Properties

Label 891.2.k.a.404.16
Level $891$
Weight $2$
Character 891.404
Analytic conductor $7.115$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(161,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.161");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.k (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(20\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 404.16
Character \(\chi\) \(=\) 891.404
Dual form 891.2.k.a.161.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.46797 - 1.06654i) q^{2} +(0.399387 - 1.22919i) q^{4} +(-0.706314 + 0.972158i) q^{5} +(-4.60425 - 1.49601i) q^{7} +(0.396737 + 1.22103i) q^{8} +2.18041i q^{10} +(-3.30067 - 0.324896i) q^{11} +(-1.79861 - 2.47557i) q^{13} +(-8.35446 + 2.71453i) q^{14} +(3.97590 + 2.88866i) q^{16} +(-1.80866 - 1.31407i) q^{17} +(-4.34428 + 1.41154i) q^{19} +(0.912871 + 1.25646i) q^{20} +(-5.19180 + 3.04337i) q^{22} -1.98738i q^{23} +(1.09887 + 3.38198i) q^{25} +(-5.28060 - 1.71577i) q^{26} +(-3.67776 + 5.06200i) q^{28} +(0.524067 - 1.61291i) q^{29} +(-4.29749 + 3.12231i) q^{31} +6.34963 q^{32} -4.05656 q^{34} +(4.70641 - 3.41941i) q^{35} +(0.344857 - 1.06136i) q^{37} +(-4.87179 + 6.70545i) q^{38} +(-1.46726 - 0.476740i) q^{40} +(-3.28550 - 10.1117i) q^{41} +3.79055i q^{43} +(-1.71760 + 3.92738i) q^{44} +(-2.11962 - 2.91741i) q^{46} +(-3.10538 + 1.00900i) q^{47} +(13.2980 + 9.66153i) q^{49} +(5.22014 + 3.79265i) q^{50} +(-3.76128 + 1.22211i) q^{52} +(0.749954 + 1.03222i) q^{53} +(2.64716 - 2.97930i) q^{55} -6.21546i q^{56} +(-0.950924 - 2.92664i) q^{58} +(-0.0300536 - 0.00976502i) q^{59} +(-0.697881 + 0.960551i) q^{61} +(-2.97851 + 9.16690i) q^{62} +(1.36926 - 0.994827i) q^{64} +3.67703 q^{65} -2.10554 q^{67} +(-2.33759 + 1.69836i) q^{68} +(3.26192 - 10.0392i) q^{70} +(2.26013 - 3.11080i) q^{71} +(6.69980 + 2.17690i) q^{73} +(-0.625746 - 1.92585i) q^{74} +5.90368i q^{76} +(14.7111 + 6.43375i) q^{77} +(-2.24604 - 3.09141i) q^{79} +(-5.61646 + 1.82490i) q^{80} +(-15.6076 - 11.3396i) q^{82} +(5.88095 + 4.27276i) q^{83} +(2.55496 - 0.830157i) q^{85} +(4.04278 + 5.56441i) q^{86} +(-0.912791 - 4.15912i) q^{88} -10.2875i q^{89} +(4.57775 + 14.0889i) q^{91} +(-2.44286 - 0.793733i) q^{92} +(-3.48246 + 4.79320i) q^{94} +(1.69618 - 5.22031i) q^{95} +(-11.7345 + 8.52561i) q^{97} +29.8254 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 10 q^{4} + 10 q^{7} + 10 q^{13} - 10 q^{16} - 50 q^{19} + 22 q^{22} + 4 q^{25} - 20 q^{28} + 12 q^{31} + 20 q^{34} - 6 q^{37} - 30 q^{40} - 40 q^{46} + 2 q^{49} + 10 q^{52} - 18 q^{55} + 58 q^{58}+ \cdots - 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.46797 1.06654i 1.03801 0.754159i 0.0681144 0.997678i \(-0.478302\pi\)
0.969896 + 0.243519i \(0.0783017\pi\)
\(3\) 0 0
\(4\) 0.399387 1.22919i 0.199693 0.614593i
\(5\) −0.706314 + 0.972158i −0.315873 + 0.434762i −0.937202 0.348788i \(-0.886593\pi\)
0.621328 + 0.783550i \(0.286593\pi\)
\(6\) 0 0
\(7\) −4.60425 1.49601i −1.74024 0.565439i −0.745378 0.666643i \(-0.767731\pi\)
−0.994866 + 0.101203i \(0.967731\pi\)
\(8\) 0.396737 + 1.22103i 0.140268 + 0.431700i
\(9\) 0 0
\(10\) 2.18041i 0.689506i
\(11\) −3.30067 0.324896i −0.995190 0.0979599i
\(12\) 0 0
\(13\) −1.79861 2.47557i −0.498844 0.686599i 0.483145 0.875541i \(-0.339494\pi\)
−0.981988 + 0.188941i \(0.939494\pi\)
\(14\) −8.35446 + 2.71453i −2.23282 + 0.725488i
\(15\) 0 0
\(16\) 3.97590 + 2.88866i 0.993974 + 0.722164i
\(17\) −1.80866 1.31407i −0.438664 0.318708i 0.346440 0.938072i \(-0.387390\pi\)
−0.785104 + 0.619364i \(0.787390\pi\)
\(18\) 0 0
\(19\) −4.34428 + 1.41154i −0.996645 + 0.323830i −0.761524 0.648136i \(-0.775549\pi\)
−0.235121 + 0.971966i \(0.575549\pi\)
\(20\) 0.912871 + 1.25646i 0.204124 + 0.280953i
\(21\) 0 0
\(22\) −5.19180 + 3.04337i −1.10690 + 0.648848i
\(23\) 1.98738i 0.414397i −0.978299 0.207199i \(-0.933565\pi\)
0.978299 0.207199i \(-0.0664346\pi\)
\(24\) 0 0
\(25\) 1.09887 + 3.38198i 0.219775 + 0.676397i
\(26\) −5.28060 1.71577i −1.03561 0.336490i
\(27\) 0 0
\(28\) −3.67776 + 5.06200i −0.695030 + 0.956627i
\(29\) 0.524067 1.61291i 0.0973167 0.299510i −0.890534 0.454917i \(-0.849669\pi\)
0.987851 + 0.155407i \(0.0496689\pi\)
\(30\) 0 0
\(31\) −4.29749 + 3.12231i −0.771852 + 0.560783i −0.902523 0.430643i \(-0.858287\pi\)
0.130671 + 0.991426i \(0.458287\pi\)
\(32\) 6.34963 1.12247
\(33\) 0 0
\(34\) −4.05656 −0.695694
\(35\) 4.70641 3.41941i 0.795528 0.577985i
\(36\) 0 0
\(37\) 0.344857 1.06136i 0.0566941 0.174486i −0.918699 0.394957i \(-0.870759\pi\)
0.975394 + 0.220471i \(0.0707594\pi\)
\(38\) −4.87179 + 6.70545i −0.790309 + 1.08777i
\(39\) 0 0
\(40\) −1.46726 0.476740i −0.231994 0.0753793i
\(41\) −3.28550 10.1117i −0.513109 1.57919i −0.786696 0.617341i \(-0.788210\pi\)
0.273587 0.961847i \(-0.411790\pi\)
\(42\) 0 0
\(43\) 3.79055i 0.578054i 0.957321 + 0.289027i \(0.0933317\pi\)
−0.957321 + 0.289027i \(0.906668\pi\)
\(44\) −1.71760 + 3.92738i −0.258938 + 0.592075i
\(45\) 0 0
\(46\) −2.11962 2.91741i −0.312521 0.430149i
\(47\) −3.10538 + 1.00900i −0.452967 + 0.147178i −0.526610 0.850107i \(-0.676537\pi\)
0.0736436 + 0.997285i \(0.476537\pi\)
\(48\) 0 0
\(49\) 13.2980 + 9.66153i 1.89971 + 1.38022i
\(50\) 5.22014 + 3.79265i 0.738239 + 0.536362i
\(51\) 0 0
\(52\) −3.76128 + 1.22211i −0.521595 + 0.169477i
\(53\) 0.749954 + 1.03222i 0.103014 + 0.141787i 0.857412 0.514631i \(-0.172071\pi\)
−0.754398 + 0.656417i \(0.772071\pi\)
\(54\) 0 0
\(55\) 2.64716 2.97930i 0.356943 0.401728i
\(56\) 6.21546i 0.830575i
\(57\) 0 0
\(58\) −0.950924 2.92664i −0.124862 0.384287i
\(59\) −0.0300536 0.00976502i −0.00391265 0.00127130i 0.307060 0.951690i \(-0.400655\pi\)
−0.310973 + 0.950419i \(0.600655\pi\)
\(60\) 0 0
\(61\) −0.697881 + 0.960551i −0.0893545 + 0.122986i −0.851354 0.524592i \(-0.824218\pi\)
0.761999 + 0.647578i \(0.224218\pi\)
\(62\) −2.97851 + 9.16690i −0.378271 + 1.16420i
\(63\) 0 0
\(64\) 1.36926 0.994827i 0.171158 0.124353i
\(65\) 3.67703 0.456079
\(66\) 0 0
\(67\) −2.10554 −0.257233 −0.128617 0.991694i \(-0.541054\pi\)
−0.128617 + 0.991694i \(0.541054\pi\)
\(68\) −2.33759 + 1.69836i −0.283474 + 0.205956i
\(69\) 0 0
\(70\) 3.26192 10.0392i 0.389874 1.19991i
