Properties

Label 891.2.k.a.161.6
Level $891$
Weight $2$
Character 891.161
Analytic conductor $7.115$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(161,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.161");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.k (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(20\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 161.6
Character \(\chi\) \(=\) 891.161
Dual form 891.2.k.a.404.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.16363 - 0.845427i) q^{2} +(0.0212543 + 0.0654141i) q^{4} +(-2.09686 - 2.88608i) q^{5} +(2.05824 - 0.668764i) q^{7} +(-0.858363 + 2.64177i) q^{8} +5.13106i q^{10} +(-3.14809 + 1.04380i) q^{11} +(-1.65695 + 2.28059i) q^{13} +(-2.96042 - 0.961900i) q^{14} +(3.34353 - 2.42922i) q^{16} +(0.345974 - 0.251365i) q^{17} +(-3.47799 - 1.13007i) q^{19} +(0.144223 - 0.198506i) q^{20} +(4.54567 + 1.44689i) q^{22} +8.01262i q^{23} +(-2.38754 + 7.34810i) q^{25} +(3.85615 - 1.25294i) q^{26} +(0.0874932 + 0.120424i) q^{28} +(-2.08433 - 6.41492i) q^{29} +(0.102264 + 0.0742991i) q^{31} -0.388910 q^{32} -0.615095 q^{34} +(-6.24595 - 4.53795i) q^{35} +(1.89382 + 5.82859i) q^{37} +(3.09171 + 4.25537i) q^{38} +(9.42422 - 3.06211i) q^{40} +(0.679859 - 2.09239i) q^{41} -2.87217i q^{43} +(-0.135190 - 0.183744i) q^{44} +(6.77408 - 9.32372i) q^{46} +(3.20383 + 1.04099i) q^{47} +(-1.87400 + 1.36154i) q^{49} +(8.99050 - 6.53198i) q^{50} +(-0.184400 - 0.0599153i) q^{52} +(1.52002 - 2.09212i) q^{53} +(9.61358 + 6.89694i) q^{55} +6.01145i q^{56} +(-2.99795 + 9.22674i) q^{58} +(4.37133 - 1.42033i) q^{59} +(4.71412 + 6.48843i) q^{61} +(-0.0561830 - 0.172913i) q^{62} +(-6.23451 - 4.52964i) q^{64} +10.0564 q^{65} -5.51612 q^{67} +(0.0237962 + 0.0172890i) q^{68} +(3.43147 + 10.5610i) q^{70} +(5.13082 + 7.06197i) q^{71} +(4.81457 - 1.56435i) q^{73} +(2.72393 - 8.38341i) q^{74} -0.251529i q^{76} +(-5.78149 + 4.25372i) q^{77} +(-8.07272 + 11.1111i) q^{79} +(-14.0218 - 4.55596i) q^{80} +(-2.56007 + 1.86000i) q^{82} +(-11.7915 + 8.56700i) q^{83} +(-1.45091 - 0.471431i) q^{85} +(-2.42821 + 3.34215i) q^{86} +(-0.0552663 - 9.21250i) q^{88} +5.40631i q^{89} +(-1.88523 + 5.80213i) q^{91} +(-0.524138 + 0.170303i) q^{92} +(-2.84800 - 3.91993i) q^{94} +(4.03139 + 12.4073i) q^{95} +(-5.75596 - 4.18195i) q^{97} +3.33172 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 10 q^{4} + 10 q^{7} + 10 q^{13} - 10 q^{16} - 50 q^{19} + 22 q^{22} + 4 q^{25} - 20 q^{28} + 12 q^{31} + 20 q^{34} - 6 q^{37} - 30 q^{40} - 40 q^{46} + 2 q^{49} + 10 q^{52} - 18 q^{55} + 58 q^{58}+ \cdots - 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.16363 0.845427i −0.822811 0.597807i 0.0947056 0.995505i \(-0.469809\pi\)
−0.917516 + 0.397698i \(0.869809\pi\)
\(3\) 0 0
\(4\) 0.0212543 + 0.0654141i 0.0106272 + 0.0327071i
\(5\) −2.09686 2.88608i −0.937743 1.29069i −0.956761 0.290874i \(-0.906054\pi\)
0.0190182 0.999819i \(-0.493946\pi\)
\(6\) 0 0
\(7\) 2.05824 0.668764i 0.777943 0.252769i 0.106981 0.994261i \(-0.465881\pi\)
0.670962 + 0.741492i \(0.265881\pi\)
\(8\) −0.858363 + 2.64177i −0.303477 + 0.934007i
\(9\) 0 0
\(10\) 5.13106i 1.62259i
\(11\) −3.14809 + 1.04380i −0.949186 + 0.314717i
\(12\) 0 0
\(13\) −1.65695 + 2.28059i −0.459555 + 0.632523i −0.974416 0.224750i \(-0.927843\pi\)
0.514861 + 0.857273i \(0.327843\pi\)
\(14\) −2.96042 0.961900i −0.791207 0.257079i
\(15\) 0 0
\(16\) 3.34353 2.42922i 0.835882 0.607304i
\(17\) 0.345974 0.251365i 0.0839109 0.0609648i −0.545039 0.838411i \(-0.683485\pi\)
0.628950 + 0.777446i \(0.283485\pi\)
\(18\) 0 0
\(19\) −3.47799 1.13007i −0.797906 0.259255i −0.118439 0.992961i \(-0.537789\pi\)
−0.679467 + 0.733706i \(0.737789\pi\)
\(20\) 0.144223 0.198506i 0.0322492 0.0443872i
\(21\) 0 0
\(22\) 4.54567 + 1.44689i 0.969140 + 0.308477i
\(23\) 8.01262i 1.67075i 0.549683 + 0.835373i \(0.314749\pi\)
−0.549683 + 0.835373i \(0.685251\pi\)
\(24\) 0 0
\(25\) −2.38754 + 7.34810i −0.477509 + 1.46962i
\(26\) 3.85615 1.25294i 0.756253 0.245722i
\(27\) 0 0
\(28\) 0.0874932 + 0.120424i 0.0165347 + 0.0227580i
\(29\) −2.08433 6.41492i −0.387051 1.19122i −0.934981 0.354697i \(-0.884584\pi\)
0.547930 0.836524i \(-0.315416\pi\)
\(30\) 0 0
\(31\) 0.102264 + 0.0742991i 0.0183672 + 0.0133445i 0.596931 0.802293i \(-0.296387\pi\)
−0.578564 + 0.815637i \(0.696387\pi\)
\(32\) −0.388910 −0.0687503
\(33\) 0 0
\(34\) −0.615095 −0.105488
\(35\) −6.24595 4.53795i −1.05576 0.767053i
\(36\) 0 0
\(37\) 1.89382 + 5.82859i 0.311343 + 0.958214i 0.977234 + 0.212165i \(0.0680515\pi\)
−0.665891 + 0.746049i \(0.731949\pi\)
\(38\) 3.09171 + 4.25537i 0.501541 + 0.690312i
\(39\) 0 0
\(40\) 9.42422 3.06211i 1.49010 0.484163i
\(41\) 0.679859 2.09239i 0.106176 0.326777i −0.883829 0.467811i \(-0.845043\pi\)
0.990005 + 0.141034i \(0.0450428\pi\)
\(42\) 0 0
\(43\) 2.87217i 0.438002i −0.975725 0.219001i \(-0.929720\pi\)
0.975725 0.219001i \(-0.0702799\pi\)
\(44\) −0.135190 0.183744i −0.0203806 0.0277005i
\(45\) 0 0
\(46\) 6.77408 9.32372i 0.998784 1.37471i
\(47\) 3.20383 + 1.04099i 0.467327 + 0.151844i 0.533209 0.845984i \(-0.320986\pi\)
−0.0658817 + 0.997827i \(0.520986\pi\)
\(48\) 0 0
\(49\) −1.87400 + 1.36154i −0.267714 + 0.194505i
\(50\) 8.99050 6.53198i 1.27145 0.923761i
\(51\) 0 0
\(52\) −0.184400 0.0599153i −0.0255717 0.00830876i
\(53\) 1.52002 2.09212i 0.208790 0.287375i −0.691760 0.722128i \(-0.743164\pi\)
0.900550 + 0.434753i \(0.143164\pi\)
\(54\) 0 0
\(55\) 9.61358 + 6.89694i 1.29630 + 0.929984i
\(56\) 6.01145i 0.803314i
\(57\) 0 0
\(58\) −2.99795 + 9.22674i −0.393650 + 1.21153i
\(59\) 4.37133 1.42033i 0.569099 0.184912i −0.0103122 0.999947i \(-0.503283\pi\)
0.579411 + 0.815035i \(0.303283\pi\)
\(60\) 0 0
\(61\) 4.71412 + 6.48843i 0.603581 + 0.830759i 0.996030 0.0890153i \(-0.0283720\pi\)
−0.392449 + 0.919774i \(0.628372\pi\)
\(62\) −0.0561830 0.172913i −0.00713524 0.0219600i
\(63\) 0 0
\(64\) −6.23451 4.52964i −0.779314 0.566205i
\(65\) 10.0564 1.24734
\(66\) 0 0
\(67\) −5.51612 −0.673901 −0.336951 0.941522i \(-0.609396\pi\)
−0.336951 + 0.941522i \(0.609396\pi\)
\(68\) 0.0237962 + 0.0172890i 0.00288572 + 0.00209659i
\(69\) 0 0
\(70\) 3.43147 + 10.5610i 0.410139 + 1.26228i
