Properties

Label 891.2.k.a.161.3
Level $891$
Weight $2$
Character 891.161
Analytic conductor $7.115$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(161,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.161");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.k (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(20\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 161.3
Character \(\chi\) \(=\) 891.161
Dual form 891.2.k.a.404.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.71719 - 1.24761i) q^{2} +(0.774180 + 2.38268i) q^{4} +(1.75074 + 2.40969i) q^{5} +(3.03899 - 0.987427i) q^{7} +(0.331430 - 1.02004i) q^{8} -6.32217i q^{10} +(2.38818 + 2.30144i) q^{11} +(1.50453 - 2.07081i) q^{13} +(-6.45046 - 2.09588i) q^{14} +(2.21191 - 1.60705i) q^{16} +(0.807393 - 0.586606i) q^{17} +(-3.66639 - 1.19128i) q^{19} +(-4.38614 + 6.03700i) q^{20} +(-1.22966 - 6.93154i) q^{22} +5.27382i q^{23} +(-1.19643 + 3.68223i) q^{25} +(-5.16715 + 1.67891i) q^{26} +(4.70544 + 6.47649i) q^{28} +(-1.85154 - 5.69844i) q^{29} +(6.43584 + 4.67591i) q^{31} -7.94833 q^{32} -2.11831 q^{34} +(7.69988 + 5.59429i) q^{35} +(1.32852 + 4.08876i) q^{37} +(4.80964 + 6.61990i) q^{38} +(3.03823 - 0.987180i) q^{40} +(-0.411450 + 1.26631i) q^{41} +3.29613i q^{43} +(-3.63471 + 7.47199i) q^{44} +(6.57970 - 9.05618i) q^{46} +(-5.03182 - 1.63494i) q^{47} +(2.59731 - 1.88706i) q^{49} +(6.64851 - 4.83042i) q^{50} +(6.09886 + 1.98164i) q^{52} +(-2.43390 + 3.34997i) q^{53} +(-1.36467 + 9.78400i) q^{55} -3.42715i q^{56} +(-3.93001 + 12.0953i) q^{58} +(11.0565 - 3.59249i) q^{59} +(4.71908 + 6.49525i) q^{61} +(-5.21785 - 16.0589i) q^{62} +(9.22499 + 6.70235i) q^{64} +7.62407 q^{65} -6.61239 q^{67} +(2.02276 + 1.46962i) q^{68} +(-6.24267 - 19.2130i) q^{70} +(-5.64201 - 7.76556i) q^{71} +(-0.706745 + 0.229635i) q^{73} +(2.81987 - 8.67867i) q^{74} -9.65810i q^{76} +(9.53014 + 4.63589i) q^{77} +(6.88586 - 9.47757i) q^{79} +(7.74499 + 2.51650i) q^{80} +(2.28641 - 1.66117i) q^{82} +(2.18571 - 1.58801i) q^{83} +(2.82708 + 0.918574i) q^{85} +(4.11230 - 5.66010i) q^{86} +(3.13907 - 1.67327i) q^{88} +9.15275i q^{89} +(2.52748 - 7.77878i) q^{91} +(-12.5658 + 4.08289i) q^{92} +(6.60084 + 9.08528i) q^{94} +(-3.54829 - 10.9205i) q^{95} +(-7.54954 - 5.48506i) q^{97} -6.81440 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 10 q^{4} + 10 q^{7} + 10 q^{13} - 10 q^{16} - 50 q^{19} + 22 q^{22} + 4 q^{25} - 20 q^{28} + 12 q^{31} + 20 q^{34} - 6 q^{37} - 30 q^{40} - 40 q^{46} + 2 q^{49} + 10 q^{52} - 18 q^{55} + 58 q^{58}+ \cdots - 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.71719 1.24761i −1.21424 0.882197i −0.218631 0.975808i \(-0.570159\pi\)
−0.995609 + 0.0936108i \(0.970159\pi\)
\(3\) 0 0
\(4\) 0.774180 + 2.38268i 0.387090 + 1.19134i
\(5\) 1.75074 + 2.40969i 0.782957 + 1.07765i 0.994950 + 0.100376i \(0.0320047\pi\)
−0.211993 + 0.977271i \(0.567995\pi\)
\(6\) 0 0
\(7\) 3.03899 0.987427i 1.14863 0.373212i 0.328002 0.944677i \(-0.393625\pi\)
0.820627 + 0.571465i \(0.193625\pi\)
\(8\) 0.331430 1.02004i 0.117178 0.360638i
\(9\) 0 0
\(10\) 6.32217i 1.99924i
\(11\) 2.38818 + 2.30144i 0.720062 + 0.693909i
\(12\) 0 0
\(13\) 1.50453 2.07081i 0.417282 0.574340i −0.547693 0.836679i \(-0.684494\pi\)
0.964976 + 0.262339i \(0.0844940\pi\)
\(14\) −6.45046 2.09588i −1.72396 0.560148i
\(15\) 0 0
\(16\) 2.21191 1.60705i 0.552978 0.401762i
\(17\) 0.807393 0.586606i 0.195822 0.142273i −0.485554 0.874207i \(-0.661382\pi\)
0.681376 + 0.731934i \(0.261382\pi\)
\(18\) 0 0
\(19\) −3.66639 1.19128i −0.841127 0.273299i −0.143402 0.989664i \(-0.545804\pi\)
−0.697725 + 0.716366i \(0.745804\pi\)
\(20\) −4.38614 + 6.03700i −0.980770 + 1.34991i
\(21\) 0 0
\(22\) −1.22966 6.93154i −0.262164 1.47781i
\(23\) 5.27382i 1.09967i 0.835274 + 0.549834i \(0.185309\pi\)
−0.835274 + 0.549834i \(0.814691\pi\)
\(24\) 0 0
\(25\) −1.19643 + 3.68223i −0.239286 + 0.736446i
\(26\) −5.16715 + 1.67891i −1.01336 + 0.329261i
\(27\) 0 0
\(28\) 4.70544 + 6.47649i 0.889245 + 1.22394i
\(29\) −1.85154 5.69844i −0.343822 1.05817i −0.962212 0.272303i \(-0.912215\pi\)
0.618390 0.785871i \(-0.287785\pi\)
\(30\) 0 0
\(31\) 6.43584 + 4.67591i 1.15591 + 0.839819i 0.989256 0.146196i \(-0.0467031\pi\)
0.166656 + 0.986015i \(0.446703\pi\)
\(32\) −7.94833 −1.40508
\(33\) 0 0
\(34\) −2.11831 −0.363287
\(35\) 7.69988 + 5.59429i 1.30152 + 0.945608i
\(36\) 0 0
\(37\) 1.32852 + 4.08876i 0.218407 + 0.672188i 0.998894 + 0.0470160i \(0.0149712\pi\)
−0.780487 + 0.625172i \(0.785029\pi\)
\(38\) 4.80964 + 6.61990i 0.780227 + 1.07389i
\(39\) 0 0
\(40\) 3.03823 0.987180i 0.480386 0.156087i
\(41\) −0.411450 + 1.26631i −0.0642576 + 0.197765i −0.978031 0.208460i \(-0.933155\pi\)
0.913773 + 0.406225i \(0.133155\pi\)
\(42\) 0 0
\(43\) 3.29613i 0.502655i 0.967902 + 0.251328i \(0.0808671\pi\)
−0.967902 + 0.251328i \(0.919133\pi\)
\(44\) −3.63471 + 7.47199i −0.547953 + 1.12644i
\(45\) 0 0
\(46\) 6.57970 9.05618i 0.970124 1.33526i
\(47\) −5.03182 1.63494i −0.733967 0.238480i −0.0818987 0.996641i \(-0.526098\pi\)
−0.652068 + 0.758160i \(0.726098\pi\)
\(48\) 0 0
\(49\) 2.59731 1.88706i 0.371044 0.269579i
\(50\) 6.64851 4.83042i 0.940241 0.683125i
\(51\) 0 0
\(52\) 6.09886 + 1.98164i 0.845760 + 0.274804i
\(53\) −2.43390 + 3.34997i −0.334322 + 0.460154i −0.942772 0.333437i \(-0.891791\pi\)
0.608450 + 0.793592i \(0.291791\pi\)
\(54\) 0 0
\(55\) −1.36467 + 9.78400i −0.184012 + 1.31927i
\(56\) 3.42715i 0.457972i
\(57\) 0 0
\(58\) −3.93001 + 12.0953i −0.516036 + 1.58820i
\(59\) 11.0565 3.59249i 1.43944 0.467702i 0.517716 0.855552i \(-0.326782\pi\)
0.921722 + 0.387851i \(0.126782\pi\)
\(60\) 0 0
\(61\) 4.71908 + 6.49525i 0.604216 + 0.831632i 0.996086 0.0883887i \(-0.0281717\pi\)
−0.391870 + 0.920021i \(0.628172\pi\)
\(62\) −5.21785 16.0589i −0.662668 2.03948i
\(63\) 0 0
\(64\) 9.22499 + 6.70235i 1.15312 + 0.837794i
\(65\) 7.62407 0.945650
\(66\) 0 0
\(67\) −6.61239 −0.807832 −0.403916 0.914796i \(-0.632351\pi\)
−0.403916 + 0.914796i \(0.632351\pi\)
\(68\) 2.02276 + 1.46962i 0.245296 + 0.178218i
\(69\) 0 0
\(70\) −6.24267 19.2130i −0.746142 2.29639i