\(71\) 2.26013 3.11080i 0.268228 0.369184i −0.653563 0.756873i \(-0.726726\pi\)
0.921790 + 0.387688i \(0.126726\pi\)
\(72\) 0 0
\(73\) 6.69980 + 2.17690i 0.784152 + 0.254786i 0.673612 0.739085i \(-0.264742\pi\)
0.110540 + 0.993872i \(0.464742\pi\)
\(74\) −0.625746 1.92585i −0.0727414 0.223875i
\(75\) 0 0
\(76\) 5.90368i 0.677198i
\(77\) 14.7111 + 6.43375i 1.67648 + 0.733194i
\(78\) 0 0
\(79\) −2.24604 3.09141i −0.252700 0.347811i 0.663755 0.747950i \(-0.268962\pi\)
−0.916454 + 0.400139i \(0.868962\pi\)
\(80\) −5.61646 + 1.82490i −0.627940 + 0.204030i
\(81\) 0 0
\(82\) −15.6076 11.3396i −1.72357 1.25225i
\(83\) 5.88095 + 4.27276i 0.645518 + 0.468996i 0.861742 0.507348i \(-0.169374\pi\)
−0.216223 + 0.976344i \(0.569374\pi\)
\(84\) 0 0
\(85\) 2.55496 0.830157i 0.277124 0.0900431i
\(86\) 4.04278 + 5.56441i 0.435945 + 0.600026i
\(87\) 0 0
\(88\) −0.912791 4.15912i −0.0973039 0.443364i
\(89\) 10.2875i 1.09048i −0.838281 0.545238i \(-0.816439\pi\)
0.838281 0.545238i \(-0.183561\pi\)
\(90\) 0 0
\(91\) 4.57775 + 14.0889i 0.479879 + 1.47692i
\(92\) −2.44286 0.793733i −0.254686 0.0827524i
\(93\) 0 0
\(94\) −3.48246 + 4.79320i −0.359189 + 0.494381i
\(95\) 1.69618 5.22031i 0.174025 0.535593i
\(96\) 0 0
\(97\) −11.7345 + 8.52561i −1.19146 + 0.865644i −0.993418 0.114549i \(-0.963458\pi\)
−0.198040 + 0.980194i \(0.563458\pi\)
\(98\) 29.8254 3.01282
\(99\) 0 0
\(100\) 4.59597 0.459597
\(101\) 13.0136 9.45494i 1.29490 0.940802i 0.295011 0.955494i \(-0.404677\pi\)
0.999892 + 0.0146921i \(0.00467680\pi\)
\(102\) 0 0
\(103\) −0.643116 + 1.97931i −0.0633681 + 0.195027i −0.977728 0.209875i \(-0.932694\pi\)
0.914360 + 0.404902i \(0.132694\pi\)
\(104\) 2.30917 3.17830i 0.226433 0.311658i
\(105\) 0 0
\(106\) 2.20182 + 0.715414i 0.213859 + 0.0694871i
\(107\) −0.129361 0.398133i −0.0125058 0.0384889i 0.944609 0.328198i \(-0.106441\pi\)
−0.957115 + 0.289709i \(0.906441\pi\)
\(108\) 0 0
\(109\) 14.6788i 1.40597i −0.711205 0.702985i \(-0.751850\pi\)
0.711205 0.702985i \(-0.248150\pi\)
\(110\) 0.708407 7.19682i 0.0675440 0.686190i
\(111\) 0 0
\(112\) −13.9846 19.2481i −1.32142 1.81877i
\(113\) 3.04019 0.987818i 0.285997 0.0929261i −0.162505 0.986708i \(-0.551957\pi\)
0.448503 + 0.893782i \(0.351957\pi\)
\(114\) 0 0
\(115\) 1.93205 + 1.40371i 0.180164 + 0.130897i
\(116\) −1.77326 1.28835i −0.164643 0.119620i
\(117\) 0 0
\(118\) −0.0545326 + 0.0177187i −0.00502013 + 0.00163114i
\(119\) 6.36165 + 8.75606i 0.583172 + 0.802667i
\(120\) 0 0
\(121\) 10.7889 + 2.14475i 0.980808 + 0.194977i
\(122\) 2.15438i 0.195048i
\(123\) 0 0
\(124\) 2.12154 + 6.52943i 0.190520 + 0.586360i
\(125\) −9.77817 3.17712i −0.874587 0.284170i
\(126\) 0 0
\(127\) −13.1088 + 18.0428i −1.16322 + 1.60104i −0.464654 + 0.885492i \(0.653821\pi\)
−0.698567 + 0.715545i \(0.746179\pi\)
\(128\) −2.97528 + 9.15696i −0.262980 + 0.809368i
\(129\) 0 0
\(130\) 5.39776 3.92170i 0.473415 0.343956i
\(131\) −15.4992 −1.35417 −0.677086 0.735904i \(-0.736757\pi\)
−0.677086 + 0.735904i \(0.736757\pi\)
\(132\) 0 0
\(133\) 22.1138 1.91751
\(134\) −3.09087 + 2.24565i −0.267011 + 0.193995i
\(135\) 0 0
\(136\) 0.886955 2.72977i 0.0760557 0.234075i
\(137\) −10.0751 + 13.8672i −0.860773 + 1.18475i 0.120612 + 0.992700i \(0.461514\pi\)
−0.981385 + 0.192053i \(0.938486\pi\)
\(138\) 0 0
\(139\) −9.86040 3.20384i −0.836348 0.271746i −0.140631 0.990062i \(-0.544913\pi\)
−0.695717 + 0.718316i \(0.744913\pi\)
\(140\) −2.32341 7.15072i −0.196364 0.604346i
\(141\) 0 0
\(142\) 6.97708i 0.585503i
\(143\) 5.13231 + 8.75541i 0.429185 + 0.732164i
\(144\) 0 0
\(145\) 1.19785 + 1.64870i 0.0994759 + 0.136917i
\(146\) 12.1568 3.95000i 1.00611 0.326904i
\(147\) 0 0
\(148\) −1.16688 0.847786i −0.0959168 0.0696876i
\(149\) 0.0327310 + 0.0237805i 0.00268143 + 0.00194817i 0.589125 0.808042i \(-0.299472\pi\)
−0.586444 + 0.809990i \(0.699472\pi\)
\(150\) 0 0
\(151\) 2.61695 0.850299i 0.212964 0.0691964i −0.200592 0.979675i \(-0.564286\pi\)
0.413556 + 0.910479i \(0.364286\pi\)
\(152\) −3.44707 4.74449i −0.279594 0.384829i
\(153\) 0 0
\(154\) 28.4573 6.24544i 2.29315 0.503272i
\(155\) 6.38317i 0.512709i
\(156\) 0 0
\(157\) 0.651985 + 2.00660i 0.0520341 + 0.160145i 0.973697 0.227848i \(-0.0731688\pi\)
−0.921663 + 0.387992i \(0.873169\pi\)
\(158\) −6.59424 2.14260i −0.524610 0.170456i
\(159\) 0 0
\(160\) −4.48483 + 6.17284i −0.354557 + 0.488006i
\(161\) −2.97314 + 9.15039i −0.234316 + 0.721152i
\(162\) 0 0
\(163\) −11.8085 + 8.57941i −0.924917 + 0.671991i −0.944743 0.327812i \(-0.893689\pi\)
0.0198264 + 0.999803i \(0.493689\pi\)
\(164\) −13.7414 −1.07302
\(165\) 0 0
\(166\) 13.1901 1.02375
\(167\) 0.721863 0.524464i 0.0558594 0.0405843i −0.559505 0.828827i \(-0.689009\pi\)
0.615365 + 0.788243i \(0.289009\pi\)
\(168\) 0 0
\(169\) 1.12376 3.45858i 0.0864432 0.266045i
\(170\) 2.86520 3.94362i 0.219751 0.302461i
\(171\) 0 0
\(172\) 4.65930 + 1.51390i 0.355268 + 0.115434i
\(173\) −4.09368 12.5991i −0.311237 0.957889i −0.977276 0.211972i \(-0.932011\pi\)
0.666039 0.745917i \(-0.267989\pi\)
\(174\) 0 0
\(175\) 17.2154i 1.30136i
\(176\) −12.1846 10.8263i −0.918450 0.816060i
\(177\) 0 0
\(178\) −10.9721 15.1018i −0.822392 1.13193i
\(179\) 19.1587 6.22502i 1.43199 0.465280i 0.512596 0.858630i \(-0.328684\pi\)
0.919389 + 0.393350i \(0.128684\pi\)
\(180\) 0 0
\(181\) 3.63758 + 2.64286i 0.270379 + 0.196442i 0.714710 0.699421i \(-0.246559\pi\)
−0.444331 + 0.895863i \(0.646559\pi\)
\(182\) 21.7464 + 15.7997i 1.61195 + 1.17115i
\(183\) 0 0
\(184\) 2.42665 0.788467i 0.178895 0.0581265i
\(185\) 0.788232 + 1.08491i 0.0579520 + 0.0797641i
\(186\) 0 0
\(187\) 5.54285 + 4.92493i 0.405333 + 0.360146i
\(188\) 4.22008i 0.307781i
\(189\) 0 0
\(190\) −3.07774 9.47231i −0.223283 0.687193i
\(191\) −16.9040 5.49245i −1.22313 0.397420i −0.374910 0.927061i \(-0.622327\pi\)
−0.848222 + 0.529641i \(0.822327\pi\)
\(192\) 0 0
\(193\) 3.62015 4.98270i 0.260584 0.358663i −0.658599 0.752494i \(-0.728851\pi\)
0.919183 + 0.393831i \(0.128851\pi\)
\(194\) −8.13295 + 25.0307i −0.583912 + 1.79710i
\(195\) 0 0
\(196\) 17.1869 12.4870i 1.22763 0.891927i
\(197\) −22.5100 −1.60377 −0.801886 0.597477i \(-0.796170\pi\)
