\pi\)
\(488\) 6.31243 8.68832i 0.285750 0.393302i
\(489\) 0 0
\(490\) −2.49884 + 0.811921i −0.112886 + 0.0366788i
\(491\) 0.861485 + 0.625905i 0.0388783 + 0.0282467i 0.607055 0.794660i \(-0.292351\pi\)
−0.568176 + 0.822907i \(0.692351\pi\)
\(492\) 0 0
\(493\) 12.3633 38.0502i 0.556813 1.71369i
\(494\) 8.09125 0.364042
\(495\) 0 0
\(496\) −24.3152 −1.09179
\(497\) 7.11741 21.9051i 0.319259 0.982579i
\(498\) 0 0
\(499\) −21.8865 15.9014i −0.979772 0.711846i −0.0221146 0.999755i \(-0.507040\pi\)
−0.957658 + 0.287909i \(0.907040\pi\)
\(500\) 10.3247 3.35470i 0.461735 0.150027i
\(501\) 0 0
\(502\) −8.59399 + 11.8286i −0.383568 + 0.527937i
\(503\) 16.7826 12.1933i 0.748299 0.543671i −0.147000 0.989136i \(-0.546962\pi\)
0.895299 + 0.445466i \(0.146962\pi\)
\(504\) 0 0
\(505\) 15.2932i 0.680539i
\(506\) −7.40757 6.52666i −0.329307 0.290145i
\(507\) 0 0
\(508\) −0.199290 0.0647532i −0.00884206 0.00287296i
\(509\) 5.35111 + 7.36517i 0.237184 + 0.326455i 0.910971 0.412470i \(-0.135334\pi\)
−0.673788 + 0.738925i \(0.735334\pi\)
\(510\) 0 0
\(511\) 7.81067 + 24.0388i 0.345524 + 1.06341i
\(512\) 1.47728 + 4.54659i 0.0652870 + 0.200933i
\(513\) 0 0
\(514\) −5.31153 7.31069i −0.234282 0.322461i
\(515\) −26.9591 8.75956i −1.18796 0.385992i
\(516\) 0 0
\(517\) 4.25244 + 18.9973i 0.187022 + 0.835500i
\(518\) 17.5928i 0.772985i
\(519\) 0 0
\(520\) 8.83284 6.41743i 0.387346 0.281423i
\(521\) −14.5125 + 19.9748i −0.635805 + 0.875110i −0.998383 0.0568430i \(-0.981897\pi\)
0.362578 + 0.931953i \(0.381897\pi\)
\(522\) 0 0
\(523\) −18.0229 + 5.85598i −0.788085 + 0.256064i −0.675288 0.737554i \(-0.735981\pi\)
−0.112797 + 0.993618i \(0.535981\pi\)
\(524\) 4.38615 + 3.18673i 0.191610 + 0.139213i
\(525\) 0 0
\(526\) −8.50025 + 26.1611i −0.370629 + 1.14068i
\(527\) 32.8940 1.43289
\(528\) 0 0
\(529\) 19.9378 0.866863
\(530\) 3.77443 11.6165i 0.163951 0.504589i
\(531\) 0 0
\(532\) 2.92732 + 2.12682i 0.126915 + 0.0922094i
\(533\) 10.1237 3.28940i 0.438508 0.142480i
\(534\) 0 0
\(535\) 10.0342 13.8109i 0.433817 0.597098i
\(536\) −21.6067 + 15.6982i −0.933267 + 0.678058i
\(537\) 0 0
\(538\) 17.9614i 0.774369i
\(539\) 0.273126 2.89875i 0.0117644 0.124858i
\(540\) 0 0
\(541\) 15.4821 + 5.03045i 0.665628 + 0.216276i 0.622293 0.782785i \(-0.286201\pi\)
0.0433359 + 0.999061i \(0.486201\pi\)
\(542\) −5.10103 7.02096i −0.219108 0.301576i
\(543\) 0 0
\(544\) −9.84813 30.3094i −0.422235 1.29951i
\(545\) 6.69106 + 20.5930i 0.286614 + 0.882106i
\(546\) 0 0
\(547\) −25.6787 35.3437i −1.09794 1.51119i −0.838086 0.545538i \(-0.816325\pi\)
−0.259855 0.965648i \(-0.583675\pi\)
\(548\) −13.7727 4.47503i −0.588342 0.191164i
\(549\) 0 0
\(550\) −1.00788 + 10.6968i −0.0429760 + 0.456113i
\(551\) 8.55184i 0.364321i
\(552\) 0 0
\(553\) 32.8365 23.8571i 1.39635 1.01451i
\(554\) 24.1294 33.2113i 1.02516 1.41101i
\(555\) 0 0
\(556\) 0.661464 0.214923i 0.0280523 0.00911476i
\(557\) 11.8526 + 8.61141i 0.502210 + 0.364877i 0.809861 0.586622i \(-0.199543\pi\)
