Properties

Label 891.2.k.a.161.8
Level $891$
Weight $2$
Character 891.161
Analytic conductor $7.115$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(161,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.161");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.k (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(20\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 161.8
Character \(\chi\) \(=\) 891.161
Dual form 891.2.k.a.404.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.505702 - 0.367414i) q^{2} +(-0.497292 - 1.53051i) q^{4} +(0.749839 + 1.03206i) q^{5} +(4.60560 - 1.49645i) q^{7} +(-0.697171 + 2.14567i) q^{8} -0.797419i q^{10} +(0.591134 - 3.26352i) q^{11} +(0.490794 - 0.675520i) q^{13} +(-2.87888 - 0.935406i) q^{14} +(-1.46295 + 1.06289i) q^{16} +(0.199958 - 0.145278i) q^{17} +(2.08556 + 0.677640i) q^{19} +(1.20669 - 1.66087i) q^{20} +(-1.49800 + 1.43318i) q^{22} +4.84746i q^{23} +(1.04219 - 3.20752i) q^{25} +(-0.496392 + 0.161287i) q^{26} +(-4.58066 - 6.30474i) q^{28} +(2.40128 + 7.39039i) q^{29} +(-1.41927 - 1.03116i) q^{31} +5.64252 q^{32} -0.154496 q^{34} +(4.99790 + 3.63118i) q^{35} +(0.106959 + 0.329187i) q^{37} +(-0.805699 - 1.10895i) q^{38} +(-2.73724 + 0.889382i) q^{40} +(1.50228 - 4.62355i) q^{41} -0.423369i q^{43} +(-5.28881 + 0.718188i) q^{44} +(1.78103 - 2.45137i) q^{46} +(-7.07320 - 2.29822i) q^{47} +(13.3091 - 9.66963i) q^{49} +(-1.70552 + 1.23914i) q^{50} +(-1.27796 - 0.415234i) q^{52} +(6.95271 - 9.56959i) q^{53} +(3.81142 - 1.83703i) q^{55} +10.9254i q^{56} +(1.50100 - 4.61960i) q^{58} +(-4.99606 + 1.62332i) q^{59} +(-8.19100 - 11.2739i) q^{61} +(0.338865 + 1.04292i) q^{62} +(0.0724543 + 0.0526411i) q^{64} +1.06520 q^{65} +0.504907 q^{67} +(-0.321787 - 0.233792i) q^{68} +(-1.19330 - 3.67260i) q^{70} +(-6.95402 - 9.57138i) q^{71} +(3.85174 - 1.25150i) q^{73} +(0.0668585 - 0.205769i) q^{74} -3.52895i q^{76} +(-2.16117 - 15.9151i) q^{77} +(-1.30074 + 1.79032i) q^{79} +(-2.19395 - 0.712856i) q^{80} +(-2.45847 + 1.78618i) q^{82} +(3.33901 - 2.42593i) q^{83} +(0.299872 + 0.0974345i) q^{85} +(-0.155552 + 0.214099i) q^{86} +(6.59032 + 3.54361i) q^{88} +13.5225i q^{89} +(1.24952 - 3.84563i) q^{91} +(7.41908 - 2.41061i) q^{92} +(2.73253 + 3.76101i) q^{94} +(0.864467 + 2.66055i) q^{95} +(6.43118 + 4.67252i) q^{97} -10.2832 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 10 q^{4} + 10 q^{7} + 10 q^{13} - 10 q^{16} - 50 q^{19} + 22 q^{22} + 4 q^{25} - 20 q^{28} + 12 q^{31} + 20 q^{34} - 6 q^{37} - 30 q^{40} - 40 q^{46} + 2 q^{49} + 10 q^{52} - 18 q^{55} + 58 q^{58}+ \cdots - 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.505702 0.367414i −0.357586 0.259801i 0.394459 0.918914i \(-0.370932\pi\)
−0.752044 + 0.659113i \(0.770932\pi\)
\(3\) 0 0
\(4\) −0.497292 1.53051i −0.248646 0.765254i
\(5\) 0.749839 + 1.03206i 0.335338 + 0.461553i 0.943073 0.332587i \(-0.107922\pi\)
−0.607734 + 0.794140i \(0.707922\pi\)
\(6\) 0 0
\(7\) 4.60560 1.49645i 1.74075 0.565606i 0.745822 0.666146i \(-0.232057\pi\)
0.994933 + 0.100540i \(0.0320570\pi\)
\(8\) −0.697171 + 2.14567i −0.246487 + 0.758609i
\(9\) 0 0
\(10\) 0.797419i 0.252166i
\(11\) 0.591134 3.26352i 0.178234 0.983988i
\(12\) 0 0
\(13\) 0.490794 0.675520i 0.136122 0.187356i −0.735514 0.677509i \(-0.763059\pi\)
0.871636 + 0.490154i \(0.163059\pi\)
\(14\) −2.87888 0.935406i −0.769414 0.249998i
\(15\) 0 0
\(16\) −1.46295 + 1.06289i −0.365736 + 0.265723i
\(17\) 0.199958 0.145278i 0.0484969 0.0352351i −0.563273 0.826271i \(-0.690458\pi\)
0.611770 + 0.791036i \(0.290458\pi\)
\(18\) 0 0
\(19\) 2.08556 + 0.677640i 0.478461 + 0.155461i 0.538311 0.842746i \(-0.319062\pi\)
−0.0598507 + 0.998207i \(0.519062\pi\)
\(20\) 1.20669 1.66087i 0.269825 0.371382i
\(21\) 0 0
\(22\) −1.49800 + 1.43318i −0.319375 + 0.305555i
\(23\) 4.84746i 1.01077i 0.862895 + 0.505383i \(0.168649\pi\)
−0.862895 + 0.505383i \(0.831351\pi\)
\(24\) 0 0
\(25\) 1.04219 3.20752i 0.208437 0.641504i
\(26\) −0.496392 + 0.161287i −0.0973504 + 0.0316311i
\(27\) 0 0
\(28\) −4.58066 6.30474i −0.865664 1.19148i
\(29\) 2.40128 + 7.39039i 0.445907 + 1.37236i 0.881486 + 0.472210i \(0.156544\pi\)
−0.435579 + 0.900151i \(0.643456\pi\)
\(30\) 0 0
\(31\) −1.41927 1.03116i −0.254908 0.185202i 0.452991 0.891515i \(-0.350357\pi\)
−0.707899 + 0.706313i \(0.750357\pi\)
\(32\) 5.64252 0.997466
\(33\) 0 0
\(34\) −0.154496 −0.0264959
\(35\) 4.99790 + 3.63118i 0.844799 + 0.613782i
\(36\) 0 0
\(37\) 0.106959 + 0.329187i 0.0175840 + 0.0541180i 0.959464 0.281833i \(-0.0909424\pi\)
−0.941879 + 0.335951i \(0.890942\pi\)
\(38\) −0.805699 1.10895i −0.130702 0.179895i
\(39\) 0 0
\(40\) −2.73724 + 0.889382i −0.432795 + 0.140624i
\(41\) 1.50228 4.62355i 0.234617 0.722078i −0.762555 0.646924i \(-0.776055\pi\)
0.997172 0.0751541i \(-0.0239449\pi\)
\(42\) 0 0
\(43\) 0.423369i 0.0645632i −0.999479 0.0322816i \(-0.989723\pi\)
0.999479 0.0322816i \(-0.0102773\pi\)
\(44\) −5.28881 + 0.718188i −0.797318 + 0.108271i
\(45\) 0 0
\(46\) 1.78103 2.45137i 0.262598 0.361435i
\(47\) −7.07320 2.29822i −1.03173 0.335230i −0.256257 0.966609i \(-0.582489\pi\)
−0.775475 + 0.631379i \(0.782489\pi\)
\(48\) 0 0
\(49\) 13.3091 9.66963i 1.90130 1.38138i
\(50\) −1.70552 + 1.23914i −0.241197 + 0.175240i
\(51\) 0 0
\(52\) −1.27796 0.415234i −0.177221 0.0575825i
\(53\) 6.95271 9.56959i 0.955029 1.31448i 0.00577155 0.999983i \(-0.498163\pi\)
0.949257 0.314501i \(-0.101837\pi\)
\(54\) 0 0
\(55\) 3.81142 1.83703i 0.513932 0.247704i
\(56\) 10.9254i 1.45997i
\(57\) 0 0
\(58\) 1.50100 4.61960i 0.197091 0.606584i
\(59\) −4.99606 + 1.62332i −0.650432 + 0.211338i −0.615604 0.788055i \(-0.711088\pi\)
−0.0348272 + 0.999393i \(0.511088\pi\)
\(60\) 0 0
\(61\) −8.19100 11.2739i −1.04875 1.44348i −0.889888 0.456179i \(-0.849218\pi\)
−0.158861 0.987301i \(-0.550782\pi\)
\(62\) 0.338865 + 1.04292i 0.0430359 + 0.132451i
\(63\) 0 0
\(64\) 0.0724543 + 0.0526411i 0.00905678 + 0.00658014i
\(65\) 1.06520 0.132121
\(66\) 0 0
\(67\) 0.504907 0.0616842 0.0308421 0.999524i \(-0.490181\pi\)
0.0308421 + 0.999524i \(0.490181\pi\)
\(68\) −0.321787 0.233792i −0.0390224 0.0283514i
\(69\) 0 0
\(70\) −1.19330 3.67260i −0.142626 0.438959i