\(71\) −5.64201 7.76556i −0.669583 0.921603i 0.330167 0.943922i \(-0.392895\pi\)
−0.999751 + 0.0223198i \(0.992895\pi\)
\(72\) 0 0
\(73\) −0.706745 + 0.229635i −0.0827183 + 0.0268768i −0.350084 0.936718i \(-0.613847\pi\)
0.267366 + 0.963595i \(0.413847\pi\)
\(74\) 2.81987 8.67867i 0.327803 1.00888i
\(75\) 0 0
\(76\) 9.65810i 1.10786i
\(77\) 9.53014 + 4.63589i 1.08606 + 0.528308i
\(78\) 0 0
\(79\) 6.88586 9.47757i 0.774719 1.06631i −0.221126 0.975245i \(-0.570973\pi\)
0.995845 0.0910643i \(-0.0290269\pi\)
\(80\) 7.74499 + 2.51650i 0.865916 + 0.281353i
\(81\) 0 0
\(82\) 2.28641 1.66117i 0.252492 0.183446i
\(83\) 2.18571 1.58801i 0.239912 0.174307i −0.461332 0.887228i \(-0.652628\pi\)
0.701244 + 0.712921i \(0.252628\pi\)
\(84\) 0 0
\(85\) 2.82708 + 0.918574i 0.306640 + 0.0996333i
\(86\) 4.11230 5.66010i 0.443441 0.610344i
\(87\) 0 0
\(88\) 3.13907 1.67327i 0.334626 0.178371i
\(89\) 9.15275i 0.970189i 0.874462 + 0.485095i \(0.161215\pi\)
−0.874462 + 0.485095i \(0.838785\pi\)
\(90\) 0 0
\(91\) 2.52748 7.77878i 0.264952 0.815438i
\(92\) −12.5658 + 4.08289i −1.31008 + 0.425671i
\(93\) 0 0
\(94\) 6.60084 + 9.08528i 0.680825 + 0.937075i
\(95\) −3.54829 10.9205i −0.364046 1.12042i
\(96\) 0 0
\(97\) −7.54954 5.48506i −0.766540 0.556924i 0.134370 0.990931i \(-0.457099\pi\)
−0.900909 + 0.434008i \(0.857099\pi\)
\(98\) −6.81440 −0.688359
\(99\) 0 0
\(100\) −9.69983 −0.969983
\(101\) 6.03378 + 4.38379i 0.600383 + 0.436204i 0.846015 0.533159i \(-0.178995\pi\)
−0.245632 + 0.969363i \(0.578995\pi\)
\(102\) 0 0
\(103\) −4.63094 14.2526i −0.456300 1.40435i −0.869602 0.493753i \(-0.835625\pi\)
0.413302 0.910594i \(-0.364375\pi\)
\(104\) −1.61366 2.22101i −0.158232 0.217788i
\(105\) 0 0
\(106\) 8.35896 2.71599i 0.811894 0.263800i
\(107\) 5.29261 16.2890i 0.511656 1.57472i −0.277628 0.960689i \(-0.589548\pi\)
0.789285 0.614028i \(-0.210452\pi\)
\(108\) 0 0
\(109\) 0.449919i 0.0430944i −0.999768 0.0215472i \(-0.993141\pi\)
0.999768 0.0215472i \(-0.00685922\pi\)
\(110\) 14.5501 15.0985i 1.38729 1.43958i
\(111\) 0 0
\(112\) 5.13513 7.06790i 0.485224 0.667854i
\(113\) 3.96010 + 1.28672i 0.372535 + 0.121044i 0.489300 0.872116i \(-0.337252\pi\)
−0.116765 + 0.993160i \(0.537252\pi\)
\(114\) 0 0
\(115\) −12.7083 + 9.23312i −1.18505 + 0.860993i
\(116\) 12.1441 8.82324i 1.12756 0.819217i
\(117\) 0 0
\(118\) −23.4683 7.62530i −2.16043 0.701966i
\(119\) 1.87443 2.57993i 0.171829 0.236502i
\(120\) 0 0
\(121\) 0.406780 + 10.9925i 0.0369800 + 0.999316i
\(122\) 17.0412i 1.54284i
\(123\) 0 0
\(124\) −6.15871 + 18.9546i −0.553068 + 1.70217i
\(125\) 3.19613 1.03849i 0.285871 0.0928850i
\(126\) 0 0
\(127\) 9.90407 + 13.6318i 0.878844 + 1.20962i 0.976740 + 0.214428i \(0.0687888\pi\)
−0.0978959 + 0.995197i \(0.531211\pi\)
\(128\) −2.56682 7.89986i −0.226877 0.698256i
\(129\) 0 0
\(130\) −13.0920 9.51190i −1.14825 0.834249i
\(131\) −14.3217 −1.25129 −0.625647 0.780106i \(-0.715165\pi\)
−0.625647 + 0.780106i \(0.715165\pi\)
\(132\) 0 0
\(133\) −12.3184 −1.06814
\(134\) 11.3548 + 8.24971i 0.980901 + 0.712667i
\(135\) 0 0
\(136\) −0.330765 1.01799i −0.0283629 0.0872920i
\(137\) −1.41576 1.94863i −0.120956 0.166482i 0.744245 0.667907i \(-0.232810\pi\)
−0.865201 + 0.501424i \(0.832810\pi\)
\(138\) 0 0
\(139\) 4.05604 1.31789i 0.344029 0.111782i −0.131906 0.991262i \(-0.542110\pi\)
0.475935 + 0.879480i \(0.342110\pi\)
\(140\) −7.36832 + 22.6774i −0.622737 + 1.91659i
\(141\) 0 0
\(142\) 20.3740i 1.70975i
\(143\) 8.35893 1.48288i 0.699009 0.124004i
\(144\) 0 0
\(145\) 10.4899 14.4381i 0.871141 1.19902i
\(146\) 1.50012 + 0.487417i 0.124150 + 0.0403389i
\(147\) 0 0
\(148\) −8.71370 + 6.33087i −0.716261 + 0.520394i
\(149\) 3.21329 2.33459i 0.263243 0.191257i −0.448333 0.893867i \(-0.647982\pi\)
0.711575 + 0.702610i \(0.247982\pi\)
\(150\) 0 0
\(151\) 16.4430 + 5.34267i 1.33812 + 0.434780i 0.888678 0.458531i \(-0.151624\pi\)
0.449438 + 0.893312i \(0.351624\pi\)
\(152\) −2.43031 + 3.34503i −0.197124 + 0.271318i
\(153\) 0 0
\(154\) −10.5813 19.8507i −0.852665 1.59961i
\(155\) 23.6947i 1.90321i
\(156\) 0 0
\(157\) 0.112621 0.346613i 0.00898815 0.0276627i −0.946462 0.322816i \(-0.895371\pi\)
0.955450 + 0.295153i \(0.0953706\pi\)
\(158\) −23.6487 + 7.68393i −1.88139 + 0.611301i
\(159\) 0 0
\(160\) −13.9155 19.1530i −1.10012 1.51418i
\(161\) 5.20751 + 16.0271i 0.410410 + 1.26311i
\(162\) 0 0
\(163\) −2.44510 1.77647i −0.191515 0.139144i 0.487896 0.872902i \(-0.337765\pi\)
−0.679411 + 0.733758i \(0.737765\pi\)
\(164\) −3.33575 −0.260479
\(165\) 0 0
\(166\) −5.73450 −0.445084
\(167\) 6.22872 + 4.52543i 0.481992 + 0.350188i 0.802097 0.597194i \(-0.203718\pi\)
−0.320104 + 0.947382i \(0.603718\pi\)
\(168\) 0 0
\(169\) 1.99258 + 6.13253i 0.153275 + 0.471733i
\(170\) −3.70862 5.10447i −0.284438 0.391495i
\(171\) 0 0
\(172\) −7.85363 + 2.55180i −0.598833 + 0.194573i
\(173\) −3.43195 + 10.5625i −0.260926 + 0.803049i 0.731678 + 0.681651i \(0.238738\pi\)
−0.992604 + 0.121398i \(0.961262\pi\)
\(174\) 0 0
\(175\) 12.3716i 0.935208i
\(176\) 8.98096 + 1.25266i 0.676966 + 0.0944228i
\(177\) 0 0
\(178\) 11.4191 15.7170i 0.855898 1.17804i
\(179\) −7.87767 2.55961i −0.588805 0.191314i −0.000563753 1.00000i \(-0.500179\pi\)
−0.588241 + 0.808686i \(0.700179\pi\)
\(180\) 0 0
\(181\) −13.8429 + 10.0575i −1.02894 + 0.747565i −0.968095 0.250582i \(-0.919378\pi\)
−0.0608402 + 0.998148i \(0.519378\pi\)
\(182\) −14.0451 + 10.2044i −1.04109 + 0.756398i
\(183\) 0 0
\(184\) 5.37950 + 1.74791i 0.396582 + 0.128857i
\(185\) −7.52676 + 10.3597i −0.553378 + 0.761660i
\(186\) 0 0
\(187\) 3.27823 + 0.457246i 0.239728 + 0.0334372i
\(188\) 13.2550i 0.966718i
\(189\) 0 0
\(190\) −7.53148 + 23.1795i −0.546391 + 1.68162i
\(191\) −10.3620 + 3.36683i −0.749771 + 0.243615i −0.658883 0.752246i \(-0.728971\pi\)
−0.0908882 + 0.995861i \(0.528971\pi\)
\(192\) 0 0
\(193\) 6.36278 + 8.75762i 0.458003 + 0.630387i 0.974093 0.226147i \(-0.0726130\pi\)
−0.516090 + 0.856534i \(0.672613\pi\)
\(194\) 6.12078 + 18.8378i 0.439447 + 1.35248i
\(195\) 0 0
\(196\) 6.50704 + 4.72764i 0.464788 + 0.337688i
\(197\) −1.78800 −0.127390 −0.0636948 0.997969i \(-0.520288\pi\)
−0.0636948 + 0.997969i \(0.520288\pi\)