\(71\) 5.13082 + 7.06197i 0.608916 + 0.838101i 0.996488 0.0837384i \(-0.0266860\pi\)
−0.387572 + 0.921840i \(0.626686\pi\)
\(72\) 0 0
\(73\) 4.81457 1.56435i 0.563503 0.183093i −0.0133940 0.999910i \(-0.504264\pi\)
0.576897 + 0.816817i \(0.304264\pi\)
\(74\) 2.72393 8.38341i 0.316651 0.974551i
\(75\) 0 0
\(76\) 0.251529i 0.0288523i
\(77\) −5.78149 + 4.25372i −0.658862 + 0.484756i
\(78\) 0 0
\(79\) −8.07272 + 11.1111i −0.908252 + 1.25010i 0.0595080 + 0.998228i \(0.481047\pi\)
−0.967760 + 0.251874i \(0.918953\pi\)
\(80\) −14.0218 4.55596i −1.56769 0.509372i
\(81\) 0 0
\(82\) −2.56007 + 1.86000i −0.282712 + 0.205402i
\(83\) −11.7915 + 8.56700i −1.29428 + 0.940350i −0.999882 0.0153328i \(-0.995119\pi\)
−0.294398 + 0.955683i \(0.595119\pi\)
\(84\) 0 0
\(85\) −1.45091 0.471431i −0.157374 0.0511338i
\(86\) −2.42821 + 3.34215i −0.261841 + 0.360393i
\(87\) 0 0
\(88\) −0.0552663 9.21250i −0.00589141 0.982056i
\(89\) 5.40631i 0.573068i 0.958070 + 0.286534i \(0.0925031\pi\)
−0.958070 + 0.286534i \(0.907497\pi\)
\(90\) 0 0
\(91\) −1.88523 + 5.80213i −0.197625 + 0.608228i
\(92\) −0.524138 + 0.170303i −0.0546452 + 0.0177553i
\(93\) 0 0
\(94\) −2.84800 3.91993i −0.293748 0.404310i
\(95\) 4.03139 + 12.4073i 0.413612 + 1.27297i
\(96\) 0 0
\(97\) −5.75596 4.18195i −0.584429 0.424613i 0.255889 0.966706i \(-0.417632\pi\)
−0.840318 + 0.542094i \(0.817632\pi\)
\(98\) 3.33172 0.336554
\(99\) 0 0
\(100\) −0.531415 −0.0531415
\(101\) 5.30898 + 3.85720i 0.528263 + 0.383805i 0.819708 0.572782i \(-0.194136\pi\)
−0.291445 + 0.956588i \(0.594136\pi\)
\(102\) 0 0
\(103\) 2.81887 + 8.67559i 0.277752 + 0.854831i 0.988478 + 0.151363i \(0.0483663\pi\)
−0.710727 + 0.703468i \(0.751634\pi\)
\(104\) −4.60254 6.33486i −0.451317 0.621184i
\(105\) 0 0
\(106\) −3.53747 + 1.14939i −0.343589 + 0.111639i
\(107\) −0.506436 + 1.55865i −0.0489590 + 0.150680i −0.972547 0.232706i \(-0.925242\pi\)
0.923588 + 0.383386i \(0.125242\pi\)
\(108\) 0 0
\(109\) 13.4796i 1.29111i −0.763714 0.645555i \(-0.776626\pi\)
0.763714 0.645555i \(-0.223374\pi\)
\(110\) −5.35579 16.1531i −0.510655 1.54013i
\(111\) 0 0
\(112\) 5.25723 7.23595i 0.496761 0.683733i
\(113\) 7.08299 + 2.30140i 0.666312 + 0.216498i 0.622593 0.782546i \(-0.286079\pi\)
0.0437190 + 0.999044i \(0.486079\pi\)
\(114\) 0 0
\(115\) 23.1250 16.8013i 2.15642 1.56673i
\(116\) 0.375325 0.272690i 0.0348481 0.0253186i
\(117\) 0 0
\(118\) −6.28740 2.04290i −0.578802 0.188064i
\(119\) 0.543994 0.748744i 0.0498679 0.0686373i
\(120\) 0 0
\(121\) 8.82097 6.57194i 0.801907 0.597449i
\(122\) 11.5356i 1.04438i
\(123\) 0 0
\(124\) −0.00268666 + 0.00826869i −0.000241269 + 0.000742550i
\(125\) 9.24960 3.00538i 0.827309 0.268809i
\(126\) 0 0
\(127\) −1.80470 2.48395i −0.160141 0.220415i 0.721405 0.692514i \(-0.243497\pi\)
−0.881546 + 0.472098i \(0.843497\pi\)
\(128\) 3.66555 + 11.2814i 0.323992 + 0.997144i
\(129\) 0 0
\(130\) −11.7019 8.50191i −1.02632 0.745667i
\(131\) −3.45938 −0.302247 −0.151124 0.988515i \(-0.548289\pi\)
−0.151124 + 0.988515i \(0.548289\pi\)
\(132\) 0 0
\(133\) −7.91431 −0.686257
\(134\) 6.41872 + 4.66347i 0.554493 + 0.402863i
\(135\) 0 0
\(136\) 0.367076 + 1.12975i 0.0314765 + 0.0968748i
\(137\) 5.93010 + 8.16208i 0.506643 + 0.697334i 0.983349 0.181729i \(-0.0581694\pi\)
−0.476706 + 0.879063i \(0.658169\pi\)
\(138\) 0 0
\(139\) −6.32229 + 2.05424i −0.536250 + 0.174238i −0.564607 0.825360i \(-0.690972\pi\)
0.0283573 + 0.999598i \(0.490972\pi\)
\(140\) 0.164092 0.505024i 0.0138683 0.0426823i
\(141\) 0 0
\(142\) 12.5552i 1.05361i
\(143\) 2.83575 8.90904i 0.237137 0.745011i
\(144\) 0 0
\(145\) −14.1434 + 19.4667i −1.17455 + 1.61662i
\(146\) −6.92492 2.25004i −0.573110 0.186215i
\(147\) 0 0
\(148\) −0.341020 + 0.247765i −0.0280317 + 0.0203662i
\(149\) −11.1430 + 8.09584i −0.912867 + 0.663237i −0.941738 0.336346i \(-0.890809\pi\)
0.0288711 + 0.999583i \(0.490809\pi\)
\(150\) 0 0
\(151\) −19.5502 6.35224i −1.59097 0.516938i −0.626118 0.779728i \(-0.715357\pi\)
−0.964853 + 0.262791i \(0.915357\pi\)
\(152\) 5.97076 8.21805i 0.484293 0.666572i
\(153\) 0 0
\(154\) 10.3237 0.0619326i 0.831909 0.00499067i
\(155\) 0.450936i 0.0362201i
\(156\) 0 0
\(157\) 2.36366 7.27460i 0.188641 0.580576i −0.811351 0.584559i \(-0.801268\pi\)
0.999992 + 0.00398241i \(0.00126764\pi\)
\(158\) 18.7873 6.10437i 1.49464 0.485638i
\(159\) 0 0
\(160\) 0.815490 + 1.12243i 0.0644701 + 0.0887355i
\(161\) 5.35855 + 16.4919i 0.422313 + 1.29975i
\(162\) 0 0
\(163\) −7.23192 5.25430i −0.566448 0.411548i 0.267365 0.963595i \(-0.413847\pi\)
−0.833813 + 0.552047i \(0.813847\pi\)
\(164\) 0.151322 0.0118163
\(165\) 0 0
\(166\) 20.9637 1.62710
\(167\) −2.12363 1.54291i −0.164331 0.119394i 0.502580 0.864531i \(-0.332384\pi\)
−0.666912 + 0.745137i \(0.732384\pi\)
\(168\) 0 0
\(169\) 1.56159 + 4.80608i 0.120122 + 0.369698i
\(170\) 1.28977 + 1.77521i 0.0989206 + 0.136153i
\(171\) 0 0
\(172\) 0.187881 0.0610461i 0.0143258 0.00465472i
\(173\) 5.15363 15.8612i 0.391823 1.20591i −0.539585 0.841931i \(-0.681419\pi\)
0.931408 0.363977i \(-0.118581\pi\)
\(174\) 0 0
\(175\) 16.7209i 1.26398i
\(176\) −7.99013 + 11.1374i −0.602279 + 0.839511i
\(177\) 0 0
\(178\) 4.57064 6.29094i 0.342584 0.471526i
\(179\) 15.2409 + 4.95208i 1.13916 + 0.370136i 0.817050 0.576567i \(-0.195608\pi\)
0.322110 + 0.946702i \(0.395608\pi\)
\(180\) 0 0
\(181\) −10.6647 + 7.74833i −0.792698 + 0.575929i −0.908763 0.417313i \(-0.862972\pi\)
0.116065 + 0.993242i \(0.462972\pi\)
\(182\) 7.09898 5.15771i 0.526211 0.382315i
\(183\) 0 0
\(184\) −21.1675 6.87774i −1.56049 0.507034i
\(185\) 12.8507 17.6874i 0.944801 1.30041i
\(186\) 0 0
\(187\) −0.826783 + 1.15245i −0.0604604 + 0.0842751i
\(188\) 0.231701i 0.0168986i
\(189\) 0 0
\(190\) 5.79845 17.8458i 0.420664 1.29467i
\(191\) −10.2865 + 3.34228i −0.744303 + 0.241839i −0.656528 0.754301i \(-0.727976\pi\)
−0.0877752 + 0.996140i \(0.527976\pi\)
\(192\) 0 0
\(193\) −5.43455 7.48001i −0.391187 0.538423i 0.567318 0.823499i \(-0.307981\pi\)
−0.958505 + 0.285076i \(0.907981\pi\)
\(194\) 3.16227 + 9.73248i 0.227038 + 0.698751i
\(195\) 0 0
\(196\) −0.128894 0.0936472i −0.00920674 0.00668909i
\(197\) −22.2431 −1.58475 −0.792377 0.610032i \(-0.791157\pi\)
−0.792377 + 0.610032i \(0.791157\pi\)
