Properties

Label 891.2.k.a.161.2
Level $891$
Weight $2$
Character 891.161
Analytic conductor $7.115$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(161,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.161");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.k (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(20\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 161.2
Character \(\chi\) \(=\) 891.161
Dual form 891.2.k.a.404.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.89658 - 1.37794i) q^{2} +(1.08024 + 3.32465i) q^{4} +(-1.71732 - 2.36369i) q^{5} +(-1.25106 + 0.406493i) q^{7} +(1.08356 - 3.33484i) q^{8} +6.84930i q^{10} +(-0.273229 - 3.30535i) q^{11} +(3.47331 - 4.78060i) q^{13} +(2.93285 + 0.952942i) q^{14} +(-0.994050 + 0.722219i) q^{16} +(3.07734 - 2.23582i) q^{17} +(-2.83716 - 0.921851i) q^{19} +(6.00331 - 8.26284i) q^{20} +(-4.03639 + 6.64535i) q^{22} +0.0847109i q^{23} +(-1.09275 + 3.36315i) q^{25} +(-13.1748 + 4.28075i) q^{26} +(-2.70289 - 3.72021i) q^{28} +(1.36073 + 4.18789i) q^{29} +(2.08597 + 1.51555i) q^{31} -4.13245 q^{32} -8.91726 q^{34} +(3.10929 + 2.25903i) q^{35} +(-2.11787 - 6.51815i) q^{37} +(4.11064 + 5.65782i) q^{38} +(-9.74334 + 3.16580i) q^{40} +(1.39682 - 4.29896i) q^{41} +3.38516i q^{43} +(10.6940 - 4.47897i) q^{44} +(0.116727 - 0.160661i) q^{46} +(-4.51901 - 1.46832i) q^{47} +(-4.26321 + 3.09740i) q^{49} +(6.70672 - 4.87272i) q^{50} +(19.6458 + 6.38331i) q^{52} +(-2.46224 + 3.38898i) q^{53} +(-7.34360 + 6.32218i) q^{55} +4.61254i q^{56} +(3.18995 - 9.81766i) q^{58} +(-13.3498 + 4.33762i) q^{59} +(-5.77176 - 7.94414i) q^{61} +(-1.86787 - 5.74871i) q^{62} +(9.82561 + 7.13872i) q^{64} -17.2646 q^{65} -3.78414 q^{67} +(10.7576 + 7.81585i) q^{68} +(-2.78419 - 8.56886i) q^{70} +(-2.61027 - 3.59273i) q^{71} +(8.30569 - 2.69868i) q^{73} +(-4.96493 + 15.2805i) q^{74} -10.4284i q^{76} +(1.68543 + 4.02412i) q^{77} +(-3.26965 + 4.50028i) q^{79} +(3.41421 + 1.10934i) q^{80} +(-8.57291 + 6.22858i) q^{82} +(1.02090 - 0.741727i) q^{83} +(-10.5696 - 3.43426i) q^{85} +(4.66456 - 6.42021i) q^{86} +(-11.3189 - 2.67036i) q^{88} +13.6071i q^{89} +(-2.40203 + 7.39268i) q^{91} +(-0.281634 + 0.0915083i) q^{92} +(6.54740 + 9.01173i) q^{94} +(2.69335 + 8.28929i) q^{95} +(11.1424 + 8.09543i) q^{97} +12.3536 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 10 q^{4} + 10 q^{7} + 10 q^{13} - 10 q^{16} - 50 q^{19} + 22 q^{22} + 4 q^{25} - 20 q^{28} + 12 q^{31} + 20 q^{34} - 6 q^{37} - 30 q^{40} - 40 q^{46} + 2 q^{49} + 10 q^{52} - 18 q^{55} + 58 q^{58}+ \cdots - 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.89658 1.37794i −1.34108 0.974354i −0.999403 0.0345375i \(-0.989004\pi\)
−0.341680 0.939816i \(-0.610996\pi\)
\(3\) 0 0
\(4\) 1.08024 + 3.32465i 0.540121 + 1.66232i
\(5\) −1.71732 2.36369i −0.768009 1.05707i −0.996505 0.0835293i \(-0.973381\pi\)
0.228496 0.973545i \(-0.426619\pi\)
\(6\) 0 0
\(7\) −1.25106 + 0.406493i −0.472855 + 0.153640i −0.535744 0.844381i \(-0.679969\pi\)
0.0628885 + 0.998021i \(0.479969\pi\)
\(8\) 1.08356 3.33484i 0.383095 1.17904i
\(9\) 0 0
\(10\) 6.84930i 2.16594i
\(11\) −0.273229 3.30535i −0.0823816 0.996601i
\(12\) 0 0
\(13\) 3.47331 4.78060i 0.963323 1.32590i 0.0179743 0.999838i \(-0.494278\pi\)
0.945348 0.326062i \(-0.105722\pi\)
\(14\) 2.93285 + 0.952942i 0.783838 + 0.254684i
\(15\) 0 0