−0.307650 + 0.951500i \(0.599543\pi\)
\(558\) 0 0
\(559\) 8.88004 27.3300i 0.375586 1.15593i
\(560\) 24.6357 1.04105
\(561\) 0 0
\(562\) 19.7432 0.832815
\(563\) −2.85577 + 8.78915i −0.120356 + 0.370419i −0.993026 0.117892i \(-0.962386\pi\)
0.872670 + 0.488310i \(0.162386\pi\)
\(564\) 0 0
\(565\) 9.63354 + 6.99918i 0.405286 + 0.294458i
\(566\) 23.8923 7.76309i 1.00427 0.326307i
\(567\) 0 0
\(568\) −9.07748 + 12.4941i −0.380883 + 0.524240i
\(569\) −22.9590 + 16.6807i −0.962490 + 0.699290i −0.953728 0.300672i \(-0.902789\pi\)
−0.00876215 + 0.999962i \(0.502789\pi\)
\(570\) 0 0
\(571\) 16.7686i 0.701744i 0.936423 + 0.350872i \(0.114115\pi\)
−0.936423 + 0.350872i \(0.885885\pi\)
\(572\) −2.13480 9.53695i −0.0892603 0.398760i
\(573\) 0 0
\(574\) 14.6593 + 4.76309i 0.611867 + 0.198808i
\(575\) 1.95878 + 2.69603i 0.0816868 + 0.112432i
\(576\) 0 0
\(577\) 11.7263 + 36.0897i 0.488171 + 1.50244i 0.827336 + 0.561708i \(0.189856\pi\)
−0.339165 + 0.940727i \(0.610144\pi\)
\(578\) 15.0056 + 46.1824i 0.624150 + 1.92094i
\(579\) 0 0
\(580\) 5.47886 + 7.54101i 0.227497 + 0.313123i
\(581\) −2.66521 0.865980i −0.110572 0.0359269i
\(582\) 0 0
\(583\) 10.1557 + 8.94798i 0.420606 + 0.370587i
\(584\) 16.9478i 0.701305i
\(585\) 0 0
\(586\) −28.3132 + 20.5707i −1.16961 + 0.849770i
\(587\) 8.33959 11.4785i 0.344212 0.473767i −0.601454 0.798907i \(-0.705412\pi\)
0.945666 + 0.325141i \(0.105412\pi\)
\(588\) 0 0
\(589\) 6.68702 2.17274i 0.275534 0.0895264i
\(590\) −5.83291 4.23786i −0.240137 0.174470i
\(591\) 0 0
\(592\) −5.68037 + 17.4824i −0.233462 + 0.718521i
\(593\) 14.4106 0.591771 0.295886 0.955223i \(-0.404385\pi\)
0.295886 + 0.955223i \(0.404385\pi\)
\(594\) 0 0
\(595\) −33.3276 −1.36630
\(596\) 3.54350 10.9058i 0.145147 0.446718i
\(597\) 0 0
\(598\) −7.94058 5.76917i −0.324714 0.235919i
\(599\) 2.78374 0.904492i 0.113741 0.0369565i −0.251594 0.967833i \(-0.580955\pi\)
0.365334 + 0.930876i \(0.380955\pi\)
\(600\) 0 0
\(601\) 4.69573 6.46312i 0.191543 0.263636i −0.702434 0.711749i \(-0.747904\pi\)
0.893977 + 0.448112i \(0.147904\pi\)
\(602\) 33.6637 24.4581i 1.37203 0.996839i
\(603\) 0 0
\(604\) 9.18184i 0.373604i
\(605\) 16.9655 + 9.31349i 0.689747 + 0.378647i
\(606\) 0 0
\(607\) −24.0417 7.81162i −0.975822 0.317064i −0.222658 0.974897i \(-0.571473\pi\)
−0.753164 + 0.657833i \(0.771473\pi\)
\(608\) −4.00405 5.51110i −0.162386 0.223504i
\(609\) 0 0
\(610\) −5.27772 16.2432i −0.213689 0.657666i
\(611\) 5.98069 + 18.4067i 0.241953 + 0.744654i
\(612\) 0 0
\(613\) −5.81317 8.00115i −0.234792 0.323163i 0.675321 0.737524i \(-0.264005\pi\)
−0.910113 + 0.414361i \(0.864005\pi\)
\(614\) −8.87126 2.88245i −0.358015 0.116326i
\(615\) 0 0
\(616\) −6.95282 + 16.0804i −0.280137 + 0.647897i
\(617\) 21.8907i 0.881288i −0.897682 0.440644i \(-0.854750\pi\)
0.897682 0.440644i \(-0.145250\pi\)
\(618\) 0 0
\(619\) −19.1050 + 13.8806i −0.767894 + 0.557908i −0.901321 0.433151i \(-0.857402\pi\)