\(198\) 0 0
\(199\) −2.40521 −0.170500 −0.0852502 0.996360i \(-0.527169\pi\)
−0.0852502 + 0.996360i \(0.527169\pi\)
\(200\) −17.3626 12.6147i −1.22772 0.891993i
\(201\) 0 0
\(202\) −2.91671 8.97670i −0.205219 0.631598i
\(203\) −8.58014 11.8095i −0.602207 0.828867i
\(204\) 0 0
\(205\) −7.46437 + 2.42532i −0.521334 + 0.169392i
\(206\) 4.05445 12.4783i 0.282487 0.869406i
\(207\) 0 0
\(208\) 11.6503i 0.807805i
\(209\) 12.1286 0.0727602i 0.838953 0.00503293i
\(210\) 0 0
\(211\) −10.3971 + 14.3103i −0.715763 + 0.985163i 0.283891 + 0.958857i \(0.408375\pi\)
−0.999654 + 0.0263064i \(0.991625\pi\)
\(212\) 0.169161 + 0.0549638i 0.0116180 + 0.00377493i
\(213\) 0 0
\(214\) 1.90703 1.38554i 0.130362 0.0947134i
\(215\) −8.28931 + 6.02254i −0.565327 + 0.410734i
\(216\) 0 0
\(217\) 0.260173 + 0.0845353i 0.0176617 + 0.00573863i
\(218\) −11.3960 + 15.6852i −0.771834 + 1.06234i
\(219\) 0 0
\(220\) −0.246827 + 0.775454i −0.0166411 + 0.0522811i
\(221\) 1.20552i 0.0810923i
\(222\) 0 0
\(223\) 1.94588 5.98880i 0.130306 0.401040i −0.864525 0.502590i \(-0.832380\pi\)
0.994830 + 0.101551i \(0.0323804\pi\)
\(224\) −0.800472 + 0.260089i −0.0534838 + 0.0173779i
\(225\) 0 0
\(226\) −6.29631 8.66613i −0.418824 0.576462i
\(227\) 0.912954 + 2.80978i 0.0605949 + 0.186492i 0.976772 0.214282i \(-0.0687412\pi\)
−0.916177 + 0.400774i \(0.868741\pi\)
\(228\) 0 0
\(229\) −15.4862 11.2514i −1.02336 0.743512i −0.0563886 0.998409i \(-0.517959\pi\)
−0.966968 + 0.254897i \(0.917959\pi\)
\(230\) −41.1133 −2.71093
\(231\) 0 0
\(232\) 18.7359 1.23007
\(233\) −7.96945 5.79015i −0.522096 0.379325i 0.295297 0.955406i \(-0.404581\pi\)
−0.817393 + 0.576080i \(0.804581\pi\)
\(234\) 0 0
\(235\) −3.71361 11.4293i −0.242249 0.745566i
\(236\) 0.185820 + 0.255759i 0.0120958 + 0.0166485i
\(237\) 0 0
\(238\) −1.26602 + 0.411354i −0.0820636 + 0.0266641i
\(239\) −1.81205 + 5.57692i −0.117212 + 0.360741i −0.992402 0.123038i \(-0.960736\pi\)
0.875190 + 0.483779i \(0.160736\pi\)
\(240\) 0 0
\(241\) 6.53045i 0.420663i −0.977630 0.210332i \(-0.932546\pi\)
0.977630 0.210332i \(-0.0674543\pi\)
\(242\) −15.8204 + 0.189822i −1.01698 + 0.0122022i
\(243\) 0 0
\(244\) −0.324239 + 0.446277i −0.0207573 + 0.0285700i
\(245\) 7.85901 + 2.55355i 0.502094 + 0.163140i
\(246\) 0 0
\(247\) 8.34008 6.05943i 0.530667 0.385552i
\(248\) −0.284061 + 0.206382i −0.0180379 + 0.0131053i
\(249\) 0 0
\(250\) −13.3039 4.32271i −0.841414 0.273392i
\(251\) −14.9833 + 20.6228i −0.945739 + 1.30170i 0.00765590 + 0.999971i \(0.497563\pi\)
−0.953394 + 0.301727i \(0.902437\pi\)
\(252\) 0 0
\(253\) −8.36355 25.2245i −0.525812 1.58585i
\(254\) 4.41614i 0.277093i
\(255\) 0 0
\(256\) 0.509508 1.56810i 0.0318442 0.0980064i
\(257\) 3.53996 1.15020i 0.220816 0.0717476i −0.196519 0.980500i \(-0.562964\pi\)
0.417336 + 0.908752i \(0.362964\pi\)
\(258\) 0 0
\(259\) 7.79590 + 10.7301i 0.484414 + 0.666738i
\(260\) 0.213741 + 0.657828i 0.0132557 + 0.0407967i
\(261\) 0 0
\(262\) 4.02543 + 2.92465i 0.248692 + 0.180685i
\(263\) −21.7100 −1.33869 −0.669347 0.742950i \(-0.733426\pi\)
−0.669347 + 0.742950i \(0.733426\pi\)
\(264\) 0 0
\(265\) −9.22528 −0.566704
\(266\) 9.20932 + 6.69097i 0.564660 + 0.410249i
\(267\) 0 0
\(268\) −0.117241 0.360832i −0.00716166 0.0220413i
\(269\) −15.9480 21.9505i −0.972365 1.33835i −0.940843 0.338843i \(-0.889965\pi\)
−0.0315222 0.999503i \(-0.510035\pi\)
\(270\) 0 0
\(271\) 19.9213 6.47282i 1.21013 0.393196i 0.366654 0.930358i \(-0.380503\pi\)
0.843479 + 0.537162i \(0.180503\pi\)
\(272\) 0.546154 1.68089i 0.0331155 0.101919i
\(273\) 0 0
\(274\) 14.5111i 0.876648i
\(275\) −0.153724 25.6246i −0.00926988 1.54522i
\(276\) 0 0
\(277\) −12.5150 + 17.2254i −0.751955 + 1.03498i 0.245886 + 0.969299i \(0.420921\pi\)
−0.997841 + 0.0656780i \(0.979079\pi\)
\(278\) 9.09352 + 2.95466i 0.545393 + 0.177209i
\(279\) 0 0
\(280\) 17.3495 12.6052i 1.03683 0.753302i
\(281\) −19.2948 + 14.0185i −1.15103 + 0.836274i −0.988618 0.150449i \(-0.951928\pi\)
−0.162414 + 0.986723i \(0.551928\pi\)
\(282\) 0 0
\(283\) 31.1914 + 10.1347i 1.85414 + 0.602445i 0.996035 + 0.0889651i \(0.0283560\pi\)
0.858101 + 0.513480i \(0.171644\pi\)
\(284\) −0.352900 + 0.485725i −0.0209408 + 0.0288225i
\(285\) 0 0
\(286\) −10.8317 + 7.96941i −0.640492 + 0.471241i
\(287\) 4.76132i 0.281052i
\(288\) 0 0
\(289\) −5.19678 + 15.9940i −0.305693 + 0.940825i
\(290\) 32.9154 10.6949i 1.93286 0.628023i
\(291\) 0 0
\(292\) 0.204661 + 0.281691i 0.0119769 + 0.0164847i
\(293\) 1.35909 + 4.18286i 0.0793990 + 0.244365i 0.982875 0.184274i \(-0.0589933\pi\)
−0.903476 + 0.428639i \(0.858993\pi\)
\(294\) 0 0
\(295\) −13.2653 9.63777i −0.772333 0.561133i
\(296\) −17.0234 −0.989464
\(297\) 0 0
\(298\) 19.8107 1.14760
\(299\) −18.2735 13.2765i −1.05679 0.767800i
\(300\) 0 0
\(301\) −1.92081 5.91163i −0.110713 0.340741i
\(302\) 17.3788 + 23.9199i 1.00004 + 1.37643i
\(303\) 0 0
\(304\) −14.3740 + 4.67038i −0.824403 + 0.267865i
\(305\) 8.84127 27.2106i 0.506250 1.55808i
\(306\) 0 0
\(307\) 10.1101i 0.577013i 0.957478 + 0.288507i \(0.0931587\pi\)
−0.957478 + 0.288507i \(0.906841\pi\)
\(308\) −0.401135 0.287781i −0.0228568 0.0163978i
\(309\) 0 0
\(310\) −0.381234 + 0.524723i −0.0216526 + 0.0298023i
\(311\) −7.09992 2.30691i −0.402600 0.130813i 0.100716 0.994915i \(-0.467887\pi\)
−0.503316 + 0.864103i \(0.667887\pi\)
\(312\) 0 0
\(313\) −24.0261 + 17.4560i −1.35803 + 0.986670i −0.359467 + 0.933158i \(0.617042\pi\)
−0.998567 + 0.0535123i \(0.982958\pi\)
\(314\) −8.90057 + 6.46664i −0.502288 + 0.364934i
\(315\) 0 0
\(316\) −0.898406 0.291910i −0.0505393 0.0164212i
\(317\) 3.08126 4.24099i 0.173061 0.238198i −0.713672 0.700480i \(-0.752969\pi\)
0.886733 + 0.462282i \(0.152969\pi\)
\(318\) 0 0
\(319\) 13.2576 + 18.0191i 0.742281 + 1.00888i
\(320\) 27.4913i 1.53681i
\(321\) 0 0
\(322\) 7.70734 23.7208i 0.429513 1.32191i
\(323\) −1.48735 + 0.483270i −0.0827585 + 0.0268899i
\(324\) 0 0
\(325\) −12.8020 17.6204i −0.710128 0.977407i
\(326\) 3.97315 + 12.2281i 0.220053 + 0.677252i
\(327\) 0 0
\(328\) 4.94405 + 3.59207i 0.272990 + 0.198339i
\(329\) 7.29045 0.401935
\(330\) 0 0
\(331\) 15.2622 0.838885 0.419442 0.907782i \(-0.362226\pi\)
0.419442 + 0.907782i \(0.362226\pi\)