\(198\) 0 0
\(199\) 0.534305 0.0378759 0.0189379 0.999821i \(-0.493972\pi\)
0.0189379 + 0.999821i \(0.493972\pi\)
\(200\) 3.35948 + 2.44081i 0.237551 + 0.172591i
\(201\) 0 0
\(202\) −4.89188 15.0557i −0.344191 1.05931i
\(203\) −11.2536 15.4892i −0.789847 1.08713i
\(204\) 0 0
\(205\) −3.77177 + 1.22552i −0.263432 + 0.0855941i
\(206\) −9.82949 + 30.2521i −0.684853 + 2.10776i
\(207\) 0 0
\(208\) 6.99831i 0.485246i
\(209\) −6.01433 11.2830i −0.416020 0.780458i
\(210\) 0 0
\(211\) −3.02539 + 4.16409i −0.208276 + 0.286668i −0.900357 0.435153i \(-0.856694\pi\)
0.692080 + 0.721820i \(0.256694\pi\)
\(212\) −9.86620 3.20572i −0.677613 0.220170i
\(213\) 0 0
\(214\) −29.4108 + 21.3682i −2.01048 + 1.46070i
\(215\) −7.94266 + 5.77068i −0.541685 + 0.393557i
\(216\) 0 0
\(217\) 24.1756 + 7.85512i 1.64114 + 0.533240i
\(218\) −0.561325 + 0.772598i −0.0380178 + 0.0523270i
\(219\) 0 0
\(220\) −24.3686 + 4.32301i −1.64293 + 0.291457i
\(221\) 2.55453i 0.171836i
\(222\) 0 0
\(223\) 1.29767 3.99381i 0.0868983 0.267445i −0.898159 0.439670i \(-0.855095\pi\)
0.985058 + 0.172224i \(0.0550954\pi\)
\(224\) −24.1549 + 7.84839i −1.61391 + 0.524393i
\(225\) 0 0
\(226\) −5.19494 7.15023i −0.345562 0.475626i
\(227\) −5.16611 15.8996i −0.342887 1.05530i −0.962705 0.270552i \(-0.912794\pi\)
0.619819 0.784745i \(-0.287206\pi\)
\(228\) 0 0
\(229\) 21.0325 + 15.2810i 1.38986 + 1.00980i 0.995880 + 0.0906785i \(0.0289036\pi\)
0.393984 + 0.919117i \(0.371096\pi\)
\(230\) 33.3420 2.19851
\(231\) 0 0
\(232\) −6.42628 −0.421906
\(233\) −14.0790 10.2290i −0.922345 0.670123i 0.0217619 0.999763i \(-0.493072\pi\)
−0.944107 + 0.329641i \(0.893072\pi\)
\(234\) 0 0
\(235\) −4.86974 14.9875i −0.317667 0.977677i
\(236\) 17.1195 + 23.5630i 1.11438 + 1.53382i
\(237\) 0 0
\(238\) −6.43751 + 2.09167i −0.417282 + 0.135583i
\(239\) −0.770057 + 2.36999i −0.0498109 + 0.153302i −0.972868 0.231361i \(-0.925682\pi\)
0.923057 + 0.384663i \(0.125682\pi\)
\(240\) 0 0
\(241\) 22.8683i 1.47308i −0.676394 0.736540i \(-0.736458\pi\)
0.676394 0.736540i \(-0.263542\pi\)
\(242\) 13.0159 19.3837i 0.836691 1.24603i
\(243\) 0 0
\(244\) −11.8227 + 16.2725i −0.756871 + 1.04174i
\(245\) 9.09445 + 2.95497i 0.581023 + 0.188786i
\(246\) 0 0
\(247\) −7.98312 + 5.80008i −0.507954 + 0.369050i
\(248\) 6.90264 5.01506i 0.438318 0.318457i
\(249\) 0 0
\(250\) −6.78401 2.20426i −0.429059 0.139410i
\(251\) 5.77288 7.94569i 0.364381 0.501528i −0.586982 0.809600i \(-0.699684\pi\)
0.951363 + 0.308073i \(0.0996840\pi\)
\(252\) 0 0
\(253\) −12.1374 + 12.5948i −0.763070 + 0.791830i
\(254\) 35.7649i 2.24409i
\(255\) 0 0
\(256\) 1.59902 4.92126i 0.0999385 0.307579i
\(257\) −14.1588 + 4.60048i −0.883203 + 0.286970i −0.715287 0.698831i \(-0.753704\pi\)
−0.167917 + 0.985801i \(0.553704\pi\)
\(258\) 0 0
\(259\) 8.07470 + 11.1139i 0.501737 + 0.690582i
\(260\) 5.90240 + 18.1657i 0.366051 + 1.12659i
\(261\) 0 0
\(262\) 24.5932 + 17.8680i 1.51937 + 1.10389i
\(263\) 5.92380 0.365277 0.182639 0.983180i \(-0.441536\pi\)
0.182639 + 0.983180i \(0.441536\pi\)
\(264\) 0 0
\(265\) −12.3335 −0.757644
\(266\) 21.1531 + 15.3686i 1.29698 + 0.942311i
\(267\) 0 0
\(268\) −5.11918 15.7552i −0.312704 0.962403i
\(269\) −3.97084 5.46539i −0.242106 0.333230i 0.670621 0.741800i \(-0.266028\pi\)
−0.912727 + 0.408570i \(0.866028\pi\)
\(270\) 0 0
\(271\) −6.02268 + 1.95689i −0.365852 + 0.118872i −0.486173 0.873863i \(-0.661608\pi\)
0.120321 + 0.992735i \(0.461608\pi\)
\(272\) 0.843180 2.59504i 0.0511253 0.157348i
\(273\) 0 0
\(274\) 5.11249i 0.308857i
\(275\) −11.3317 + 6.04031i −0.683328 + 0.364245i
\(276\) 0 0
\(277\) −1.22289 + 1.68317i −0.0734766 + 0.101132i −0.844173 0.536070i \(-0.819908\pi\)
0.770697 + 0.637202i \(0.219908\pi\)
\(278\) −8.60922 2.79731i −0.516347 0.167771i
\(279\) 0 0
\(280\) 8.25837 6.00006i 0.493532 0.358572i
\(281\) −5.82179 + 4.22978i −0.347299 + 0.252327i −0.747735 0.663997i \(-0.768859\pi\)
0.400436 + 0.916325i \(0.368859\pi\)
\(282\) 0 0
\(283\) −22.8994 7.44045i −1.36123 0.442289i −0.464773 0.885430i \(-0.653864\pi\)
−0.896452 + 0.443141i \(0.853864\pi\)
\(284\) 14.1349 19.4551i 0.838753 1.15444i
\(285\) 0 0
\(286\) −16.2040 7.88233i −0.958161 0.466092i
\(287\) 4.25458i 0.251140i
\(288\) 0 0
\(289\) −4.94551 + 15.2207i −0.290912 + 0.895336i
\(290\) −36.0265 + 11.7057i −2.11555 + 0.687383i
\(291\) 0 0
\(292\) −1.09430 1.50617i −0.0640388 0.0881419i
\(293\) −6.72926 20.7105i −0.393128 1.20992i −0.930410 0.366520i \(-0.880549\pi\)
0.537282 0.843402i \(-0.319451\pi\)
\(294\) 0 0
\(295\) 28.0140 + 20.3533i 1.63104 + 1.18502i
\(296\) 4.61100 0.268009
\(297\) 0 0
\(298\) −8.43051 −0.488366
\(299\) 10.9211 + 7.93464i 0.631583 + 0.458872i
\(300\) 0 0
\(301\) 3.25469 + 10.0169i 0.187597 + 0.577364i
\(302\) −21.5703 29.6890i −1.24123 1.70841i
\(303\) 0 0
\(304\) −10.0242 + 3.25706i −0.574926 + 0.186805i
\(305\) −7.38967 + 22.7431i −0.423131 + 1.30226i
\(306\) 0 0
\(307\) 27.7403i 1.58322i −0.611023 0.791612i \(-0.709242\pi\)
0.611023 0.791612i \(-0.290758\pi\)
\(308\) −3.66779 + 26.2963i −0.208992 + 1.49837i
\(309\) 0 0
\(310\) 29.5619 40.6885i 1.67900 2.31095i
\(311\) 20.6834 + 6.72045i 1.17285 + 0.381082i 0.829706 0.558201i \(-0.188508\pi\)
0.343144 + 0.939283i \(0.388508\pi\)
\(312\) 0 0
\(313\) −4.51010 + 3.27678i −0.254926 + 0.185215i −0.707907 0.706306i \(-0.750360\pi\)
0.452981 + 0.891520i \(0.350360\pi\)
\(314\) −0.625831 + 0.454693i −0.0353177 + 0.0256598i
\(315\) 0 0
\(316\) 27.9129 + 9.06945i 1.57022 + 0.510197i
\(317\) 8.02289 11.0426i 0.450610 0.620212i −0.521918 0.852996i \(-0.674783\pi\)
0.972529 + 0.232784i \(0.0747834\pi\)
\(318\) 0 0
\(319\) 8.69281 17.8701i 0.486704 1.00053i
\(320\) 33.9635i 1.89862i
\(321\) 0 0
\(322\) 11.0533 34.0186i 0.615977 1.89578i
\(323\) −3.65903 + 1.18889i −0.203594 + 0.0661517i
\(324\) 0 0
\(325\) 5.82514 + 8.01761i 0.323121 + 0.444737i
\(326\) 1.98236 + 6.10108i 0.109793 + 0.337908i
\(327\) 0 0
\(328\) 1.15532 + 0.839389i 0.0637918 + 0.0463475i
\(329\) −16.9060 −0.932059
\(330\) 0 0
\(331\) 7.95544 0.437270 0.218635 0.975807i \(-0.429840\pi\)
0.218635 + 0.975807i \(0.429840\pi\)