−0.801886 + 0.597477i \(0.796170\pi\)
\(198\) 0 0
\(199\) 9.30680 0.659742 0.329871 0.944026i \(-0.392995\pi\)
0.329871 + 0.944026i \(0.392995\pi\)
\(200\) −3.69355 + 2.68352i −0.261173 + 0.189753i
\(201\) 0 0
\(202\) 9.01948 27.7591i 0.634609 1.95312i
\(203\) −4.82587 + 6.64224i −0.338710 + 0.466194i
\(204\) 0 0
\(205\) 12.1508 + 3.94804i 0.848649 + 0.275743i
\(206\) 1.16694 + 3.59147i 0.0813046 + 0.250230i
\(207\) 0 0
\(208\) 15.0382i 1.04271i
\(209\) 14.7976 3.24760i 1.02357 0.224641i
\(210\) 0 0
\(211\) 8.23554 + 11.3352i 0.566958 + 0.780351i 0.992190 0.124734i \(-0.0398076\pi\)
−0.425232 + 0.905084i \(0.639808\pi\)
\(212\) 1.56832 0.509577i 0.107712 0.0349979i
\(213\) 0 0
\(214\) −0.614523 0.446477i −0.0420079 0.0305206i
\(215\) −3.68502 2.67732i −0.251316 0.182592i
\(216\) 0 0
\(217\) 24.4577 7.94680i 1.66030 0.539464i
\(218\) −15.6555 21.5480i −1.06032 1.45941i
\(219\) 0 0
\(220\) −2.60487 4.44375i −0.175620 0.299597i
\(221\) 6.84094i 0.460172i
\(222\) 0 0
\(223\) −4.98529 15.3432i −0.333840 1.02745i −0.967291 0.253671i \(-0.918362\pi\)
0.633451 0.773783i \(-0.281638\pi\)
\(224\) −29.2353 9.49912i −1.95336 0.634686i
\(225\) 0 0
\(226\) 3.40936 4.69258i 0.226787 0.312146i
\(227\) 4.54715 13.9947i 0.301805 0.928861i −0.679045 0.734097i \(-0.737606\pi\)
0.980850 0.194764i \(-0.0623942\pi\)
\(228\) 0 0
\(229\) −17.9594 + 13.0482i −1.18679 + 0.862252i −0.992921 0.118775i \(-0.962103\pi\)
−0.193867 + 0.981028i \(0.562103\pi\)
\(230\) 4.33330 0.285729
\(231\) 0 0
\(232\) 2.17733 0.142949
\(233\) −4.18134 + 3.03792i −0.273929 + 0.199021i −0.716265 0.697828i \(-0.754150\pi\)
0.442336 + 0.896849i \(0.354150\pi\)
\(234\) 0 0
\(235\) 1.21247 3.73159i 0.0790927 0.243422i
\(236\) −0.0240061 + 0.0330415i −0.00156266 + 0.00215082i
\(237\) 0 0
\(238\) 18.6774 + 6.06866i 1.21068 + 0.393373i
\(239\) 4.22278 + 12.9964i 0.273149 + 0.840665i 0.989703 + 0.143134i \(0.0457180\pi\)
−0.716555 + 0.697531i \(0.754282\pi\)
\(240\) 0 0
\(241\) 7.05251i 0.454292i 0.973861 + 0.227146i \(0.0729395\pi\)
−0.973861 + 0.227146i \(0.927061\pi\)
\(242\) 18.1252 8.35837i 1.16513 0.537296i
\(243\) 0 0
\(244\) 0.901971 + 1.24146i 0.0577428 + 0.0794761i
\(245\) −18.7851 + 6.10364i −1.20013 + 0.389947i
\(246\) 0 0
\(247\) 11.3080 + 8.21575i 0.719512 + 0.522756i
\(248\) −5.51741 4.00863i −0.350356 0.254548i
\(249\) 0 0
\(250\) −17.7426 + 5.76492i −1.12214 + 0.364605i
\(251\) −3.95496 5.44354i −0.249635 0.343593i 0.665748 0.746176i \(-0.268112\pi\)
−0.915383 + 0.402583i \(0.868112\pi\)
\(252\) 0 0
\(253\) −0.645692 + 6.55969i −0.0405943 + 0.412404i
\(254\) 40.4673i 2.53915i
\(255\) 0 0
\(256\) 6.44469 + 19.8347i 0.402793 + 1.23967i
\(257\) −13.4589 4.37306i −0.839543 0.272784i −0.142483 0.989797i \(-0.545509\pi\)
−0.697060 + 0.717013i \(0.745509\pi\)
\(258\) 0 0
\(259\) −3.17561 + 4.37086i −0.197323 + 0.271592i
\(260\) 1.46856 4.51975i 0.0910760 0.280303i
\(261\) 0 0
\(262\) −22.7523 + 16.5305i −1.40564 + 1.02126i
\(263\) −6.94583 −0.428298 −0.214149 0.976801i \(-0.568698\pi\)
−0.214149 + 0.976801i \(0.568698\pi\)
\(264\) 0 0
\(265\) −1.53319 −0.0941829
\(266\) 32.4624 23.5853i 1.99040 1.44611i
\(267\) 0 0
\(268\) −0.840926 + 2.58811i −0.0513678 + 0.158094i
\(269\) 4.05850 5.58605i 0.247451 0.340587i −0.667165 0.744910i \(-0.732493\pi\)
0.914617 + 0.404322i \(0.132493\pi\)
\(270\) 0 0
\(271\) −12.9581 4.21033i −0.787146 0.255759i −0.112258 0.993679i \(-0.535808\pi\)
−0.674888 + 0.737920i \(0.735808\pi\)
\(272\) −3.39514 10.4492i −0.205861 0.633575i
\(273\) 0 0
\(274\) 31.1021i 1.87895i
\(275\) −2.52823 11.5198i −0.152458 0.694673i
\(276\) 0 0
\(277\) −6.85079 9.42931i −0.411624 0.566552i 0.551989 0.833851i \(-0.313869\pi\)
−0.963614 + 0.267299i \(0.913869\pi\)
\(278\) −17.8918 + 5.81339i −1.07308 + 0.348664i
\(279\) 0 0
\(280\) 6.04241 + 4.39007i 0.361103 + 0.262357i
\(281\) −17.6693 12.8375i −1.05406 0.765823i −0.0810832 0.996707i \(-0.525838\pi\)
−0.972981 + 0.230885i \(0.925838\pi\)
\(282\) 0 0
\(283\) −22.3258 + 7.25408i −1.32713 + 0.431210i −0.884937 0.465711i \(-0.845799\pi\)
−0.442191 + 0.896921i \(0.645799\pi\)
\(284\) −2.92109 4.02053i −0.173335 0.238575i
\(285\) 0 0
\(286\) 16.8721 + 7.37884i 0.997667 + 0.436320i
\(287\) 51.4721i 3.03830i
\(288\) 0 0
\(289\) −3.70882 11.4146i −0.218166 0.671445i
\(290\) 3.51681 + 1.14268i 0.206514 + 0.0671005i
\(291\) 0 0
\(292\) 5.35162 7.36588i 0.313180 0.431055i
\(293\) 0.524298 1.61362i 0.0306298 0.0942689i −0.934573 0.355772i \(-0.884218\pi\)
0.965203 + 0.261503i \(0.0842181\pi\)
\(294\) 0 0
\(295\) 0.0307205 0.0223197i 0.00178861 0.00129950i
\(296\) 1.43277 0.0832781
\(297\) 0 0
\(298\) 0.0734110 0.00425258
\(299\) −4.91989 + 3.57451i −0.284525 + 0.206719i
\(300\) 0 0
\(301\) 5.67071 17.4527i 0.326855 1.00595i
\(302\) 2.93472 4.03930i 0.168874 0.232436i
\(303\) 0 0
\(304\) −21.3498 6.93699i −1.22450 0.397863i
\(305\) −0.440884 1.35690i −0.0252449 0.0776959i
\(306\) 0 0
\(307\) 2.35281i 0.134282i 0.997743 + 0.0671410i \(0.0213877\pi\)
−0.997743 + 0.0671410i \(0.978612\pi\)
\(308\) 13.7837 15.5131i 0.785399 0.883941i
\(309\) 0 0
\(310\) −6.80792 9.37029i −0.386664 0.532197i
\(311\) 10.0872 3.27754i 0.571995 0.185852i −0.00871654 0.999962i \(-0.502775\pi\)
0.580711 + 0.814110i \(0.302775\pi\)
\(312\) 0 0
\(313\) 20.4957 + 14.8910i 1.15849 + 0.841691i 0.989586 0.143942i \(-0.0459779\pi\)
0.168902 + 0.985633i \(0.445978\pi\)
\(314\) 3.09722 + 2.25026i 0.174786 + 0.126990i
\(315\) 0 0
\(316\) −4.69696 + 1.52614i −0.264225 + 0.0858518i
\(317\) 15.7600 + 21.6917i 0.885168 + 1.21833i 0.974963 + 0.222368i \(0.0713788\pi\)
−0.0897951 + 0.995960i \(0.528621\pi\)
\(318\) 0 0
\(319\) −2.25380 + 5.15343i −0.126189 + 0.288536i
\(320\) 2.03380i 0.113693i
\(321\) 0 0
\(322\) 5.39479 + 16.6035i 0.300640 + 0.925275i
\(323\) 9.71216 + 3.15567i 0.540399 + 0.175586i
\(324\) 0 0
\(325\) 6.39590 8.80320i 0.354781 0.488314i
\(326\) −8.18427 + 25.1886i −0.453285 + 1.39507i
\(327\) 0 0
\(328\) 11.0433 8.02340i 0.609762 0.443018i
\(329\) 15.8074 0.871492
\(330\) 0 0
\(331\) −17.3237 −0.952198 −0.476099 0.879392i \(-0.657950\pi\)
−0.476099 + 0.879392i \(0.657950\pi\)