\(16\) −0.994050 + 0.722219i −0.248512 + 0.180555i
\(17\) 3.07734 2.23582i 0.746365 0.542266i −0.148333 0.988938i \(-0.547391\pi\)
0.894698 + 0.446671i \(0.147391\pi\)
\(18\) 0 0
\(19\) −2.83716 0.921851i −0.650890 0.211487i −0.0350836 0.999384i \(-0.511170\pi\)
−0.615807 + 0.787897i \(0.711170\pi\)
\(20\) 6.00331 8.26284i 1.34238 1.84763i
\(21\) 0 0
\(22\) −4.03639 + 6.64535i −0.860561 + 1.41679i
\(23\) 0.0847109i 0.0176634i 0.999961 + 0.00883172i \(0.00281126\pi\)
−0.999961 + 0.00883172i \(0.997189\pi\)
\(24\) 0 0
\(25\) −1.09275 + 3.36315i −0.218550 + 0.672629i
\(26\) −13.1748 + 4.28075i −2.58379 + 0.839525i
\(27\) 0 0
\(28\) −2.70289 3.72021i −0.510799 0.703054i
\(29\) 1.36073 + 4.18789i 0.252681 + 0.777671i 0.994278 + 0.106826i \(0.0340687\pi\)
−0.741597 + 0.670846i \(0.765931\pi\)
\(30\) 0 0
\(31\) 2.08597 + 1.51555i 0.374652 + 0.272200i 0.759137 0.650931i \(-0.225621\pi\)
−0.384486 + 0.923131i \(0.625621\pi\)
\(32\) −4.13245 −0.730521
\(33\) 0 0
\(34\) −8.91726 −1.52930
\(35\) 3.10929 + 2.25903i 0.525566 + 0.381846i
\(36\) 0 0
\(37\) −2.11787 6.51815i −0.348176 1.07158i −0.959861 0.280475i \(-0.909508\pi\)
0.611685 0.791102i \(-0.290492\pi\)
\(38\) 4.11064 + 5.65782i 0.666835 + 0.917819i
\(39\) 0 0
\(40\) −9.74334 + 3.16580i −1.54056 + 0.500558i
\(41\) 1.39682 4.29896i 0.218146 0.671385i −0.780769 0.624820i \(-0.785172\pi\)
0.998915 0.0465655i \(-0.0148276\pi\)
\(42\) 0 0
\(43\) 3.38516i 0.516231i 0.966114 + 0.258116i \(0.0831016\pi\)
−0.966114 + 0.258116i \(0.916898\pi\)
\(44\) 10.6940 4.47897i 1.61218 0.675230i
\(45\) 0 0
\(46\) 0.116727 0.160661i 0.0172104 0.0236881i
\(47\) −4.51901 1.46832i −0.659166 0.214176i −0.0397146 0.999211i \(-0.512645\pi\)
−0.619451 + 0.785035i \(0.712645\pi\)
\(48\) 0 0
\(49\) −4.26321 + 3.09740i −0.609030 + 0.442486i
\(50\) 6.70672 4.87272i 0.948473 0.689106i
\(51\) 0 0
\(52\) 19.6458 + 6.38331i 2.72439 + 0.885206i
\(53\) −2.46224 + 3.38898i −0.338215 + 0.465512i −0.943919 0.330177i \(-0.892891\pi\)
0.605704 + 0.795690i \(0.292891\pi\)
\(54\) 0 0
\(55\) −7.34360 + 6.32218i −0.990211 + 0.852482i
\(56\) 4.61254i 0.616376i
\(57\) 0 0
\(58\) 3.18995 9.81766i 0.418861 1.28912i
\(59\) −13.3498 + 4.33762i −1.73800 + 0.564711i −0.994567 0.104099i \(-0.966804\pi\)
−0.743434 + 0.668810i \(0.766804\pi\)
\(60\) 0 0
\(61\) −5.77176 7.94414i −0.738998 1.01714i −0.998676 0.0514476i \(-0.983616\pi\)
0.259678 0.965695i \(-0.416384\pi\)
\(62\) −1.86787 5.74871i −0.237219 0.730086i
\(63\) 0 0
\(64\) 9.82561 + 7.13872i 1.22820 + 0.892340i
\(65\) −17.2646 −2.14142
\(66\) 0 0
\(67\) −3.78414 −0.462306 −0.231153 0.972917i \(-0.574250\pi\)
−0.231153 + 0.972917i \(0.574250\pi\)
\(68\) 10.7576 + 7.81585i 1.30455 + 0.947810i
\(69\) 0 0
\(70\) −2.78419 8.56886i −0.332775 1.02417i
\(71\) −2.61027 3.59273i −0.309782 0.426379i 0.625531 0.780199i \(-0.284882\pi\)
−0.935313 + 0.353821i \(0.884882\pi\)
\(72\) 0 0
\(73\) 8.30569 2.69868i 0.972108 0.315857i 0.220441 0.975400i \(-0.429250\pi\)
0.751667 + 0.659543i \(0.229250\pi\)
\(74\) −4.96493 + 15.2805i −0.577162 + 1.77632i
\(75\) 0 0
\(76\) 10.4284i 1.19622i
\(77\) 1.68543 + 4.02412i 0.192072 + 0.458591i
\(78\) 0 0
\(79\) −3.26965 + 4.50028i −0.367864 + 0.506321i −0.952319 0.305105i \(-0.901308\pi\)
0.584455 + 0.811426i \(0.301308\pi\)
\(80\) 3.41421 + 1.10934i 0.381720 + 0.124028i
\(81\) 0 0
\(82\) −8.57291 + 6.22858i −0.946719 + 0.687832i