\(71\) −6.95402 9.57138i −0.825290 1.13591i −0.988781 0.149370i \(-0.952276\pi\)
0.163491 0.986545i \(-0.447724\pi\)
\(72\) 0 0
\(73\) 3.85174 1.25150i 0.450812 0.146478i −0.0748068 0.997198i \(-0.523834\pi\)
0.525618 + 0.850720i \(0.323834\pi\)
\(74\) 0.0668585 0.205769i 0.00777214 0.0239202i
\(75\) 0 0
\(76\) 3.52895i 0.404799i
\(77\) −2.16117 15.9151i −0.246288 1.81369i
\(78\) 0 0
\(79\) −1.30074 + 1.79032i −0.146345 + 0.201426i −0.875896 0.482500i \(-0.839729\pi\)
0.729551 + 0.683926i \(0.239729\pi\)
\(80\) −2.19395 0.712856i −0.245291 0.0796998i
\(81\) 0 0
\(82\) −2.45847 + 1.78618i −0.271492 + 0.197251i
\(83\) 3.33901 2.42593i 0.366503 0.266280i −0.389256 0.921130i \(-0.627268\pi\)
0.755760 + 0.654849i \(0.227268\pi\)
\(84\) 0 0
\(85\) 0.299872 + 0.0974345i 0.0325257 + 0.0105683i
\(86\) −0.155552 + 0.214099i −0.0167736 + 0.0230869i
\(87\) 0 0
\(88\) 6.59032 + 3.54361i 0.702530 + 0.377750i
\(89\) 13.5225i 1.43338i 0.697393 + 0.716689i \(0.254343\pi\)
−0.697393 + 0.716689i \(0.745657\pi\)
\(90\) 0 0
\(91\) 1.24952 3.84563i 0.130985 0.403131i
\(92\) 7.41908 2.41061i 0.773493 0.251323i
\(93\) 0 0
\(94\) 2.73253 + 3.76101i 0.281839 + 0.387918i
\(95\) 0.864467 + 2.66055i 0.0886924 + 0.272967i
\(96\) 0 0
\(97\) 6.43118 + 4.67252i 0.652987 + 0.474423i 0.864287 0.502998i \(-0.167770\pi\)
−0.211300 + 0.977421i \(0.567770\pi\)
\(98\) −10.2832 −1.03876
\(99\) 0 0
\(100\) −5.42741 −0.542741
\(101\) −4.36445 3.17096i −0.434279 0.315522i 0.349079 0.937093i \(-0.386495\pi\)
−0.783358 + 0.621571i \(0.786495\pi\)
\(102\) 0 0
\(103\) 5.08550 + 15.6516i 0.501089 + 1.54219i 0.807247 + 0.590214i \(0.200957\pi\)
−0.306157 + 0.951981i \(0.599043\pi\)
\(104\) 1.10728 + 1.52404i 0.108577 + 0.149444i
\(105\) 0 0
\(106\) −7.03201 + 2.28484i −0.683009 + 0.221923i
\(107\) 0.705070 2.16998i 0.0681617 0.209780i −0.911174 0.412022i \(-0.864823\pi\)
0.979336 + 0.202242i \(0.0648227\pi\)
\(108\) 0 0
\(109\) 8.89941i 0.852409i 0.904627 + 0.426205i \(0.140150\pi\)
−0.904627 + 0.426205i \(0.859850\pi\)
\(110\) −2.60239 0.471381i −0.248128 0.0449445i
\(111\) 0 0
\(112\) −5.14718 + 7.08449i −0.486363 + 0.669421i
\(113\) 6.88671 + 2.23763i 0.647847 + 0.210498i 0.614465 0.788944i \(-0.289372\pi\)
0.0333823 + 0.999443i \(0.489372\pi\)
\(114\) 0 0
\(115\) −5.00289 + 3.63482i −0.466522 + 0.338948i
\(116\) 10.1169 7.35037i 0.939332 0.682465i
\(117\) 0 0
\(118\) 3.12295 + 1.01471i 0.287491 + 0.0934114i
\(119\) 0.703526 0.968320i 0.0644921 0.0887658i
\(120\) 0 0
\(121\) −10.3011 3.85836i −0.936466 0.350760i
\(122\) 8.71074i 0.788634i
\(123\) 0 0
\(124\) −0.872407 + 2.68499i −0.0783445 + 0.241119i
\(125\) 10.1582 3.30059i 0.908574 0.295213i
\(126\) 0 0
\(127\) 1.69280 + 2.32994i 0.150212 + 0.206749i 0.877491 0.479593i \(-0.159216\pi\)
−0.727279 + 0.686341i \(0.759216\pi\)
\(128\) −3.50457 10.7860i −0.309763 0.953353i
\(129\) 0 0
\(130\) −0.538673 0.391369i −0.0472447 0.0343253i
\(131\) 0.563363 0.0492213 0.0246106 0.999697i \(-0.492165\pi\)
0.0246106 + 0.999697i \(0.492165\pi\)
\(132\) 0 0
\(133\) 10.6193 0.920812
\(134\) −0.255333 0.185510i −0.0220574 0.0160256i
\(135\) 0 0
\(136\) 0.172314 + 0.530328i 0.0147758 + 0.0454752i
\(137\) 2.72868 + 3.75570i 0.233127 + 0.320871i 0.909513 0.415676i \(-0.136455\pi\)
−0.676386 + 0.736547i \(0.736455\pi\)
\(138\) 0 0
\(139\) −9.99398 + 3.24724i −0.847678 + 0.275427i −0.700473 0.713679i \(-0.747028\pi\)
−0.147205 + 0.989106i \(0.547028\pi\)
\(140\) 3.07214 9.45508i 0.259643 0.799100i
\(141\) 0 0
\(142\) 7.39528i 0.620598i
\(143\) −1.91445 2.00104i −0.160094 0.167335i
\(144\) 0 0
\(145\) −5.82678 + 8.01988i −0.483888 + 0.666015i
\(146\) −2.40765 0.782294i −0.199259 0.0647431i
\(147\) 0 0
\(148\) 0.450634 0.327405i 0.0370419 0.0269125i
\(149\) −12.3170 + 8.94886i −1.00905 + 0.733119i −0.964010 0.265866i \(-0.914342\pi\)
−0.0450420 + 0.998985i \(0.514342\pi\)
\(150\) 0 0
\(151\) 7.26733 + 2.36130i 0.591407 + 0.192160i 0.589404 0.807838i \(-0.299363\pi\)
0.00200261 + 0.999998i \(0.499363\pi\)
\(152\) −2.90799 + 4.00250i −0.235869 + 0.324646i
\(153\) 0 0
\(154\) −4.75452 + 8.84234i −0.383130 + 0.712536i
\(155\) 2.23798i 0.179759i
\(156\) 0 0
\(157\) −1.33807 + 4.11814i −0.106789 + 0.328663i −0.990146 0.140037i \(-0.955278\pi\)
0.883357 + 0.468701i \(0.155278\pi\)
\(158\) 1.31557 0.427456i 0.104662 0.0340066i
\(159\) 0 0
\(160\) 4.23098 + 5.82345i 0.334488 + 0.460384i
\(161\) 7.25399 + 22.3255i 0.571695 + 1.75950i
\(162\) 0 0
\(163\) −5.76502 4.18853i −0.451551 0.328071i 0.338657 0.940910i \(-0.390027\pi\)
−0.790208 + 0.612839i \(0.790027\pi\)
\(164\) −7.82346 −0.610910
\(165\) 0 0
\(166\) −2.57986 −0.200236
\(167\) −6.61623 4.80697i −0.511979 0.371975i 0.301595 0.953436i \(-0.402481\pi\)
−0.813574 + 0.581462i \(0.802481\pi\)
\(168\) 0 0
\(169\) 3.80177 + 11.7007i 0.292444 + 0.900050i
\(170\) −0.115847 0.159450i −0.00888509 0.0122293i
\(171\) 0 0
\(172\) −0.647970 + 0.210538i −0.0494072 + 0.0160534i
\(173\) 2.09058 6.43416i 0.158944 0.489180i −0.839595 0.543213i \(-0.817208\pi\)
0.998539 + 0.0540330i \(0.0172076\pi\)
\(174\) 0 0
\(175\) 16.3321i 1.23459i
\(176\) 2.60397 + 5.40266i 0.196282 + 0.407241i
\(177\) 0 0
\(178\) 4.96834 6.83834i 0.372393 0.512555i
\(179\) −6.85049 2.22586i −0.512030 0.166369i 0.0415954 0.999135i \(-0.486756\pi\)
−0.553625 + 0.832766i \(0.686756\pi\)
\(180\) 0 0
\(181\) 0.383330 0.278506i 0.0284927 0.0207012i −0.573448 0.819242i \(-0.694394\pi\)
0.601940 + 0.798541i \(0.294394\pi\)
\(182\) −2.04482 + 1.48565i −0.151572 + 0.110124i
\(183\) 0 0
\(184\) −10.4011 3.37951i −0.766777 0.249141i
\(185\) −0.259540 + 0.357226i −0.0190818 + 0.0262638i
\(186\) 0 0
\(187\) −0.355915 0.738445i −0.0260271 0.0540005i
\(188\) 11.9685i 0.872891i
\(189\) 0 0
\(190\) 0.540363 1.66307i 0.0392020 0.120651i
\(191\) −0.0386108 + 0.0125454i −0.00279378 + 0.000907754i −0.310414 0.950602i \(-0.600468\pi\)
0.307620 + 0.951509i \(0.400468\pi\)
\(192\) 0 0
\(193\) 6.60502 + 9.09103i 0.475440 + 0.654387i 0.977621 0.210376i \(-0.0674688\pi\)
−0.502181 + 0.864763i \(0.667469\pi\)
\(194\) −1.53551 4.72581i −0.110243 0.339294i
\(195\) 0 0
\(196\) −21.4180 15.5611i −1.52985 1.11150i
\(197\) −20.8150 −1.48301 −0.741504 0.670948i \(-0.765887\pi\)