\(332\) 7.60079 5.52230i 0.417148 0.303076i
\(333\) 0 0
\(334\) 0.500309 1.53979i 0.0273757 0.0842538i
\(335\) 1.48717 2.04692i 0.0812530 0.111835i
\(336\) 0 0
\(337\) −12.3674 4.01842i −0.673696 0.218897i −0.0478628 0.998854i \(-0.515241\pi\)
−0.625833 + 0.779957i \(0.715241\pi\)
\(338\) −2.03908 6.27563i −0.110911 0.341349i
\(339\) 0 0
\(340\) 3.47208i 0.188300i
\(341\) 15.1990 8.90948i 0.823074 0.482476i
\(342\) 0 0
\(343\) −26.8543 36.9618i −1.45000 1.99575i
\(344\) −4.62838 + 1.50385i −0.249546 + 0.0810823i
\(345\) 0 0
\(346\) −19.4468 14.1289i −1.04547 0.759577i
\(347\) 17.1967 + 12.4941i 0.923168 + 0.670721i 0.944310 0.329056i \(-0.106730\pi\)
−0.0211427 + 0.999776i \(0.506730\pi\)
\(348\) 0 0
\(349\) 8.87430 2.88343i 0.475030 0.154347i −0.0617102 0.998094i \(-0.519655\pi\)
0.536740 + 0.843747i \(0.319655\pi\)
\(350\) −18.3610 25.2717i −0.981436 1.35083i
\(351\) 0 0
\(352\) −20.9580 2.06297i −1.11707 0.109957i
\(353\) 9.12141i 0.485483i 0.970091 + 0.242742i \(0.0780468\pi\)
−0.970091 + 0.242742i \(0.921953\pi\)
\(354\) 0 0
\(355\) 1.42783 + 4.39440i 0.0757813 + 0.233231i
\(356\) −12.6453 4.10870i −0.670199 0.217761i
\(357\) 0 0
\(358\) 21.4851 29.5716i 1.13552 1.56291i
\(359\) −2.41692 + 7.43851i −0.127560 + 0.392589i −0.994359 0.106069i \(-0.966174\pi\)
0.866799 + 0.498658i \(0.166174\pi\)
\(360\) 0 0
\(361\) 1.50897 1.09633i 0.0794193 0.0577015i
\(362\) 8.15857 0.428805
\(363\) 0 0
\(364\) 19.1462 1.00353
\(365\) −6.84845 + 4.97569i −0.358464 + 0.260439i
\(366\) 0 0
\(367\) 7.57224 23.3050i 0.395268 1.21651i −0.533485 0.845810i \(-0.679118\pi\)
0.928753 0.370700i \(-0.120882\pi\)
\(368\) 5.74086 7.90161i 0.299263 0.411900i
\(369\) 0 0
\(370\) 2.31420 + 0.751929i 0.120310 + 0.0390909i
\(371\) −1.90876 5.87455i −0.0990978 0.304992i
\(372\) 0 0
\(373\) 2.86129i 0.148152i 0.997253 + 0.0740760i \(0.0236007\pi\)
−0.997253 + 0.0740760i \(0.976399\pi\)
\(374\) 13.3894 + 1.31796i 0.692348 + 0.0681501i
\(375\) 0 0
\(376\) −2.46404 3.39146i −0.127073 0.174901i
\(377\) −4.93546 + 1.60363i −0.254189 + 0.0825911i
\(378\) 0 0
\(379\) 23.6747 + 17.2007i 1.21609 + 0.883540i 0.995769 0.0918872i \(-0.0292899\pi\)
0.220320 + 0.975428i \(0.429290\pi\)
\(380\) −5.73931 4.16985i −0.294420 0.213909i
\(381\) 0 0
\(382\) −30.6725 + 9.96610i −1.56934 + 0.509910i
\(383\) −16.7280 23.0242i −0.854762 1.17648i −0.982793 0.184709i \(-0.940866\pi\)
0.128031 0.991770i \(-0.459134\pi\)
\(384\) 0 0
\(385\) −16.6453 + 9.75724i −0.848321 + 0.497275i
\(386\) 11.1755i 0.568818i
\(387\) 0 0
\(388\) 5.79296 + 17.8289i 0.294093 + 0.905125i
\(389\) 13.5825 + 4.41321i 0.688658 + 0.223759i 0.632382 0.774657i \(-0.282077\pi\)
0.0562761 + 0.998415i \(0.482077\pi\)
\(390\) 0 0
\(391\) −2.61155 + 3.59449i −0.132072 + 0.181781i
\(392\) −6.52124 + 20.0703i −0.329372 + 1.01370i
\(393\) 0 0
\(394\) −33.0440 + 24.0079i −1.66473 + 1.20950i
\(395\) 4.59175 0.231036
\(396\) 0 0
\(397\) 2.20687 0.110760 0.0553798 0.998465i \(-0.482363\pi\)
0.0553798 + 0.998465i \(0.482363\pi\)
\(398\) 13.6621 9.92609i 0.684819 0.497550i
\(399\) 0 0
\(400\) −5.40039 + 16.6207i −0.270019 + 0.831034i
\(401\) −18.5405 + 25.5188i −0.925869 + 1.27435i 0.0355802 + 0.999367i \(0.488672\pi\)
−0.961449 + 0.274983i \(0.911328\pi\)
\(402\) 0 0
\(403\) 15.4590 + 5.02293i 0.770067 + 0.250210i
\(404\) −6.42442 19.7723i −0.319627 0.983710i
\(405\) 0 0
\(406\) 14.8976i 0.739355i
\(407\) −1.48309 + 3.39116i −0.0735141 + 0.168093i
\(408\) 0 0
\(409\) −3.98413 5.48368i −0.197002 0.271150i 0.699075 0.715048i \(-0.253595\pi\)
−0.896077 + 0.443898i \(0.853595\pi\)
\(410\) 22.0477 7.16375i 1.08886 0.353792i
\(411\) 0 0
\(412\) 2.17609 + 1.58102i 0.107208 + 0.0778913i
\(413\) 0.123766 + 0.0899212i 0.00609012 + 0.00442473i
\(414\) 0 0
\(415\) −8.30760 + 2.69930i −0.407804 + 0.132504i
\(416\) −11.4205 15.7189i −0.559935 0.770685i
\(417\) 0 0
\(418\) 18.2588 20.5497i 0.893066 1.00512i
\(419\) 28.6088i 1.39763i 0.715302 + 0.698815i \(0.246289\pi\)
−0.715302 + 0.698815i \(0.753711\pi\)
\(420\) 0 0
\(421\) −1.72842 5.31954i −0.0842381 0.259258i 0.900062 0.435762i \(-0.143521\pi\)
−0.984300 + 0.176504i \(0.943521\pi\)
\(422\) 24.1790 + 7.85624i 1.17702 + 0.382436i
\(423\) 0 0
\(424\) −0.962842 + 1.32524i −0.0467597 + 0.0643592i
\(425\) 2.45667 7.56084i 0.119166 0.366755i
\(426\) 0 0
\(427\) 4.65021 3.37858i 0.225040 0.163501i
\(428\) −0.541044 −0.0261524
\(429\) 0 0
\(430\) −8.26497 −0.398572
\(431\) 15.7825 11.4667i 0.760216 0.552329i −0.138760 0.990326i \(-0.544312\pi\)
0.898977 + 0.437997i \(0.144312\pi\)
\(432\) 0 0
\(433\) −6.96921 + 21.4490i −0.334919 + 1.03077i 0.631843 + 0.775096i \(0.282299\pi\)
−0.966762 + 0.255678i \(0.917701\pi\)
\(434\) 27.4276 37.7508i 1.31657 1.81210i
\(435\) 0 0
\(436\) −18.0429 5.86250i −0.864099 0.280763i
\(437\) 2.80527 + 8.63372i 0.134194 + 0.413007i
\(438\) 0 0
\(439\) 29.9870i 1.43120i 0.698509 + 0.715601i \(0.253847\pi\)
−0.698509 + 0.715601i \(0.746153\pi\)
\(440\) 4.68804 + 2.05027i 0.223494 + 0.0977428i
\(441\) 0 0
\(442\) 7.29615 + 10.0423i 0.347043 + 0.477663i
\(443\) 30.0035 9.74873i 1.42551 0.463176i 0.508161 0.861262i \(-0.330325\pi\)
0.917348 + 0.398086i \(0.130325\pi\)
\(444\) 0 0
\(445\) 10.0011 + 7.26623i 0.474098 + 0.344452i
\(446\) −23.6824 17.2063i −1.12139 0.814740i
\(447\) 0 0
\(448\) −7.79270 + 2.53200i −0.368171 + 0.119626i
\(449\) 22.3362 + 30.7432i 1.05411 + 1.45086i 0.885190 + 0.465229i \(0.154028\pi\)
0.168921 + 0.985630i \(0.445972\pi\)
\(450\) 0 0
\(451\) 7.55911 + 34.4430i 0.355944 + 1.62186i
\(452\) 4.13148i 0.194329i
\(453\) 0 0
\(454\) −8.25085 25.3935i −0.387232 1.19178i
\(455\) −16.9300 5.50087i −0.793688 0.257885i
\(456\) 0 0
\(457\) −23.0565 + 31.7345i −1.07854 + 1.48448i −0.217413 + 0.976080i \(0.569762\pi\)
−0.861123 + 0.508397i \(0.830238\pi\)
\(458\) −12.4473 + 38.3088i −0.581624 + 1.79005i
\(459\) 0 0
\(460\) 2.49706 1.81422i 0.116426 0.0845885i
\(461\) 17.5521 0.817482 0.408741 0.912650i \(-0.365968\pi\)
0.408741 + 0.912650i \(0.365968\pi\)
\(462\) 0 0
\(463\) 5.07239 0.235734 0.117867 0.993029i \(-0.462394\pi\)
0.117867 + 0.993029i \(0.462394\pi\)
\(464\) 6.74278 4.89892i 0.313026 0.227427i