\(332\) −0.811022 0.589242i −0.0445106 0.0323389i
\(333\) 0 0
\(334\) 1.16670 + 3.59074i 0.0638392 + 0.196477i
\(335\) 11.5665 + 15.9199i 0.631946 + 0.869799i
\(336\) 0 0
\(337\) −6.35159 + 2.06376i −0.345993 + 0.112420i −0.476858 0.878980i \(-0.658225\pi\)
0.130865 + 0.991400i \(0.458225\pi\)
\(338\) 2.24607 6.91270i 0.122170 0.376002i
\(339\) 0 0
\(340\) 0.104930i 0.00569064i
\(341\) −0.399490 0.127158i −0.0216336 0.00688597i
\(342\) 0 0
\(343\) −11.8510 + 16.3116i −0.639896 + 0.880742i
\(344\) 7.58763 + 2.46537i 0.409097 + 0.132924i
\(345\) 0 0
\(346\) −19.4064 + 14.0996i −1.04330 + 0.757999i
\(347\) 19.0467 13.8382i 1.02248 0.742874i 0.0556889 0.998448i \(-0.482264\pi\)
0.966789 + 0.255574i \(0.0822645\pi\)
\(348\) 0 0
\(349\) 32.4487 + 10.5432i 1.73694 + 0.564367i 0.994424 0.105460i \(-0.0336314\pi\)
0.742518 + 0.669826i \(0.233631\pi\)
\(350\) 14.1363 19.4569i 0.755616 1.04002i
\(351\) 0 0
\(352\) 1.22433 0.405944i 0.0652568 0.0216369i
\(353\) 5.97261i 0.317890i −0.987287 0.158945i \(-0.949191\pi\)
0.987287 0.158945i \(-0.0508092\pi\)
\(354\) 0 0
\(355\) 9.62278 29.6159i 0.510724 1.57185i
\(356\) −0.353649 + 0.114908i −0.0187434 + 0.00609009i
\(357\) 0 0
\(358\) −13.5482 18.6475i −0.716043 0.985549i
\(359\) −1.78228 5.48528i −0.0940649 0.289502i 0.892944 0.450168i \(-0.148636\pi\)
−0.987009 + 0.160666i \(0.948636\pi\)
\(360\) 0 0
\(361\) −4.55194 3.30718i −0.239576 0.174062i
\(362\) 18.9604 0.996534
\(363\) 0 0
\(364\) −0.419610 −0.0219935
\(365\) −14.6103 10.6150i −0.764738 0.555614i
\(366\) 0 0
\(367\) 5.74255 + 17.6738i 0.299759 + 0.922563i 0.981581 + 0.191045i \(0.0611877\pi\)
−0.681822 + 0.731518i \(0.738812\pi\)
\(368\) 19.4644 + 26.7904i 1.01465 + 1.39655i
\(369\) 0 0
\(370\) −29.9069 + 9.71733i −1.55478 + 0.505180i
\(371\) 1.72943 5.32263i 0.0897874 0.276337i
\(372\) 0 0
\(373\) 0.609885i 0.0315786i 0.999875 + 0.0157893i \(0.00502610\pi\)
−0.999875 + 0.0157893i \(0.994974\pi\)
\(374\) 1.93638 0.642035i 0.100128 0.0331988i
\(375\) 0 0
\(376\) −5.50011 + 7.57025i −0.283646 + 0.390406i
\(377\) 18.0835 + 5.87567i 0.931346 + 0.302613i
\(378\) 0 0
\(379\) −3.40205 + 2.47174i −0.174752 + 0.126965i −0.671723 0.740802i \(-0.734445\pi\)
0.496971 + 0.867767i \(0.334445\pi\)
\(380\) −0.725931 + 0.527420i −0.0372395 + 0.0270561i
\(381\) 0 0
\(382\) 14.7953 + 4.80729i 0.756994 + 0.245962i
\(383\) −1.45998 + 2.00949i −0.0746014 + 0.102680i −0.844687 0.535260i \(-0.820213\pi\)
0.770086 + 0.637941i \(0.220213\pi\)
\(384\) 0 0
\(385\) 24.3995 + 7.76637i 1.24351 + 0.395811i
\(386\) 13.2985i 0.676875i
\(387\) 0 0
\(388\) 0.151219 0.465405i 0.00767700 0.0236274i
\(389\) 21.4336 6.96421i 1.08673 0.353099i 0.289747 0.957103i \(-0.406429\pi\)
0.796981 + 0.604004i \(0.206429\pi\)
\(390\) 0 0
\(391\) 2.01409 + 2.77215i 0.101857 + 0.140194i
\(392\) −1.98830 6.11936i −0.100424 0.309075i
\(393\) 0 0
\(394\) 25.8827 + 18.8049i 1.30395 + 0.947377i
\(395\) 48.9950 2.46520
\(396\) 0 0
\(397\) 5.07245 0.254579 0.127289 0.991866i \(-0.459372\pi\)
0.127289 + 0.991866i \(0.459372\pi\)
\(398\) 2.79877 + 2.03342i 0.140290 + 0.101926i
\(399\) 0 0
\(400\) 9.86731 + 30.3685i 0.493366 + 1.51842i
\(401\) 11.0985 + 15.2758i 0.554233 + 0.762836i 0.990579 0.136943i \(-0.0437276\pi\)
−0.436346 + 0.899779i \(0.643728\pi\)
\(402\) 0 0
\(403\) −0.338892 + 0.110113i −0.0168814 + 0.00548511i
\(404\) −0.139476 + 0.429264i −0.00693921 + 0.0213567i
\(405\) 0 0
\(406\) 20.9958i 1.04200i
\(407\) −12.0458 16.3722i −0.597088 0.811538i
\(408\) 0 0
\(409\) −14.6101 + 20.1091i −0.722425 + 0.994333i 0.277015 + 0.960866i \(0.410655\pi\)
−0.999440 + 0.0334670i \(0.989345\pi\)
\(410\) 10.7362 + 3.48840i 0.530223 + 0.172280i
\(411\) 0 0
\(412\) −0.507593 + 0.368788i −0.0250073 + 0.0181689i
\(413\) 8.04740 5.84678i 0.395987 0.287701i
\(414\) 0 0
\(415\) 49.4500 + 16.0673i 2.42741 + 0.788712i
\(416\) 0.644405 0.886947i 0.0315945 0.0434861i
\(417\) 0 0
\(418\) −14.1747 10.1692i −0.693308 0.497391i
\(419\) 11.3468i 0.554327i 0.960823 + 0.277164i \(0.0893944\pi\)
−0.960823 + 0.277164i \(0.910606\pi\)
\(420\) 0 0
\(421\) 9.93555 30.5785i 0.484229 1.49030i −0.348866 0.937173i \(-0.613433\pi\)
0.833095 0.553131i \(-0.186567\pi\)
\(422\) 24.1966 7.86197i 1.17787 0.382715i
\(423\) 0 0
\(424\) 4.22218 + 5.81133i 0.205047 + 0.282223i
\(425\) 1.02103 + 3.14239i 0.0495270 + 0.152428i
\(426\) 0 0
\(427\) 14.0420 + 10.2021i 0.679542 + 0.493716i
\(428\) −0.112722 −0.00544861
\(429\) 0 0
\(430\) 14.7373 0.710696
\(431\) −9.91948 7.20693i −0.477805 0.347145i 0.322670 0.946511i \(-0.395419\pi\)
−0.800475 + 0.599366i \(0.795419\pi\)
\(432\) 0 0
\(433\) 6.07293 + 18.6905i 0.291846 + 0.898210i 0.984263 + 0.176712i \(0.0565462\pi\)
−0.692416 + 0.721498i \(0.743454\pi\)
\(434\) −0.231276 0.318325i −0.0111016 0.0152801i
\(435\) 0 0
\(436\) 0.881755 0.286499i 0.0422284 0.0137208i
\(437\) 9.05481 27.8678i 0.433150 1.33310i
\(438\) 0 0
\(439\) 16.5342i 0.789137i 0.918867 + 0.394568i \(0.129106\pi\)
−0.918867 + 0.394568i \(0.870894\pi\)
\(440\) −26.4721 + 19.4768i −1.26201 + 0.928520i
\(441\) 0 0
\(442\) 1.01918 1.40278i 0.0484775 0.0667236i
\(443\) −10.3906 3.37610i −0.493671 0.160403i 0.0515924 0.998668i \(-0.483570\pi\)
−0.545263 + 0.838265i \(0.683570\pi\)
\(444\) 0 0
\(445\) 15.6030 11.3363i 0.739654 0.537390i
\(446\) −7.32737 + 5.32365i −0.346961 + 0.252082i
\(447\) 0 0
\(448\) −15.8614 5.15368i −0.749381 0.243489i
\(449\) −19.5758 + 26.9438i −0.923840 + 1.27156i 0.0383749 + 0.999263i \(0.487782\pi\)
−0.962214 + 0.272293i \(0.912218\pi\)
\(450\) 0 0
\(451\) 0.0437732 + 7.29668i 0.00206120 + 0.343587i
\(452\) 0.512242i 0.0240938i
\(453\) 0 0
\(454\) 1.31313 4.04138i 0.0616280 0.189672i
\(455\) 20.6984 6.72533i 0.970358 0.315288i
\(456\) 0 0
\(457\) −18.5963 25.5956i −0.869897 1.19731i −0.979118 0.203293i \(-0.934836\pi\)
0.109221 0.994017i \(-0.465164\pi\)
\(458\) 8.50799 + 26.1849i 0.397552 + 1.22354i
\(459\) 0 0
\(460\) 1.59055 + 1.15560i 0.0741598 + 0.0538803i
\(461\) −25.2871 −1.17774 −0.588868 0.808229i \(-0.700426\pi\)
−0.588868 + 0.808229i \(0.700426\pi\)
\(462\) 0 0
\(463\) 0.935012 0.0434537 0.0217269 0.999764i \(-0.493084\pi\)
0.0217269 + 0.999764i \(0.493084\pi\)