\(83\) 1.02090 0.741727i 0.112058 0.0814152i −0.530345 0.847782i \(-0.677938\pi\)
0.642403 + 0.766367i \(0.277938\pi\)
\(84\) 0 0
\(85\) −10.5696 3.43426i −1.14643 0.372498i
\(86\) 4.66456 6.42021i 0.502992 0.692309i
\(87\) 0 0
\(88\) −11.3189 2.67036i −1.20660 0.284661i
\(89\) 13.6071i 1.44234i 0.692756 + 0.721172i \(0.256396\pi\)
−0.692756 + 0.721172i \(0.743604\pi\)
\(90\) 0 0
\(91\) −2.40203 + 7.39268i −0.251801 + 0.774964i
\(92\) −0.281634 + 0.0915083i −0.0293623 + 0.00954040i
\(93\) 0 0
\(94\) 6.54740 + 9.01173i 0.675313 + 0.929489i
\(95\) 2.69335 + 8.28929i 0.276332 + 0.850463i
\(96\) 0 0
\(97\) 11.1424 + 8.09543i 1.13134 + 0.821967i 0.985889 0.167399i \(-0.0535367\pi\)
0.145451 + 0.989365i \(0.453537\pi\)
\(98\) 12.3536 1.24790
\(99\) 0 0
\(100\) −12.3617 −1.23617
\(101\) 10.1146 + 7.34872i 1.00644 + 0.731225i 0.963460 0.267851i \(-0.0863135\pi\)
0.0429843 + 0.999076i \(0.486313\pi\)
\(102\) 0 0
\(103\) 1.84979 + 5.69306i 0.182265 + 0.560954i 0.999891 0.0147963i \(-0.00470998\pi\)
−0.817625 + 0.575750i \(0.804710\pi\)
\(104\) −12.1790 16.7630i −1.19425 1.64375i
\(105\) 0 0
\(106\) 9.33966 3.03464i 0.907148 0.294750i
\(107\) 0.951472 2.92833i 0.0919823 0.283092i −0.894473 0.447122i \(-0.852449\pi\)
0.986455 + 0.164029i \(0.0524491\pi\)
\(108\) 0 0
\(109\) 9.98777i 0.956655i −0.878181 0.478328i \(-0.841243\pi\)
0.878181 0.478328i \(-0.158757\pi\)
\(110\) 22.6393 1.87143i 2.15857 0.178433i
\(111\) 0 0
\(112\) 0.950036 1.30761i 0.0897700 0.123558i
\(113\) −4.48352 1.45678i −0.421774 0.137043i 0.0904375 0.995902i \(-0.471173\pi\)
−0.512211 + 0.858860i \(0.671173\pi\)
\(114\) 0 0
\(115\) 0.200230 0.145476i 0.0186716 0.0135657i
\(116\) −12.4533 + 9.04787i −1.15626 + 0.840074i
\(117\) 0 0
\(118\) 31.2960 + 10.1687i 2.88103 + 0.936104i
\(119\) −2.94109 + 4.04806i −0.269609 + 0.371085i
\(120\) 0 0
\(121\) −10.8507 + 1.80623i −0.986427 + 0.164203i
\(122\) 23.0198i 2.08412i
\(123\) 0 0
\(124\) −2.78530 + 8.57227i −0.250127 + 0.769813i
\(125\) −4.06738 + 1.32157i −0.363797 + 0.118205i
\(126\) 0 0
\(127\) −1.75209 2.41154i −0.155473 0.213990i 0.724174 0.689617i \(-0.242221\pi\)
−0.879647 + 0.475627i \(0.842221\pi\)
\(128\) −6.24428 19.2179i −0.551921 1.69864i
\(129\) 0 0
\(130\) 32.7437 + 23.7897i 2.87182 + 2.08650i
\(131\) −7.78501 −0.680180 −0.340090 0.940393i \(-0.610458\pi\)
−0.340090 + 0.940393i \(0.610458\pi\)
\(132\) 0 0
\(133\) 3.92418 0.340270
\(134\) 7.17692 + 5.21434i 0.619991 + 0.450450i
\(135\) 0 0
\(136\) −4.12163 12.6851i −0.353427 1.08774i
\(137\) 3.69241 + 5.08217i 0.315464 + 0.434199i 0.937076 0.349127i \(-0.113522\pi\)
−0.621612 + 0.783326i \(0.713522\pi\)
\(138\) 0 0
\(139\) 0.498861 0.162090i 0.0423128 0.0137483i −0.287784 0.957695i \(-0.592919\pi\)
0.330097 + 0.943947i \(0.392919\pi\)
\(140\) −4.15169 + 12.7776i −0.350882 + 1.07990i
\(141\) 0 0
\(142\) 10.4107i 0.873646i
\(143\) −16.7506 10.1743i −1.40075 0.850819i
\(144\) 0 0
\(145\) 7.56206 10.4083i 0.627995 0.864361i
\(146\) −19.4710 6.32652i −1.61143 0.523587i
\(147\) 0 0
\(148\) 19.3827 14.0824i 1.59325 1.15756i
\(149\) 7.77987 5.65240i 0.637352 0.463063i −0.221588 0.975140i \(-0.571124\pi\)
0.858939 + 0.512077i \(0.171124\pi\)
\(150\) 0 0
\(151\) −9.51615 3.09198i −0.774413 0.251622i −0.104960 0.994476i \(-0.533471\pi\)
−0.669453 + 0.742854i \(0.733471\pi\)