\(465\) 0 0
\(466\) −2.89801 + 8.91915i −0.134248 + 0.413172i
\(467\) −9.96792 + 13.7197i −0.461260 + 0.634870i −0.974770 0.223214i \(-0.928345\pi\)
0.513509 + 0.858084i \(0.328345\pi\)
\(468\) 0 0
\(469\) 9.69445 + 3.14992i 0.447648 + 0.145450i
\(470\) −2.20004 6.77101i −0.101480 0.312324i
\(471\) 0 0
\(472\) 0.0405706i 0.00186741i
\(473\) 1.23154 12.5114i 0.0566261 0.575274i
\(474\) 0 0
\(475\) −9.54762 13.1412i −0.438075 0.602958i
\(476\) 13.3036 4.32260i 0.609769 0.198126i
\(477\) 0 0
\(478\) 20.0601 + 14.5745i 0.917526 + 0.666622i
\(479\) 14.6267 + 10.6269i 0.668310 + 0.485556i 0.869459 0.494005i \(-0.164468\pi\)
−0.201149 + 0.979561i \(0.564468\pi\)
\(480\) 0 0
\(481\) −3.24773 + 1.05525i −0.148084 + 0.0481153i
\(482\) 7.52180 + 10.3529i 0.342608 + 0.471560i
\(483\) 0 0
\(484\) 6.94524 12.4050i 0.315693 0.563862i
\(485\) 17.4295i 0.791435i
\(486\) 0 0
\(487\) −8.03498 24.7291i −0.364100 1.12058i −0.950543 0.310594i \(-0.899472\pi\)
0.586443 0.809991i \(-0.300528\pi\)
\(488\) −1.44974 0.471048i −0.0656265 0.0213234i
\(489\) 0 0
\(490\) −21.0661 + 28.9950i −0.951670 + 1.30986i
\(491\) 2.26569 6.97309i 0.102249 0.314691i −0.886826 0.462104i \(-0.847095\pi\)
0.989075 + 0.147413i \(0.0470947\pi\)
\(492\) 0 0
\(493\) −3.06733 + 2.22854i −0.138146 + 0.100369i
\(494\) 25.3622 1.14110
\(495\) 0 0
\(496\) −26.1057 −1.17218
\(497\) −15.0600 + 10.9417i −0.675533 + 0.490804i
\(498\) 0 0
\(499\) −2.91064 + 8.95804i −0.130298 + 0.401017i −0.994829 0.101563i \(-0.967616\pi\)
0.864531 + 0.502580i \(0.167616\pi\)
\(500\) −7.81055 + 10.7503i −0.349298 + 0.480768i
\(501\) 0 0
\(502\) −11.6115 3.77281i −0.518247 0.168389i
\(503\) −10.3211 31.7652i −0.460196 1.41634i −0.864925 0.501902i \(-0.832634\pi\)
0.404728 0.914437i \(-0.367366\pi\)
\(504\) 0 0
\(505\) 19.3294i 0.860149i
\(506\) 6.04832 + 10.3181i 0.268881 + 0.458694i
\(507\) 0 0
\(508\) 16.9424 + 23.3193i 0.751699 + 1.03462i
\(509\) 19.5002 6.33601i 0.864332 0.280839i 0.156895 0.987615i \(-0.449851\pi\)
0.707437 + 0.706777i \(0.249851\pi\)
\(510\) 0 0
\(511\) −27.5909 20.0459i −1.22055 0.886781i
\(512\) 15.0364 + 10.9246i 0.664521 + 0.482803i
\(513\) 0 0
\(514\) −24.4213 + 7.93496i −1.07718 + 0.349996i
\(515\) −1.46996 2.02322i −0.0647741 0.0891539i
\(516\) 0 0
\(517\) 10.5777 2.32145i 0.465206 0.102097i
\(518\) 9.80320i 0.430728i
\(519\) 0 0
\(520\) 1.45881 + 4.48976i 0.0639732 + 0.196889i
\(521\) −12.4115 4.03273i −0.543757 0.176677i 0.0242430 0.999706i \(-0.492282\pi\)
−0.568000 + 0.823029i \(0.692282\pi\)
\(522\) 0 0
\(523\) −4.85832 + 6.68690i −0.212439 + 0.292398i −0.901917 0.431909i \(-0.857840\pi\)
0.689478 + 0.724307i \(0.257840\pi\)
\(524\) −6.19018 + 19.0514i −0.270419 + 0.832265i
\(525\) 0 0
\(526\) −10.1963 + 7.40802i −0.444578 + 0.323005i
\(527\) 11.8756 0.517310
\(528\) 0 0
\(529\) 19.0503 0.828275
\(530\) −2.25067 + 1.63521i −0.0977628 + 0.0710289i
\(531\) 0 0
\(532\) 8.83197 27.1820i 0.382915 1.17849i
\(533\) −19.1230 + 26.3205i −0.828308 + 1.14007i
\(534\) 0 0
\(535\) 0.478417 + 0.155447i 0.0206838 + 0.00672057i
\(536\) −0.835347 2.57093i −0.0360815 0.111047i
\(537\) 0 0
\(538\) 12.5287i 0.540151i
\(539\) −40.7532 36.2100i −1.75537 1.55968i
\(540\) 0 0
\(541\) 5.73469 + 7.89312i 0.246554 + 0.339352i 0.914301 0.405036i \(-0.132741\pi\)
−0.667747 + 0.744388i \(0.732741\pi\)
\(542\) −23.5125 + 7.63968i −1.00995 + 0.328152i
\(543\) 0 0
\(544\) −11.4843 8.34383i −0.492385 0.357739i
\(545\) 14.2701 + 10.3678i 0.611263 + 0.444108i
\(546\) 0 0
\(547\) 7.40406 2.40572i 0.316575 0.102861i −0.146420 0.989223i \(-0.546775\pi\)
0.462994 + 0.886361i \(0.346775\pi\)
\(548\) 13.0215 + 17.9225i 0.556250 + 0.765613i
\(549\) 0 0
\(550\) −15.9978 14.2143i −0.682147 0.606100i
\(551\) 7.74667i 0.330019i
\(552\) 0 0
\(553\) 5.71655 + 17.5937i 0.243093 + 0.748162i
\(554\) −20.1135 6.53527i −0.854541 0.277657i
\(555\) 0 0
\(556\) −7.87623 + 10.8407i −0.334026 + 0.459748i
\(557\) 1.09093 3.35755i 0.0462244 0.142264i −0.925281 0.379283i \(-0.876171\pi\)
0.971505 + 0.237019i \(0.0761705\pi\)
\(558\) 0 0
\(559\) 9.38378 6.81772i 0.396892 0.288359i
\(560\) 28.5897 1.20813
\(561\) 0 0
\(562\) −39.6298 −1.67168
\(563\) −1.21567 + 0.883235i −0.0512343 + 0.0372239i −0.613108 0.789999i \(-0.710081\pi\)
0.561873 + 0.827223i \(0.310081\pi\)
\(564\) 0 0
\(565\) −1.18702 + 3.65326i −0.0499381 + 0.153694i
\(566\) −25.0367 + 34.4601i −1.05237 + 1.44847i
\(567\) 0 0
\(568\) 4.69506 + 1.52552i 0.197000 + 0.0640093i
\(569\) −4.58518 14.1117i −0.192221 0.591595i −0.999998 0.00210682i \(-0.999329\pi\)
0.807777 0.589488i \(-0.200671\pi\)
\(570\) 0 0
\(571\) 29.8598i 1.24960i −0.780787 0.624798i \(-0.785181\pi\)
0.780787 0.624798i \(-0.214819\pi\)
\(572\) 12.8118 2.81177i 0.535688 0.117566i
\(573\) 0 0
\(574\) 54.8972 + 75.5595i 2.29136 + 3.15379i
\(575\) 6.72128 2.18388i 0.280297 0.0910740i
\(576\) 0 0
\(577\) −20.6394 14.9954i −0.859228 0.624266i 0.0684465 0.997655i \(-0.478196\pi\)
−0.927675 + 0.373389i \(0.878196\pi\)
\(578\) −17.6185 12.8006i −0.732835 0.532436i
\(579\) 0 0
\(580\) 2.50496 0.813911i 0.104013 0.0337958i
\(581\) −20.6853 28.4708i −0.858170 1.18117i
\(582\) 0 0
\(583\) −2.13999 3.65069i −0.0886292 0.151196i
\(584\) 9.04432i 0.374256i
\(585\) 0 0
\(586\) −0.951344 2.92793i −0.0392996 0.120952i
\(587\) −22.4713 7.30137i −0.927491 0.301360i −0.193955 0.981011i \(-0.562131\pi\)
−0.733536 + 0.679651i \(0.762131\pi\)
\(588\) 0 0
\(589\) 14.2622 19.6303i 0.587664 0.808851i
\(590\) 0.0212918 0.0655293i 0.000876568 0.00269780i
\(591\) 0 0
\(592\) 4.43702 3.22368i 0.182360 0.132493i
\(593\) −10.1681 −0.417553 −0.208777 0.977963i \(-0.566948\pi\)
−0.208777 + 0.977963i \(0.566948\pi\)
\(594\) 0 0
\(595\) −13.0056 −0.533178
\(596\) 0.0423030 0.0307349i 0.00173280 0.00125895i
\(597\) 0 0
\(598\) −3.40988 + 10.4945i −0.139441 + 0.429154i
\(599\) 3.58279 4.93129i 0.146389 0.201487i −0.729525 0.683954i \(-0.760259\pi\)
0.875914 + 0.482467i \(0.160259\pi\)
\(600\) 0 0
\(601\) 13.3376 + 4.33365i 0.544053 + 0.176773i 0.568133 0.822937i \(-0.307666\pi\)
−0.0240806 + 0.999710i \(0.507666\pi\)
\(602\) −10.2896 31.6680i −0.419371 1.29069i