\(464\) −22.5523 16.3852i −1.04696 0.760663i
\(465\) 0 0
\(466\) 4.37835 + 13.4752i 0.202823 + 0.624225i
\(467\) 7.72052 + 10.6264i 0.357263 + 0.491731i 0.949384 0.314119i \(-0.101709\pi\)
−0.592120 + 0.805850i \(0.701709\pi\)
\(468\) 0 0
\(469\) −11.3535 + 3.68898i −0.524257 + 0.170341i
\(470\) −5.34138 + 16.4391i −0.246380 + 0.758278i
\(471\) 0 0
\(472\) 12.7672i 0.587659i
\(473\) 2.99797 + 9.04187i 0.137847 + 0.415746i
\(474\) 0 0
\(475\) 16.6077 22.8586i 0.762014 1.04882i
\(476\) 0.0605407 + 0.0196709i 0.00277488 + 0.000901612i
\(477\) 0 0
\(478\) 6.82344 4.95752i 0.312097 0.226752i
\(479\) 23.2464 16.8895i 1.06216 0.771701i 0.0876694 0.996150i \(-0.472058\pi\)
0.974486 + 0.224449i \(0.0720581\pi\)
\(480\) 0 0
\(481\) −16.4306 5.33863i −0.749172 0.243421i
\(482\) −5.52101 + 7.59902i −0.251475 + 0.346126i
\(483\) 0 0
\(484\) 0.617382 + 0.437334i 0.0280628 + 0.0198788i
\(485\) 25.3811i 1.15250i
\(486\) 0 0
\(487\) 2.91324 8.96603i 0.132011 0.406289i −0.863102 0.505030i \(-0.831481\pi\)
0.995113 + 0.0987406i \(0.0314814\pi\)
\(488\) −21.1874 + 6.88420i −0.959108 + 0.311633i
\(489\) 0 0
\(490\) −6.98614 9.61560i −0.315602 0.434388i
\(491\) −1.24495 3.83157i −0.0561839 0.172916i 0.919027 0.394196i \(-0.128977\pi\)
−0.975210 + 0.221279i \(0.928977\pi\)
\(492\) 0 0
\(493\) −2.33361 1.69547i −0.105100 0.0763599i
\(494\) −14.8276 −0.667124
\(495\) 0 0
\(496\) 0.522411 0.0234570
\(497\) 15.2833 + 11.1039i 0.685548 + 0.498080i
\(498\) 0 0
\(499\) −7.16604 22.0548i −0.320796 0.987308i −0.973303 0.229525i \(-0.926283\pi\)
0.652507 0.757783i \(-0.273717\pi\)
\(500\) 0.393188 + 0.541177i 0.0175839 + 0.0242022i
\(501\) 0 0
\(502\) 34.8701 11.3300i 1.55633 0.505681i
\(503\) 10.5281 32.4020i 0.469423 1.44473i −0.383911 0.923370i \(-0.625423\pi\)
0.853334 0.521365i \(-0.174577\pi\)
\(504\) 0 0
\(505\) 23.4101i 1.04174i
\(506\) −11.5934 + 36.4227i −0.515388 + 1.61919i
\(507\) 0 0
\(508\) 0.124128 0.170847i 0.00550729 0.00758013i
\(509\) −30.7232 9.98256i −1.36178 0.442469i −0.465143 0.885236i \(-0.653997\pi\)
−0.896637 + 0.442766i \(0.853997\pi\)
\(510\) 0 0
\(511\) 8.86338 6.43962i 0.392093 0.284872i
\(512\) 17.2745 12.5506i 0.763431 0.554665i
\(513\) 0 0
\(514\) −5.09161 1.65436i −0.224581 0.0729709i
\(515\) 19.1277 26.3270i 0.842865 1.16010i
\(516\) 0 0
\(517\) −11.1725 + 0.0670248i −0.491368 + 0.00294775i
\(518\) 19.0768i 0.838185i
\(519\) 0 0
\(520\) −8.63201 + 26.5666i −0.378539 + 1.16502i
\(521\) 13.9354 4.52790i 0.610523 0.198371i 0.0125949 0.999921i \(-0.495991\pi\)
0.597928 + 0.801550i \(0.295991\pi\)
\(522\) 0 0
\(523\) 8.72743 + 12.0123i 0.381624 + 0.525260i 0.956014 0.293322i \(-0.0947607\pi\)
−0.574390 + 0.818582i \(0.694761\pi\)
\(524\) −0.0735267 0.226292i −0.00321203 0.00988561i
\(525\) 0 0
\(526\) 25.2624 + 18.3542i 1.10149 + 0.800280i
\(527\) 0.0540568 0.00235475
\(528\) 0 0
\(529\) −41.2021 −1.79139
\(530\) 10.7348 + 7.79930i 0.466290 + 0.338780i
\(531\) 0 0
\(532\) −0.168213 0.517707i −0.00729297 0.0224455i
\(533\) 3.64540 + 5.01747i 0.157900 + 0.217331i
\(534\) 0 0
\(535\) 5.56031 1.80665i 0.240393 0.0781085i
\(536\) 4.73483 14.5723i 0.204514 0.629428i
\(537\) 0 0
\(538\) 39.0251i 1.68249i
\(539\) 4.47834 6.24232i 0.192896 0.268876i
\(540\) 0 0
\(541\) −9.38031 + 12.9109i −0.403291 + 0.555082i −0.961566 0.274574i \(-0.911463\pi\)
0.558275 + 0.829656i \(0.311463\pi\)
\(542\) −28.6533 9.31003i −1.23077 0.399900i
\(543\) 0 0
\(544\) −0.134553 + 0.0977583i −0.00576890 + 0.00419135i
\(545\) −38.9031 + 28.2648i −1.66643 + 1.21073i
\(546\) 0 0
\(547\) 13.3357 + 4.33304i 0.570194 + 0.185267i 0.579903 0.814686i \(-0.303091\pi\)
−0.00970898 + 0.999953i \(0.503091\pi\)
\(548\) −0.407875 + 0.561392i −0.0174236 + 0.0239815i
\(549\) 0 0
\(550\) −21.4849 + 29.9475i −0.916117 + 1.27697i
\(551\) 24.6665i 1.05083i
\(552\) 0 0
\(553\) −9.18489 + 28.2682i −0.390581 + 1.20209i
\(554\) 29.1257 9.46351i 1.23743 0.402066i
\(555\) 0 0
\(556\) −0.268752 0.369906i −0.0113976 0.0156875i
\(557\) −6.60761 20.3361i −0.279974 0.861670i −0.987860 0.155344i \(-0.950351\pi\)
0.707887 0.706326i \(-0.249649\pi\)
\(558\) 0 0
\(559\) 6.55026 + 4.75904i 0.277047 + 0.201286i
\(560\) −31.9072 −1.34832
\(561\) 0 0
\(562\) 34.3036 1.44701
\(563\) 3.89503 + 2.82991i 0.164156 + 0.119266i 0.666830 0.745209i \(-0.267651\pi\)
−0.502674 + 0.864476i \(0.667651\pi\)
\(564\) 0 0
\(565\) −8.21000 25.2678i −0.345397 1.06302i
\(566\) −27.7271 38.1631i −1.16546 1.60411i
\(567\) 0 0
\(568\) −23.0602 + 7.49271i −0.967585 + 0.314387i
\(569\) 4.87428 15.0015i 0.204340 0.628895i −0.795400 0.606085i \(-0.792739\pi\)
0.999740 0.0228093i \(-0.00726105\pi\)
\(570\) 0 0
\(571\) 9.88179i 0.413540i 0.978390 + 0.206770i \(0.0662952\pi\)
−0.978390 + 0.206770i \(0.933705\pi\)
\(572\) 0.643049 0.00385769i 0.0268872 0.000161298i
\(573\) 0 0
\(574\) −4.02534 + 5.54041i −0.168015 + 0.231252i
\(575\) −58.8776 19.1305i −2.45536 0.797796i
\(576\) 0 0
\(577\) 29.2977 21.2860i 1.21968 0.886147i 0.223604 0.974680i \(-0.428218\pi\)
0.996073 + 0.0885327i \(0.0282178\pi\)
\(578\) 19.5689 14.2176i 0.813959 0.591376i
\(579\) 0 0
\(580\) −1.57401 0.511426i −0.0653571 0.0212358i
\(581\) −18.5404 + 25.5187i −0.769185 + 1.05869i
\(582\) 0 0
\(583\) −2.60140 + 8.17278i −0.107739 + 0.338482i
\(584\) 14.0618i 0.581880i
\(585\) 0 0
\(586\) 1.95482 6.01631i 0.0807527 0.248531i
\(587\) 44.8907 14.5859i 1.85284 0.602024i 0.856539 0.516082i \(-0.172610\pi\)
0.996300 0.0859424i \(-0.0273901\pi\)
\(588\) 0 0
\(589\) −0.271710 0.373977i −0.0111956 0.0154095i
\(590\) 7.28782 + 22.4296i 0.300035 + 0.923412i
\(591\) 0 0
\(592\) 20.4910 + 14.8876i 0.842173 + 0.611875i
\(593\) −34.2927 −1.40823 −0.704117 0.710084i \(-0.748657\pi\)
−0.704117 + 0.710084i \(0.748657\pi\)
\(594\) 0 0
\(595\) −3.30161 −0.135353
\(596\) −0.766418 0.556835i −0.0313937 0.0228089i
\(597\) 0 0
\(598\) 10.0393 + 30.8979i 0.410539 + 1.26351i
\(599\) 21.6027 + 29.7335i 0.882662 + 1.21488i 0.975677 + 0.219215i \(0.0703495\pi\)
−0.0930152 + 0.995665i \(0.529651\pi\)
\(600\) 0 0
\(601\) −2.59005 + 0.841557i −0.105650 + 0.0343278i −0.361365 0.932424i \(-0.617689\pi\)
0.255715 + 0.966752i \(0.417689\pi\)
\(602\) −2.76274 + 8.50285i −0.112601 + 0.346550i