\(152\) −6.14845 + 8.46262i −0.498705 + 0.686409i
\(153\) 0 0
\(154\) 2.34847 9.95448i 0.189245 0.802155i
\(155\) 7.53327i 0.605087i
\(156\) 0 0
\(157\) 1.01408 3.12100i 0.0809320 0.249083i −0.902401 0.430898i \(-0.858197\pi\)
0.983333 + 0.181814i \(0.0581970\pi\)
\(158\) 12.4023 4.02975i 0.986673 0.320589i
\(159\) 0 0
\(160\) 7.09674 + 9.76783i 0.561047 + 0.772214i
\(161\) −0.0344344 0.105978i −0.00271381 0.00835225i
\(162\) 0 0
\(163\) −7.00394 5.08866i −0.548591 0.398575i 0.278675 0.960386i \(-0.410105\pi\)
−0.827266 + 0.561811i \(0.810105\pi\)
\(164\) 15.8014 1.23388
\(165\) 0 0
\(166\) −2.95828 −0.229607
\(167\) 16.0518 + 11.6623i 1.24212 + 0.902457i 0.997738 0.0672213i \(-0.0214133\pi\)
0.244387 + 0.969678i \(0.421413\pi\)
\(168\) 0 0
\(169\) −6.77304 20.8453i −0.521003 1.60348i
\(170\) 15.3138 + 21.0776i 1.17451 + 1.61658i
\(171\) 0 0
\(172\) −11.2544 + 3.65679i −0.858143 + 0.278828i
\(173\) 2.15797 6.64155i 0.164068 0.504948i −0.834899 0.550403i \(-0.814474\pi\)
0.998966 + 0.0454555i \(0.0144739\pi\)
\(174\) 0 0
\(175\) 4.65169i 0.351634i
\(176\) 2.65879 + 3.08835i 0.200414 + 0.232793i
\(177\) 0 0
\(178\) 18.7498 25.8068i 1.40535 1.93430i
\(179\) −14.8154 4.81380i −1.10735 0.359800i −0.302424 0.953173i \(-0.597796\pi\)
−0.804928 + 0.593373i \(0.797796\pi\)
\(180\) 0 0
\(181\) −13.0927 + 9.51241i −0.973173 + 0.707052i −0.956173 0.292804i \(-0.905412\pi\)
−0.0170005 + 0.999855i \(0.505412\pi\)
\(182\) 14.7423 10.7109i 1.09278 0.793948i
\(183\) 0 0
\(184\) 0.282497 + 0.0917890i 0.0208260 + 0.00676677i
\(185\) −11.7698 + 16.1998i −0.865334 + 1.19103i
\(186\) 0 0
\(187\) −8.23099 9.56081i −0.601910 0.699156i
\(188\) 16.6103i 1.21143i
\(189\) 0 0
\(190\) 6.31403 19.4326i 0.458068 1.40979i
\(191\) −13.9998 + 4.54881i −1.01299 + 0.329140i −0.768044 0.640397i \(-0.778770\pi\)
−0.244945 + 0.969537i \(0.578770\pi\)
\(192\) 0 0
\(193\) 4.02742 + 5.54327i 0.289900 + 0.399013i 0.928982 0.370126i \(-0.120685\pi\)
−0.639082 + 0.769139i \(0.720685\pi\)
\(194\) −9.97739 30.7072i −0.716335 2.20465i
\(195\) 0 0
\(196\) −14.9031 10.8277i −1.06451 0.773408i
\(197\) 8.81639 0.628141 0.314071 0.949400i \(-0.398307\pi\)
0.314071 + 0.949400i \(0.398307\pi\)
\(198\) 0 0
\(199\) 8.40540 0.595843 0.297921 0.954590i \(-0.403707\pi\)
0.297921 + 0.954590i \(0.403707\pi\)
\(200\) 10.0315 + 7.28831i 0.709334 + 0.515361i
\(201\) 0 0
\(202\) −9.05708 27.8748i −0.637254 1.96127i
\(203\) −3.40470 4.68616i −0.238963 0.328904i
\(204\) 0 0
\(205\) −12.5602 + 4.08106i −0.877243 + 0.285033i
\(206\) 4.33646 13.3462i 0.302135 0.929877i
\(207\) 0 0
\(208\) 7.26065i 0.503435i
\(209\) −2.27184 + 9.62970i −0.157147 + 0.666100i
\(210\) 0 0
\(211\) 10.2391 14.0929i 0.704886 0.970192i −0.295006 0.955495i \(-0.595322\pi\)
0.999892 0.0146969i \(-0.00467832\pi\)
\(212\) −13.9270 4.52515i −0.956509 0.310788i
\(213\) 0 0
\(214\) −5.83962 + 4.24273i −0.399188 + 0.290027i
\(215\) 8.00146 5.81340i 0.545695 0.396471i
\(216\) 0 0
\(217\) −3.22573 1.04810i −0.218977 0.0711499i
\(218\) −13.7626 + 18.9426i −0.932121 + 1.28295i
\(219\) 0 0
\(220\) −28.9519 17.5854i −1.95193 1.18561i
\(221\) 22.4772i 1.51198i
\(222\) 0 0
\(223\) 5.29613 16.2998i 0.354655 1.09152i −0.601554 0.798832i \(-0.705452\pi\)
0.956209 0.292684i \(-0.0945485\pi\)
\(224\) 5.16993 1.67981i 0.345431 0.112237i
\(225\) 0 0
\(226\) 6.49597 + 8.94094i 0.432106 + 0.594742i