\(603\) 0 0
\(604\) 3.55632i 0.144705i
\(605\) −9.70538 + 8.97363i −0.394580 + 0.364830i
\(606\) 0 0
\(607\) −0.497560 0.684833i −0.0201953 0.0277965i 0.798800 0.601597i \(-0.205469\pi\)
−0.818995 + 0.573800i \(0.805469\pi\)
\(608\) −27.5845 + 8.96276i −1.11870 + 0.363488i
\(609\) 0 0
\(610\) −2.09439 1.52167i −0.0847996 0.0616105i
\(611\) 8.08321 + 5.87280i 0.327012 + 0.237588i
\(612\) 0 0
\(613\) −24.1513 + 7.84724i −0.975462 + 0.316947i −0.753019 0.657999i \(-0.771403\pi\)
−0.222443 + 0.974946i \(0.571403\pi\)
\(614\) 2.50937 + 3.45385i 0.101270 + 0.139386i
\(615\) 0 0
\(616\) −2.01938 + 20.5152i −0.0813631 + 0.826581i
\(617\) 10.0839i 0.405962i −0.979183 0.202981i \(-0.934937\pi\)
0.979183 0.202981i \(-0.0650630\pi\)
\(618\) 0 0
\(619\) −8.05024 24.7761i −0.323566 0.995835i −0.972084 0.234635i \(-0.924611\pi\)
0.648517 0.761200i \(-0.275389\pi\)
\(620\) −7.84611 2.54935i −0.315107 0.102385i
\(621\) 0 0
\(622\) 11.3121 15.5698i 0.453574 0.624291i
\(623\) −15.3903 + 47.3664i −0.616598 + 1.89769i
\(624\) 0 0
\(625\) −4.38931 + 3.18902i −0.175573 + 0.127561i
\(626\) 45.9690 1.83729
\(627\) 0 0
\(628\) 2.72689 0.108815
\(629\) −2.01842 + 1.46647i −0.0804798 + 0.0584720i
\(630\) 0 0
\(631\) 3.44605 10.6058i 0.137185 0.422212i −0.858739 0.512414i \(-0.828751\pi\)
0.995923 + 0.0902022i \(0.0287513\pi\)
\(632\) 2.88362 3.96897i 0.114704 0.157877i
\(633\) 0 0
\(634\) 46.2703 + 15.0341i 1.83763 + 0.597081i
\(635\) −8.28146 25.4877i −0.328640 1.01145i
\(636\) 0 0
\(637\) 50.2973i 1.99285i
\(638\) 2.18783 + 9.96884i 0.0866172 + 0.394670i
\(639\) 0 0
\(640\) −6.80053 9.36013i −0.268815 0.369991i
\(641\) 10.4988 3.41127i 0.414679 0.134737i −0.0942448 0.995549i \(-0.530044\pi\)
0.508923 + 0.860812i \(0.330044\pi\)
\(642\) 0 0
\(643\) −29.7234 21.5953i −1.17218 0.851637i −0.180909 0.983500i \(-0.557904\pi\)
−0.991268 + 0.131863i \(0.957904\pi\)
\(644\) 10.0601 + 7.30909i 0.396424 + 0.288019i
\(645\) 0 0
\(646\) 17.6228 5.72600i 0.693360 0.225286i
\(647\) 1.59821 + 2.19975i 0.0628321 + 0.0864810i 0.839277 0.543705i \(-0.182979\pi\)
−0.776445 + 0.630186i \(0.782979\pi\)
\(648\) 0 0
\(649\) 0.0960246 + 0.0419955i 0.00376930 + 0.00164847i
\(650\) 19.7443i 0.774436i
\(651\) 0 0
\(652\) 5.82952 + 17.9414i 0.228301 + 0.702640i
\(653\) 42.0798 + 13.6726i 1.64671 + 0.535048i 0.978023 0.208496i \(-0.0668570\pi\)
0.668686 + 0.743545i \(0.266857\pi\)
\(654\) 0 0
\(655\) 10.9473 15.0677i 0.427747 0.588743i
\(656\) 16.1465 49.6939i 0.630416 1.94022i
\(657\) 0 0
\(658\) 23.2048 16.8593i 0.904618 0.657244i
\(659\) −9.17428 −0.357379 −0.178690 0.983905i \(-0.557186\pi\)
−0.178690 + 0.983905i \(0.557186\pi\)
\(660\) 0 0
\(661\) −9.89631 −0.384922 −0.192461 0.981305i \(-0.561647\pi\)
−0.192461 + 0.981305i \(0.561647\pi\)
\(662\) −25.4307 + 18.4765i −0.988391 + 0.718108i
\(663\) 0 0
\(664\) −2.88398 + 8.87599i −0.111920 + 0.344455i
\(665\) −15.6193 + 21.4981i −0.605691 + 0.833662i
\(666\) 0 0
\(667\) −3.20547 1.04152i −0.124116 0.0403278i
\(668\) −0.356362 1.09677i −0.0137880 0.0424352i
\(669\) 0 0
\(670\) 4.59095i 0.177364i
\(671\) 2.61556 2.94372i 0.100972 0.113641i
\(672\) 0 0
\(673\) −10.3937 14.3057i −0.400649 0.551446i 0.560258 0.828318i \(-0.310702\pi\)
−0.960907 + 0.276872i \(0.910702\pi\)
\(674\) −22.4408 + 7.29146i −0.864387 + 0.280856i
\(675\) 0 0
\(676\) −3.80243 2.76263i −0.146247 0.106255i
\(677\) −9.62387 6.99215i −0.369875 0.268730i 0.387284 0.921961i \(-0.373413\pi\)
−0.757159 + 0.653230i \(0.773413\pi\)
\(678\) 0 0
\(679\) 66.7830 21.6991i 2.56290 0.832735i
\(680\) 2.02729 + 2.79033i 0.0777432 + 0.107004i
\(681\) 0 0
\(682\) 12.8094 29.2892i 0.490496 1.12154i
\(683\) 18.2564i 0.698561i 0.937018 + 0.349280i \(0.113574\pi\)
−0.937018 + 0.349280i \(0.886426\pi\)
\(684\) 0 0
\(685\) −6.36490 19.5892i −0.243190 0.748463i
\(686\) −78.8425 25.6175i −3.01022 0.978080i
\(687\) 0 0
\(688\) −10.9496 + 15.0708i −0.417450 + 0.574571i
\(689\) 1.20647 3.71312i 0.0459627 0.141459i
\(690\) 0 0
\(691\) −14.5818 + 10.5943i −0.554719 + 0.403027i −0.829522 0.558474i \(-0.811387\pi\)
0.274804 + 0.961500i \(0.411387\pi\)
\(692\) −17.1216 −0.650864
\(693\) 0 0
\(694\) 38.5698 1.46409
\(695\) 10.0792 7.32295i 0.382325 0.277775i
\(696\) 0 0
\(697\) −7.34515 + 22.6060i −0.278217 + 0.856265i
\(698\) 9.95189 13.6976i 0.376684 0.518462i
\(699\) 0 0
\(700\) −21.1610 6.87562i −0.799810 0.259874i
\(701\) −2.60431 8.01524i −0.0983635 0.302732i 0.889752 0.456444i \(-0.150877\pi\)
−0.988116 + 0.153712i \(0.950877\pi\)
\(702\) 0 0
\(703\) 5.09762i 0.192260i
\(704\) −4.84270 + 2.83873i −0.182516 + 0.106989i
\(705\) 0 0
\(706\) 9.72836 + 13.3899i 0.366132 + 0.503937i
\(707\) −74.0626 + 24.0644i −2.78541 + 0.905035i
\(708\) 0 0
\(709\) −16.7573 12.1749i −0.629333 0.457237i 0.226836 0.973933i \(-0.427162\pi\)
−0.856169 + 0.516696i \(0.827162\pi\)
\(710\) 6.78282 + 4.92801i 0.254555 + 0.184945i
\(711\) 0 0
\(712\) 12.5614 4.08144i 0.470758 0.152959i
\(713\) 6.20521 + 8.54074i 0.232387 + 0.319853i
\(714\) 0 0
\(715\) −12.1367 1.19465i −0.453885 0.0446774i
\(716\) 26.0358i 0.973002i
\(717\) 0 0
\(718\) 4.38552 + 13.4972i 0.163666 + 0.503712i
\(719\) −34.3009 11.1450i −1.27921 0.415640i −0.410906 0.911678i \(-0.634788\pi\)
−0.868301 + 0.496038i \(0.834788\pi\)
\(720\) 0 0
\(721\) 5.92214 8.15112i 0.220552 0.303564i
\(722\) 1.04584 3.21875i 0.0389220 0.119790i
\(723\) 0 0
\(724\) 4.70137 3.41574i 0.174725 0.126945i
\(725\) 6.03072 0.223975
\(726\) 0 0
\(727\) −20.9857 −0.778316 −0.389158 0.921171i \(-0.627234\pi\)
−0.389158 + 0.921171i \(0.627234\pi\)
\(728\) −15.3868 + 11.1792i −0.570273 + 0.414327i
\(729\) 0 0
\(730\) −4.74653 + 14.6083i −0.175677 + 0.540678i
\(731\) 4.98104 6.85581i 0.184230 0.253571i
\(732\) 0 0
\(733\) 38.6350 + 12.5533i 1.42701 + 0.463665i 0.917824 0.396988i \(-0.129945\pi\)
0.509191 + 0.860653i \(0.329945\pi\)
\(734\) −13.7399 42.2871i −0.507149 1.56084i
\(735\) 0 0
\(736\) 12.6191i 0.465147i
\(737\) 6.94971 + 0.684083i 0.255996 + 0.0251985i
\(738\) 0 0
\(739\) −0.159730 0.219850i −0.00587578 0.00808731i 0.806069 0.591822i \(-0.201591\pi\)
−0.811945 + 0.583734i \(0.801591\pi\)