\(332\) 5.47585 + 3.97843i 0.300526 + 0.218345i
\(333\) 0 0
\(334\) −5.04993 15.5421i −0.276320 0.850424i
\(335\) −11.5766 15.9338i −0.632497 0.870558i
\(336\) 0 0
\(337\) −29.8353 + 9.69408i −1.62523 + 0.528070i −0.973169 0.230093i \(-0.926097\pi\)
−0.652065 + 0.758163i \(0.726097\pi\)
\(338\) 4.22939 13.0167i 0.230048 0.708016i
\(339\) 0 0
\(340\) 7.44717i 0.403879i
\(341\) 4.60861 + 25.9786i 0.249570 + 1.40682i
\(342\) 0 0
\(343\) −7.11752 + 9.79643i −0.384310 + 0.528957i
\(344\) 3.36218 + 1.09244i 0.181277 + 0.0589003i
\(345\) 0 0
\(346\) 19.0712 13.8560i 1.02527 0.744905i
\(347\) 1.83775 1.33520i 0.0986553 0.0716773i −0.537364 0.843350i \(-0.680580\pi\)
0.636019 + 0.771673i \(0.280580\pi\)
\(348\) 0 0
\(349\) −26.0063 8.44995i −1.39208 0.452316i −0.485461 0.874258i \(-0.661348\pi\)
−0.906623 + 0.421943i \(0.861348\pi\)
\(350\) 15.4350 21.2445i 0.825037 1.13557i
\(351\) 0 0
\(352\) −18.9820 18.2926i −1.01174 0.974997i
\(353\) 19.9733i 1.06307i −0.847036 0.531535i \(-0.821615\pi\)
0.847036 0.531535i \(-0.178385\pi\)
\(354\) 0 0
\(355\) 8.83490 27.1910i 0.468908 1.44315i
\(356\) −21.8081 + 7.08587i −1.15583 + 0.375551i
\(357\) 0 0
\(358\) 10.3341 + 14.2237i 0.546174 + 0.751743i
\(359\) −6.60849 20.3388i −0.348783 1.07344i −0.959527 0.281615i \(-0.909130\pi\)
0.610745 0.791827i \(-0.290870\pi\)
\(360\) 0 0
\(361\) −3.34807 2.43251i −0.176214 0.128027i
\(362\) 36.3188 1.90887
\(363\) 0 0
\(364\) 20.4911 1.07402
\(365\) −1.79068 1.30101i −0.0937285 0.0680978i
\(366\) 0 0
\(367\) −5.94919 18.3097i −0.310545 0.955759i −0.977550 0.210706i \(-0.932424\pi\)
0.667005 0.745054i \(-0.267576\pi\)
\(368\) 8.47529 + 11.6652i 0.441805 + 0.608093i
\(369\) 0 0
\(370\) 25.8498 8.39911i 1.34387 0.436649i
\(371\) −4.08873 + 12.5838i −0.212276 + 0.653320i
\(372\) 0 0
\(373\) 6.89609i 0.357066i −0.983934 0.178533i \(-0.942865\pi\)
0.983934 0.178533i \(-0.0571351\pi\)
\(374\) −5.05890 4.87515i −0.261589 0.252088i
\(375\) 0 0
\(376\) −3.33540 + 4.59078i −0.172010 + 0.236752i
\(377\) −14.5861 4.73931i −0.751222 0.244087i
\(378\) 0 0
\(379\) 27.7790 20.1826i 1.42691 1.03671i 0.436329 0.899787i \(-0.356278\pi\)
0.990582 0.136924i \(-0.0437215\pi\)
\(380\) 23.2731 16.9089i 1.19388 0.867407i
\(381\) 0 0
\(382\) 21.9941 + 7.14633i 1.12532 + 0.365638i
\(383\) −0.940164 + 1.29403i −0.0480402 + 0.0661216i −0.832361 0.554233i \(-0.813011\pi\)
0.784321 + 0.620355i \(0.213011\pi\)
\(384\) 0 0
\(385\) 5.51378 + 31.0810i 0.281008 + 1.58403i
\(386\) 22.9768i 1.16949i
\(387\) 0 0
\(388\) 7.22445 22.2346i 0.366766 1.12879i
\(389\) 22.5779 7.33601i 1.14475 0.371951i 0.325584 0.945513i \(-0.394439\pi\)
0.819162 + 0.573562i \(0.194439\pi\)
\(390\) 0 0
\(391\) 3.09365 + 4.25805i 0.156453 + 0.215339i
\(392\) −1.06404 3.27478i −0.0537422 0.165401i
\(393\) 0 0
\(394\) 3.07034 + 2.23073i 0.154682 + 0.112383i
\(395\) 34.8934 1.75568
\(396\) 0 0
\(397\) −15.1190 −0.758803 −0.379401 0.925232i \(-0.623870\pi\)
−0.379401 + 0.925232i \(0.623870\pi\)
\(398\) −0.917506 0.666607i −0.0459904 0.0334140i
\(399\) 0 0
\(400\) 3.27113 + 10.0675i 0.163556 + 0.503375i
\(401\) 15.3082 + 21.0699i 0.764454 + 1.05218i 0.996831 + 0.0795544i \(0.0253497\pi\)
−0.232377 + 0.972626i \(0.574650\pi\)
\(402\) 0 0
\(403\) 19.3659 6.29235i 0.964683 0.313444i
\(404\) −5.77396 + 17.7704i −0.287265 + 0.884111i
\(405\) 0 0
\(406\) 40.6382i 2.01684i
\(407\) −6.23728 + 12.8222i −0.309171 + 0.635572i
\(408\) 0 0
\(409\) −5.04394 + 6.94239i −0.249407 + 0.343279i −0.915303 0.402765i \(-0.868049\pi\)
0.665897 + 0.746044i \(0.268049\pi\)
\(410\) 8.00583 + 2.60125i 0.395380 + 0.128467i
\(411\) 0 0
\(412\) 30.3741 22.0681i 1.49643 1.08722i
\(413\) 30.0533 21.8350i 1.47883 1.07443i
\(414\) 0 0
\(415\) 7.65322 + 2.48668i 0.375682 + 0.122066i
\(416\) −11.9585 + 16.4595i −0.586314 + 0.806993i
\(417\) 0 0
\(418\) −3.74901 + 26.8786i −0.183370 + 1.31467i
\(419\) 17.8881i 0.873892i −0.899488 0.436946i \(-0.856060\pi\)
0.899488 0.436946i \(-0.143940\pi\)
\(420\) 0 0
\(421\) −1.07540 + 3.30975i −0.0524120 + 0.161307i −0.973836 0.227250i \(-0.927027\pi\)
0.921424 + 0.388558i \(0.127027\pi\)
\(422\) 10.3904 3.37603i 0.505795 0.164343i
\(423\) 0 0
\(424\) 2.61043 + 3.59295i 0.126774 + 0.174489i
\(425\) 1.19403 + 3.67484i 0.0579189 + 0.178256i
\(426\) 0 0
\(427\) 20.7548 + 15.0792i 1.00440 + 0.729736i
\(428\) 42.9089 2.07408
\(429\) 0 0
\(430\) 20.8387 1.00493
\(431\) −22.8883 16.6293i −1.10249 0.801005i −0.121025 0.992650i \(-0.538618\pi\)
−0.981464 + 0.191644i \(0.938618\pi\)
\(432\) 0 0
\(433\) 1.03161 + 3.17496i 0.0495758 + 0.152579i 0.972780 0.231732i \(-0.0744392\pi\)
−0.923204 + 0.384311i \(0.874439\pi\)
\(434\) −31.7140 43.6506i −1.52232 2.09529i
\(435\) 0 0
\(436\) 1.07201 0.348318i 0.0513401 0.0166814i
\(437\) 6.28261 19.3359i 0.300538 0.924961i
\(438\) 0 0
\(439\) 15.1602i 0.723556i −0.932264 0.361778i \(-0.882170\pi\)
0.932264 0.361778i \(-0.117830\pi\)
\(440\) 9.52776 + 4.63473i 0.454218 + 0.220952i
\(441\) 0 0
\(442\) −3.18706 + 4.38662i −0.151593 + 0.208650i
\(443\) −10.0392 3.26193i −0.476976 0.154979i 0.0606557 0.998159i \(-0.480681\pi\)
−0.537632 + 0.843180i \(0.680681\pi\)
\(444\) 0 0
\(445\) −22.0553 + 16.0241i −1.04552 + 0.759616i
\(446\) −7.21109 + 5.23916i −0.341455 + 0.248081i
\(447\) 0 0
\(448\) 34.6527 + 11.2593i 1.63719 + 0.531954i
\(449\) −9.24496 + 12.7246i −0.436297 + 0.600511i −0.969384 0.245549i \(-0.921032\pi\)
0.533087 + 0.846060i \(0.321032\pi\)
\(450\) 0 0
\(451\) −3.89695 + 2.07725i −0.183500 + 0.0978140i
\(452\) 10.4318i 0.490671i
\(453\) 0 0
\(454\) −10.9654 + 33.7481i −0.514633 + 1.58388i
\(455\) 23.1694 7.52821i 1.08620 0.352928i
\(456\) 0 0
\(457\) −1.79378 2.46893i −0.0839097 0.115492i 0.764999 0.644032i \(-0.222740\pi\)
−0.848908 + 0.528540i \(0.822740\pi\)
\(458\) −17.0521 52.4808i −0.796790 2.45227i
\(459\) 0 0
\(460\) −31.8381 23.1317i −1.48446 1.07852i
\(461\) −0.491689 −0.0229002 −0.0114501 0.999934i \(-0.503645\pi\)
−0.0114501 + 0.999934i \(0.503645\pi\)
\(462\) 0 0
\(463\) 8.98358 0.417502 0.208751 0.977969i \(-0.433060\pi\)
0.208751 + 0.977969i \(0.433060\pi\)
\(464\) −13.2531 9.62895i −0.615260 0.447013i