\(603\) 0 0
\(604\) 1.41387i 0.0575295i
\(605\) −37.4635 11.6776i −1.52311 0.474761i
\(606\) 0 0
\(607\) 6.93963 9.55158i 0.281671 0.387687i −0.644616 0.764507i \(-0.722983\pi\)
0.926286 + 0.376820i \(0.122983\pi\)
\(608\) 1.35263 + 0.439495i 0.0548563 + 0.0178239i
\(609\) 0 0
\(610\) −33.2926 + 24.1885i −1.34798 + 0.979362i
\(611\) −7.68266 + 5.58178i −0.310807 + 0.225815i
\(612\) 0 0
\(613\) −8.06638 2.62093i −0.325798 0.105858i 0.141551 0.989931i \(-0.454791\pi\)
−0.467349 + 0.884073i \(0.654791\pi\)
\(614\) 8.54733 11.7644i 0.344942 0.474772i
\(615\) 0 0
\(616\) −6.27474 18.9246i −0.252816 0.762494i
\(617\) 9.09836i 0.366286i −0.983086 0.183143i \(-0.941373\pi\)
0.983086 0.183143i \(-0.0586272\pi\)
\(618\) 0 0
\(619\) −6.70184 + 20.6261i −0.269370 + 0.829035i 0.721285 + 0.692639i \(0.243552\pi\)
−0.990654 + 0.136396i \(0.956448\pi\)
\(620\) 0.0294976 0.00958435i 0.00118465 0.000384917i
\(621\) 0 0
\(622\) 6.31136 + 8.68685i 0.253063 + 0.348311i
\(623\) 3.61555 + 11.1275i 0.144854 + 0.445814i
\(624\) 0 0
\(625\) 3.18452 + 2.31369i 0.127381 + 0.0925475i
\(626\) 42.7152 1.70724
\(627\) 0 0
\(628\) 0.526100 0.0209937
\(629\) 2.12031 + 1.54050i 0.0845424 + 0.0614237i
\(630\) 0 0
\(631\) −6.35103 19.5465i −0.252831 0.778133i −0.994249 0.107090i \(-0.965847\pi\)
0.741419 0.671043i \(-0.234153\pi\)
\(632\) −22.4238 30.8637i −0.891970 1.22769i
\(633\) 0 0
\(634\) −7.17090 + 2.32997i −0.284793 + 0.0925348i
\(635\) −3.38469 + 10.4170i −0.134317 + 0.413386i
\(636\) 0 0
\(637\) 6.52982i 0.258721i
\(638\) −0.193025 32.1759i −0.00764194 1.27386i
\(639\) 0 0
\(640\) 24.8728 34.2345i 0.983186 1.35324i
\(641\) 9.41144 + 3.05796i 0.371729 + 0.120782i 0.488923 0.872327i \(-0.337390\pi\)
−0.117194 + 0.993109i \(0.537390\pi\)
\(642\) 0 0
\(643\) 32.7841 23.8190i 1.29288 0.939330i 0.293018 0.956107i \(-0.405340\pi\)
0.999859 + 0.0167766i \(0.00534040\pi\)
\(644\) −0.964912 + 0.701050i −0.0380229 + 0.0276252i
\(645\) 0 0
\(646\) 2.13930 + 0.695100i 0.0841695 + 0.0273483i
\(647\) 17.5380 24.1390i 0.689490 0.949001i −0.310509 0.950570i \(-0.600499\pi\)
0.999999 + 0.00156921i \(0.000499494\pi\)
\(648\) 0 0
\(649\) −12.2788 + 9.03412i −0.481986 + 0.354620i
\(650\) 31.3268i 1.22874i
\(651\) 0 0
\(652\) 0.189995 0.584746i 0.00744080 0.0229004i
\(653\) −32.9425 + 10.7037i −1.28914 + 0.418867i −0.871791 0.489879i \(-0.837041\pi\)
−0.417350 + 0.908746i \(0.637041\pi\)
\(654\) 0 0
\(655\) 7.25382 + 9.98403i 0.283430 + 0.390108i
\(656\) −2.80974 8.64750i −0.109702 0.337628i
\(657\) 0 0
\(658\) −8.48338 6.16354i −0.330717 0.240280i
\(659\) −3.18762 −0.124172 −0.0620860 0.998071i \(-0.519775\pi\)
−0.0620860 + 0.998071i \(0.519775\pi\)
\(660\) 0 0
\(661\) −9.68991 −0.376894 −0.188447 0.982083i \(-0.560345\pi\)
−0.188447 + 0.982083i \(0.560345\pi\)
\(662\) −17.7595 12.9030i −0.690243 0.501491i
\(663\) 0 0
\(664\) −12.5107 38.5039i −0.485509 1.49424i
\(665\) 16.5952 + 22.8413i 0.643533 + 0.885748i
\(666\) 0 0
\(667\) 51.4003 16.7010i 1.99023 0.646664i
\(668\) 0.0557915 0.171709i 0.00215864 0.00664361i
\(669\) 0 0
\(670\) 28.3036i 1.09346i
\(671\) −21.6131 15.5056i −0.834364 0.598587i
\(672\) 0 0
\(673\) 2.68084 3.68987i 0.103339 0.142234i −0.754216 0.656627i \(-0.771983\pi\)
0.857555 + 0.514393i \(0.171983\pi\)
\(674\) 9.13566 + 2.96836i 0.351892 + 0.114337i
\(675\) 0 0
\(676\) −0.281195 + 0.204300i −0.0108152 + 0.00785769i
\(677\) −38.4032 + 27.9016i −1.47595 + 1.07234i −0.497122 + 0.867680i \(0.665610\pi\)
−0.978832 + 0.204663i \(0.934390\pi\)
\(678\) 0 0
\(679\) −14.6439 4.75809i −0.561981 0.182599i
\(680\) 2.49082 3.42833i 0.0955187 0.131470i
\(681\) 0 0
\(682\) 0.357356 + 0.485704i 0.0136839 + 0.0185986i
\(683\) 19.9649i 0.763936i −0.924175 0.381968i \(-0.875246\pi\)
0.924175 0.381968i \(-0.124754\pi\)
\(684\) 0 0
\(685\) 11.1218 34.2294i 0.424943 1.30784i
\(686\) 27.5805 8.96144i 1.05303 0.342149i
\(687\) 0 0
\(688\) −6.97713 9.60320i −0.266001 0.366118i
\(689\) 2.25269 + 6.93308i 0.0858208 + 0.264129i
\(690\) 0 0
\(691\) −4.23810 3.07916i −0.161225 0.117137i 0.504248 0.863559i \(-0.331770\pi\)
−0.665472 + 0.746422i \(0.731770\pi\)
\(692\) 1.14709 0.0436057
\(693\) 0 0
\(694\) −33.8625 −1.28540
\(695\) 19.1856 + 13.9392i 0.727753 + 0.528743i
\(696\) 0 0
\(697\) −0.290740 0.894805i −0.0110126 0.0338931i
\(698\) −28.8448 39.7015i −1.09179 1.50272i
\(699\) 0 0
\(700\) −1.09378 + 0.355391i −0.0413411 + 0.0134325i
\(701\) −10.9266 + 33.6287i −0.412694 + 1.27014i 0.501604 + 0.865097i \(0.332743\pi\)
−0.914298 + 0.405043i \(0.867257\pi\)
\(702\) 0 0
\(703\) 22.4119i 0.845282i
\(704\) 24.3548 + 7.75215i 0.917908 + 0.292170i
\(705\) 0 0
\(706\) −5.04940 + 6.94990i −0.190037 + 0.261563i
\(707\) 13.5067 + 4.38860i 0.507973 + 0.165050i
\(708\) 0 0
\(709\) −4.55413 + 3.30877i −0.171034 + 0.124263i −0.670009 0.742353i \(-0.733710\pi\)
0.498975 + 0.866616i \(0.333710\pi\)
\(710\) −36.2354 + 26.3266i −1.35989 + 0.988018i
\(711\) 0 0
\(712\) −14.2822 4.64058i −0.535249 0.173913i
\(713\) −0.595331 + 0.819403i −0.0222953 + 0.0306869i
\(714\) 0 0
\(715\) −31.6583 + 10.4968i −1.18395 + 0.392558i
\(716\) 1.10222i 0.0411921i
\(717\) 0 0
\(718\) −2.56349 + 7.88962i −0.0956687 + 0.294438i
\(719\) −7.99933 + 2.59914i −0.298325 + 0.0969316i −0.454355 0.890821i \(-0.650130\pi\)
0.156030 + 0.987752i \(0.450130\pi\)
\(720\) 0 0
\(721\) 11.6038 + 15.9713i 0.432150 + 0.594803i
\(722\) 2.50080 + 7.69666i 0.0930701 + 0.286440i
\(723\) 0 0
\(724\) −0.733520 0.532933i −0.0272611 0.0198063i
\(725\) 52.1139 1.93546
\(726\) 0 0
\(727\) 24.5536 0.910641 0.455321 0.890328i \(-0.349525\pi\)
0.455321 + 0.890328i \(0.349525\pi\)
\(728\) −13.7097 9.96067i −0.508115 0.369167i
\(729\) 0 0
\(730\) 8.02677 + 24.7039i 0.297084 + 0.914331i
\(731\) −0.721962 0.993696i −0.0267027 0.0367532i
\(732\) 0 0
\(733\) −15.3133 + 4.97559i −0.565610 + 0.183778i −0.577844 0.816147i \(-0.696106\pi\)
0.0122341 + 0.999925i \(0.496106\pi\)
\(734\) 8.25966 25.4206i 0.304870 0.938293i
\(735\) 0 0
\(736\) 3.11619i 0.114864i
\(737\) 17.3652 5.75771i 0.639657 0.212088i
\(738\) 0 0
\(739\) −6.18559 + 8.51373i −0.227540 + 0.313183i −0.907488 0.420078i \(-0.862003\pi\)
0.679947 + 0.733261i \(0.262003\pi\)