0.133427 + 0.991059i \(0.457402\pi\)
\(620\) −4.50461 + 6.20006i −0.180909 + 0.249000i
\(621\) 0 0
\(622\) −17.8882 + 5.81222i −0.717250 + 0.233049i
\(623\) 31.8518 + 23.1417i 1.27612 + 0.927153i
\(624\) 0 0
\(625\) −3.66230 + 11.2714i −0.146492 + 0.450856i
\(626\) 2.25094 0.0899655
\(627\) 0 0
\(628\) 16.5134 0.658957
\(629\) 7.68449 23.6504i 0.306401 0.943005i
\(630\) 0 0
\(631\) 14.6739 + 10.6612i 0.584159 + 0.424416i 0.840221 0.542244i \(-0.182425\pi\)
−0.256062 + 0.966660i \(0.582425\pi\)
\(632\) −25.8829 + 8.40986i −1.02957 + 0.334526i
\(633\) 0 0
\(634\) 6.64976 9.15261i 0.264096 0.363496i
\(635\) 0.333763 0.242493i 0.0132450 0.00962303i
\(636\) 0 0
\(637\) 2.89461i 0.114689i
\(638\) −32.6384 + 7.30593i −1.29217 + 0.289244i
\(639\) 0 0
\(640\) −21.3386 6.93334i −0.843483 0.274064i
\(641\) 14.1228 + 19.4383i 0.557815 + 0.767767i 0.991047 0.133516i \(-0.0426268\pi\)
−0.433232 + 0.901283i \(0.642627\pi\)
\(642\) 0 0
\(643\) 12.8162 + 39.4443i 0.505423 + 1.55553i 0.800058 + 0.599923i \(0.204802\pi\)
−0.294634 + 0.955610i \(0.595198\pi\)
\(644\) −1.35636 4.17444i −0.0534479 0.164496i
\(645\) 0 0
\(646\) 9.73426 + 13.3981i 0.382989 + 0.527139i
\(647\) 31.8320 + 10.3428i 1.25144 + 0.406619i 0.858438 0.512917i \(-0.171435\pi\)
0.393006 + 0.919536i \(0.371435\pi\)
\(648\) 0 0
\(649\) 6.87577 4.06913i 0.269898 0.159727i
\(650\) 10.6815i 0.418965i
\(651\) 0 0
\(652\) 5.84034 4.24326i 0.228725 0.166179i
\(653\) 0.936845 1.28946i 0.0366616 0.0504603i −0.790293 0.612730i \(-0.790072\pi\)
0.826954 + 0.562269i \(0.190072\pi\)
\(654\) 0 0
\(655\) −10.1516 + 3.29845i −0.396655 + 0.128881i
\(656\) −13.0293 9.46637i −0.508710 0.369600i
\(657\) 0 0
\(658\) −8.66010 + 26.6530i −0.337606 + 1.03904i
\(659\) 30.8533 1.20187 0.600936 0.799297i \(-0.294795\pi\)
0.600936 + 0.799297i \(0.294795\pi\)
\(660\) 0 0
\(661\) −42.5461 −1.65485 −0.827425 0.561576i \(-0.810195\pi\)
−0.827425 + 0.561576i \(0.810195\pi\)
\(662\) −12.3823 + 38.1087i −0.481250 + 1.48114i
\(663\) 0 0
\(664\) 1.52016 + 1.10446i 0.0589938 + 0.0428615i
\(665\) −6.77516 + 2.20138i −0.262729 + 0.0853660i
\(666\) 0 0
\(667\) −6.09758 + 8.39260i −0.236099 + 0.324963i
\(668\) −4.89858 + 3.55903i −0.189532 + 0.137703i
\(669\) 0 0
\(670\) 42.4734i 1.64089i
\(671\) 18.8427 + 1.77540i 0.727415 + 0.0685385i
\(672\) 0 0
\(673\) 27.3162 + 8.87556i 1.05296 + 0.342128i 0.783830 0.620976i \(-0.213263\pi\)
0.269131 + 0.963104i \(0.413263\pi\)
\(674\) −15.1010 20.7848i −0.581671 0.800601i
\(675\) 0 0
\(676\) 0.587633 + 1.80855i 0.0226013 + 0.0695595i
\(677\) −1.53435 4.72225i −0.0589699 0.181491i 0.917232 0.398352i \(-0.130418\pi\)
−0.976202 + 0.216862i \(0.930418\pi\)
\(678\) 0 0
\(679\) −20.6081 28.3646i −0.790865 1.08853i
\(680\) 21.2529 + 6.90548i 0.815011 + 0.264813i
\(681\) 0 0
\(682\) −14.0051 23.6650i −0.536284 0.906180i
\(683\) 3.46565i 0.132610i −0.997799 0.0663048i \(-0.978879\pi\)