\(465\) 0 0
\(466\) 11.4145 + 35.1303i 0.528767 + 1.62738i
\(467\) −1.33494 1.83738i −0.0617735 0.0850239i 0.777013 0.629485i \(-0.216734\pi\)
−0.838786 + 0.544461i \(0.816734\pi\)
\(468\) 0 0
\(469\) −20.0950 + 6.52925i −0.927899 + 0.301493i
\(470\) −10.3364 + 31.8120i −0.476780 + 1.46738i
\(471\) 0 0
\(472\) 12.4687i 0.573921i
\(473\) −7.58583 + 7.87174i −0.348797 + 0.361943i
\(474\) 0 0
\(475\) 8.77315 12.0752i 0.402540 0.554048i
\(476\) 7.59829 + 2.46883i 0.348267 + 0.113159i
\(477\) 0 0
\(478\) 4.27918 3.10900i 0.195725 0.142202i
\(479\) −9.37003 + 6.80772i −0.428127 + 0.311053i −0.780900 0.624656i \(-0.785239\pi\)
0.352772 + 0.935709i \(0.385239\pi\)
\(480\) 0 0
\(481\) 10.4658 + 3.40056i 0.477202 + 0.155052i
\(482\) −28.5309 + 39.2694i −1.29955 + 1.78867i
\(483\) 0 0
\(484\) −25.8766 + 9.47938i −1.17621 + 0.430881i
\(485\) 27.7950i 1.26211i
\(486\) 0 0
\(487\) 11.3865 35.0439i 0.515970 1.58799i −0.265541 0.964100i \(-0.585551\pi\)
0.781511 0.623892i \(-0.214449\pi\)
\(488\) 8.18945 2.66091i 0.370719 0.120454i
\(489\) 0 0
\(490\) −11.9303 16.4206i −0.538955 0.741808i
\(491\) 4.30496 + 13.2493i 0.194280 + 0.597933i 0.999984 + 0.00561479i \(0.00178725\pi\)
−0.805704 + 0.592318i \(0.798213\pi\)
\(492\) 0 0
\(493\) −4.83766 3.51476i −0.217877 0.158297i
\(494\) 20.9448 0.942353
\(495\) 0 0
\(496\) 21.7500 0.976602
\(497\) −24.8139 18.0284i −1.11306 0.808683i
\(498\) 0 0
\(499\) 3.90314 + 12.0126i 0.174729 + 0.537760i 0.999621 0.0275302i \(-0.00876425\pi\)
−0.824892 + 0.565290i \(0.808764\pi\)
\(500\) 4.94876 + 6.81139i 0.221315 + 0.304615i
\(501\) 0 0
\(502\) −19.8263 + 6.44196i −0.884892 + 0.287519i
\(503\) −10.4111 + 32.0422i −0.464210 + 1.42869i 0.395764 + 0.918352i \(0.370480\pi\)
−0.859974 + 0.510339i \(0.829520\pi\)
\(504\) 0 0
\(505\) 22.2145i 0.988530i
\(506\) 36.5557 6.48500i 1.62510 0.288293i
\(507\) 0 0
\(508\) −24.8126 + 34.1517i −1.10088 + 1.51524i
\(509\) −20.9648 6.81188i −0.929248 0.301931i −0.194993 0.980805i \(-0.562468\pi\)
−0.734255 + 0.678874i \(0.762468\pi\)
\(510\) 0 0
\(511\) −1.92104 + 1.39572i −0.0849819 + 0.0617429i
\(512\) −22.3257 + 16.2206i −0.986666 + 0.716855i
\(513\) 0 0
\(514\) 30.0531 + 9.76484i 1.32558 + 0.430709i
\(515\) 26.2367 36.1117i 1.15613 1.59127i
\(516\) 0 0
\(517\) −8.25418 15.4849i −0.363018 0.681027i
\(518\) 29.1588i 1.28116i
\(519\) 0 0
\(520\) 2.52685 7.77684i 0.110810 0.341037i
\(521\) 23.0301 7.48292i 1.00896 0.327833i 0.242523 0.970146i \(-0.422025\pi\)
0.766442 + 0.642313i \(0.222025\pi\)
\(522\) 0 0
\(523\) −0.785047 1.08052i −0.0343277 0.0472480i 0.791508 0.611159i \(-0.209296\pi\)
−0.825836 + 0.563911i \(0.809296\pi\)
\(524\) −11.0876 34.1241i −0.484363 1.49072i
\(525\) 0 0
\(526\) −10.1723 7.39062i −0.443534 0.322247i
\(527\) 7.93917 0.345836
\(528\) 0 0
\(529\) −4.81321 −0.209270
\(530\) 21.1791 + 15.3875i 0.919961 + 0.668391i
\(531\) 0 0
\(532\) −9.53667 29.3508i −0.413467 1.27252i
\(533\) 2.00325 + 2.75724i 0.0867705 + 0.119429i
\(534\) 0 0
\(535\) 48.5175 15.7643i 2.09759 0.681549i
\(536\) −2.19155 + 6.74489i −0.0946604 + 0.291335i
\(537\) 0 0
\(538\) 14.3392i 0.618207i
\(539\) 10.5458 + 1.47092i 0.454239 + 0.0633570i
\(540\) 0 0
\(541\) 22.6301 31.1477i 0.972944 1.33914i 0.0323981 0.999475i \(-0.489686\pi\)
0.940546 0.339667i \(-0.110314\pi\)
\(542\) 12.7836 + 4.15363i 0.549101 + 0.178414i
\(543\) 0 0
\(544\) −6.41743 + 4.66253i −0.275145 + 0.199904i
\(545\) 1.08417 0.787693i 0.0464406 0.0337411i
\(546\) 0 0
\(547\) −29.9931 9.74534i −1.28241 0.416681i −0.412983 0.910739i \(-0.635513\pi\)
−0.869429 + 0.494058i \(0.835513\pi\)
\(548\) 3.54690 4.88189i 0.151516 0.208544i
\(549\) 0 0
\(550\) 26.9947 + 3.76521i 1.15106 + 0.160549i
\(551\) 23.0984i 0.984025i
\(552\) 0 0
\(553\) 11.5676 35.6015i 0.491905 1.51393i
\(554\) 4.19989 1.36463i 0.178436 0.0579775i
\(555\) 0 0
\(556\) 6.28021 + 8.64396i 0.266340 + 0.366586i
\(557\) −4.42923 13.6318i −0.187673 0.577597i 0.812312 0.583224i \(-0.198209\pi\)
−0.999984 + 0.00562684i \(0.998209\pi\)
\(558\) 0 0
\(559\) 6.82566 + 4.95913i 0.288695 + 0.209749i
\(560\) 26.0218 1.09962
\(561\) 0 0
\(562\) 15.2743 0.644307
\(563\) −11.7638 8.54689i −0.495785 0.360209i 0.311620 0.950207i \(-0.399128\pi\)
−0.807405 + 0.589998i \(0.799128\pi\)
\(564\) 0 0
\(565\) 3.83254 + 11.7953i 0.161236 + 0.496234i
\(566\) 30.0398 + 41.3463i 1.26267 + 1.73791i
\(567\) 0 0
\(568\) −9.79110 + 3.18132i −0.410826 + 0.133485i
\(569\) −4.80561 + 14.7902i −0.201462 + 0.620035i 0.798378 + 0.602156i \(0.205691\pi\)
−0.999840 + 0.0178794i \(0.994309\pi\)
\(570\) 0 0
\(571\) 30.8824i 1.29239i −0.763172 0.646195i \(-0.776359\pi\)
0.763172 0.646195i \(-0.223641\pi\)
\(572\) 10.0045 + 18.7686i 0.418311 + 0.784757i
\(573\) 0 0
\(574\) 5.30808 7.30594i 0.221555 0.304944i
\(575\) −19.4194 6.30976i −0.809846 0.263135i
\(576\) 0 0
\(577\) −32.9843 + 23.9645i −1.37316 + 0.997656i −0.375672 + 0.926753i \(0.622588\pi\)
−0.997483 + 0.0709027i \(0.977412\pi\)
\(578\) 27.4820 19.9668i 1.14310 0.830511i
\(579\) 0 0
\(580\) 42.5226 + 13.8164i 1.76565 + 0.573696i
\(581\) 5.07429 6.98416i 0.210517 0.289752i
\(582\) 0 0
\(583\) −13.5223 + 2.39887i −0.560038 + 0.0993510i
\(584\) 0.797015i 0.0329807i
\(585\) 0 0
\(586\) −14.2833 + 43.9595i −0.590039 + 1.81595i
\(587\) −17.1307 + 5.56610i −0.707059 + 0.229737i −0.640403 0.768039i \(-0.721233\pi\)
−0.0666554 + 0.997776i \(0.521233\pi\)
\(588\) 0 0
\(589\) −18.0260 24.8106i −0.742747 1.02230i
\(590\) −22.7123 69.9013i −0.935050 2.87779i
\(591\) 0 0
\(592\) 9.50941 + 6.90899i 0.390834 + 0.283958i
\(593\) −12.6974 −0.521422 −0.260711 0.965417i \(-0.583957\pi\)
−0.260711 + 0.965417i \(0.583957\pi\)
\(594\) 0 0
\(595\) 9.49848 0.389400
\(596\) 8.05025 + 5.84885i 0.329751 + 0.239578i
\(597\) 0 0
\(598\) −8.85427 27.2506i −0.362078 1.11436i
\(599\) −5.69678 7.84094i −0.232764 0.320372i 0.676618 0.736334i \(-0.263445\pi\)
−0.909382 + 0.415962i \(0.863445\pi\)
\(600\) 0 0
\(601\) −4.82038 + 1.56624i −0.196627 + 0.0638881i −0.405675 0.914017i \(-0.632964\pi\)
0.209048 + 0.977905i \(0.432964\pi\)
\(602\) 6.90830 21.2616i 0.281561 0.866556i
\(603\) 0 0