−0.741504 + 0.670948i \(0.765887\pi\)
\(198\) 0 0
\(199\) 14.4111 1.02158 0.510788 0.859707i \(-0.329354\pi\)
0.510788 + 0.859707i \(0.329354\pi\)
\(200\) 6.15570 + 4.47238i 0.435274 + 0.316245i
\(201\) 0 0
\(202\) 1.04206 + 3.20712i 0.0733189 + 0.225652i
\(203\) 22.1187 + 30.4438i 1.55243 + 2.13674i
\(204\) 0 0
\(205\) 5.89828 1.91647i 0.411954 0.133852i
\(206\) 3.17886 9.78352i 0.221482 0.681650i
\(207\) 0 0
\(208\) 1.50991i 0.104693i
\(209\) 3.44434 6.40569i 0.238250 0.443091i
\(210\) 0 0
\(211\) −10.6840 + 14.7053i −0.735518 + 1.01235i 0.263346 + 0.964701i \(0.415174\pi\)
−0.998864 + 0.0476521i \(0.984826\pi\)
\(212\) −18.1039 5.88230i −1.24338 0.403998i
\(213\) 0 0
\(214\) −1.15384 + 0.838313i −0.0788748 + 0.0573059i
\(215\) 0.436944 0.317458i 0.0297993 0.0216505i
\(216\) 0 0
\(217\) −8.07968 2.62525i −0.548484 0.178213i
\(218\) 3.26977 4.50045i 0.221457 0.304809i
\(219\) 0 0
\(220\) −4.70697 4.91987i −0.317344 0.331698i
\(221\) 0.206377i 0.0138824i
\(222\) 0 0
\(223\) 0.233145 0.717545i 0.0156125 0.0480504i −0.942947 0.332944i \(-0.891958\pi\)
0.958559 + 0.284893i \(0.0919581\pi\)
\(224\) 25.9872 8.44376i 1.73634 0.564172i
\(225\) 0 0
\(226\) −2.66049 3.66185i −0.176973 0.243582i
\(227\) 5.13526 + 15.8047i 0.340839 + 1.04900i 0.963774 + 0.266721i \(0.0859403\pi\)
−0.622935 + 0.782274i \(0.714060\pi\)
\(228\) 0 0
\(229\) 17.7967 + 12.9300i 1.17604 + 0.854441i 0.991719 0.128426i \(-0.0409923\pi\)
0.184318 + 0.982867i \(0.440992\pi\)
\(230\) 3.86546 0.254881
\(231\) 0 0
\(232\) −17.5315 −1.15100
\(233\) −12.5102 9.08916i −0.819568 0.595451i 0.0970210 0.995282i \(-0.469069\pi\)
−0.916589 + 0.399832i \(0.869069\pi\)
\(234\) 0 0
\(235\) −2.93185 9.02329i −0.191252 0.588615i
\(236\) 4.96900 + 6.83925i 0.323455 + 0.445197i
\(237\) 0 0
\(238\) −0.711549 + 0.231196i −0.0461229 + 0.0149862i
\(239\) 5.81253 17.8891i 0.375981 1.15715i −0.566833 0.823833i \(-0.691831\pi\)
0.942814 0.333319i \(-0.108169\pi\)
\(240\) 0 0
\(241\) 15.5682i 1.00284i 0.865205 + 0.501419i \(0.167189\pi\)
−0.865205 + 0.501419i \(0.832811\pi\)
\(242\) 3.79169 + 5.73596i 0.243739 + 0.368721i
\(243\) 0 0
\(244\) −13.1815 + 18.1428i −0.843862 + 1.16148i
\(245\) 19.9594 + 6.48519i 1.27516 + 0.414324i
\(246\) 0 0
\(247\) 1.48134 1.07626i 0.0942555 0.0684806i
\(248\) 3.20200 2.32639i 0.203327 0.147726i
\(249\) 0 0
\(250\) −6.34969 2.06314i −0.401590 0.130484i
\(251\) −8.32155 + 11.4536i −0.525252 + 0.722947i −0.986397 0.164378i \(-0.947438\pi\)
0.461146 + 0.887324i \(0.347438\pi\)
\(252\) 0 0
\(253\) 15.8198 + 2.86550i 0.994582 + 0.180152i
\(254\) 1.80021i 0.112956i
\(255\) 0 0
\(256\) −2.13529 + 6.57176i −0.133456 + 0.410735i
\(257\) 14.1564 4.59968i 0.883050 0.286920i 0.167827 0.985817i \(-0.446325\pi\)
0.715223 + 0.698896i \(0.246325\pi\)
\(258\) 0 0
\(259\) 0.985226 + 1.35605i 0.0612189 + 0.0842606i
\(260\) −0.529714 1.63029i −0.0328515 0.101106i
\(261\) 0 0
\(262\) −0.284894 0.206988i −0.0176008 0.0127877i
\(263\) −23.9012 −1.47381 −0.736906 0.675995i \(-0.763714\pi\)
−0.736906 + 0.675995i \(0.763714\pi\)
\(264\) 0 0
\(265\) 15.0898 0.926962
\(266\) −5.37022 3.90169i −0.329269 0.239228i
\(267\) 0 0
\(268\) −0.251087 0.772765i −0.0153376 0.0472041i
\(269\) 4.62668 + 6.36807i 0.282093 + 0.388268i 0.926426 0.376477i \(-0.122865\pi\)
−0.644332 + 0.764745i \(0.722865\pi\)
\(270\) 0 0
\(271\) −4.67871 + 1.52020i −0.284211 + 0.0923458i −0.447654 0.894207i \(-0.647740\pi\)
0.163442 + 0.986553i \(0.447740\pi\)
\(272\) −0.138113 + 0.425067i −0.00837432 + 0.0257735i
\(273\) 0 0
\(274\) 2.90182i 0.175305i
\(275\) −9.85173 5.29727i −0.594082 0.319437i
\(276\) 0 0
\(277\) −15.5227 + 21.3651i −0.932666 + 1.28371i 0.0261441 + 0.999658i \(0.491677\pi\)
−0.958810 + 0.284047i \(0.908323\pi\)
\(278\) 6.24706 + 2.02979i 0.374674 + 0.121739i
\(279\) 0 0
\(280\) −11.2757 + 8.19229i −0.673853 + 0.489583i
\(281\) −12.8582 + 9.34205i −0.767057 + 0.557300i −0.901067 0.433680i \(-0.857215\pi\)
0.134009 + 0.990980i \(0.457215\pi\)
\(282\) 0 0
\(283\) −10.4717 3.40245i −0.622476 0.202255i −0.0192367 0.999815i \(-0.506124\pi\)
−0.603239 + 0.797560i \(0.706124\pi\)
\(284\) −11.1909 + 15.4030i −0.664058 + 0.913997i
\(285\) 0 0
\(286\) 0.232931 + 1.71533i 0.0137735 + 0.101429i
\(287\) 23.5424i 1.38966i
\(288\) 0 0
\(289\) −5.23441 + 16.1099i −0.307907 + 0.947639i
\(290\) 5.89324 1.91483i 0.346063 0.112443i
\(291\) 0 0
\(292\) −3.83088 5.27275i −0.224185 0.308564i
\(293\) −4.37823 13.4748i −0.255779 0.787207i −0.993675 0.112293i \(-0.964181\pi\)
0.737896 0.674914i \(-0.235819\pi\)
\(294\) 0 0
\(295\) −5.42161 3.93903i −0.315658 0.229339i
\(296\) −0.780897 −0.0453887
\(297\) 0 0
\(298\) 9.51670 0.551288
\(299\) 3.27456 + 2.37911i 0.189373 + 0.137587i
\(300\) 0 0
\(301\) −0.633551 1.94987i −0.0365173 0.112389i
\(302\) −2.80753 3.86423i −0.161555 0.222362i
\(303\) 0 0
\(304\) −3.77132 + 1.22538i −0.216300 + 0.0702801i
\(305\) 5.49351 16.9073i 0.314557 0.968108i
\(306\) 0 0
\(307\) 11.5389i 0.658559i 0.944233 + 0.329279i \(0.106806\pi\)
−0.944233 + 0.329279i \(0.893194\pi\)
\(308\) −23.2834 + 11.2221i −1.32670 + 0.639441i
\(309\) 0 0
\(310\) −0.822266 + 1.13175i −0.0467016 + 0.0642792i
\(311\) 26.0233 + 8.45547i 1.47564 + 0.479466i 0.932808 0.360373i \(-0.117351\pi\)
0.542836 + 0.839839i \(0.317351\pi\)
\(312\) 0 0
\(313\) −6.72263 + 4.88428i −0.379986 + 0.276076i −0.761340 0.648353i \(-0.775458\pi\)
0.381354 + 0.924429i \(0.375458\pi\)
\(314\) 2.18973 1.59093i 0.123573 0.0897814i
\(315\) 0 0
\(316\) 3.38694 + 1.10048i 0.190530 + 0.0619071i
\(317\) −8.93083 + 12.2922i −0.501605 + 0.690401i −0.982476 0.186391i \(-0.940321\pi\)
0.480870 + 0.876792i \(0.340321\pi\)
\(318\) 0 0
\(319\) 25.5382 3.46792i 1.42986 0.194166i
\(320\) 0.114250i 0.00638676i
\(321\) 0 0
\(322\) 4.53434 13.9553i 0.252689 0.777697i
\(323\) 0.515471 0.167487i 0.0286816 0.00931920i
\(324\) 0 0
\(325\) −1.65524 2.27825i −0.0918165 0.126375i
\(326\) 1.37646 + 4.23630i 0.0762350 + 0.234627i
\(327\) 0 0
\(328\) 8.87328 + 6.44682i 0.489945 + 0.355966i
\(329\) −36.0155 −1.98560
\(330\) 0 0
\(331\) 14.4144 0.792289 0.396145 0.918188i \(-0.370348\pi\)
0.396145 + 0.918188i \(0.370348\pi\)