0.997799 0.0663048i \(-0.0211210\pi\)
\(684\) 0 0
\(685\) 23.0660 16.7584i 0.881307 0.640307i
\(686\) −17.1810 + 23.6477i −0.655975 + 0.902872i
\(687\) 0 0
\(688\) −41.3494 + 13.4352i −1.57643 + 0.512213i
\(689\) 10.8864 + 7.90946i 0.414740 + 0.301327i
\(690\) 0 0
\(691\) 1.69452 5.21519i 0.0644625 0.198395i −0.913638 0.406529i \(-0.866739\pi\)
0.978100 + 0.208134i \(0.0667390\pi\)
\(692\) −4.46656 −0.169793
\(693\) 0 0
\(694\) 36.7879 1.39645
\(695\) −0.423139 + 1.30229i −0.0160506 + 0.0493986i
\(696\) 0 0
\(697\) 17.6263 + 12.8063i 0.667644 + 0.485072i
\(698\) −30.3392 + 9.85781i −1.14836 + 0.373124i
\(699\) 0 0
\(700\) −2.80769 + 3.86446i −0.106121 + 0.146063i
\(701\) −15.0478 + 10.9329i −0.568347 + 0.412928i −0.834504 0.551001i \(-0.814246\pi\)
0.266157 + 0.963930i \(0.414246\pi\)
\(702\) 0 0
\(703\) 5.31547i 0.200477i
\(704\) 4.26353 4.83898i 0.160688 0.182376i
\(705\) 0 0
\(706\) −46.4747 15.1005i −1.74910 0.568317i
\(707\) −14.3400 19.7373i −0.539310 0.742296i
\(708\) 0 0
\(709\) 1.58230 + 4.86982i 0.0594245 + 0.182890i 0.976362 0.216140i \(-0.0693469\pi\)
−0.916938 + 0.399030i \(0.869347\pi\)
\(710\) 7.58953 + 23.3582i 0.284830 + 0.876617i
\(711\) 0 0
\(712\) −15.5168 21.3571i −0.581518 0.800390i
\(713\) −8.11170 2.63565i −0.303785 0.0987059i
\(714\) 0 0
\(715\) 17.6608 + 7.63616i 0.660477 + 0.285576i
\(716\) 3.15479i 0.117900i
\(717\) 0 0
\(718\) 1.01363 0.736446i 0.0378284 0.0274839i
\(719\) 8.72981 12.0156i 0.325567 0.448104i −0.614590 0.788847i \(-0.710678\pi\)
0.940157 + 0.340742i \(0.110678\pi\)
\(720\) 0 0
\(721\) 43.0068 13.9737i 1.60166 0.520410i
\(722\) −23.2839 16.9168i −0.866539 0.629577i
\(723\) 0 0
\(724\) −3.86675 + 11.9006i −0.143707 + 0.442283i
\(725\) 11.2896 0.419285
\(726\) 0 0
\(727\) 44.2120 1.63973 0.819866 0.572556i \(-0.194048\pi\)
0.819866 + 0.572556i \(0.194048\pi\)
\(728\) −5.38215 + 16.5645i −0.199476 + 0.613923i
\(729\) 0 0
\(730\) −21.8050 15.8423i −0.807041 0.586349i
\(731\) 55.9381 18.1754i 2.06895 0.672241i
\(732\) 0 0
\(733\) 14.0367 19.3199i 0.518459 0.713597i −0.466858 0.884332i \(-0.654614\pi\)
0.985317 + 0.170735i \(0.0546141\pi\)
\(734\) −7.10640 + 5.16310i −0.262302 + 0.190574i
\(735\) 0 0
\(736\) 8.26341i 0.304593i
\(737\) −43.2015 18.6794i −1.59135 0.688065i
\(738\) 0 0
\(739\) 22.8689 + 7.43057i 0.841248 + 0.273338i 0.697776 0.716316i \(-0.254173\pi\)
0.143472 + 0.989654i \(0.454173\pi\)
\(740\) 3.40544 + 4.68718i 0.125186 + 0.172304i
\(741\) 0 0
\(742\) 6.02119 + 18.5313i 0.221045 + 0.680306i
\(743\) 2.13407 + 6.56799i 0.0782914 + 0.240956i 0.982540 0.186049i \(-0.0595685\pi\)
−0.904249 + 0.427006i \(0.859568\pi\)
\(744\) 0 0
\(745\) 13.2700 + 18.2645i 0.486174 + 0.669161i
\(746\) −19.3009 6.27124i −0.706656 0.229607i
\(747\) 0 0
\(748\) 13.2237 15.0085i 0.483505 0.548764i
\(749\) 27.2330i 0.995072i
\(750\) 0 0
\(751\) 12.8262 9.31876i 0.468033 0.340046i −0.328641 0.944455i \(-0.606591\pi\)