\(227\) −5.34358 16.4458i −0.354666 1.09155i −0.956203 0.292704i \(-0.905445\pi\)
0.601537 0.798845i \(-0.294555\pi\)
\(228\) 0 0
\(229\) −12.7856 9.28930i −0.844898 0.613854i 0.0788364 0.996888i \(-0.474880\pi\)
−0.923735 + 0.383033i \(0.874880\pi\)
\(230\) −0.580210 −0.0382579
\(231\) 0 0
\(232\) 15.4404 1.01371
\(233\) −2.75423 2.00107i −0.180436 0.131094i 0.493901 0.869518i \(-0.335570\pi\)
−0.674337 + 0.738424i \(0.735570\pi\)
\(234\) 0 0
\(235\) 4.28995 + 13.2031i 0.279846 + 0.861276i
\(236\) −28.8421 39.6978i −1.87746 2.58411i
\(237\) 0 0
\(238\) 11.1560 3.62481i 0.723136 0.234961i
\(239\) 1.79419 5.52193i 0.116056 0.357184i −0.876110 0.482112i \(-0.839870\pi\)
0.992166 + 0.124928i \(0.0398699\pi\)
\(240\) 0 0
\(241\) 3.01020i 0.193904i 0.995289 + 0.0969521i \(0.0309094\pi\)
−0.995289 + 0.0969521i \(0.969091\pi\)
\(242\) 23.0681 + 11.5260i 1.48287 + 0.740918i
\(243\) 0 0
\(244\) 20.1765 27.7706i 1.29167 1.77783i
\(245\) 14.6426 + 4.75767i 0.935482 + 0.303956i
\(246\) 0 0
\(247\) −14.2614 + 10.3615i −0.907428 + 0.659285i
\(248\) 7.31437 5.31420i 0.464463 0.337452i
\(249\) 0 0
\(250\) 9.53515 + 3.09816i 0.603056 + 0.195945i
\(251\) 9.41803 12.9628i 0.594461 0.818205i −0.400726 0.916198i \(-0.631242\pi\)
0.995187 + 0.0979925i \(0.0312421\pi\)
\(252\) 0 0
\(253\) 0.279999 0.0231455i 0.0176034 0.00145514i
\(254\) 6.98796i 0.438464i
\(255\) 0 0
\(256\) −7.13235 + 21.9511i −0.445772 + 1.37195i
\(257\) 11.8335 3.84495i 0.738156 0.239842i 0.0842791 0.996442i \(-0.473141\pi\)
0.653877 + 0.756601i \(0.273141\pi\)
\(258\) 0 0
\(259\) 5.29917 + 7.29368i 0.329274 + 0.453207i
\(260\) −18.6500 57.3988i −1.15662 3.55972i
\(261\) 0 0
\(262\) 14.7649 + 10.7273i 0.912178 + 0.662736i
\(263\) 15.2873 0.942655 0.471328 0.881958i \(-0.343775\pi\)
0.471328 + 0.881958i \(0.343775\pi\)
\(264\) 0 0
\(265\) 12.2390 0.751833
\(266\) −7.44252 5.40731i −0.456330 0.331543i
\(267\) 0 0
\(268\) −4.08779 12.5809i −0.249702 0.768502i
\(269\) 1.18129 + 1.62591i 0.0720247 + 0.0991335i 0.843509 0.537114i \(-0.180486\pi\)
−0.771485 + 0.636248i \(0.780486\pi\)
\(270\) 0 0
\(271\) −20.2438 + 6.57759i −1.22972 + 0.399560i −0.850613 0.525792i \(-0.823769\pi\)
−0.379107 + 0.925353i \(0.623769\pi\)
\(272\) −1.44428 + 4.44503i −0.0875723 + 0.269520i
\(273\) 0 0
\(274\) 14.7267i 0.889670i
\(275\) 11.4150 + 2.69302i 0.688347 + 0.162395i
\(276\) 0 0
\(277\) 14.5106 19.9722i 0.871860 1.20001i −0.106749 0.994286i \(-0.534044\pi\)
0.978609 0.205727i \(-0.0659559\pi\)
\(278\) −1.16948 0.379987i −0.0701407 0.0227901i
\(279\) 0 0
\(280\) 10.9026 7.92121i 0.651555 0.473383i
\(281\) 10.5368 7.65541i 0.628571 0.456683i −0.227334 0.973817i \(-0.573001\pi\)
0.855905 + 0.517133i \(0.173001\pi\)
\(282\) 0 0
\(283\) 18.8011 + 6.10884i 1.11761 + 0.363133i 0.808854 0.588009i \(-0.200088\pi\)
0.308754 + 0.951142i \(0.400088\pi\)
\(284\) 9.12482 12.5592i 0.541459 0.745254i
\(285\) 0 0
\(286\) 17.7491 + 42.3777i 1.04953 + 2.50585i
\(287\) 5.94605i 0.350984i
\(288\) 0 0
\(289\) −0.782142 + 2.40719i −0.0460084 + 0.141599i
\(290\) −28.6841 + 9.32002i −1.68439 + 0.547291i
\(291\) 0 0
\(292\) 17.9443 + 24.6983i 1.05011 + 1.44536i
\(293\) −1.36972 4.21558i −0.0800202 0.246277i 0.903041 0.429554i \(-0.141329\pi\)
−0.983061 + 0.183278i \(0.941329\pi\)
\(294\) 0 0
\(295\) 33.1788 + 24.1058i 1.93174 + 1.40349i
\(296\) −24.0318 −1.39682