\(332\) −5.37337 3.90398i −0.294902 0.214259i
\(333\) 0 0
\(334\) 1.57969 + 4.86179i 0.0864369 + 0.266025i
\(335\) 0.378599 + 0.521097i 0.0206851 + 0.0284706i
\(336\) 0 0
\(337\) 7.36396 2.39269i 0.401140 0.130338i −0.101497 0.994836i \(-0.532363\pi\)
0.502637 + 0.864497i \(0.332363\pi\)
\(338\) 2.37642 7.31387i 0.129260 0.397822i
\(339\) 0 0
\(340\) 0.507411i 0.0275182i
\(341\) −4.20419 + 4.02226i −0.227670 + 0.217818i
\(342\) 0 0
\(343\) 26.9014 37.0266i 1.45254 1.99925i
\(344\) 0.908411 + 0.295161i 0.0489782 + 0.0159140i
\(345\) 0 0
\(346\) −3.42121 + 2.48566i −0.183926 + 0.133630i
\(347\) −7.00708 + 5.09094i −0.376160 + 0.273296i −0.759761 0.650203i \(-0.774684\pi\)
0.383601 + 0.923499i \(0.374684\pi\)
\(348\) 0 0
\(349\) 15.9435 + 5.18035i 0.853434 + 0.277298i 0.702884 0.711305i \(-0.251895\pi\)
0.150551 + 0.988602i \(0.451895\pi\)
\(350\) −6.00066 + 8.25920i −0.320749 + 0.441473i
\(351\) 0 0
\(352\) 3.33549 18.4145i 0.177782 0.981495i
\(353\) 11.7069i 0.623096i 0.950230 + 0.311548i \(0.100847\pi\)
−0.950230 + 0.311548i \(0.899153\pi\)
\(354\) 0 0
\(355\) 4.66389 14.3540i 0.247534 0.761831i
\(356\) 20.6962 6.72461i 1.09690 0.356404i
\(357\) 0 0
\(358\) 2.64650 + 3.64259i 0.139872 + 0.192517i
\(359\) 5.55436 + 17.0946i 0.293148 + 0.902217i 0.983837 + 0.179065i \(0.0573073\pi\)
−0.690689 + 0.723152i \(0.742693\pi\)
\(360\) 0 0
\(361\) −11.4810 8.34140i −0.604261 0.439021i
\(362\) −0.296178 −0.0155668
\(363\) 0 0
\(364\) −6.50714 −0.341067
\(365\) 4.17981 + 3.03681i 0.218781 + 0.158954i
\(366\) 0 0
\(367\) −8.48814 26.1238i −0.443077 1.36365i −0.884579 0.466391i \(-0.845554\pi\)
0.441501 0.897261i \(-0.354446\pi\)
\(368\) −5.15233 7.09157i −0.268584 0.369674i
\(369\) 0 0
\(370\) 0.262500 0.0852915i 0.0136467 0.00443409i
\(371\) 17.7010 54.4781i 0.918991 2.82836i
\(372\) 0 0
\(373\) 16.9714i 0.878744i 0.898305 + 0.439372i \(0.144799\pi\)
−0.898305 + 0.439372i \(0.855201\pi\)
\(374\) −0.0913281 + 0.504202i −0.00472246 + 0.0260717i
\(375\) 0 0
\(376\) 9.86246 13.5745i 0.508617 0.700052i
\(377\) 6.17089 + 2.00505i 0.317817 + 0.103265i
\(378\) 0 0
\(379\) 12.4374 9.03634i 0.638869 0.464165i −0.220593 0.975366i \(-0.570799\pi\)
0.859461 + 0.511201i \(0.170799\pi\)
\(380\) 3.64211 2.64615i 0.186836 0.135744i
\(381\) 0 0
\(382\) 0.0241349 + 0.00784191i 0.00123485 + 0.000401227i
\(383\) 4.87293 6.70702i 0.248995 0.342713i −0.666164 0.745805i \(-0.732065\pi\)
0.915159 + 0.403093i \(0.132065\pi\)
\(384\) 0 0
\(385\) 14.8049 14.1642i 0.754526 0.721875i
\(386\) 7.02414i 0.357519i
\(387\) 0 0
\(388\) 3.95316 12.1666i 0.200691 0.617665i
\(389\) 23.9516 7.78233i 1.21439 0.394580i 0.369355 0.929288i \(-0.379578\pi\)
0.845037 + 0.534708i \(0.179578\pi\)
\(390\) 0 0
\(391\) 0.704229 + 0.969289i 0.0356144 + 0.0490190i
\(392\) 11.4691 + 35.2984i 0.579279 + 1.78284i
\(393\) 0 0
\(394\) 10.5262 + 7.64773i 0.530302 + 0.385287i
\(395\) −2.82307 −0.142044
\(396\) 0 0
\(397\) −26.0948 −1.30966 −0.654830 0.755776i \(-0.727260\pi\)
−0.654830 + 0.755776i \(0.727260\pi\)
\(398\) −7.28772 5.29484i −0.365301 0.265406i
\(399\) 0 0
\(400\) 1.88458 + 5.80016i 0.0942292 + 0.290008i
\(401\) −2.48443 3.41953i −0.124067 0.170763i 0.742466 0.669884i \(-0.233656\pi\)
−0.866532 + 0.499121i \(0.833656\pi\)
\(402\) 0 0
\(403\) −1.39314 + 0.452658i −0.0693972 + 0.0225485i
\(404\) −2.68277 + 8.25672i −0.133473 + 0.410787i
\(405\) 0 0
\(406\) 23.5222i 1.16739i
\(407\) 1.13754 0.154470i 0.0563856 0.00765681i
\(408\) 0 0
\(409\) 14.8682 20.4643i 0.735183 1.01189i −0.263698 0.964605i \(-0.584942\pi\)
0.998881 0.0472876i \(-0.0150577\pi\)
\(410\) −3.68691 1.19795i −0.182084 0.0591625i
\(411\) 0 0
\(412\) 21.4259 15.5668i 1.05558 0.766922i
\(413\) −20.5807 + 14.9527i −1.01271 + 0.735775i
\(414\) 0 0
\(415\) 5.00743 + 1.62701i 0.245805 + 0.0798669i
\(416\) 2.76932 3.81164i 0.135777 0.186881i
\(417\) 0 0
\(418\) −4.09535 + 1.97388i −0.200310 + 0.0965454i
\(419\) 15.4907i 0.756769i −0.925649 0.378384i \(-0.876480\pi\)
0.925649 0.378384i \(-0.123520\pi\)
\(420\) 0 0
\(421\) −8.97090 + 27.6096i −0.437215 + 1.34561i 0.453585 + 0.891213i \(0.350145\pi\)
−0.890800 + 0.454396i \(0.849855\pi\)
\(422\) 10.8059 3.51104i 0.526021 0.170915i
\(423\) 0 0
\(424\) 15.6860 + 21.5899i 0.761778 + 1.04850i
\(425\) −0.257588 0.792775i −0.0124949 0.0384553i
\(426\) 0 0
\(427\) −54.5954 39.6659i −2.64206 1.91957i
\(428\) −3.67180 −0.177483
\(429\) 0 0
\(430\) −0.337602 −0.0162806
\(431\) −3.88324 2.82134i −0.187049 0.135899i 0.490320 0.871542i \(-0.336880\pi\)
−0.677369 + 0.735643i \(0.736880\pi\)
\(432\) 0 0
\(433\) 8.34981 + 25.6981i 0.401266 + 1.23497i 0.923973 + 0.382458i \(0.124922\pi\)
−0.522706 + 0.852513i \(0.675078\pi\)
\(434\) 3.12136 + 4.29618i 0.149830 + 0.206223i
\(435\) 0 0
\(436\) 13.6206 4.42561i 0.652310 0.211948i
\(437\) −3.28483 + 10.1097i −0.157135 + 0.483612i
\(438\) 0 0
\(439\) 31.8920i 1.52212i −0.648681 0.761061i \(-0.724679\pi\)
0.648681 0.761061i \(-0.275321\pi\)
\(440\) 1.28444 + 9.45877i 0.0612334 + 0.450929i
\(441\) 0 0
\(442\) −0.0758259 + 0.104365i −0.00360667 + 0.00496416i
\(443\) −10.6407 3.45736i −0.505553 0.164264i 0.0451259 0.998981i \(-0.485631\pi\)
−0.550679 + 0.834717i \(0.685631\pi\)
\(444\) 0 0
\(445\) −13.9560 + 10.1397i −0.661580 + 0.480666i
\(446\) −0.381538 + 0.277204i −0.0180664 + 0.0131260i
\(447\) 0 0
\(448\) 0.412471 + 0.134020i 0.0194874 + 0.00633184i
\(449\) 14.9366 20.5585i 0.704903 0.970216i −0.294989 0.955501i \(-0.595316\pi\)
0.999892 0.0147150i \(-0.00468409\pi\)
\(450\) 0 0
\(451\) −14.2010 7.63587i −0.668699 0.359559i
\(452\) 11.6529i 0.548107i
\(453\) 0 0
\(454\) 3.20996 9.87925i 0.150651 0.463656i
\(455\) 4.90588 1.59402i 0.229991 0.0747286i
\(456\) 0 0
\(457\) −8.77479 12.0775i −0.410467 0.564960i 0.552865 0.833271i \(-0.313535\pi\)
−0.963332 + 0.268311i \(0.913535\pi\)
\(458\) −4.24914 13.0775i −0.198549 0.611072i
\(459\) 0 0
\(460\) 8.05102 + 5.84941i 0.375381 + 0.272730i
\(461\) 13.0164 0.606233 0.303117 0.952953i \(-0.401973\pi\)
0.303117 + 0.952953i \(0.401973\pi\)
\(462\) 0 0
\(463\) −4.03263 −0.187412 −0.0937062 0.995600i \(-0.529871\pi\)
−0.0937062 + 0.995600i \(0.529871\pi\)
\(464\) −11.3681 8.25943i −0.527752 0.383434i