\(604\) 43.3147i 1.76245i
\(605\) −25.7763 + 20.2252i −1.04796 + 0.822273i
\(606\) 0 0
\(607\) 16.9860 23.3793i 0.689442 0.948935i −0.310557 0.950555i \(-0.600516\pi\)
0.999999 + 0.00161969i \(0.000515563\pi\)
\(608\) 29.1417 + 9.46870i 1.18185 + 0.384006i
\(609\) 0 0
\(610\) 41.0641 29.8348i 1.66264 1.20798i
\(611\) −10.9562 + 7.96014i −0.443240 + 0.322033i
\(612\) 0 0
\(613\) −29.6117 9.62142i −1.19600 0.388606i −0.357715 0.933831i \(-0.616444\pi\)
−0.838290 + 0.545225i \(0.816444\pi\)
\(614\) −34.6093 + 47.6356i −1.39672 + 1.92241i
\(615\) 0 0
\(616\) 7.88736 8.18463i 0.317791 0.329768i
\(617\) 28.7025i 1.15552i −0.816207 0.577760i \(-0.803927\pi\)
0.816207 0.577760i \(-0.196073\pi\)
\(618\) 0 0
\(619\) 4.88396 15.0313i 0.196303 0.604158i −0.803656 0.595094i \(-0.797115\pi\)
0.999959 0.00906388i \(-0.00288516\pi\)
\(620\) −56.4570 + 18.3440i −2.26737 + 0.736712i
\(621\) 0 0
\(622\) −27.1329 37.3453i −1.08793 1.49741i
\(623\) 9.03767 + 27.8151i 0.362086 + 1.11439i
\(624\) 0 0
\(625\) 23.7595 + 17.2623i 0.950380 + 0.690492i
\(626\) 11.8329 0.472937
\(627\) 0 0
\(628\) 0.913056 0.0364349
\(629\) 3.47113 + 2.52192i 0.138403 + 0.100556i
\(630\) 0 0
\(631\) 9.43085 + 29.0252i 0.375436 + 1.15547i 0.943184 + 0.332271i \(0.107815\pi\)
−0.567748 + 0.823203i \(0.692185\pi\)
\(632\) −7.38530 10.1650i −0.293771 0.404342i
\(633\) 0 0
\(634\) −27.5537 + 8.95275i −1.09430 + 0.355559i
\(635\) −15.5089 + 47.7315i −0.615452 + 1.89417i
\(636\) 0 0
\(637\) 8.21767i 0.325596i
\(638\) −37.2222 + 19.8411i −1.47364 + 0.785518i
\(639\) 0 0
\(640\) 14.5424 20.0159i 0.574839 0.791197i
\(641\) −17.2873 5.61698i −0.682807 0.221858i −0.0529832 0.998595i \(-0.516873\pi\)
−0.629824 + 0.776738i \(0.716873\pi\)
\(642\) 0 0
\(643\) −7.37203 + 5.35609i −0.290725 + 0.211224i −0.723582 0.690239i \(-0.757505\pi\)
0.432857 + 0.901463i \(0.357505\pi\)
\(644\) −34.1559 + 24.8157i −1.34593 + 0.977875i
\(645\) 0 0
\(646\) 7.76655 + 2.52350i 0.305571 + 0.0992859i
\(647\) −18.9534 + 26.0871i −0.745136 + 1.02559i 0.253171 + 0.967422i \(0.418527\pi\)
−0.998307 + 0.0581699i \(0.981473\pi\)
\(648\) 0 0
\(649\) 34.6728 + 16.8664i 1.36103 + 0.662065i
\(650\) 21.0353i 0.825073i
\(651\) 0 0
\(652\) 2.33981 7.20120i 0.0916340 0.282021i
\(653\) −20.4313 + 6.63853i −0.799538 + 0.259786i −0.680160 0.733063i \(-0.738090\pi\)
−0.119378 + 0.992849i \(0.538090\pi\)
\(654\) 0 0
\(655\) −25.0737 34.5109i −0.979709 1.34845i
\(656\) 1.12493 + 3.46219i 0.0439213 + 0.135176i
\(657\) 0 0
\(658\) 29.0309 + 21.0922i 1.13174 + 0.822260i
\(659\) −30.1358 −1.17393 −0.586963 0.809614i \(-0.699676\pi\)
−0.586963 + 0.809614i \(0.699676\pi\)
\(660\) 0 0
\(661\) −44.9664 −1.74899 −0.874496 0.485033i \(-0.838808\pi\)
−0.874496 + 0.485033i \(0.838808\pi\)
\(662\) −13.6610 9.92532i −0.530951 0.385758i
\(663\) 0 0
\(664\) −0.895419 2.75582i −0.0347490 0.106946i
\(665\) −21.5664 29.6836i −0.836309 1.15108i
\(666\) 0 0
\(667\) 30.0526 9.76467i 1.16364 0.378090i
\(668\) −5.96050 + 18.3445i −0.230619 + 0.709771i
\(669\) 0 0
\(670\) 41.8046i 1.61505i
\(671\) −3.67842 + 26.3725i −0.142004 + 1.01810i
\(672\) 0 0
\(673\) −23.7932 + 32.7486i −0.917162 + 1.26236i 0.0474995 + 0.998871i \(0.484875\pi\)
−0.964661 + 0.263494i \(0.915125\pi\)
\(674\) 63.3275 + 20.5764i 2.43929 + 0.792572i
\(675\) 0 0
\(676\) −13.0692 + 9.49536i −0.502663 + 0.365206i
\(677\) 26.3382 19.1358i 1.01226 0.735448i 0.0475763 0.998868i \(-0.484850\pi\)
0.964681 + 0.263419i \(0.0848503\pi\)
\(678\) 0 0
\(679\) −28.3590 9.21441i −1.08832 0.353617i
\(680\) 1.87396 2.57928i 0.0718631 0.0989111i
\(681\) 0 0
\(682\) 24.4974 50.3601i 0.938054 1.92839i
\(683\) 9.42972i 0.360818i 0.983592 + 0.180409i \(0.0577422\pi\)
−0.983592 + 0.180409i \(0.942258\pi\)
\(684\) 0 0
\(685\) 2.21696 6.82309i 0.0847055 0.260697i
\(686\) 24.4443 7.94244i 0.933289 0.303244i
\(687\) 0 0
\(688\) 5.29704 + 7.29076i 0.201948 + 0.277957i
\(689\) 3.27528 + 10.0803i 0.124778 + 0.384028i
\(690\) 0 0
\(691\) −6.24048 4.53397i −0.237399 0.172480i 0.462725 0.886502i \(-0.346872\pi\)
−0.700124 + 0.714022i \(0.746872\pi\)
\(692\) −27.8239 −1.05771
\(693\) 0 0
\(694\) −4.82158 −0.183025
\(695\) 10.2768 + 7.46652i 0.389821 + 0.283221i
\(696\) 0 0
\(697\) 0.410624 + 1.26377i 0.0155535 + 0.0478687i
\(698\) 34.1155 + 46.9560i 1.29129 + 1.77731i
\(699\) 0 0
\(700\) −29.4777 + 9.57787i −1.11415 + 0.362010i
\(701\) 4.21571 12.9746i 0.159225 0.490044i −0.839339 0.543608i \(-0.817058\pi\)
0.998564 + 0.0535633i \(0.0170579\pi\)
\(702\) 0 0
\(703\) 16.5736i 0.625086i
\(704\) 6.60589 + 37.2371i 0.248969 + 1.40343i
\(705\) 0 0
\(706\) −24.9189 + 34.2980i −0.937837 + 1.29082i
\(707\) 22.6652 + 7.36438i 0.852414 + 0.276966i
\(708\) 0 0
\(709\) −13.1477 + 9.55236i −0.493772 + 0.358746i −0.806633 0.591052i \(-0.798713\pi\)
0.312861 + 0.949799i \(0.398713\pi\)
\(710\) −49.0952 + 35.6697i −1.84251 + 1.33866i
\(711\) 0 0
\(712\) 9.33615 + 3.03350i 0.349887 + 0.113685i
\(713\) −24.6599 + 33.9415i −0.923522 + 1.27112i
\(714\) 0 0
\(715\) 18.2076 + 17.5463i 0.680927 + 0.656195i
\(716\) 20.7516i 0.775523i
\(717\) 0 0
\(718\) −14.0270 + 43.1706i −0.523482 + 1.61111i
\(719\) −12.0892 + 3.92803i −0.450852 + 0.146491i −0.525637 0.850709i \(-0.676173\pi\)
0.0747848 + 0.997200i \(0.476173\pi\)
\(720\) 0 0
\(721\) −28.1467 38.7407i −1.04824 1.44278i
\(722\) 2.71444 + 8.35420i 0.101021 + 0.310911i
\(723\) 0 0
\(724\) −34.6806 25.1970i −1.28890 0.936437i
\(725\) 23.1982 0.861560
\(726\) 0 0
\(727\) 29.4959 1.09394 0.546972 0.837151i \(-0.315781\pi\)
0.546972 + 0.837151i \(0.315781\pi\)
\(728\) −7.09697 5.15625i −0.263031 0.191103i
\(729\) 0 0
\(730\) 1.45179 + 4.46816i 0.0537333 + 0.165374i
\(731\) 1.93353 + 2.66127i 0.0715141 + 0.0984308i
\(732\) 0 0
\(733\) 36.6838 11.9193i 1.35495 0.440249i 0.460594 0.887611i \(-0.347637\pi\)
0.894353 + 0.447362i \(0.147637\pi\)
\(734\) −12.6276 + 38.8636i −0.466092 + 1.43448i
\(735\) 0 0
\(736\) 41.9181i 1.54512i
\(737\) −15.7916 15.2180i −0.581689 0.560562i
\(738\) 0 0
\(739\) −13.6543 + 18.7936i −0.502282 + 0.691332i −0.982594 0.185766i \(-0.940523\pi\)
0.480312 + 0.877098i \(0.340523\pi\)