0.796674 + 0.604409i \(0.206591\pi\)
\(752\) 17.2114 23.6895i 0.627637 0.863868i
\(753\) 0 0
\(754\) −31.6236 + 10.2751i −1.15166 + 0.374199i
\(755\) 14.6247 + 10.6255i 0.532249 + 0.386701i
\(756\) 0 0
\(757\) −7.92506 + 24.3908i −0.288041 + 0.886499i 0.697429 + 0.716653i \(0.254327\pi\)
−0.985471 + 0.169846i \(0.945673\pi\)
\(758\) 13.9429 0.506428
\(759\) 0 0
\(760\) 4.77662 0.173266
\(761\) −1.33599 + 4.11176i −0.0484297 + 0.149051i −0.972347 0.233541i \(-0.924969\pi\)
0.923917 + 0.382592i \(0.124969\pi\)
\(762\) 0 0
\(763\) −27.9448 20.3031i −1.01167 0.735021i
\(764\) 4.95488 1.60994i 0.179261 0.0582455i
\(765\) 0 0
\(766\) −23.2806 + 32.0430i −0.841162 + 1.15776i
\(767\) 6.42605 4.66880i 0.232031 0.168581i
\(768\) 0 0
\(769\) 39.9506i 1.44066i 0.693634 + 0.720328i \(0.256009\pi\)
−0.693634 + 0.720328i \(0.743991\pi\)
\(770\) 14.1897 + 23.9769i 0.511363 + 0.864069i
\(771\) 0 0
\(772\) −0.104828 0.0340606i −0.00377284 0.00122587i
\(773\) 30.2857 + 41.6846i 1.08930 + 1.49929i 0.848852 + 0.528630i \(0.177294\pi\)
0.240447 + 0.970662i \(0.422706\pi\)
\(774\) 0 0
\(775\) 2.86832 + 8.82777i 0.103033 + 0.317103i
\(776\) 7.26454 + 22.3580i 0.260782 + 0.802604i
\(777\) 0 0
\(778\) −12.9477 17.8210i −0.464197 0.638912i
\(779\) 4.42914 + 1.43911i 0.158690 + 0.0515616i
\(780\) 0 0
\(781\) −27.0964 2.55308i −0.969586 0.0913564i
\(782\) 20.0892i 0.718389i
\(783\) 0 0
\(784\) −3.54306 + 2.57418i −0.126538 + 0.0919350i
\(785\) −19.1098 + 26.3024i −0.682058 + 0.938772i
\(786\) 0 0
\(787\) −11.7642 + 3.82244i −0.419350 + 0.136255i −0.511089 0.859528i \(-0.670758\pi\)
0.0917385 + 0.995783i \(0.470758\pi\)
\(788\) −1.93400 1.40513i −0.0688958 0.0500557i
\(789\) 0 0
\(790\) −13.3744 + 41.1622i −0.475840 + 1.46448i
\(791\) −18.9959 −0.675415
\(792\) 0 0
\(793\) 18.8158 0.668169
\(794\) 5.72706 17.6261i 0.203246 0.625526i
\(795\) 0 0
\(796\) 16.9367 + 12.3053i 0.600307 + 0.436148i
\(797\) 41.9299 13.6239i 1.48523 0.482582i 0.549563 0.835453i \(-0.314794\pi\)
0.935672 + 0.352871i \(0.114794\pi\)
\(798\) 0 0
\(799\) −23.2839 + 32.0476i −0.823726 + 1.13376i
\(800\) 7.27540 5.28588i 0.257224 0.186884i
\(801\) 0 0
\(802\) 53.5721i 1.89170i
\(803\) 25.7035 15.2115i 0.907058 0.536804i
\(804\) 0 0
\(805\) 8.21862 + 2.67039i 0.289668 + 0.0941189i
\(806\) −16.0691 22.1172i −0.566009 0.779044i
\(807\) 0 0
\(808\) 5.05497 + 15.5576i 0.177833 + 0.547315i
\(809\) 4.87082 + 14.9908i 0.171249 + 0.527050i 0.999442 0.0333924i \(-0.0106311\pi\)
−0.828193 + 0.560442i \(0.810631\pi\)
\(810\) 0 0
\(811\) −1.85940 2.55924i −0.0652923 0.0898672i 0.775122 0.631812i \(-0.217688\pi\)
−0.840414 + 0.541944i \(0.817688\pi\)
\(812\) −14.1419 4.59499i −0.496285 0.161253i
\(813\) 0 0
\(814\) −20.2867 + 4.54106i −0.711048 + 0.159164i
\(815\) 14.2129i 0.497855i
\(816\) 0 0
\(817\) 10.1711 7.38974i 0.355842 0.258534i
\(818\) 16.8190 23.1493i 0.588062 0.809398i
\(819\) 0 0
\(820\) −4.82760 + 1.56858i −0.168587 + 0.0547773i