\(465\) 0 0
\(466\) 2.98693 + 9.19282i 0.138367 + 0.425849i
\(467\) 24.7492 + 34.0643i 1.14525 + 1.57631i 0.755170 + 0.655529i \(0.227554\pi\)
0.390085 + 0.920779i \(0.372446\pi\)
\(468\) 0 0
\(469\) 2.32540 0.755569i 0.107377 0.0348889i
\(470\) −1.83265 + 5.64030i −0.0845336 + 0.260168i
\(471\) 0 0
\(472\) 11.8516i 0.545516i
\(473\) −1.38167 0.250268i −0.0635294 0.0115073i
\(474\) 0 0
\(475\) 4.34709 5.98325i 0.199458 0.274530i
\(476\) −1.83188 0.595214i −0.0839641 0.0272816i
\(477\) 0 0
\(478\) −9.51213 + 6.91097i −0.435075 + 0.316100i
\(479\) −6.01551 + 4.37052i −0.274856 + 0.199694i −0.716670 0.697412i \(-0.754335\pi\)
0.441815 + 0.897106i \(0.354335\pi\)
\(480\) 0 0
\(481\) 0.274868 + 0.0893099i 0.0125329 + 0.00407218i
\(482\) 5.71999 7.87289i 0.260538 0.358600i
\(483\) 0 0
\(484\) −0.782577 + 17.6847i −0.0355717 + 0.803849i
\(485\) 10.1410i 0.460480i
\(486\) 0 0
\(487\) 4.00699 12.3322i 0.181574 0.558827i −0.818299 0.574793i \(-0.805082\pi\)
0.999873 + 0.0159664i \(0.00508249\pi\)
\(488\) 29.9007 9.71532i 1.35354 0.439792i
\(489\) 0 0
\(490\) −7.71075 10.6129i −0.348336 0.479443i
\(491\) 9.95139 + 30.6272i 0.449100 + 1.38219i 0.877924 + 0.478799i \(0.158928\pi\)
−0.428825 + 0.903388i \(0.641072\pi\)
\(492\) 0 0
\(493\) 1.55382 + 1.12891i 0.0699804 + 0.0508437i
\(494\) −1.14455 −0.0514957
\(495\) 0 0
\(496\) 3.17233 0.142442
\(497\) −46.3506 33.6757i −2.07911 1.51056i
\(498\) 0 0
\(499\) −7.99350 24.6015i −0.357838 1.10131i −0.954346 0.298705i \(-0.903445\pi\)
0.596507 0.802608i \(-0.296555\pi\)
\(500\) −10.1032 13.9058i −0.451827 0.621886i
\(501\) 0 0
\(502\) 8.41645 2.73467i 0.375645 0.122054i
\(503\) −0.339066 + 1.04354i −0.0151182 + 0.0465290i −0.958331 0.285660i \(-0.907787\pi\)
0.943213 + 0.332189i \(0.107787\pi\)
\(504\) 0 0
\(505\) 6.88210i 0.306250i
\(506\) −6.94728 7.26151i −0.308844 0.322813i
\(507\) 0 0
\(508\) 2.72418 3.74951i 0.120866 0.166357i
\(509\) −6.65980 2.16390i −0.295190 0.0959132i 0.157678 0.987491i \(-0.449599\pi\)
−0.452868 + 0.891577i \(0.649599\pi\)
\(510\) 0 0
\(511\) 15.8668 11.5279i 0.701904 0.509963i
\(512\) −14.8558 + 10.7934i −0.656539 + 0.477003i
\(513\) 0 0
\(514\) −8.84890 2.87518i −0.390308 0.126819i
\(515\) −12.3401 + 16.9847i −0.543771 + 0.748436i
\(516\) 0 0
\(517\) −11.6815 + 21.7250i −0.513752 + 0.955463i
\(518\) 1.04774i 0.0460351i
\(519\) 0 0
\(520\) −0.742624 + 2.28556i −0.0325662 + 0.100229i
\(521\) −7.27467 + 2.36368i −0.318709 + 0.103555i −0.464003 0.885834i \(-0.653587\pi\)
0.145294 + 0.989389i \(0.453587\pi\)
\(522\) 0 0
\(523\) −18.3418 25.2453i −0.802029 1.10390i −0.992505 0.122206i \(-0.961003\pi\)
0.190476 0.981692i \(-0.438997\pi\)
\(524\) −0.280156 0.862233i −0.0122387 0.0376668i
\(525\) 0 0
\(526\) 12.0869 + 8.78164i 0.527014 + 0.382898i
\(527\) −0.433599 −0.0188879
\(528\) 0 0
\(529\) −0.497894 −0.0216476
\(530\) −7.63097 5.54423i −0.331468 0.240826i
\(531\) 0 0
\(532\) −5.28091 16.2530i −0.228956 0.704656i
\(533\) −2.38599 3.28404i −0.103349 0.142247i
\(534\) 0 0
\(535\) 2.76825 0.899460i 0.119682 0.0388870i
\(536\) −0.352007 + 1.08337i −0.0152044 + 0.0467943i
\(537\) 0 0
\(538\) 4.92026i 0.212127i
\(539\) −23.6896 49.1506i −1.02038 2.11707i
\(540\) 0 0
\(541\) −16.7402 + 23.0409i −0.719717 + 0.990605i 0.279817 + 0.960053i \(0.409726\pi\)
−0.999533 + 0.0305514i \(0.990274\pi\)
\(542\) 2.92458 + 0.950253i 0.125621 + 0.0408169i
\(543\) 0 0
\(544\) 1.12827 0.819734i 0.0483740 0.0351458i
\(545\) −9.18477 + 6.67313i −0.393432 + 0.285845i
\(546\) 0 0
\(547\) −38.3795 12.4703i −1.64099 0.533189i −0.664229 0.747529i \(-0.731240\pi\)
−0.976759 + 0.214340i \(0.931240\pi\)
\(548\) 4.39118 6.04394i 0.187582 0.258185i
\(549\) 0 0
\(550\) 3.03575 + 6.29851i 0.129445 + 0.268569i
\(551\) 17.0403i 0.725942i
\(552\) 0 0
\(553\) −3.31157 + 10.1920i −0.140822 + 0.433407i
\(554\) 15.6997 5.10114i 0.667016 0.216727i
\(555\) 0 0
\(556\) 9.93986 + 13.6810i 0.421544 + 0.580206i
\(557\) −5.23145 16.1007i −0.221664 0.682211i −0.998613 0.0526476i \(-0.983234\pi\)
0.776950 0.629563i \(-0.216766\pi\)
\(558\) 0 0
\(559\) −0.285994 0.207787i −0.0120963 0.00878845i
\(560\) −11.1712 −0.472070
\(561\) 0 0
\(562\) 9.93484 0.419076
\(563\) −18.8334 13.6833i −0.793734 0.576682i 0.115335 0.993327i \(-0.463206\pi\)
−0.909069 + 0.416645i \(0.863206\pi\)
\(564\) 0 0
\(565\) 2.85454 + 8.78539i 0.120092 + 0.369604i
\(566\) 4.04544 + 5.56807i 0.170042 + 0.234043i
\(567\) 0 0
\(568\) 25.3852 8.24815i 1.06514 0.346085i
\(569\) −7.03113 + 21.6396i −0.294760 + 0.907179i 0.688542 + 0.725197i \(0.258251\pi\)
−0.983302 + 0.181982i \(0.941749\pi\)
\(570\) 0 0
\(571\) 28.8962i 1.20927i 0.796503 + 0.604634i \(0.206681\pi\)
−0.796503 + 0.604634i \(0.793319\pi\)
\(572\) −2.11057 + 3.92518i −0.0882473 + 0.164120i
\(573\) 0 0
\(574\) −8.64980 + 11.9054i −0.361036 + 0.496923i
\(575\) 15.5483 + 5.05196i 0.648410 + 0.210681i
\(576\) 0 0
\(577\) 25.9942 18.8859i 1.08215 0.786229i 0.104094 0.994567i \(-0.466806\pi\)
0.978057 + 0.208339i \(0.0668056\pi\)
\(578\) 8.56605 6.22360i 0.356301 0.258868i
\(579\) 0 0
\(580\) 15.1721 + 4.92972i 0.629988 + 0.204695i
\(581\) 11.7479 16.1695i 0.487383 0.670825i
\(582\) 0 0
\(583\) −27.1206 28.3472i −1.12322 1.17402i
\(584\) 9.13707i 0.378095i
\(585\) 0 0
\(586\) −2.73676 + 8.42287i −0.113054 + 0.347945i
\(587\) −3.52838 + 1.14644i −0.145632 + 0.0473187i −0.380926 0.924606i \(-0.624395\pi\)
0.235294 + 0.971924i \(0.424395\pi\)
\(588\) 0 0
\(589\) −2.26122 3.11230i −0.0931719 0.128240i
\(590\) 1.29446 + 3.98395i 0.0532923 + 0.164017i
\(591\) 0 0
\(592\) −0.506366 0.367897i −0.0208115 0.0151205i
\(593\) 38.2706 1.57159 0.785793 0.618490i \(-0.212255\pi\)
0.785793 + 0.618490i \(0.212255\pi\)
\(594\) 0 0
\(595\) 1.52690 0.0625968
\(596\) 19.8215 + 14.4011i 0.811919 + 0.589894i
\(597\) 0 0
\(598\) −0.781835 2.40624i −0.0319716 0.0983985i
\(599\) −7.34752 10.1130i −0.300212 0.413206i 0.632086 0.774898i \(-0.282199\pi\)
−0.932297 + 0.361692i \(0.882199\pi\)
\(600\) 0 0
\(601\) 21.7428 7.06468i 0.886909 0.288174i 0.170086 0.985429i \(-0.445596\pi\)
0.716823 + 0.697255i \(0.245596\pi\)
\(602\) −0.396022 + 1.21883i −0.0161406 + 0.0496758i
\(603\) 0 0
\(604\) 12.2970i 0.500356i