\(297\) 0 0
\(298\) −22.5438 −1.30593
\(299\) 0.404969 + 0.294227i 0.0234200 + 0.0170156i
\(300\) 0 0
\(301\) −1.37604 4.23502i −0.0793138 0.244103i
\(302\) 13.7875 + 18.9769i 0.793383 + 1.09200i
\(303\) 0 0
\(304\) 3.48606 1.13269i 0.199939 0.0649642i
\(305\) −8.86552 + 27.2853i −0.507638 + 1.56235i
\(306\) 0 0
\(307\) 11.0942i 0.633182i 0.948562 + 0.316591i \(0.102538\pi\)
−0.948562 + 0.316591i \(0.897462\pi\)
\(308\) −11.5581 + 9.95048i −0.658584 + 0.566981i
\(309\) 0 0
\(310\) −10.3804 + 14.2874i −0.589569 + 0.811472i
\(311\) −7.46221 2.42462i −0.423143 0.137487i 0.0897022 0.995969i \(-0.471408\pi\)
−0.512845 + 0.858481i \(0.671408\pi\)
\(312\) 0 0
\(313\) −26.1681 + 19.0122i −1.47911 + 1.07463i −0.501265 + 0.865294i \(0.667132\pi\)
−0.977843 + 0.209340i \(0.932868\pi\)
\(314\) −6.22384 + 4.52188i −0.351232 + 0.255185i
\(315\) 0 0
\(316\) −18.4939 6.00902i −1.04036 0.338034i
\(317\) 7.07124 9.73273i 0.397161 0.546645i −0.562868 0.826547i \(-0.690302\pi\)
0.960029 + 0.279902i \(0.0903021\pi\)
\(318\) 0 0
\(319\) 13.4707 5.64193i 0.754212 0.315888i
\(320\) 35.4842i 1.98363i
\(321\) 0 0
\(322\) −0.0807245 + 0.248445i −0.00449860 + 0.0138453i
\(323\) −10.7920 + 3.50654i −0.600484 + 0.195109i
\(324\) 0 0
\(325\) 12.2824 + 16.9053i 0.681305 + 0.937735i
\(326\) 6.27163 + 19.3021i 0.347354 + 1.06904i
\(327\) 0 0
\(328\) −12.8228 9.31633i −0.708023 0.514409i
\(329\) 6.25041 0.344596
\(330\) 0 0
\(331\) −30.0746 −1.65305 −0.826524 0.562901i \(-0.809685\pi\)
−0.826524 + 0.562901i \(0.809685\pi\)
\(332\) 3.56880 + 2.59289i 0.195863 + 0.142303i
\(333\) 0 0
\(334\) −14.3735 44.2370i −0.786481 2.42054i
\(335\) 6.49858 + 8.94453i 0.355056 + 0.488692i
\(336\) 0 0
\(337\) −20.9200 + 6.79732i −1.13958 + 0.370273i −0.817211 0.576339i \(-0.804481\pi\)
−0.322374 + 0.946612i \(0.604481\pi\)
\(338\) −15.8780 + 48.8676i −0.863651 + 2.65805i
\(339\) 0 0
\(340\) 38.8499i 2.10693i
\(341\) 4.43947 7.30896i 0.240411 0.395802i
\(342\) 0 0
\(343\) 9.48682 13.0575i 0.512240 0.705038i
\(344\) 11.2890 + 3.66800i 0.608660 + 0.197766i
\(345\) 0 0
\(346\) −13.2445 + 9.62266i −0.712026 + 0.517317i
\(347\) 12.2670 8.91252i 0.658529 0.478449i −0.207637 0.978206i \(-0.566577\pi\)
0.866166 + 0.499757i \(0.166577\pi\)
\(348\) 0 0
\(349\) −17.8759 5.80824i −0.956876 0.310908i −0.211370 0.977406i \(-0.567792\pi\)
−0.745507 + 0.666498i \(0.767792\pi\)
\(350\) −6.40977 + 8.82229i −0.342616 + 0.471571i
\(351\) 0 0
\(352\) 1.12910 + 13.6592i 0.0601815 + 0.728037i
\(353\) 8.84248i 0.470638i −0.971918 0.235319i \(-0.924387\pi\)
0.971918 0.235319i \(-0.0756134\pi\)
\(354\) 0 0
\(355\) −4.00942 + 12.3397i −0.212798 + 0.654925i
\(356\) −45.2386 + 14.6989i −2.39764 + 0.779041i
\(357\) 0 0
\(358\) 21.4653 + 29.5445i 1.13448 + 1.56147i
\(359\) 5.57195 + 17.1487i 0.294076 + 0.905074i 0.983530 + 0.180744i \(0.0578507\pi\)
−0.689454 + 0.724330i \(0.742149\pi\)
\(360\) 0 0
\(361\) −8.17163 5.93703i −0.430086 0.312476i
\(362\) 37.9389 1.99402
\(363\) 0 0
\(364\) −27.1728 −1.42424
\(365\) −20.6424 14.9976i −1.08047 0.785009i
\(366\) 0 0
\(367\) 9.67789 + 29.7855i 0.505182 + 1.55479i 0.800465 + 0.599379i \(0.204586\pi\)
−0.295284 + 0.955410i \(0.595414\pi\)
\(368\) −0.0611798 0.0842068i −0.00318922 0.00438958i
\(369\) 0 0
\(370\) 44.6447 14.5059i 2.32097 0.754128i
\(371\) 1.70280 5.24069i 0.0884052 0.272083i
\(372\) 0 0