\(740\) −30.5109 9.91360i −1.12160 0.364431i
\(741\) 0 0
\(742\) 22.7209 16.5077i 0.834111 0.606017i
\(743\) −2.99034 + 2.17261i −0.109705 + 0.0797052i −0.641285 0.767303i \(-0.721598\pi\)
0.531580 + 0.847008i \(0.321598\pi\)
\(744\) 0 0
\(745\) 11.2513 + 3.65577i 0.412215 + 0.133937i
\(746\) −8.60366 + 11.8419i −0.315002 + 0.433564i
\(747\) 0 0
\(748\) 1.44847 + 8.16498i 0.0529613 + 0.298541i
\(749\) 54.7281i 1.99972i
\(750\) 0 0
\(751\) −15.2699 + 46.9958i −0.557206 + 1.71490i 0.132841 + 0.991137i \(0.457590\pi\)
−0.690046 + 0.723765i \(0.742410\pi\)
\(752\) −13.7574 + 4.47005i −0.501680 + 0.163006i
\(753\) 0 0
\(754\) 19.1343 + 26.3361i 0.696831 + 0.959106i
\(755\) 15.9134 + 48.9763i 0.579147 + 1.78243i
\(756\) 0 0
\(757\) −34.6804 25.1968i −1.26048 0.915792i −0.261698 0.965150i \(-0.584282\pi\)
−0.998781 + 0.0493580i \(0.984282\pi\)
\(758\) −72.8820 −2.64719
\(759\) 0 0
\(760\) −12.3153 −0.446724
\(761\) 33.9827 + 24.6899i 1.23187 + 0.895008i 0.997029 0.0770250i \(-0.0245421\pi\)
0.234844 + 0.972033i \(0.424542\pi\)
\(762\) 0 0
\(763\) −0.444262 1.36730i −0.0160834 0.0494995i
\(764\) −16.0442 22.0829i −0.580457 0.798931i
\(765\) 0 0
\(766\) 3.22889 1.04913i 0.116665 0.0379066i
\(767\) 9.19556 28.3010i 0.332032 1.02189i
\(768\) 0 0
\(769\) 4.13165i 0.148991i 0.997221 + 0.0744955i \(0.0237346\pi\)
−0.997221 + 0.0744955i \(0.976265\pi\)
\(770\) 29.3088 60.2511i 1.05622 2.17130i
\(771\) 0 0
\(772\) −15.9407 + 21.9405i −0.573717 + 0.789654i
\(773\) 21.2989 + 6.92044i 0.766069 + 0.248911i 0.665882 0.746057i \(-0.268056\pi\)
0.100188 + 0.994969i \(0.468056\pi\)
\(774\) 0 0
\(775\) −24.9178 + 18.1039i −0.895075 + 0.650310i
\(776\) −8.09712 + 5.88290i −0.290670 + 0.211184i
\(777\) 0 0
\(778\) −47.9232 15.5712i −1.71813 0.558254i
\(779\) 3.01707 4.15264i 0.108098 0.148784i
\(780\) 0 0
\(781\) 4.39783 31.5303i 0.157367 1.12824i
\(782\) 11.1716i 0.399495i
\(783\) 0 0
\(784\) 2.71243 8.34801i 0.0968726 0.298143i
\(785\) 1.03240 0.335447i 0.0368480 0.0119726i
\(786\) 0 0
\(787\) −4.93902 6.79798i −0.176057 0.242322i 0.711864 0.702317i \(-0.247851\pi\)
−0.887921 + 0.459995i \(0.847851\pi\)
\(788\) −1.38423 4.26023i −0.0493112 0.151764i
\(789\) 0 0
\(790\) −59.9187 43.5335i −2.13181 1.54885i
\(791\) 13.3052 0.473080
\(792\) 0 0
\(793\) 20.5504 0.729768
\(794\) 25.9623 + 18.8627i 0.921369 + 0.669413i
\(795\) 0 0
\(796\) 0.413648 + 1.27308i 0.0146614 + 0.0451231i
\(797\) 4.60369 + 6.33643i 0.163071 + 0.224448i 0.882731 0.469879i \(-0.155702\pi\)
−0.719660 + 0.694327i \(0.755702\pi\)
\(798\) 0 0
\(799\) −5.02172 + 1.63166i −0.177656 + 0.0577239i
\(800\) 9.50961 29.2676i 0.336216 1.03476i
\(801\) 0 0
\(802\) 55.2798i 1.95200i
\(803\) −2.21632 1.07812i −0.0782124 0.0380460i
\(804\) 0 0
\(805\) −29.5033 + 40.6078i −1.03986 + 1.43124i
\(806\) −41.1054 13.3560i −1.44788 0.470443i
\(807\) 0 0
\(808\) 6.47141 4.70176i 0.227664 0.165407i
\(809\) 32.0318 23.2725i 1.12618 0.818216i 0.141044 0.990003i \(-0.454954\pi\)
0.985134 + 0.171787i \(0.0549541\pi\)
\(810\) 0 0
\(811\) −43.7729 14.2227i −1.53708 0.499426i −0.586508 0.809944i \(-0.699498\pi\)
−0.950568 + 0.310518i \(0.899498\pi\)
\(812\) 28.1936 38.8052i 0.989401 1.36179i
\(813\) 0 0
\(814\) 26.7078 14.2365i 0.936107 0.498987i
\(815\) 9.00208i 0.315329i
\(816\) 0 0
\(817\) 3.92662 12.0849i 0.137375 0.422797i
\(818\) 17.3228 5.62853i 0.605679 0.196797i
\(819\) 0 0
\(820\) −5.84005 8.03814i −0.203943 0.280704i
\(821\) 5.42862 + 16.7076i 0.189460 + 0.583099i 0.999997 0.00258952i \(-0.000824271\pi\)
−0.810536 + 0.585688i \(0.800824\pi\)
\(822\) 0 0
\(823\) −35.6517 25.9025i −1.24274 0.902904i −0.244963 0.969532i \(-0.578776\pi\)
−0.997778 + 0.0666279i \(0.978776\pi\)
\(824\) −16.0730 −0.559929
\(825\) 0 0
\(826\) −78.8492 −2.74351
\(827\) 41.6792 + 30.2817i 1.44933 + 1.05300i 0.985988 + 0.166818i \(0.0533493\pi\)
0.463341 + 0.886180i \(0.346651\pi\)
\(828\) 0 0
\(829\) 6.34753 + 19.5357i 0.220459 + 0.678503i 0.998721 + 0.0505630i \(0.0161016\pi\)
−0.778262 + 0.627940i \(0.783898\pi\)
\(830\) −10.0397 13.8184i −0.348481 0.479643i
\(831\) 0 0
\(832\) 27.7586 9.01932i 0.962356 0.312689i
\(833\) 0.990093 3.04719i 0.0343047 0.105579i
\(834\) 0 0
\(835\) 22.9322i 0.793600i
\(836\) 22.2275 23.0653i 0.768754 0.797729i
\(837\) 0 0
\(838\) −22.3175 + 30.7174i −0.770945 + 1.06111i
\(839\) 40.8430 + 13.2707i 1.41006 + 0.458155i 0.912429 0.409235i \(-0.134204\pi\)
0.497628 + 0.867391i \(0.334204\pi\)
\(840\) 0 0
\(841\) −5.58256 + 4.05597i −0.192502 + 0.139861i
\(842\) 5.97597 4.34180i 0.205946 0.149628i
\(843\) 0 0
\(844\) −12.2639 3.98478i −0.422140 0.137162i
\(845\) −11.2890 + 15.5380i −0.388354 + 0.534523i
\(846\) 0 0
\(847\) 12.0905 + 33.0043i 0.415433 + 1.13404i
\(848\) 11.3213i 0.388773i
\(849\) 0 0
\(850\) 2.53441 7.80010i 0.0869294 0.267541i
\(851\) −21.5634 + 7.00637i −0.739184 + 0.240175i
\(852\) 0 0
\(853\) 15.2572 + 20.9997i 0.522396 + 0.719016i 0.985948 0.167053i \(-0.0534252\pi\)
−0.463552 + 0.886070i \(0.653425\pi\)
\(854\) −16.8269 51.7880i −0.575806 1.77215i
\(855\) 0 0
\(856\) −14.8613 10.7973i −0.507947 0.369045i
\(857\) −10.4772 −0.357895 −0.178948 0.983859i \(-0.557269\pi\)
−0.178948 + 0.983859i \(0.557269\pi\)
\(858\) 0 0
\(859\) 23.6244 0.806053 0.403026 0.915188i \(-0.367958\pi\)
0.403026 + 0.915188i \(0.367958\pi\)
\(860\) −19.8987 14.4573i −0.678541 0.492989i
\(861\) 0 0
\(862\) 18.5566 + 57.1115i 0.632042 + 1.94522i
\(863\) −2.46666 3.39507i −0.0839661 0.115569i 0.764968 0.644069i \(-0.222755\pi\)
−0.848934 + 0.528499i \(0.822755\pi\)
\(864\) 0 0
\(865\) −31.4607 + 10.2222i −1.06970 + 0.347566i
\(866\) 2.18965 6.73906i 0.0744075 0.229003i
\(867\) 0 0
\(868\) 63.6839i 2.16157i
\(869\) 38.2567 6.78675i 1.29777 0.230225i
\(870\) 0 0
\(871\) −9.94855 + 13.6930i −0.337094 + 0.463970i
\(872\) −0.458934 0.149117i −0.0155415 0.00504973i
\(873\) 0 0
\(874\) −34.9122 + 25.3652i −1.18092 + 0.857991i
\(875\) 8.68757 6.31189i 0.293694 0.213381i
\(876\) 0 0
\(877\) −30.5461 9.92504i −1.03147 0.335145i −0.256099 0.966651i \(-0.582437\pi\)
−0.775371 + 0.631506i \(0.782437\pi\)
\(878\) −18.9141 + 26.0330i −0.638319 + 0.878570i