\(605\) −3.74211 13.5246i −0.152138 0.549852i
\(606\) 0 0
\(607\) 17.8663 24.5908i 0.725171 0.998112i −0.274166 0.961682i \(-0.588402\pi\)
0.999336 0.0364291i \(-0.0115983\pi\)
\(608\) 11.7678 + 3.82360i 0.477248 + 0.155067i
\(609\) 0 0
\(610\) −8.99005 + 6.53165i −0.363997 + 0.264459i
\(611\) −5.02398 + 3.65013i −0.203248 + 0.147669i
\(612\) 0 0
\(613\) 1.41405 + 0.459451i 0.0571128 + 0.0185571i 0.337434 0.941349i \(-0.390441\pi\)
−0.280321 + 0.959906i \(0.590441\pi\)
\(614\) 4.23955 5.83524i 0.171094 0.235491i
\(615\) 0 0
\(616\) 35.6552 + 6.45837i 1.43659 + 0.260215i
\(617\) 33.6261i 1.35373i 0.736105 + 0.676867i \(0.236663\pi\)
−0.736105 + 0.676867i \(0.763337\pi\)
\(618\) 0 0
\(619\) 0.873090 2.68710i 0.0350925 0.108004i −0.931976 0.362520i \(-0.881916\pi\)
0.967068 + 0.254517i \(0.0819164\pi\)
\(620\) −3.42525 + 1.11293i −0.137561 + 0.0446964i
\(621\) 0 0
\(622\) −10.0534 13.8373i −0.403103 0.554824i
\(623\) 20.2357 + 62.2791i 0.810726 + 2.49516i
\(624\) 0 0
\(625\) −2.61899 1.90281i −0.104760 0.0761123i
\(626\) 5.19420 0.207602
\(627\) 0 0
\(628\) 6.96826 0.278064
\(629\) 0.0692110 + 0.0502848i 0.00275962 + 0.00200498i
\(630\) 0 0
\(631\) 2.32895 + 7.16777i 0.0927140 + 0.285344i 0.986651 0.162848i \(-0.0520680\pi\)
−0.893937 + 0.448192i \(0.852068\pi\)
\(632\) −2.93459 4.03912i −0.116732 0.160667i
\(633\) 0 0
\(634\) 9.03268 2.93490i 0.358734 0.116560i
\(635\) −1.13532 + 3.49416i −0.0450538 + 0.138661i
\(636\) 0 0
\(637\) 13.7364i 0.544255i
\(638\) −14.1889 7.62935i −0.561743 0.302049i
\(639\) 0 0
\(640\) 8.50394 11.7047i 0.336148 0.462668i
\(641\) 18.3222 + 5.95325i 0.723685 + 0.235139i 0.647620 0.761963i \(-0.275764\pi\)
0.0760647 + 0.997103i \(0.475764\pi\)
\(642\) 0 0
\(643\) 15.1868 11.0339i 0.598909 0.435133i −0.246583 0.969122i \(-0.579308\pi\)
0.845491 + 0.533989i \(0.179308\pi\)
\(644\) 30.5620 22.2046i 1.20431 0.874984i
\(645\) 0 0
\(646\) −0.322212 0.104693i −0.0126772 0.00411909i
\(647\) −1.43599 + 1.97647i −0.0564545 + 0.0777030i −0.836311 0.548256i \(-0.815292\pi\)
0.779856 + 0.625959i \(0.215292\pi\)
\(648\) 0 0
\(649\) 2.34439 + 17.2643i 0.0920254 + 0.677685i
\(650\) 1.76028i 0.0690437i
\(651\) 0 0
\(652\) −3.54368 + 10.9063i −0.138781 + 0.427125i
\(653\) 18.9913 6.17063i 0.743185 0.241476i 0.0871389 0.996196i \(-0.472228\pi\)
0.656046 + 0.754721i \(0.272228\pi\)
\(654\) 0 0
\(655\) 0.422432 + 0.581427i 0.0165058 + 0.0227182i
\(656\) 2.71658 + 8.36077i 0.106065 + 0.326433i
\(657\) 0 0
\(658\) 18.2131 + 13.2326i 0.710022 + 0.515861i
\(659\) 35.6839 1.39005 0.695024 0.718986i \(-0.255394\pi\)
0.695024 + 0.718986i \(0.255394\pi\)
\(660\) 0 0
\(661\) −8.91749 −0.346850 −0.173425 0.984847i \(-0.555483\pi\)
−0.173425 + 0.984847i \(0.555483\pi\)
\(662\) −7.28941 5.29607i −0.283311 0.205838i
\(663\) 0 0
\(664\) 2.87739 + 8.85570i 0.111664 + 0.343668i
\(665\) 7.96278 + 10.9598i 0.308783 + 0.425004i
\(666\) 0 0
\(667\) −35.8246 + 11.6401i −1.38714 + 0.450708i
\(668\) −4.06691 + 12.5167i −0.157353 + 0.484284i
\(669\) 0 0
\(670\) 0.402623i 0.0155547i
\(671\) −41.6347 + 20.0671i −1.60729 + 0.774680i
\(672\) 0 0
\(673\) −6.42648 + 8.84529i −0.247723 + 0.340961i −0.914712 0.404106i \(-0.867583\pi\)
0.666989 + 0.745067i \(0.267583\pi\)
\(674\) −4.60308 1.49563i −0.177304 0.0576096i
\(675\) 0 0
\(676\) 16.0174 11.6373i 0.616052 0.447588i
\(677\) −19.2277 + 13.9698i −0.738981 + 0.536901i −0.892392 0.451261i \(-0.850974\pi\)
0.153411 + 0.988163i \(0.450974\pi\)
\(678\) 0 0
\(679\) 36.6117 + 11.8958i 1.40503 + 0.456521i
\(680\) −0.418125 + 0.575499i −0.0160343 + 0.0220694i
\(681\) 0 0
\(682\) 3.60390 0.489388i 0.138001 0.0187396i
\(683\) 24.2759i 0.928892i 0.885602 + 0.464446i \(0.153746\pi\)
−0.885602 + 0.464446i \(0.846254\pi\)
\(684\) 0 0
\(685\) −1.83006 + 5.63234i −0.0699229 + 0.215201i
\(686\) −27.2082 + 8.84048i −1.03881 + 0.337531i
\(687\) 0 0
\(688\) 0.449995 + 0.619366i 0.0171559 + 0.0236131i
\(689\) −3.05210 9.39340i −0.116276 0.357860i
\(690\) 0 0
\(691\) 26.3977 + 19.1791i 1.00422 + 0.729606i 0.962988 0.269544i \(-0.0868728\pi\)
0.0412285 + 0.999150i \(0.486873\pi\)
\(692\) −10.8872 −0.413868
\(693\) 0 0
\(694\) 5.41398 0.205512
\(695\) −10.8452 7.87953i −0.411383 0.298887i
\(696\) 0 0
\(697\) −0.371307 1.14277i −0.0140643 0.0432853i
\(698\) −6.15932 8.47757i −0.233134 0.320881i
\(699\) 0 0
\(700\) −24.9965 + 8.12185i −0.944778 + 0.306977i
\(701\) 11.0658 34.0571i 0.417951 1.28632i −0.491634 0.870802i \(-0.663600\pi\)
0.909585 0.415518i \(-0.136400\pi\)
\(702\) 0 0
\(703\) 0.759020i 0.0286270i
\(704\) 0.214625 0.205338i 0.00808900 0.00773897i
\(705\) 0 0
\(706\) 4.30129 5.92021i 0.161881 0.222810i
\(707\) −24.8461 8.07299i −0.934434 0.303616i
\(708\) 0 0
\(709\) −2.97546 + 2.16180i −0.111746 + 0.0811882i −0.642255 0.766491i \(-0.722001\pi\)
0.530509 + 0.847679i \(0.322001\pi\)
\(710\) −7.63240 + 5.54527i −0.286439 + 0.208110i
\(711\) 0 0
\(712\) −29.0147 9.42746i −1.08737 0.353309i
\(713\) 4.99851 6.87986i 0.187196 0.257653i
\(714\) 0 0
\(715\) 0.629674 3.47629i 0.0235485 0.130006i
\(716\) 11.5916i 0.433200i
\(717\) 0 0
\(718\) 3.47193 10.6855i 0.129571 0.398780i
\(719\) 12.2052 3.96571i 0.455177 0.147896i −0.0724502 0.997372i \(-0.523082\pi\)
0.527627 + 0.849476i \(0.323082\pi\)
\(720\) 0 0
\(721\) 46.8436 + 64.4747i 1.74455 + 2.40116i
\(722\) 2.74120 + 8.43653i 0.102017 + 0.313975i
\(723\) 0 0
\(724\) −0.616883 0.448192i −0.0229263 0.0166569i
\(725\) 26.2074 0.973318
\(726\) 0 0
\(727\) −41.9125 −1.55445 −0.777224 0.629224i \(-0.783373\pi\)
−0.777224 + 0.629224i \(0.783373\pi\)
\(728\) 7.38033 + 5.36212i 0.273533 + 0.198733i
\(729\) 0 0
\(730\) −0.997974 3.07145i −0.0369367 0.113679i
\(731\) −0.0615062 0.0846560i −0.00227489 0.00313111i
\(732\) 0 0
\(733\) −24.7362 + 8.03729i −0.913653 + 0.296864i −0.727861 0.685725i \(-0.759485\pi\)
−0.185793 + 0.982589i \(0.559485\pi\)
\(734\) −5.30579 + 16.3295i −0.195840 + 0.602734i
\(735\) 0 0
\(736\) 27.3519i 1.00820i
\(737\) 0.298468 1.64777i 0.0109942 0.0606966i
\(738\) 0 0
\(739\) −17.3756 + 23.9154i −0.639171 + 0.879744i −0.998571 0.0534398i \(-0.982981\pi\)
0.359400 + 0.933184i \(0.382981\pi\)
\(740\) 0.675805 + 0.219582i 0.0248431 + 0.00807201i