\(373\) 3.36802i 0.174390i −0.996191 0.0871948i \(-0.972210\pi\)
0.996191 0.0871948i \(-0.0277903\pi\)
\(374\) 2.43645 + 29.4747i 0.125986 + 1.52410i
\(375\) 0 0
\(376\) −9.79321 + 13.4792i −0.505046 + 0.695136i
\(377\) 24.7469 + 8.04074i 1.27453 + 0.414119i
\(378\) 0 0
\(379\) −19.5313 + 14.1903i −1.00326 + 0.728908i −0.962784 0.270273i \(-0.912886\pi\)
−0.0404716 + 0.999181i \(0.512886\pi\)
\(380\) −24.6495 + 17.9089i −1.26449 + 0.918707i
\(381\) 0 0
\(382\) 32.8197 + 10.6638i 1.67920 + 0.545605i
\(383\) 5.31898 7.32094i 0.271787 0.374083i −0.651205 0.758902i \(-0.725736\pi\)
0.922992 + 0.384819i \(0.125736\pi\)
\(384\) 0 0
\(385\) 6.61735 10.8945i 0.337251 0.555237i
\(386\) 16.0628i 0.817575i
\(387\) 0 0
\(388\) −14.8779 + 45.7896i −0.755313 + 2.32461i
\(389\) 24.8106 8.06147i 1.25795 0.408733i 0.397186 0.917738i \(-0.369987\pi\)
0.860763 + 0.509005i \(0.169987\pi\)
\(390\) 0 0
\(391\) 0.189398 + 0.260684i 0.00957829 + 0.0131834i
\(392\) 5.70992 + 17.5733i 0.288395 + 0.887588i
\(393\) 0 0
\(394\) −16.7210 12.1485i −0.842390 0.612032i
\(395\) 16.2523 0.817742
\(396\) 0 0
\(397\) 19.8829 0.997896 0.498948 0.866632i \(-0.333720\pi\)
0.498948 + 0.866632i \(0.333720\pi\)
\(398\) −15.9415 11.5822i −0.799075 0.580562i
\(399\) 0 0
\(400\) −1.34268 4.13234i −0.0671340 0.206617i
\(401\) 5.84032 + 8.03852i 0.291652 + 0.401424i 0.929550 0.368697i \(-0.120196\pi\)
−0.637898 + 0.770121i \(0.720196\pi\)
\(402\) 0 0
\(403\) 14.4904 4.70823i 0.721821 0.234534i
\(404\) −13.5056 + 41.5660i −0.671929 + 2.06799i
\(405\) 0 0
\(406\) 13.5792i 0.673922i
\(407\) −20.9661 + 8.78127i −1.03925 + 0.435271i
\(408\) 0 0
\(409\) 0.000906684 0.00124794i 4.48326e−5 6.17068e-5i −0.808995 0.587816i \(-0.799988\pi\)
0.809039 + 0.587754i \(0.199988\pi\)
\(410\) 29.4449 + 9.56722i 1.45418 + 0.472491i
\(411\) 0 0
\(412\) −16.9292 + 12.2998i −0.834042 + 0.605967i
\(413\) 14.9382 10.8532i 0.735061 0.534053i
\(414\) 0 0
\(415\) −3.50643 1.13931i −0.172124 0.0559264i
\(416\) −14.3533 + 19.7556i −0.703727 + 0.968597i
\(417\) 0 0
\(418\) 17.5779 15.1330i 0.859764 0.740179i
\(419\) 15.4410i 0.754342i 0.926144 + 0.377171i \(0.123103\pi\)
−0.926144 + 0.377171i \(0.876897\pi\)
\(420\) 0 0
\(421\) 7.57531 23.3144i 0.369198 1.13627i −0.578112 0.815957i \(-0.696210\pi\)
0.947310 0.320318i \(-0.103790\pi\)
\(422\) −38.8383 + 12.6193i −1.89062 + 0.614300i
\(423\) 0 0
\(424\) 8.63374 + 11.8833i 0.419292 + 0.577105i
\(425\) 4.15662 + 12.7928i 0.201626 + 0.620540i
\(426\) 0 0
\(427\) 10.4500 + 7.59240i 0.505713 + 0.367422i
\(428\) 10.7635 0.520273
\(429\) 0 0
\(430\) −23.1859 −1.11812
\(431\) 9.71012 + 7.05482i 0.467720 + 0.339818i 0.796552 0.604570i \(-0.206655\pi\)
−0.328832 + 0.944388i \(0.606655\pi\)
\(432\) 0 0
\(433\) 0.277208 + 0.853159i 0.0133218 + 0.0410002i 0.957496 0.288445i \(-0.0931383\pi\)
−0.944175 + 0.329445i \(0.893138\pi\)
\(434\) 4.67362 + 6.43269i 0.224341 + 0.308779i
\(435\) 0 0
\(436\) 33.2058 10.7892i 1.59027 0.516710i
\(437\) 0.0780908 0.240339i 0.00373559 0.0114970i
\(438\) 0 0
\(439\) 4.35120i 0.207672i 0.994594 + 0.103836i \(0.0331116\pi\)
−0.994594 + 0.103836i \(0.966888\pi\)
\(440\) 13.1263 + 31.3402i 0.625770 + 1.49408i
\(441\) 0 0
\(442\) −30.9724 + 42.6299i −1.47321 + 2.02770i
\(443\) 36.5642 + 11.8804i 1.73722 + 0.564456i 0.994461 0.105107i \(-0.0335184\pi\)
0.742756 + 0.669563i \(0.233518\pi\)