\(821\) −39.7796 28.9016i −1.38832 1.00867i −0.996047 0.0888230i \(-0.971689\pi\)
−0.392271 0.919850i \(-0.628311\pi\)
\(822\) 0 0
\(823\) 13.0339 40.1143i 0.454334 1.39830i −0.417581 0.908640i \(-0.637122\pi\)
0.871915 0.489657i \(-0.162878\pi\)
\(824\) −30.3206 −1.05627
\(825\) 0 0
\(826\) 11.5016 0.400192
\(827\) 4.11309 12.6588i 0.143026 0.440189i −0.853726 0.520723i \(-0.825663\pi\)
0.996752 + 0.0805340i \(0.0256626\pi\)
\(828\) 0 0
\(829\) −37.7524 27.4288i −1.31120 0.952640i −0.999997 0.00229533i \(-0.999269\pi\)
−0.311199 0.950345i \(-0.600731\pi\)
\(830\) 2.84201 0.923424i 0.0986475 0.0320525i
\(831\) 0 0
\(832\) 3.76870 5.18717i 0.130656 0.179833i
\(833\) 4.79310 3.48239i 0.166071 0.120658i
\(834\) 0 0
\(835\) 11.9210i 0.412544i
\(836\) 1.69688 3.92453i 0.0586879 0.135733i
\(837\) 0 0
\(838\) −17.6425 5.73238i −0.609449 0.198022i
\(839\) −8.27668 11.3919i −0.285743 0.393291i 0.641883 0.766803i \(-0.278154\pi\)
−0.927625 + 0.373512i \(0.878154\pi\)
\(840\) 0 0
\(841\) 1.89856 + 5.84318i 0.0654677 + 0.201489i
\(842\) 12.3041 + 37.8680i 0.424026 + 1.30502i
\(843\) 0 0
\(844\) 4.90246 + 6.74766i 0.168750 + 0.232264i
\(845\) −3.56066 1.15693i −0.122491 0.0397996i
\(846\) 0 0
\(847\) −30.6285 + 3.88814i −1.05241 + 0.133598i
\(848\) 20.3591i 0.699134i
\(849\) 0 0
\(850\) −17.6873 + 12.8505i −0.606668 + 0.440770i
\(851\) −3.79001 + 5.21650i −0.129920 + 0.178819i
\(852\) 0 0
\(853\) −2.58409 + 0.839622i −0.0884776 + 0.0287481i −0.352921 0.935653i \(-0.614812\pi\)
0.264444 + 0.964401i \(0.414812\pi\)
\(854\) 22.0421 + 16.0145i 0.754264 + 0.548005i
\(855\) 0 0
\(856\) 5.64267 17.3664i 0.192863 0.593570i
\(857\) −34.3028 −1.17176 −0.585881 0.810397i \(-0.699251\pi\)
−0.585881 + 0.810397i \(0.699251\pi\)
\(858\) 0 0
\(859\) 53.4273 1.82292 0.911458 0.411394i \(-0.134958\pi\)
0.911458 + 0.411394i \(0.134958\pi\)
\(860\) −4.23453 + 13.0325i −0.144396 + 0.444406i
\(861\) 0 0
\(862\) −4.98345 3.62069i −0.169737 0.123321i
\(863\) 51.3521 16.6853i 1.74804 0.567974i 0.752191 0.658945i \(-0.228997\pi\)
0.995854 + 0.0909712i \(0.0289971\pi\)
\(864\) 0 0
\(865\) 5.16883 7.11429i 0.175746 0.241893i
\(866\) 6.14496 4.46458i 0.208814 0.151712i
\(867\) 0 0
\(868\) 12.2256i 0.414963i
\(869\) −35.9859 31.7065i −1.22074 1.07557i
\(870\) 0 0
\(871\) −44.5023 14.4597i −1.50790 0.489947i
\(872\) 13.6135 + 18.7374i 0.461011 + 0.634527i
\(873\) 0 0
\(874\) −1.32695 4.08393i −0.0448848 0.138141i
\(875\) −10.5362 32.4272i −0.356190 1.09624i
\(876\) 0 0
\(877\) −5.73684 7.89608i −0.193719 0.266632i 0.701097 0.713065i \(-0.252694\pi\)
−0.894817 + 0.446434i \(0.852694\pi\)
\(878\) 2.63175 + 0.855106i 0.0888171 + 0.0288584i
\(879\) 0 0
\(880\) −6.35898 28.4080i −0.214361 0.957633i
\(881\) 1.83055i 0.0616727i −0.999524 0.0308364i \(-0.990183\pi\)
0.999524 0.0308364i \(-0.00981708\pi\)
\(882\) 0 0
\(883\) 1.61899 1.17627i 0.0544835 0.0395846i −0.560210 0.828351i \(-0.689280\pi\)