\(740\) 1.64836 0.535586i 0.0605951 0.0196885i
\(741\) 0 0
\(742\) −9.06745 6.58789i −0.332877 0.241849i
\(743\) 16.6356 + 12.0864i 0.610300 + 0.443409i 0.849520 0.527557i \(-0.176892\pi\)
−0.239220 + 0.970965i \(0.576892\pi\)
\(744\) 0 0
\(745\) −0.0462368 + 0.0150232i −0.00169398 + 0.000550409i
\(746\) 3.05169 + 4.20029i 0.111730 + 0.153783i
\(747\) 0 0
\(748\) 8.26740 4.84624i 0.302286 0.177196i
\(749\) 2.02663i 0.0740514i
\(750\) 0 0
\(751\) −16.1057 49.5682i −0.587705 1.80877i −0.588127 0.808769i \(-0.700134\pi\)
0.000422486 1.00000i \(-0.499866\pi\)
\(752\) −15.2613 4.95871i −0.556524 0.180825i
\(753\) 0 0
\(754\) −5.53477 + 7.61795i −0.201564 + 0.277430i
\(755\) −1.02176 + 3.14467i −0.0371858 + 0.114446i
\(756\) 0 0
\(757\) 30.2153 21.9527i 1.09819 0.797884i 0.117429 0.993081i \(-0.462535\pi\)
0.980764 + 0.195197i \(0.0625347\pi\)
\(758\) 53.0990 1.92864
\(759\) 0 0
\(760\) 7.04711 0.255625
\(761\) −36.1152 + 26.2392i −1.30918 + 0.951171i −0.309175 + 0.951005i \(0.600053\pi\)
−1.00000 0.000166228i \(0.999947\pi\)
\(762\) 0 0
\(763\) −21.9596 + 67.5847i −0.794991 + 2.44673i
\(764\) −13.5025 + 18.5846i −0.488503 + 0.672367i
\(765\) 0 0
\(766\) −49.1124 15.9576i −1.77450 0.576571i
\(767\) 0.0298807 + 0.0919633i 0.00107893 + 0.00332060i
\(768\) 0 0
\(769\) 22.3246i 0.805047i −0.915410 0.402524i \(-0.868133\pi\)
0.915410 0.402524i \(-0.131867\pi\)
\(770\) −14.0282 + 32.0762i −0.505542 + 1.15595i
\(771\) 0 0
\(772\) −4.67883 6.43986i −0.168395 0.231776i
\(773\) 19.1268 6.21468i 0.687944 0.223526i 0.0558738 0.998438i \(-0.482206\pi\)
0.632070 + 0.774911i \(0.282206\pi\)
\(774\) 0 0
\(775\) −15.2820 11.1030i −0.548946 0.398832i
\(776\) −15.0655 10.9458i −0.540822 0.392930i
\(777\) 0 0
\(778\) 24.6455 8.00781i 0.883584 0.287094i
\(779\) 28.5463 + 39.2906i 1.02278 + 1.40773i
\(780\) 0 0
\(781\) −8.47063 + 9.53343i −0.303103 + 0.341133i
\(782\) 8.06192i 0.288294i
\(783\) 0 0
\(784\) 24.9624 + 76.8265i 0.891516 + 2.74380i
\(785\) −2.41124 0.783461i −0.0860610 0.0279629i
\(786\) 0 0
\(787\) −20.4658 + 28.1688i −0.729527 + 1.00411i 0.269626 + 0.962965i \(0.413100\pi\)
−0.999153 + 0.0411431i \(0.986900\pi\)
\(788\) −8.99021 + 27.6690i −0.320263 + 0.985668i
\(789\) 0 0
\(790\) 6.74055 4.89730i 0.239818 0.174238i
\(791\) −15.4756 −0.550249
\(792\) 0 0
\(793\) 3.63312 0.129016
\(794\) 3.23961 2.35372i 0.114970 0.0835303i
\(795\) 0 0
\(796\) 3.71701 11.4398i 0.131746 0.405473i
\(797\) 0.462428 0.636478i 0.0163800 0.0225452i −0.800748 0.599001i \(-0.795565\pi\)
0.817128 + 0.576456i \(0.195565\pi\)
\(798\) 0 0
\(799\) 6.94247 + 2.25574i 0.245607 + 0.0798025i
\(800\) 6.97744 + 21.4743i 0.246690 + 0.759233i
\(801\) 0 0
\(802\) 57.2351i 2.02104i
\(803\) −21.4066 9.36196i −0.755421 0.330376i
\(804\) 0 0
\(805\) −6.79565 9.35341i −0.239515 0.329665i
\(806\) 28.0505 9.11415i 0.988036 0.321032i
\(807\) 0 0
\(808\) 16.7078 + 12.1389i 0.587777 + 0.427045i
\(809\) 24.9035 + 18.0934i 0.875560 + 0.636131i 0.932073 0.362270i \(-0.117998\pi\)
−0.0565132 + 0.998402i \(0.517998\pi\)
\(810\) 0 0
\(811\) 41.4535 13.4691i 1.45563 0.472963i 0.528898 0.848686i \(-0.322606\pi\)
0.926732 + 0.375723i \(0.122606\pi\)
\(812\) 6.23716 + 8.58472i 0.218881 + 0.301264i
\(813\) 0 0
\(814\) 1.43968 + 6.55989i 0.0504608 + 0.229924i
\(815\) 17.5395i 0.614383i
\(816\) 0 0
\(817\) −5.35052 16.4672i −0.187191 0.576115i
\(818\) −11.6971 3.80063i −0.408981 0.132886i
\(819\) 0 0
\(820\) 9.70574 13.3588i 0.338939 0.466510i
\(821\) 12.0394 37.0534i 0.420178 1.29317i −0.487359 0.873202i \(-0.662040\pi\)
0.907537 0.419972i \(-0.137960\pi\)
\(822\) 0 0
\(823\) −30.4030 + 22.0890i −1.05978 + 0.769975i −0.974048 0.226343i \(-0.927323\pi\)
−0.0857325 + 0.996318i \(0.527323\pi\)
\(824\) −2.67195 −0.0930816
\(825\) 0 0
\(826\) 0.277589 0.00965857
\(827\) 36.8905 26.8025i 1.28281 0.932015i 0.283175 0.959068i \(-0.408612\pi\)
0.999634 + 0.0270532i \(0.00861234\pi\)
\(828\) 0 0
\(829\) 8.83146 27.1804i 0.306729 0.944016i −0.672297 0.740282i \(-0.734692\pi\)
0.979026 0.203734i \(-0.0653078\pi\)
\(830\) −9.31637 + 12.8229i −0.323376 + 0.445089i
\(831\) 0 0
\(832\) −4.92553 1.60040i −0.170762 0.0554839i
\(833\) −11.3556 34.9488i −0.393447 1.21090i
\(834\) 0 0
\(835\) 1.07220i 0.0371051i
\(836\) 1.91808 19.4861i 0.0663382 0.673941i
\(837\) 0 0
\(838\) 30.5125 + 41.9968i 1.05404 + 1.45076i
\(839\) −5.41296 + 1.75878i −0.186876 + 0.0607197i −0.400960 0.916096i \(-0.631323\pi\)
0.214084 + 0.976815i \(0.431323\pi\)
\(840\) 0 0
\(841\) 21.1347 + 15.3552i 0.728781 + 0.529491i
\(842\) −8.21078 5.96548i −0.282962 0.205584i
\(843\) 0 0
\(844\) 17.2223 5.59587i 0.592816 0.192618i
\(845\) 2.56856 + 3.53532i 0.0883612 + 0.121619i
\(846\) 0 0
\(847\) −46.4662 26.0153i −1.59660 0.893895i
\(848\) 6.27037i 0.215325i
\(849\) 0 0
\(850\) −4.45764 13.7192i −0.152896 0.470565i
\(851\) −2.10932 0.685361i −0.0723067 0.0234939i
\(852\) 0 0
\(853\) 14.7319 20.2767i 0.504410 0.694261i −0.478554 0.878058i \(-0.658839\pi\)
0.982964 + 0.183797i \(0.0588390\pi\)
\(854\) 3.22297 9.91929i 0.110288 0.339431i
\(855\) 0 0
\(856\) 0.434810 0.315908i 0.0148615 0.0107975i
\(857\) 35.9164 1.22688 0.613440 0.789741i \(-0.289785\pi\)
0.613440 + 0.789741i \(0.289785\pi\)
\(858\) 0 0
\(859\) −15.7324 −0.536783 −0.268391 0.963310i \(-0.586492\pi\)
−0.268391 + 0.963310i \(0.586492\pi\)
\(860\) −4.76268 + 3.46029i −0.162406 + 0.117995i
\(861\) 0 0
\(862\) 10.9385 33.6654i 0.372568 1.14665i
\(863\) 16.0883 22.1436i 0.547652 0.753778i −0.442039 0.896996i \(-0.645745\pi\)
0.989691 + 0.143217i \(0.0457448\pi\)
\(864\) 0 0
\(865\) 15.1397 + 4.91919i 0.514765 + 0.167257i
\(866\) 12.6457 + 38.9194i 0.429718 + 1.32254i
\(867\) 0 0
\(868\) 33.2370i 1.12814i
\(869\) 6.40906 + 10.9335i 0.217413 + 0.370893i
\(870\) 0 0
\(871\) 3.78704 + 5.21242i 0.128319 + 0.176616i
\(872\) 17.9232 5.82361i 0.606957 0.197212i
\(873\) 0 0
\(874\) 13.3263 + 9.68210i 0.450768 + 0.327502i
\(875\) 40.2682 + 29.2565i 1.36131 + 0.989051i
\(876\) 0 0
\(877\) 49.4957 16.0821i 1.67135 0.543055i 0.688147 0.725571i \(-0.258424\pi\)
0.983203 + 0.182516i \(0.0584242\pi\)
\(878\) 31.9824 + 44.0200i 1.07935 + 1.48560i
\(879\) 0 0