\(740\) 1.43014 + 0.464681i 0.0525730 + 0.0170820i
\(741\) 0 0
\(742\) −6.51230 + 4.73147i −0.239074 + 0.173698i
\(743\) 15.2075 11.0489i 0.557909 0.405344i −0.272784 0.962075i \(-0.587944\pi\)
0.830693 + 0.556731i \(0.187944\pi\)
\(744\) 0 0
\(745\) 46.7304 + 15.1836i 1.71207 + 0.556285i
\(746\) 0.515613 0.709680i 0.0188779 0.0259832i
\(747\) 0 0
\(748\) −0.0929589 0.0295888i −0.00339891 0.00108187i
\(749\) 3.54677i 0.129596i
\(750\) 0 0
\(751\) −4.17651 + 12.8540i −0.152403 + 0.469048i −0.997889 0.0649502i \(-0.979311\pi\)
0.845486 + 0.533998i \(0.179311\pi\)
\(752\) 13.2409 4.30223i 0.482846 0.156886i
\(753\) 0 0
\(754\) −16.0750 22.1254i −0.585417 0.805758i
\(755\) 22.6609 + 69.7430i 0.824714 + 2.53821i
\(756\) 0 0
\(757\) 24.2204 + 17.5972i 0.880307 + 0.639581i 0.933333 0.359013i \(-0.116887\pi\)
−0.0530256 + 0.998593i \(0.516887\pi\)
\(758\) 6.04840 0.219688
\(759\) 0 0
\(760\) −36.2378 −1.31448
\(761\) −1.10182 0.800522i −0.0399411 0.0290189i 0.567636 0.823280i \(-0.307858\pi\)
−0.607577 + 0.794261i \(0.707858\pi\)
\(762\) 0 0
\(763\) −9.01466 27.7443i −0.326353 1.00441i
\(764\) −0.437264 0.601843i −0.0158197 0.0217739i
\(765\) 0 0
\(766\) 3.39775 1.10400i 0.122766 0.0398890i
\(767\) −4.00387 + 12.3227i −0.144572 + 0.444945i
\(768\) 0 0
\(769\) 30.1716i 1.08802i −0.839080 0.544008i \(-0.816906\pi\)
0.839080 0.544008i \(-0.183094\pi\)
\(770\) −21.8261 29.6652i −0.786559 1.06906i
\(771\) 0 0
\(772\) 0.373791 0.514479i 0.0134530 0.0185165i
\(773\) −14.7588 4.79543i −0.530837 0.172479i 0.0313207 0.999509i \(-0.490029\pi\)
−0.562158 + 0.827030i \(0.690029\pi\)
\(774\) 0 0
\(775\) −0.790117 + 0.574054i −0.0283819 + 0.0206206i
\(776\) 15.9885 11.6163i 0.573952 0.417001i
\(777\) 0 0
\(778\) −30.8285 10.0168i −1.10526 0.359120i
\(779\) −4.72909 + 6.50904i −0.169437 + 0.233210i
\(780\) 0 0
\(781\) −23.5236 16.8762i −0.841739 0.603877i
\(782\) 4.92853i 0.176244i
\(783\) 0 0
\(784\) −2.95829 + 9.10469i −0.105653 + 0.325167i
\(785\) −25.9513 + 8.43209i −0.926242 + 0.300954i
\(786\) 0 0
\(787\) 13.4366 + 18.4938i 0.478962 + 0.659234i 0.978305 0.207170i \(-0.0664253\pi\)
−0.499343 + 0.866404i \(0.666425\pi\)
\(788\) −0.472762 1.45501i −0.0168414 0.0518326i
\(789\) 0 0
\(790\) −57.0120 41.4217i −2.02840 1.47372i
\(791\) 16.1176 0.573076
\(792\) 0 0
\(793\) −22.6085 −0.802853
\(794\) −5.90245 4.28838i −0.209470 0.152189i
\(795\) 0 0
\(796\) −0.0511210 0.157334i −0.00181194 0.00557657i
\(797\) 13.2573 + 18.2472i 0.469599 + 0.646348i 0.976465 0.215677i \(-0.0691960\pi\)
−0.506866 + 0.862025i \(0.669196\pi\)
\(798\) 0 0
\(799\) 1.37011 0.445176i 0.0484710 0.0157492i
\(800\) 0.928540 2.85775i 0.0328289 0.101037i
\(801\) 0 0
\(802\) 27.1583i 0.958994i
\(803\) −13.5238 + 9.95015i −0.477246 + 0.351133i
\(804\) 0 0
\(805\) 36.3608 50.0464i 1.28155 1.76390i
\(806\) 0.487438 + 0.158378i 0.0171693 + 0.00557863i
\(807\) 0 0
\(808\) −14.7469 + 10.7142i −0.518793 + 0.376925i
\(809\) 17.0062 12.3557i 0.597905 0.434404i −0.247229 0.968957i \(-0.579520\pi\)
0.845135 + 0.534553i \(0.179520\pi\)
\(810\) 0 0
\(811\) −52.0358 16.9075i −1.82722 0.593701i −0.999468 0.0326137i \(-0.989617\pi\)
−0.827756 0.561088i \(-0.810383\pi\)
\(812\) 0.590146 0.812266i 0.0207101 0.0285049i
\(813\) 0 0
\(814\) 0.175382 + 29.2350i 0.00614715 + 1.02469i
\(815\) 31.8894i 1.11704i
\(816\) 0 0
\(817\) −3.24575 + 9.98940i −0.113555 + 0.349485i
\(818\) 34.0016 11.0478i 1.18884 0.386277i
\(819\) 0 0
\(820\) −0.317300 0.436727i −0.0110806 0.0152512i
\(821\) −9.07753 27.9378i −0.316808 0.975035i −0.975004 0.222188i \(-0.928680\pi\)
0.658196 0.752847i \(-0.271320\pi\)
\(822\) 0 0
\(823\) −19.3666 14.0706i −0.675076 0.490471i 0.196645 0.980475i \(-0.436995\pi\)
−0.871720 + 0.490004i \(0.836995\pi\)
\(824\) −25.3385 −0.882710
\(825\) 0 0
\(826\) −14.3072 −0.497812
\(827\) −26.5521 19.2912i −0.923308 0.670822i 0.0210374 0.999779i \(-0.493303\pi\)
−0.944345 + 0.328956i \(0.893303\pi\)
\(828\) 0 0
\(829\) 1.05596 + 3.24990i 0.0366749 + 0.112874i 0.967718 0.252036i \(-0.0811000\pi\)
−0.931043 + 0.364909i \(0.881100\pi\)
\(830\) −43.9578 60.5027i −1.52580 2.10008i
\(831\) 0 0
\(832\) 20.6605 6.71301i 0.716275 0.232732i
\(833\) −0.306111 + 0.942112i −0.0106061 + 0.0326423i
\(834\) 0 0
\(835\) 9.36421i 0.324062i
\(836\) 0.262545 + 0.791835i 0.00908031 + 0.0273862i
\(837\) 0 0
\(838\) 9.59288 13.2035i 0.331381 0.456106i
\(839\) 21.4354 + 6.96478i 0.740031 + 0.240451i 0.654686 0.755901i \(-0.272801\pi\)
0.0853450 + 0.996351i \(0.472801\pi\)
\(840\) 0 0
\(841\) −13.3453 + 9.69590i −0.460182 + 0.334341i
\(842\) −37.4131 + 27.1822i −1.28934 + 0.936762i
\(843\) 0 0
\(844\) −1.15708 0.375958i −0.0398283 0.0129410i
\(845\) 10.5963 14.5845i 0.364523 0.501723i
\(846\) 0 0
\(847\) 13.7606 19.4258i 0.472821 0.667479i
\(848\) 10.6875i 0.367011i
\(849\) 0 0
\(850\) 1.46857 4.51978i 0.0503714 0.155027i
\(851\) −46.7023 + 15.1745i −1.60093 + 0.520175i
\(852\) 0 0
\(853\) −12.0798 16.6264i −0.413605 0.569278i 0.550488 0.834843i \(-0.314442\pi\)
−0.964093 + 0.265565i \(0.914442\pi\)
\(854\) −7.71458 23.7430i −0.263987 0.812470i
\(855\) 0 0
\(856\) −3.68289 2.67578i −0.125879 0.0914562i
\(857\) −25.6700 −0.876870 −0.438435 0.898763i \(-0.644467\pi\)
−0.438435 + 0.898763i \(0.644467\pi\)
\(858\) 0 0
\(859\) 2.87353 0.0980435 0.0490218 0.998798i \(-0.484390\pi\)
0.0490218 + 0.998798i \(0.484390\pi\)
\(860\) −0.570143 0.414233i −0.0194417 0.0141252i
\(861\) 0 0
\(862\) 5.44968 + 16.7724i 0.185617 + 0.571270i
\(863\) 17.7481 + 24.4282i 0.604153 + 0.831546i 0.996081 0.0884505i \(-0.0281915\pi\)
−0.391927 + 0.919996i \(0.628192\pi\)
\(864\) 0 0
\(865\) −56.5832 + 18.3850i −1.92389 + 0.625108i
\(866\) 8.73485 26.8831i 0.296822 0.913525i
\(867\) 0 0
\(868\) 0.0188157i 0.000638647i
\(869\) 13.8159 43.4052i 0.468672 1.47242i
\(870\) 0 0
\(871\) 9.13993 12.5800i 0.309695 0.426258i
\(872\) 35.6100 + 11.5704i 1.20591 + 0.391823i
\(873\) 0 0
\(874\) −34.0967 + 24.7727i −1.15334 + 0.837948i
\(875\) 17.0280 12.3716i 0.575653 0.418236i
\(876\) 0 0
\(877\) 14.0967 + 4.58030i 0.476012 + 0.154666i 0.537190 0.843461i \(-0.319486\pi\)
−0.0611780 + 0.998127i \(0.519486\pi\)
\(878\) 13.9785 19.2397i 0.471751 0.649310i