0.614694 + 0.788766i \(0.289280\pi\)
\(884\) 11.6889 16.0884i 0.393141 0.541112i
\(885\) 0 0
\(886\) 28.0441 9.11209i 0.942161 0.306127i
\(887\) −11.1751 8.11915i −0.375222 0.272614i 0.384151 0.923270i \(-0.374494\pi\)
−0.759373 + 0.650656i \(0.774494\pi\)
\(888\) 0 0
\(889\) −0.203373 + 0.625917i −0.00682091 + 0.0209926i
\(890\) −41.9827 −1.40726
\(891\) 0 0
\(892\) 3.07041 0.102805
\(893\) −2.61655 + 8.05291i −0.0875595 + 0.269481i
\(894\) 0 0
\(895\) −5.02491 3.65081i −0.167964 0.122033i
\(896\) 34.0406 11.0605i 1.13722 0.369504i
\(897\) 0 0
\(898\) −39.4634 + 54.3167i −1.31691 + 1.81257i
\(899\) −23.3762 + 16.9838i −0.779640 + 0.566442i
\(900\) 0 0
\(901\) 27.5421i 0.917561i
\(902\) 1.70857 18.1334i 0.0568890 0.603776i
\(903\) 0 0
\(904\) 12.1136 + 3.93594i 0.402892 + 0.130907i
\(905\) −14.4805 19.9307i −0.481348 0.662518i
\(906\) 0 0
\(907\) 0.431231 + 1.32719i 0.0143188 + 0.0440687i 0.957961 0.286900i \(-0.0926246\pi\)
−0.943642 + 0.330968i \(0.892625\pi\)
\(908\) −6.63200 20.4112i −0.220091 0.677369i
\(909\) 0 0
\(910\) 16.2809 + 22.4087i 0.539706 + 0.742841i
\(911\) −28.6848 9.32027i −0.950371 0.308794i −0.207505 0.978234i \(-0.566534\pi\)
−0.742866 + 0.669440i \(0.766534\pi\)
\(912\) 0 0
\(913\) −0.310635 + 3.29684i −0.0102805 + 0.109110i
\(914\) 46.0454i 1.52305i
\(915\) 0 0
\(916\) 1.36372 0.990801i 0.0450586 0.0327370i
\(917\) 10.0087 13.7758i 0.330515 0.454915i
\(918\) 0 0
\(919\) −42.6708 + 13.8646i −1.40758 + 0.457351i −0.911634 0.411002i \(-0.865179\pi\)
−0.495947 + 0.868353i \(0.665179\pi\)
\(920\) −4.68767 3.40579i −0.154548 0.112286i
\(921\) 0 0
\(922\) −13.4758 + 41.4742i −0.443801 + 1.36588i
\(923\) −27.0577 −0.890616
\(924\) 0 0
\(925\) 7.01715 0.230722
\(926\) −5.06996 + 15.6037i −0.166609 + 0.512770i
\(927\) 0 0
\(928\) 22.6479 + 16.4547i 0.743454 + 0.540151i
\(929\) 16.4880 5.35728i 0.540954 0.175767i −0.0257798 0.999668i \(-0.508207\pi\)
0.566734 + 0.823901i \(0.308207\pi\)
\(930\) 0 0
\(931\) 0.744367 1.02453i 0.0243956 0.0335777i
\(932\) −4.78883 + 3.47929i −0.156863 + 0.113968i
\(933\) 0 0
\(934\) 4.90830i 0.160604i
\(935\) 8.60253 + 38.4308i 0.281333 + 1.25682i
\(936\) 0 0
\(937\) 34.1168 + 11.0852i 1.11455 + 0.362138i 0.807684 0.589616i \(-0.200721\pi\)
0.306862 + 0.951754i \(0.400721\pi\)
\(938\) −39.8259 54.8157i −1.30036 1.78980i
\(939\) 0 0
\(940\) −2.85195 8.77739i −0.0930202 0.286287i
\(941\) 6.35673 + 19.5640i 0.207223 + 0.637768i 0.999615 + 0.0277550i \(0.00883583\pi\)
−0.792391 + 0.610013i \(0.791164\pi\)
\(942\) 0 0
\(943\) −3.32055 4.57035i −0.108132 0.148831i
\(944\) −11.4294 3.71363i −0.371995 0.120868i
\(945\) 0 0
\(946\) −36.8925 32.5052i −1.19948 1.05684i
\(947\) 53.5814i 1.74116i 0.492024 + 0.870581i \(0.336257\pi\)
−0.492024 + 0.870581i \(0.663743\pi\)
\(948\) 0 0
\(949\) 24.0224 17.4533i 0.779799 0.566557i
\(950\) −2.74682 + 3.78068i −0.0891187 + 0.122661i
\(951\) 0 0
\(952\) −33.9038 + 11.0160i −1.09883 + 0.357031i