\(741\) 0 0
\(742\) −28.9675 + 21.0461i −1.06343 + 0.772627i
\(743\) 12.0744 8.77259i 0.442968 0.321835i −0.343845 0.939026i \(-0.611730\pi\)
0.786813 + 0.617191i \(0.211730\pi\)
\(744\) 0 0
\(745\) −18.4716 6.00179i −0.676747 0.219888i
\(746\) 6.23552 8.58246i 0.228299 0.314226i
\(747\) 0 0
\(748\) −0.953203 + 0.911955i −0.0348525 + 0.0333444i
\(749\) 11.0492i 0.403729i
\(750\) 0 0
\(751\) −5.59944 + 17.2333i −0.204327 + 0.628853i 0.795414 + 0.606067i \(0.207254\pi\)
−0.999740 + 0.0227859i \(0.992746\pi\)
\(752\) 12.7905 4.15587i 0.466420 0.151549i
\(753\) 0 0
\(754\) −2.38395 3.28123i −0.0868185 0.119495i
\(755\) 3.01231 + 9.27095i 0.109629 + 0.337404i
\(756\) 0 0
\(757\) 5.28836 + 3.84222i 0.192209 + 0.139648i 0.679728 0.733465i \(-0.262098\pi\)
−0.487519 + 0.873112i \(0.662098\pi\)
\(758\) −9.60973 −0.349041
\(759\) 0 0
\(760\) −6.31136 −0.228937
\(761\) 26.3742 + 19.1620i 0.956064 + 0.694621i 0.952233 0.305372i \(-0.0987806\pi\)
0.00383069 + 0.999993i \(0.498781\pi\)
\(762\) 0 0
\(763\) 13.3175 + 40.9872i 0.482127 + 1.48384i
\(764\) 0.0384017 + 0.0528554i 0.00138932 + 0.00191224i
\(765\) 0 0
\(766\) −4.92851 + 1.60137i −0.178074 + 0.0578598i
\(767\) −1.35545 + 4.17165i −0.0489426 + 0.150630i
\(768\) 0 0
\(769\) 40.3044i 1.45341i 0.686948 + 0.726707i \(0.258950\pi\)
−0.686948 + 0.726707i \(0.741050\pi\)
\(770\) −12.6910 + 1.72336i −0.457352 + 0.0621055i
\(771\) 0 0
\(772\) 10.6293 14.6299i 0.382556 0.526543i
\(773\) −9.02009 2.93080i −0.324430 0.105414i 0.142274 0.989827i \(-0.454559\pi\)
−0.466704 + 0.884414i \(0.654559\pi\)
\(774\) 0 0
\(775\) −4.78661 + 3.47767i −0.171940 + 0.124922i
\(776\) −14.5093 + 10.5416i −0.520855 + 0.378423i
\(777\) 0 0
\(778\) −14.9717 4.86460i −0.536761 0.174404i
\(779\) 6.26621 8.62470i 0.224510 0.309012i
\(780\) 0 0
\(781\) −35.3472 + 17.0366i −1.26482 + 0.609618i
\(782\) 0.748915i 0.0267812i
\(783\) 0 0
\(784\) −9.19272 + 28.2923i −0.328311 + 1.01044i
\(785\) −5.25352 + 1.70697i −0.187506 + 0.0609245i
\(786\) 0 0
\(787\) −24.2354 33.3572i −0.863899 1.18905i −0.980626 0.195891i \(-0.937240\pi\)
0.116727 0.993164i \(-0.462760\pi\)
\(788\) 10.3511 + 31.8576i 0.368744 + 1.13488i
\(789\) 0 0
\(790\) 1.42763 + 1.03723i 0.0507928 + 0.0369032i
\(791\) 35.0659 1.24680
\(792\) 0 0
\(793\) −11.6359 −0.413202
\(794\) 13.1962 + 9.58760i 0.468316 + 0.340251i
\(795\) 0 0
\(796\) −7.16653 22.0563i −0.254011 0.781765i
\(797\) −7.50605 10.3312i −0.265878 0.365950i 0.655115 0.755529i \(-0.272620\pi\)
−0.920993 + 0.389580i \(0.872620\pi\)
\(798\) 0 0
\(799\) −1.74822 + 0.568032i −0.0618477 + 0.0200955i
\(800\) 5.88056 18.0985i 0.207909 0.639878i
\(801\) 0 0
\(802\) 2.64208i 0.0932950i
\(803\) −1.80742 13.3100i −0.0637824 0.469700i
\(804\) 0 0
\(805\) −17.6020 + 24.2271i −0.620390 + 0.853893i
\(806\) 0.870827 + 0.282949i 0.0306736 + 0.00996644i
\(807\) 0 0
\(808\) 9.84660 7.15398i 0.346402 0.251676i
\(809\) −33.5935 + 24.4071i −1.18108 + 0.858107i −0.992293 0.123910i \(-0.960457\pi\)
−0.188790 + 0.982017i \(0.560457\pi\)
\(810\) 0 0
\(811\) 5.10222 + 1.65781i 0.179163 + 0.0582137i 0.397225 0.917721i \(-0.369973\pi\)
−0.218061 + 0.975935i \(0.569973\pi\)
\(812\) 35.5950 48.9924i 1.24914 1.71929i
\(813\) 0 0
\(814\) −0.632009 0.339831i −0.0221519 0.0119111i
\(815\) 9.09060i 0.318430i
\(816\) 0 0
\(817\) 0.286892 0.882962i 0.0100371 0.0308909i
\(818\) −15.0377 + 4.88605i −0.525782 + 0.170837i
\(819\) 0 0
\(820\) −5.86634 8.07432i −0.204861 0.281968i
\(821\) −9.85555 30.3323i −0.343961 1.05860i −0.962138 0.272564i \(-0.912128\pi\)
0.618177 0.786039i \(-0.287872\pi\)
\(822\) 0 0
\(823\) 21.1304 + 15.3521i 0.736560 + 0.535142i 0.891632 0.452761i \(-0.149561\pi\)
−0.155072 + 0.987903i \(0.549561\pi\)
\(824\) −37.1286 −1.29344
\(825\) 0 0
\(826\) 15.9015 0.553285
\(827\) −31.8832 23.1645i −1.10869 0.805508i −0.126231 0.992001i \(-0.540288\pi\)
−0.982456 + 0.186493i \(0.940288\pi\)
\(828\) 0 0
\(829\) −10.5153 32.3627i −0.365211 1.12400i −0.949849 0.312710i \(-0.898763\pi\)
0.584638 0.811294i \(-0.301237\pi\)
\(830\) −1.93448 2.66259i −0.0671469 0.0924197i
\(831\) 0 0
\(832\) 0.0711203 0.0231084i 0.00246565 0.000801139i
\(833\) 1.25648 3.86704i 0.0435343 0.133985i
\(834\) 0 0
\(835\) 10.4328i 0.361043i
\(836\) −11.5168 2.08609i −0.398317 0.0721488i
\(837\) 0 0
\(838\) −5.69149 + 7.83367i −0.196609 + 0.270610i
\(839\) −54.2126 17.6148i −1.87163 0.608129i −0.990917 0.134474i \(-0.957065\pi\)
−0.880711 0.473655i \(-0.842935\pi\)
\(840\) 0 0
\(841\) −25.3902 + 18.4471i −0.875524 + 0.636106i
\(842\) 14.6808 10.6662i 0.505933 0.367582i
\(843\) 0 0
\(844\) 27.8196 + 9.03915i 0.957592 + 0.311140i
\(845\) −9.22511 + 12.6973i −0.317353 + 0.436800i
\(846\) 0 0
\(847\) −53.2167 2.35493i −1.82855 0.0809163i
\(848\) 21.3898i 0.734528i
\(849\) 0 0
\(850\) −0.161014 + 0.495550i −0.00552273 + 0.0169972i
\(851\) −1.59572 + 0.518482i −0.0547007 + 0.0177733i
\(852\) 0 0
\(853\) 19.0102 + 26.1653i 0.650898 + 0.895884i 0.999138 0.0415213i \(-0.0132204\pi\)
−0.348240 + 0.937406i \(0.613220\pi\)
\(854\) 13.0352 + 40.1182i 0.446056 + 1.37282i
\(855\) 0 0
\(856\) 4.16452 + 3.02570i 0.142340 + 0.103416i
\(857\) 33.6573 1.14971 0.574855 0.818255i \(-0.305058\pi\)
0.574855 + 0.818255i \(0.305058\pi\)
\(858\) 0 0
\(859\) −38.0426 −1.29800 −0.648998 0.760790i \(-0.724812\pi\)
−0.648998 + 0.760790i \(0.724812\pi\)
\(860\) −0.703162 0.510877i −0.0239776 0.0174208i
\(861\) 0 0
\(862\) 0.927162 + 2.85351i 0.0315793 + 0.0971910i
\(863\) 9.20216 + 12.6657i 0.313245 + 0.431145i 0.936390 0.350962i \(-0.114145\pi\)
−0.623145 + 0.782107i \(0.714145\pi\)
\(864\) 0 0
\(865\) 8.20807 2.66696i 0.279083 0.0906795i
\(866\) 5.21932 16.0634i 0.177360 0.545857i
\(867\) 0 0
\(868\) 13.6715i 0.464042i
\(869\) 5.07382 + 5.30331i 0.172117 + 0.179902i
\(870\) 0 0
\(871\) 0.247806 0.341075i 0.00839657 0.0115569i
\(872\) −19.0952 6.20441i −0.646646 0.210108i
\(873\) 0 0
\(874\) 5.37559 3.90559i 0.181832 0.132109i
\(875\) 41.8453 30.4024i 1.41463 1.02779i
\(876\) 0 0
\(877\) 14.0197 + 4.55529i 0.473413 + 0.153821i 0.536000 0.844218i \(-0.319935\pi\)
−0.0625864 + 0.998040i \(0.519935\pi\)
\(878\) −11.7176 + 16.1279i −0.395449 + 0.544289i