\(879\) 0 0
\(880\) 12.7048 + 23.8345i 0.428280 + 0.803459i
\(881\) 16.9977i 0.572666i −0.958130 0.286333i \(-0.907564\pi\)
0.958130 0.286333i \(-0.0924364\pi\)
\(882\) 0 0
\(883\) 6.18492 19.0352i 0.208139 0.640586i −0.791431 0.611259i \(-0.790663\pi\)
0.999570 0.0293274i \(-0.00933653\pi\)
\(884\) 6.08662 1.97766i 0.204715 0.0665160i
\(885\) 0 0
\(886\) 13.1696 + 18.1264i 0.442441 + 0.608968i
\(887\) 0.00102104 + 0.00314245i 3.42833e−5 + 0.000105513i 0.951074 0.308964i \(-0.0999823\pi\)
−0.951039 + 0.309070i \(0.899982\pi\)
\(888\) 0 0
\(889\) 43.5587 + 31.6473i 1.46091 + 1.06141i
\(890\) 57.8652 1.93965
\(891\) 0 0
\(892\) 10.5206 0.352256
\(893\) 16.5009 + 11.9886i 0.552183 + 0.401185i
\(894\) 0 0
\(895\) −7.62392 23.4640i −0.254839 0.784315i
\(896\) −15.6011 21.4730i −0.521195 0.717363i
\(897\) 0 0
\(898\) 31.7508 10.3165i 1.05954 0.344265i
\(899\) 14.7292 45.3319i 0.491247 1.51190i
\(900\) 0 0
\(901\) 4.13249i 0.137673i
\(902\) 9.28343 + 1.29485i 0.309104 + 0.0431137i
\(903\) 0 0
\(904\) 2.62500 3.61300i 0.0873061 0.120167i
\(905\) −48.4708 15.7491i −1.61122 0.523518i
\(906\) 0 0
\(907\) 24.6575 17.9148i 0.818740 0.594850i −0.0976112 0.995225i \(-0.531120\pi\)
0.916351 + 0.400375i \(0.131120\pi\)
\(908\) 33.8843 24.6184i 1.12449 0.816990i
\(909\) 0 0
\(910\) −49.1788 15.9791i −1.63026 0.529703i
\(911\) 22.3820 30.8062i 0.741549 1.02065i −0.256979 0.966417i \(-0.582727\pi\)
0.998528 0.0542375i \(-0.0172728\pi\)
\(912\) 0 0
\(913\) 8.87455 + 1.23782i 0.293705 + 0.0409658i
\(914\) 6.47759i 0.214260i
\(915\) 0 0
\(916\) −20.1268 + 61.9439i −0.665008 + 2.04668i
\(917\) −43.5235 + 14.1416i −1.43727 + 0.466998i
\(918\) 0 0
\(919\) 14.7418 + 20.2904i 0.486288 + 0.669318i 0.979698 0.200479i \(-0.0642497\pi\)
−0.493410 + 0.869797i \(0.664250\pi\)
\(920\) 5.20621 + 16.0231i 0.171644 + 0.528265i
\(921\) 0 0
\(922\) 0.844325 + 0.613438i 0.0278064 + 0.0202025i
\(923\) −24.5696 −0.808718
\(924\) 0 0
\(925\) −16.6452 −0.547292
\(926\) −15.4265 11.2080i −0.506948 0.368319i
\(927\) 0 0
\(928\) 14.7166 + 45.2931i 0.483096 + 1.48682i
\(929\) 3.82694 + 5.26733i 0.125558 + 0.172815i 0.867168 0.498015i \(-0.165938\pi\)
−0.741610 + 0.670831i \(0.765938\pi\)
\(930\) 0 0
\(931\) −11.7708 + 3.82455i −0.385771 + 0.125345i
\(932\) 13.4727 41.4648i 0.441314 1.35822i
\(933\) 0 0
\(934\) 4.82063i 0.157736i
\(935\) 4.63753 + 8.70006i 0.151663 + 0.284522i
\(936\) 0 0
\(937\) 4.31370 5.93730i 0.140923 0.193963i −0.732722 0.680528i \(-0.761750\pi\)
0.873644 + 0.486565i \(0.161750\pi\)
\(938\) 42.6529 + 13.8588i 1.39267 + 0.452505i
\(939\) 0 0
\(940\) 31.9404 23.2061i 1.04178 0.756898i
\(941\) 19.7910 14.3790i 0.645167 0.468741i −0.216454 0.976293i \(-0.569449\pi\)
0.861621 + 0.507551i \(0.169449\pi\)
\(942\) 0 0
\(943\) −6.67830 2.16991i −0.217476 0.0706621i
\(944\) 18.6828 25.7147i 0.608073 0.836941i
\(945\) 0 0
\(946\) 22.8473 4.05311i 0.742828 0.131778i
\(947\) 36.2379i 1.17757i −0.808288 0.588787i \(-0.799606\pi\)
0.808288 0.588787i \(-0.200394\pi\)
\(948\) 0 0
\(949\) −0.587789 + 1.80903i −0.0190805 + 0.0587236i
\(950\) −30.1304 + 9.78996i −0.977560 + 0.317628i
\(951\) 0 0
\(952\) −2.01038 2.76705i −0.0651569 0.0896807i
\(953\) 16.2642 + 50.0560i 0.526848 + 1.62147i 0.760632 + 0.649183i \(0.224889\pi\)
−0.233784 + 0.972289i \(0.575111\pi\)
\(954\) 0 0
\(955\) −26.2543 19.0749i −0.849570 0.617248i
\(956\) −6.24310 −0.201916
\(957\) 0 0
\(958\) 24.5836 0.794259
\(959\) −6.22660 4.52389i −0.201067 0.146084i
\(960\) 0 0
\(961\) 9.97638 + 30.7041i 0.321819 + 0.990456i
\(962\) −13.7293 18.8968i −0.442651 0.609256i
\(963\) 0 0
\(964\) 54.4880 17.7042i 1.75494 0.570214i
\(965\) −9.96357 + 30.6647i −0.320739 + 0.987132i
\(966\) 0 0
\(967\) 21.1895i 0.681409i −0.940171 0.340704i \(-0.889335\pi\)
0.940171 0.340704i \(-0.110665\pi\)
\(968\) 11.3476 + 3.22831i 0.364724 + 0.103762i
\(969\) 0 0
\(970\) −34.6775 + 47.7294i −1.11343 + 1.53250i
\(971\) 38.9482 + 12.6550i 1.24991 + 0.406119i 0.857887 0.513838i \(-0.171777\pi\)
0.392019 + 0.919957i \(0.371777\pi\)
\(972\) 0 0
\(973\) 11.0249 8.01008i 0.353443 0.256791i
\(974\) −63.2741 + 45.9713i −2.02743 + 1.47302i
\(975\) 0 0
\(976\) 20.8764 + 6.78315i 0.668237 + 0.217123i
\(977\) 35.9665 49.5036i 1.15067 1.58376i 0.409701 0.912220i \(-0.365633\pi\)
0.740968 0.671540i \(-0.234367\pi\)
\(978\) 0 0
\(979\) −21.0645 + 21.8584i −0.673223 + 0.698597i
\(980\) 23.9568i 0.765273i
\(981\) 0 0
\(982\) 9.13758 28.1226i 0.291592 0.897428i
\(983\) 54.8070 17.8079i 1.74807 0.567983i 0.752214 0.658919i \(-0.228986\pi\)
0.995857 + 0.0909365i \(0.0289860\pi\)
\(984\) 0 0
\(985\) −3.13033 4.30853i −0.0997405 0.137281i
\(986\) 3.92213 + 12.0711i 0.124906 + 0.384421i
\(987\) 0 0
\(988\) −20.0001 14.5309i −0.636288 0.462290i
\(989\) −17.3832 −0.552754
\(990\) 0 0
\(991\) −15.6063 −0.495750 −0.247875 0.968792i \(-0.579732\pi\)
−0.247875 + 0.968792i \(0.579732\pi\)
\(992\) −51.1542 37.1657i −1.62415 1.18001i
\(993\) 0 0
\(994\) 20.1179 + 61.9164i 0.638100 + 1.96387i
\(995\) 0.935432 + 1.28751i 0.0296552 + 0.0408169i
\(996\) 0 0
\(997\) −10.8263 + 3.51767i −0.342872 + 0.111406i −0.475391 0.879775i \(-0.657693\pi\)
0.132519 + 0.991180i \(0.457693\pi\)
\(998\) 8.28469 25.4977i 0.262247 0.807115i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.k.a.161.3 80
3.2 odd 2 inner 891.2.k.a.161.18 80
9.2 odd 6 99.2.p.a.95.9 yes 80
9.4 even 3 99.2.p.a.29.9 80
9.5 odd 6 297.2.t.a.62.2 80
9.7 even 3 297.2.t.a.260.2 80
11.8 odd 10 inner 891.2.k.a.404.18 80
33.8 even 10 inner 891.2.k.a.404.3 80
99.41 even 30 297.2.t.a.8.2 80
99.52 odd 30 297.2.t.a.206.2 80
99.74 even 30 99.2.p.a.41.9 yes 80
99.85 odd 30 99.2.p.a.74.9 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.29.9 80 9.4 even 3
99.2.p.a.41.9 yes 80 99.74 even 30
99.2.p.a.74.9 yes 80 99.85 odd 30
99.2.p.a.95.9 yes 80 9.2 odd 6
297.2.t.a.8.2 80 99.41 even 30
297.2.t.a.62.2 80 9.5 odd 6
297.2.t.a.206.2 80 99.52 odd 30
297.2.t.a.260.2 80 9.7 even 3
891.2.k.a.161.3 80 1.1 even 1 trivial
891.2.k.a.161.18 80 3.2 odd 2 inner
891.2.k.a.404.3 80 33.8 even 10 inner
891.2.k.a.404.18 80 11.8 odd 10 inner