\(880\) 19.1310 4.19863i 0.644906 0.141536i
\(881\) 39.9758i 1.34682i −0.739270 0.673409i \(-0.764829\pi\)
0.739270 0.673409i \(-0.235171\pi\)
\(882\) 0 0
\(883\) −5.74452 17.6798i −0.193318 0.594973i −0.999992 0.00397571i \(-0.998734\pi\)
0.806674 0.590997i \(-0.201266\pi\)
\(884\) 8.40880 + 2.73218i 0.282818 + 0.0918933i
\(885\) 0 0
\(886\) 33.6468 46.3108i 1.13039 1.55584i
\(887\) 16.8498 51.8583i 0.565760 1.74123i −0.0999207 0.994995i \(-0.531859\pi\)
0.665681 0.746236i \(-0.268141\pi\)
\(888\) 0 0
\(889\) 87.3486 63.4625i 2.92958 2.12846i
\(890\) 22.4310 0.751890
\(891\) 0 0
\(892\) −20.8507 −0.698132
\(893\) 12.0664 8.76675i 0.403787 0.293368i
\(894\) 0 0
\(895\) −7.48032 + 23.0221i −0.250040 + 0.769543i
\(896\) 27.3978 37.7099i 0.915297 1.25980i
\(897\) 0 0
\(898\) 65.5777 + 21.3075i 2.18836 + 0.711040i
\(899\) 2.78384 + 8.56777i 0.0928461 + 0.285751i
\(900\) 0 0
\(901\) 2.85243i 0.0950281i
\(902\) 47.8314 + 42.4991i 1.59261 + 1.41507i
\(903\) 0 0
\(904\) 2.41231 + 3.32027i 0.0802324 + 0.110430i
\(905\) −5.13855 + 1.66962i −0.170811 + 0.0554999i
\(906\) 0 0
\(907\) 10.0586 + 7.30800i 0.333990 + 0.242658i 0.742122 0.670265i \(-0.233820\pi\)
−0.408132 + 0.912923i \(0.633820\pi\)
\(908\) −15.3860 11.1786i −0.510603 0.370975i
\(909\) 0 0
\(910\) −30.7195 + 9.98139i −1.01834 + 0.330880i
\(911\) −26.4433 36.3961i −0.876106 1.20586i −0.977484 0.211008i \(-0.932325\pi\)
0.101379 0.994848i \(-0.467675\pi\)
\(912\) 0 0
\(913\) −18.0229 16.0137i −0.596471 0.529976i
\(914\) 71.1759i 2.35429i
\(915\) 0 0
\(916\) 8.86599 + 27.2867i 0.292941 + 0.901578i
\(917\) 71.3622 + 23.1870i 2.35659 + 0.765702i
\(918\) 0 0
\(919\) 13.6185 18.7442i 0.449232 0.618315i −0.523000 0.852333i \(-0.675187\pi\)
0.972232 + 0.234017i \(0.0751872\pi\)
\(920\) −0.947464 + 2.91599i −0.0312370 + 0.0961375i
\(921\) 0 0
\(922\) 25.7659 18.7200i 0.848555 0.616512i
\(923\) −11.7661 −0.387285
\(924\) 0 0
\(925\) 3.96846 0.130482
\(926\) 7.44610 5.40991i 0.244694 0.177781i
\(927\) 0 0
\(928\) 3.32763 10.2414i 0.109235 0.336190i
\(929\) 6.79920 9.35830i 0.223075 0.307036i −0.682781 0.730624i \(-0.739229\pi\)
0.905855 + 0.423588i \(0.139229\pi\)
\(930\) 0 0
\(931\) −71.4077 23.2018i −2.34029 0.760407i
\(932\) 2.06420 + 6.35296i 0.0676151 + 0.208098i
\(933\) 0 0
\(934\) 30.7712i 1.00687i
\(935\) −8.70280 + 1.90998i −0.284612 + 0.0624630i
\(936\) 0 0
\(937\) 15.1544 + 20.8582i 0.495071 + 0.681407i 0.981313 0.192417i \(-0.0616326\pi\)
−0.486242 + 0.873824i \(0.661633\pi\)
\(938\) 17.5907 5.71555i 0.574356 0.186619i
\(939\) 0 0
\(940\) −4.10258 2.98070i −0.133811 0.0972197i
\(941\) −47.8599 34.7722i −1.56019 1.13354i −0.935856 0.352383i \(-0.885372\pi\)
−0.624331 0.781160i \(-0.714628\pi\)
\(942\) 0 0
\(943\) −20.0959 + 6.52954i −0.654411 + 0.212631i
\(944\) −0.0912824 0.125639i −0.00297099 0.00408921i
\(945\) 0 0
\(946\) −11.5361 19.6798i −0.375069 0.639845i
\(947\) 0.120799i 0.00392545i 0.999998 + 0.00196272i \(0.000624755\pi\)
−0.999998 + 0.00196272i \(0.999375\pi\)
\(948\) 0 0
\(949\) −6.66124 20.5012i −0.216233 0.665497i
\(950\) −28.0312 9.10789i −0.909453 0.295499i
\(951\) 0 0
\(952\) −8.16752 + 11.2416i −0.264711 + 0.364343i
\(953\) −2.50261 + 7.70223i −0.0810674 + 0.249500i −0.983373 0.181597i \(-0.941873\pi\)
0.902306 + 0.431097i \(0.141873\pi\)
\(954\) 0 0
\(955\) 17.2791 12.5540i 0.559138 0.406237i
\(956\) 17.6615 0.571213
\(957\) 0 0
\(958\) 32.8055 1.05990
\(959\) 67.1337 48.7755i 2.16786 1.57504i
\(960\) 0 0
\(961\) −0.859922 + 2.64657i −0.0277394 + 0.0853732i
\(962\) −3.64210 + 5.01292i −0.117426 + 0.161623i
\(963\) 0 0
\(964\) 8.66885 + 2.81668i 0.279205 + 0.0907192i
\(965\) 2.28702 + 7.03871i 0.0736216 + 0.226584i
\(966\) 0 0
\(967\) 9.94567i 0.319831i 0.987131 + 0.159916i \(0.0511222\pi\)
−0.987131 + 0.159916i \(0.948878\pi\)
\(968\) 1.66154 + 14.0245i 0.0534040 + 0.450763i
\(969\) 0 0
\(970\) −18.5893 25.5860i −0.596867 0.821518i
\(971\) −36.6171 + 11.8976i −1.17510 + 0.381813i −0.830544 0.556953i \(-0.811970\pi\)
−0.344555 + 0.938766i \(0.611970\pi\)
\(972\) 0 0
\(973\) 40.6068 + 29.5025i 1.30179 + 0.945808i
\(974\) −38.1698 27.7320i −1.22304 0.888589i
\(975\) 0 0
\(976\) −5.54940 + 1.80311i −0.177632 + 0.0577161i
\(977\) 11.9388 + 16.4324i 0.381956 + 0.525718i 0.956101 0.293036i \(-0.0946656\pi\)
−0.574145 + 0.818753i \(0.694666\pi\)
\(978\) 0 0
\(979\) −3.34238 + 33.9558i −0.106823 + 1.08523i
\(980\) 25.5281i 0.815464i
\(981\) 0 0
\(982\) −4.11112 12.6527i −0.131191 0.403765i
\(983\) −9.24723 3.00461i −0.294941 0.0958321i 0.157809 0.987470i \(-0.449557\pi\)
−0.452750 + 0.891638i \(0.649557\pi\)
\(984\) 0 0
\(985\) 15.8991 21.8833i 0.506589 0.697260i
\(986\) −2.12591 + 6.54287i −0.0677027 + 0.208367i
\(987\) 0 0
\(988\) 14.6150 10.6184i 0.464964 0.337816i
\(989\) 7.53327 0.239544
\(990\) 0 0
\(991\) −22.9196 −0.728065 −0.364032 0.931386i \(-0.618600\pi\)
−0.364032 + 0.931386i \(0.618600\pi\)
\(992\) −27.2875 + 19.8255i −0.866378 + 0.629460i
\(993\) 0 0
\(994\) −10.4378 + 32.1242i −0.331067 + 1.01892i
\(995\) −6.57352 + 9.04768i −0.208395 + 0.286831i
\(996\) 0 0
\(997\) −20.4494 6.64441i −0.647639 0.210431i −0.0332659 0.999447i \(-0.510591\pi\)
−0.614373 + 0.789016i \(0.710591\pi\)
\(998\) 5.28139 + 16.2544i 0.167179 + 0.514525i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.k.a.404.16 80
3.2 odd 2 inner 891.2.k.a.404.5 80
9.2 odd 6 297.2.t.a.206.8 80
9.4 even 3 297.2.t.a.8.8 80
9.5 odd 6 99.2.p.a.74.3 yes 80
9.7 even 3 99.2.p.a.41.3 yes 80
11.7 odd 10 inner 891.2.k.a.161.5 80
33.29 even 10 inner 891.2.k.a.161.16 80
99.7 odd 30 99.2.p.a.95.3 yes 80
99.29 even 30 297.2.t.a.260.8 80
99.40 odd 30 297.2.t.a.62.8 80
99.95 even 30 99.2.p.a.29.3 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.29.3 80 99.95 even 30
99.2.p.a.41.3 yes 80 9.7 even 3
99.2.p.a.74.3 yes 80 9.5 odd 6
99.2.p.a.95.3 yes 80 99.7 odd 30
297.2.t.a.8.8 80 9.4 even 3
297.2.t.a.62.8 80 99.40 odd 30
297.2.t.a.206.8 80 9.2 odd 6
297.2.t.a.260.8 80 99.29 even 30
891.2.k.a.161.5 80 11.7 odd 10 inner
891.2.k.a.161.16 80 33.29 even 10 inner
891.2.k.a.404.5 80 3.2 odd 2 inner
891.2.k.a.404.16 80 1.1 even 1 trivial