\(879\) 0 0
\(880\) −3.62334 + 6.73859i −0.122143 + 0.227158i
\(881\) 29.1468i 0.981981i 0.871165 + 0.490990i \(0.163365\pi\)
−0.871165 + 0.490990i \(0.836635\pi\)
\(882\) 0 0
\(883\) 0.109578 0.337245i 0.00368758 0.0113492i −0.949196 0.314686i \(-0.898101\pi\)
0.952883 + 0.303337i \(0.0981008\pi\)
\(884\) −0.315862 + 0.102630i −0.0106236 + 0.00345181i
\(885\) 0 0
\(886\) 4.11072 + 5.65792i 0.138102 + 0.190082i
\(887\) 0.796860 + 2.45248i 0.0267560 + 0.0823464i 0.963543 0.267554i \(-0.0862154\pi\)
−0.936787 + 0.349900i \(0.886215\pi\)
\(888\) 0 0
\(889\) 11.2830 + 8.19759i 0.378420 + 0.274938i
\(890\) 10.7831 0.361449
\(891\) 0 0
\(892\) −1.21415 −0.0406528
\(893\) −13.1942 9.58616i −0.441528 0.320789i
\(894\) 0 0
\(895\) −2.83953 8.73919i −0.0949151 0.292119i
\(896\) −32.2813 44.4314i −1.07844 1.48435i
\(897\) 0 0
\(898\) −15.1070 + 4.90855i −0.504126 + 0.163801i
\(899\) 4.21260 12.9651i 0.140498 0.432409i
\(900\) 0 0
\(901\) 2.92359i 0.0973989i
\(902\) 4.37596 + 9.07913i 0.145703 + 0.302302i
\(903\) 0 0
\(904\) −9.60242 + 13.2166i −0.319372 + 0.439578i
\(905\) 0.574872 + 0.186787i 0.0191094 + 0.00620902i
\(906\) 0 0
\(907\) −15.1705 + 11.0220i −0.503728 + 0.365980i −0.810439 0.585823i \(-0.800771\pi\)
0.306711 + 0.951803i \(0.400771\pi\)
\(908\) 21.6355 15.7191i 0.718000 0.521657i
\(909\) 0 0
\(910\) −3.06658 0.996391i −0.101656 0.0330301i
\(911\) −7.20004 + 9.91000i −0.238548 + 0.328333i −0.911459 0.411390i \(-0.865043\pi\)
0.672912 + 0.739723i \(0.265043\pi\)
\(912\) 0 0
\(913\) −5.94327 12.3310i −0.196694 0.408095i
\(914\) 9.33158i 0.308661i
\(915\) 0 0
\(916\) 10.9394 33.6680i 0.361448 1.11242i
\(917\) 2.59463 0.843046i 0.0856822 0.0278398i
\(918\) 0 0
\(919\) −14.4656 19.9102i −0.477175 0.656775i 0.500784 0.865572i \(-0.333045\pi\)
−0.977959 + 0.208797i \(0.933045\pi\)
\(920\) −4.31125 13.2687i −0.142138 0.437455i
\(921\) 0 0
\(922\) −6.58241 4.78240i −0.216780 0.157500i
\(923\) −9.87866 −0.325160
\(924\) 0 0
\(925\) 1.16735 0.0383821
\(926\) 2.03931 + 1.48165i 0.0670160 + 0.0486899i
\(927\) 0 0
\(928\) 13.5493 + 41.7004i 0.444777 + 1.36888i
\(929\) 11.3549 + 15.6287i 0.372543 + 0.512761i 0.953590 0.301109i \(-0.0973568\pi\)
−0.581047 + 0.813870i \(0.697357\pi\)
\(930\) 0 0
\(931\) 34.3095 11.1478i 1.12445 0.365355i
\(932\) −7.68983 + 23.6669i −0.251889 + 0.775234i
\(933\) 0 0
\(934\) 26.3196i 0.861203i
\(935\) 0.495244 0.921043i 0.0161962 0.0301213i
\(936\) 0 0
\(937\) 29.8196 41.0432i 0.974165 1.34082i 0.0342499 0.999413i \(-0.489096\pi\)
0.939915 0.341409i \(-0.110904\pi\)
\(938\) −1.45357 0.472293i −0.0474607 0.0154209i
\(939\) 0 0
\(940\) −12.3522 + 8.97443i −0.402886 + 0.292714i
\(941\) −24.4499 + 17.7639i −0.797043 + 0.579085i −0.910045 0.414509i \(-0.863953\pi\)
0.113002 + 0.993595i \(0.463953\pi\)
\(942\) 0 0
\(943\) 22.4125 + 7.28227i 0.729852 + 0.237143i
\(944\) 5.58355 7.68510i 0.181729 0.250129i
\(945\) 0 0
\(946\) 0.606763 + 0.634207i 0.0197276 + 0.0206199i
\(947\) 11.3912i 0.370165i −0.982723 0.185083i \(-0.940745\pi\)
0.982723 0.185083i \(-0.0592553\pi\)
\(948\) 0 0
\(949\) 1.04499 3.21616i 0.0339219 0.104401i
\(950\) −4.39666 + 1.42856i −0.142647 + 0.0463487i
\(951\) 0 0
\(952\) 1.58722 + 2.18462i 0.0514421 + 0.0708039i
\(953\) −14.8543 45.7168i −0.481178 1.48091i −0.837441 0.546527i \(-0.815949\pi\)
0.356263 0.934386i \(-0.384051\pi\)
\(954\) 0 0
\(955\) −0.0418995 0.0304418i −0.00135584 0.000985073i
\(956\) −30.2700 −0.979002
\(957\) 0 0
\(958\) 4.64785 0.150165
\(959\) 18.1874 + 13.2139i 0.587303 + 0.426700i
\(960\) 0 0
\(961\) −8.62849 26.5558i −0.278338 0.856638i
\(962\) −0.106188 0.146155i −0.00342362 0.00471221i
\(963\) 0 0
\(964\) 23.8273 7.74196i 0.767426 0.249352i
\(965\) −4.42983 + 13.6336i −0.142601 + 0.438882i
\(966\) 0 0
\(967\) 13.2274i 0.425363i −0.977122 0.212681i \(-0.931780\pi\)
0.977122 0.212681i \(-0.0682197\pi\)
\(968\) 15.4604 19.4129i 0.496916 0.623954i
\(969\) 0 0
\(970\) 3.72596 5.12834i 0.119633 0.164661i
\(971\) 25.6742 + 8.34206i 0.823925 + 0.267710i 0.690484 0.723347i \(-0.257397\pi\)
0.133441 + 0.991057i \(0.457397\pi\)
\(972\) 0 0
\(973\) −41.1690 + 29.9110i −1.31982 + 0.958903i
\(974\) −6.55738 + 4.76422i −0.210112 + 0.152655i
\(975\) 0 0
\(976\) 23.9660 + 7.78701i 0.767132 + 0.249256i
\(977\) 23.2218 31.9621i 0.742931 1.02256i −0.255513 0.966806i \(-0.582244\pi\)
0.998445 0.0557519i \(-0.0177556\pi\)
\(978\) 0 0
\(979\) 44.1308 + 7.99358i 1.41043 + 0.255476i
\(980\) 33.7730i 1.07884i
\(981\) 0 0
\(982\) 6.22044 19.1445i 0.198502 0.610927i
\(983\) 31.7553 10.3179i 1.01284 0.329091i 0.244853 0.969560i \(-0.421260\pi\)
0.767984 + 0.640469i \(0.221260\pi\)
\(984\) 0 0
\(985\) −15.6079 21.4824i −0.497309 0.684487i
\(986\) −0.370990 1.14179i −0.0118147 0.0363620i
\(987\) 0 0
\(988\) −2.38388 1.73199i −0.0758413 0.0551020i
\(989\) 2.05226 0.0652582
\(990\) 0 0
\(991\) 0.780068 0.0247797 0.0123898 0.999923i \(-0.496056\pi\)
0.0123898 + 0.999923i \(0.496056\pi\)
\(992\) −8.00826 5.81834i −0.254263 0.184733i
\(993\) 0 0
\(994\) 11.0667 + 34.0597i 0.351014 + 1.08031i
\(995\) 10.8060 + 14.8732i 0.342573 + 0.471512i
\(996\) 0 0
\(997\) −41.7246 + 13.5571i −1.32143 + 0.429359i −0.882986 0.469399i \(-0.844471\pi\)
−0.438445 + 0.898758i \(0.644471\pi\)
\(998\) −4.99660 + 15.3779i −0.158164 + 0.486780i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.k.a.161.8 80
3.2 odd 2 inner 891.2.k.a.161.13 80
9.2 odd 6 297.2.t.a.260.6 80
9.4 even 3 297.2.t.a.62.6 80
9.5 odd 6 99.2.p.a.29.5 80
9.7 even 3 99.2.p.a.95.5 yes 80
11.8 odd 10 inner 891.2.k.a.404.13 80
33.8 even 10 inner 891.2.k.a.404.8 80
99.41 even 30 99.2.p.a.74.5 yes 80
99.52 odd 30 99.2.p.a.41.5 yes 80
99.74 even 30 297.2.t.a.206.6 80
99.85 odd 30 297.2.t.a.8.6 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.29.5 80 9.5 odd 6
99.2.p.a.41.5 yes 80 99.52 odd 30
99.2.p.a.74.5 yes 80 99.41 even 30
99.2.p.a.95.5 yes 80 9.7 even 3
297.2.t.a.8.6 80 99.85 odd 30
297.2.t.a.62.6 80 9.4 even 3
297.2.t.a.206.6 80 99.74 even 30
297.2.t.a.260.6 80 9.2 odd 6
891.2.k.a.161.8 80 1.1 even 1 trivial
891.2.k.a.161.13 80 3.2 odd 2 inner
891.2.k.a.404.8 80 33.8 even 10 inner
891.2.k.a.404.13 80 11.8 odd 10 inner