\(879\) 0 0
\(880\) 48.8975 0.293339i 1.64833 0.00988845i
\(881\) 7.29612i 0.245813i 0.992418 + 0.122906i \(0.0392215\pi\)
−0.992418 + 0.122906i \(0.960779\pi\)
\(882\) 0 0
\(883\) −13.3053 + 40.9496i −0.447760 + 1.37806i 0.431668 + 0.902032i \(0.357925\pi\)
−0.879428 + 0.476031i \(0.842075\pi\)
\(884\) −0.0788582 + 0.0256226i −0.00265229 + 0.000861781i
\(885\) 0 0
\(886\) 9.23653 + 12.7130i 0.310307 + 0.427102i
\(887\) −11.2511 34.6272i −0.377774 1.16267i −0.941588 0.336767i \(-0.890666\pi\)
0.563814 0.825902i \(-0.309334\pi\)
\(888\) 0 0
\(889\) −5.37569 3.90566i −0.180295 0.130992i
\(890\) −27.7401 −0.929851
\(891\) 0 0
\(892\) 0.433110 0.0145016
\(893\) −9.96652 7.24110i −0.333517 0.242314i
\(894\) 0 0
\(895\) −17.6660 54.3703i −0.590508 1.81740i
\(896\) 15.0892 + 20.7685i 0.504094 + 0.693826i
\(897\) 0 0
\(898\) 45.5580 14.8027i 1.52029 0.493972i
\(899\) 0.263471 0.810880i 0.00878724 0.0270443i
\(900\) 0 0
\(901\) 1.10590i 0.0368428i
\(902\) 6.11787 8.52764i 0.203703 0.283939i
\(903\) 0 0
\(904\) −12.1596 + 16.7362i −0.404421 + 0.556638i
\(905\) 44.7245 + 14.5319i 1.48669 + 0.483056i
\(906\) 0 0
\(907\) 36.9890 26.8741i 1.22820 0.892340i 0.231446 0.972848i \(-0.425654\pi\)
0.996754 + 0.0805082i \(0.0256543\pi\)
\(908\) −0.164395 + 0.119440i −0.00545565 + 0.00396376i
\(909\) 0 0
\(910\) −29.7711 9.67321i −0.986902 0.320664i
\(911\) −16.9022 + 23.2639i −0.559996 + 0.770769i −0.991326 0.131426i \(-0.958045\pi\)
0.431330 + 0.902194i \(0.358045\pi\)
\(912\) 0 0
\(913\) 28.1784 39.2776i 0.932569 1.29990i
\(914\) 45.5056i 1.50519i
\(915\) 0 0
\(916\) 0.406850 1.25216i 0.0134427 0.0413724i
\(917\) −7.12024 + 2.31351i −0.235131 + 0.0763987i
\(918\) 0 0
\(919\) −4.49558 6.18764i −0.148296 0.204111i 0.728406 0.685145i \(-0.240261\pi\)
−0.876702 + 0.481034i \(0.840261\pi\)
\(920\) 24.5356 + 75.5127i 0.808914 + 2.48958i
\(921\) 0 0
\(922\) 29.4248 + 21.3784i 0.969053 + 0.704058i
\(923\) −24.6070 −0.809949
\(924\) 0 0
\(925\) −47.3507 −1.55688
\(926\) −1.08801 0.790484i −0.0357542 0.0259769i
\(927\) 0 0
\(928\) 0.810619 + 2.49483i 0.0266099 + 0.0818968i
\(929\) 20.5354 + 28.2645i 0.673744 + 0.927330i 0.999838 0.0180080i \(-0.00573243\pi\)
−0.326093 + 0.945338i \(0.605732\pi\)
\(930\) 0 0
\(931\) 8.05638 2.61768i 0.264037 0.0857909i
\(932\) 0.209372 0.644380i 0.00685820 0.0211074i
\(933\) 0 0
\(934\) 18.8923i 0.618176i
\(935\) 5.05969 0.0303534i 0.165470 0.000992662i
\(936\) 0 0
\(937\) 33.5209 46.1375i 1.09508 1.50725i 0.253328 0.967381i \(-0.418475\pi\)
0.841751 0.539866i \(-0.181525\pi\)
\(938\) 16.3301 + 5.30596i 0.533195 + 0.173246i
\(939\) 0 0
\(940\) 0.668708 0.485845i 0.0218109 0.0158465i
\(941\) −13.6101 + 9.88831i −0.443676 + 0.322350i −0.787094 0.616833i \(-0.788415\pi\)
0.343418 + 0.939183i \(0.388415\pi\)
\(942\) 0 0
\(943\) 16.7655 + 5.44745i 0.545961 + 0.177394i
\(944\) 11.1654 15.3678i 0.363402 0.500181i
\(945\) 0 0
\(946\) 4.15571 13.0559i 0.135114 0.424486i
\(947\) 53.9128i 1.75193i −0.482373 0.875966i \(-0.660225\pi\)
0.482373 0.875966i \(-0.339775\pi\)
\(948\) 0 0
\(949\) −4.40985 + 13.5721i −0.143150 + 0.440570i
\(950\) −38.6505 + 12.5583i −1.25399 + 0.407445i
\(951\) 0 0
\(952\) 1.51107 + 2.07980i 0.0489739 + 0.0674068i
\(953\) −1.34167 4.12923i −0.0434609 0.133759i 0.926972 0.375131i \(-0.122402\pi\)
−0.970433 + 0.241372i \(0.922402\pi\)
\(954\) 0 0
\(955\) 31.2154 + 22.6793i 1.01011 + 0.733884i
\(956\) −0.403323 −0.0130444
\(957\) 0 0
\(958\) −41.3290 −1.33528
\(959\) 17.6641 + 12.8337i 0.570403 + 0.414422i
\(960\) 0 0
\(961\) −9.57459 29.4676i −0.308858 0.950566i
\(962\) 14.6057 + 20.1031i 0.470908 + 0.648149i
\(963\) 0 0
\(964\) 0.427183 0.138800i 0.0137586 0.00447046i
\(965\) −10.1924 + 31.3690i −0.328106 + 1.00981i
\(966\) 0 0
\(967\) 18.4429i 0.593085i −0.955020 0.296542i \(-0.904166\pi\)
0.955020 0.296542i \(-0.0958336\pi\)
\(968\) 9.78996 + 28.9441i 0.314661 + 0.930299i
\(969\) 0 0
\(970\) 21.4578 29.5342i 0.688970 0.948286i
\(971\) 11.5909 + 3.76611i 0.371970 + 0.120860i 0.489036 0.872264i \(-0.337349\pi\)
−0.117066 + 0.993124i \(0.537349\pi\)
\(972\) 0 0
\(973\) −11.6390 + 8.45625i −0.373130 + 0.271095i
\(974\) −10.9700 + 7.97021i −0.351503 + 0.255382i
\(975\) 0 0
\(976\) 31.5236 + 10.2426i 1.00905 + 0.327859i
\(977\) 18.0205 24.8031i 0.576528 0.793523i −0.416781 0.909007i \(-0.636842\pi\)
0.993309 + 0.115484i \(0.0368419\pi\)
\(978\) 0 0
\(979\) −5.64309 17.0196i −0.180354 0.543948i
\(980\) 0.568364i 0.0181557i
\(981\) 0 0
\(982\) −1.79065 + 5.51104i −0.0571418 + 0.175864i
\(983\) −12.1774 + 3.95668i −0.388399 + 0.126199i −0.496706 0.867919i \(-0.665457\pi\)
0.108306 + 0.994118i \(0.465457\pi\)
\(984\) 0 0
\(985\) 46.6406 + 64.1953i 1.48609 + 2.04543i
\(986\) 1.28206 + 3.94579i 0.0408292 + 0.125659i
\(987\) 0 0
\(988\) 0.573635 + 0.416770i 0.0182498 + 0.0132592i
\(989\) 23.0136 0.731791
\(990\) 0 0
\(991\) 13.7769 0.437638 0.218819 0.975765i \(-0.429780\pi\)
0.218819 + 0.975765i \(0.429780\pi\)
\(992\) −0.0397715 0.0288957i −0.00126275 0.000917440i
\(993\) 0 0
\(994\) −8.39650 25.8418i −0.266321 0.819651i
\(995\) 5.04337 + 6.94161i 0.159886 + 0.220064i
\(996\) 0 0
\(997\) −6.24178 + 2.02808i −0.197679 + 0.0642298i −0.406183 0.913792i \(-0.633141\pi\)
0.208504 + 0.978021i \(0.433141\pi\)
\(998\) −10.3071 + 31.7220i −0.326265 + 1.00414i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.k.a.161.6 80
3.2 odd 2 inner 891.2.k.a.161.15 80
9.2 odd 6 297.2.t.a.260.7 80
9.4 even 3 297.2.t.a.62.7 80
9.5 odd 6 99.2.p.a.29.4 80
9.7 even 3 99.2.p.a.95.4 yes 80
11.8 odd 10 inner 891.2.k.a.404.15 80
33.8 even 10 inner 891.2.k.a.404.6 80
99.41 even 30 99.2.p.a.74.4 yes 80
99.52 odd 30 99.2.p.a.41.4 yes 80
99.74 even 30 297.2.t.a.206.7 80
99.85 odd 30 297.2.t.a.8.7 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.29.4 80 9.5 odd 6
99.2.p.a.41.4 yes 80 99.52 odd 30
99.2.p.a.74.4 yes 80 99.41 even 30
99.2.p.a.95.4 yes 80 9.7 even 3
297.2.t.a.8.7 80 99.85 odd 30
297.2.t.a.62.7 80 9.4 even 3
297.2.t.a.206.7 80 99.74 even 30
297.2.t.a.260.7 80 9.2 odd 6
891.2.k.a.161.6 80 1.1 even 1 trivial
891.2.k.a.161.15 80 3.2 odd 2 inner
891.2.k.a.404.6 80 33.8 even 10 inner
891.2.k.a.404.15 80 11.8 odd 10 inner