\(953\) 12.6652 + 9.20183i 0.410267 + 0.298076i 0.773710 0.633540i \(-0.218399\pi\)
−0.363443 + 0.931616i \(0.618399\pi\)
\(954\) 0 0
\(955\) −3.16964 + 9.75516i −0.102567 + 0.315669i
\(956\) −19.3770 −0.626697
\(957\) 0 0
\(958\) 5.13276 0.165832
\(959\) −14.0549 + 43.2565i −0.453857 + 1.39683i
\(960\) 0 0
\(961\) 5.86009 + 4.25761i 0.189035 + 0.137342i
\(962\) −19.6560 + 6.38661i −0.633734 + 0.205913i
\(963\) 0 0
\(964\) −2.54972 + 3.50939i −0.0821209 + 0.113030i
\(965\) 0.175561 0.127553i 0.00565152 0.00410607i
\(966\) 0 0
\(967\) 51.0560i 1.64185i 0.571037 + 0.820924i \(0.306541\pi\)
−0.571037 + 0.820924i \(0.693459\pi\)
\(968\) 20.3373 + 3.86677i 0.653665 + 0.124283i
\(969\) 0 0
\(970\) 35.5564 + 11.5530i 1.14165 + 0.370944i
\(971\) −9.08431 12.5035i −0.291529 0.401256i 0.637981 0.770052i \(-0.279770\pi\)
−0.929510 + 0.368797i \(0.879770\pi\)
\(972\) 0 0
\(973\) −0.675016 2.07749i −0.0216400 0.0666011i
\(974\) −13.3435 41.0669i −0.427552 1.31587i
\(975\) 0 0
\(976\) −16.7329 23.0309i −0.535608 0.737201i
\(977\) 35.3203 + 11.4762i 1.13000 + 0.367158i 0.813574 0.581461i \(-0.197519\pi\)
0.316421 + 0.948619i \(0.397519\pi\)
\(978\) 0 0
\(979\) 18.4636 42.7024i 0.590099 1.36477i
\(980\) 1.38032i 0.0440928i
\(981\) 0 0
\(982\) 1.46545 1.06471i 0.0467644 0.0339764i
\(983\) −10.9843 + 15.1186i −0.350346 + 0.482210i −0.947427 0.319971i \(-0.896327\pi\)
0.597082 + 0.802180i \(0.296327\pi\)
\(984\) 0 0
\(985\) 4.47616 1.45439i 0.142622 0.0463408i
\(986\) −55.0595 40.0030i −1.75345 1.27396i
\(987\) 0 0
\(988\) 1.31355 4.04269i 0.0417896 0.128615i
\(989\) −15.2507 −0.484944
\(990\) 0 0
\(991\) −25.4516 −0.808496 −0.404248 0.914649i \(-0.632467\pi\)
−0.404248 + 0.914649i \(0.632467\pi\)
\(992\) −7.11245 + 21.8899i −0.225821 + 0.695005i
\(993\) 0 0
\(994\) −31.6972 23.0294i −1.00537 0.730447i
\(995\) −39.1994 + 12.7367i −1.24270 + 0.403779i
\(996\) 0 0
\(997\) −25.3176 + 34.8466i −0.801815 + 1.10360i 0.190720 + 0.981644i \(0.438918\pi\)
−0.992535 + 0.121959i \(0.961082\pi\)
\(998\) −37.2305 + 27.0496i −1.17851 + 0.856239i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.k.a.728.17 80
3.2 odd 2 inner 891.2.k.a.728.4 80
9.2 odd 6 99.2.p.a.68.9 yes 80
9.4 even 3 99.2.p.a.2.9 80
9.5 odd 6 297.2.t.a.35.2 80
9.7 even 3 297.2.t.a.233.2 80
11.6 odd 10 inner 891.2.k.a.809.4 80
33.17 even 10 inner 891.2.k.a.809.17 80
99.50 even 30 297.2.t.a.116.2 80
99.61 odd 30 297.2.t.a.17.2 80
99.83 even 30 99.2.p.a.50.9 yes 80
99.94 odd 30 99.2.p.a.83.9 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.2.9 80 9.4 even 3
99.2.p.a.50.9 yes 80 99.83 even 30
99.2.p.a.68.9 yes 80 9.2 odd 6
99.2.p.a.83.9 yes 80 99.94 odd 30
297.2.t.a.17.2 80 99.61 odd 30
297.2.t.a.35.2 80 9.5 odd 6
297.2.t.a.116.2 80 99.50 even 30
297.2.t.a.233.2 80 9.7 even 3
891.2.k.a.728.4 80 3.2 odd 2 inner
891.2.k.a.728.17 80 1.1 even 1 trivial
891.2.k.a.809.4 80 11.6 odd 10 inner
891.2.k.a.809.17 80 33.17 even 10 inner