\(444\) 0 0
\(445\) 32.1629 23.3677i 1.52467 1.10773i
\(446\) −32.5048 + 23.6161i −1.53915 + 1.11825i
\(447\) 0 0
\(448\) −15.1942 4.93691i −0.717861 0.233247i
\(449\) 10.6492 14.6573i 0.502566 0.691723i −0.480078 0.877226i \(-0.659392\pi\)
0.982644 + 0.185503i \(0.0593916\pi\)
\(450\) 0 0
\(451\) −14.5912 3.44237i −0.687075 0.162095i
\(452\) 16.4798i 0.775144i
\(453\) 0 0
\(454\) −12.5269 + 38.5540i −0.587919 + 1.80943i
\(455\) 21.5991 7.01796i 1.01258 0.329007i
\(456\) 0 0
\(457\) −18.9286 26.0530i −0.885444 1.21871i −0.974883 0.222717i \(-0.928507\pi\)
0.0894390 0.995992i \(-0.471493\pi\)
\(458\) 11.4488 + 35.2358i 0.534967 + 1.64646i
\(459\) 0 0
\(460\) 0.699953 + 0.508545i 0.0326355 + 0.0237111i
\(461\) −39.0951 −1.82084 −0.910420 0.413684i \(-0.864242\pi\)
−0.910420 + 0.413684i \(0.864242\pi\)
\(462\) 0 0
\(463\) −17.0365 −0.791753 −0.395877 0.918304i \(-0.629559\pi\)
−0.395877 + 0.918304i \(0.629559\pi\)
\(464\) −4.37721 3.18023i −0.203207 0.147638i
\(465\) 0 0
\(466\) 2.46626 + 7.59036i 0.114247 + 0.351617i
\(467\) −13.3070 18.3156i −0.615776 0.847543i 0.381261 0.924468i \(-0.375490\pi\)
−0.997037 + 0.0769242i \(0.975490\pi\)
\(468\) 0 0
\(469\) 4.73418 1.53823i 0.218604 0.0710287i
\(470\) 10.0569 30.9521i 0.463892 1.42771i
\(471\) 0 0
\(472\) 49.2196i 2.26552i
\(473\) 11.1891 0.924922i 0.514477 0.0425280i
\(474\) 0 0
\(475\) 6.20064 8.53445i 0.284505 0.391587i
\(476\) −16.6355 5.40519i −0.762485 0.247746i
\(477\) 0 0
\(478\) −11.0117 + 8.00049i −0.503665 + 0.365934i
\(479\) −11.0022 + 7.99356i −0.502703 + 0.365235i −0.810048 0.586363i \(-0.800559\pi\)
0.307346 + 0.951598i \(0.400559\pi\)
\(480\) 0 0
\(481\) −38.5167 12.5148i −1.75621 0.570627i
\(482\) 4.14789 5.70909i 0.188931 0.260042i
\(483\) 0 0
\(484\) −17.7265 34.1235i −0.805749 1.55107i
\(485\) 40.2397i 1.82719i
\(486\) 0 0
\(487\) 2.70549 8.32664i 0.122597 0.377316i −0.870858 0.491534i \(-0.836436\pi\)
0.993456 + 0.114218i \(0.0364362\pi\)
\(488\) −32.7465 + 10.6400i −1.48236 + 0.481649i
\(489\) 0 0
\(490\) −21.2150 29.2000i −0.958398 1.31912i
\(491\) 10.3756 + 31.9327i 0.468242 + 1.44110i 0.854859 + 0.518861i \(0.173644\pi\)
−0.386616 + 0.922241i \(0.626356\pi\)
\(492\) 0 0
\(493\) 13.5508 + 9.84523i 0.610297 + 0.443407i
\(494\) 41.3253 1.85931
\(495\) 0 0
\(496\) −3.16812 −0.142253
\(497\) 4.72602 + 3.43365i 0.211991 + 0.154020i
\(498\) 0 0
\(499\) 0.694327 + 2.13692i 0.0310824 + 0.0956617i 0.965394 0.260795i \(-0.0839847\pi\)
−0.934312 + 0.356457i \(0.883985\pi\)
\(500\) −8.78751 12.0950i −0.392990 0.540904i
\(501\) 0 0
\(502\) −35.7241 + 11.6075i −1.59444 + 0.518066i
\(503\) −5.15181 + 15.8556i −0.229708 + 0.706968i 0.768072 + 0.640364i \(0.221216\pi\)
−0.997779 + 0.0666040i \(0.978784\pi\)
\(504\) 0 0
\(505\) 36.5280i 1.62547i
\(506\) −0.562934 0.341926i −0.0250254 0.0152005i
\(507\) 0 0
\(508\) 6.12484 8.43012i 0.271746 0.374026i
\(509\) 9.95760 + 3.23542i 0.441363 + 0.143407i 0.521264 0.853395i \(-0.325461\pi\)
−0.0799015 + 0.996803i \(0.525461\pi\)
\(510\) 0 0
\(511\) −9.29390 + 6.75242i −0.411138 + 0.298709i
\(512\) 11.0790 8.04940i 0.489629 0.355737i
\(513\) 0 0
\(514\) −27.7414 9.01372i −1.22362 0.397578i
\(515\) 10.2800 14.1491i 0.452989 0.623486i
\(516\) 0 0
\(517\) −3.61858 + 15.3381i −0.159145 + 0.674570i
\(518\) 21.1350i 0.928618i
\(519\) 0 0
\(520\) −18.7072 + 57.5749i −0.820365 + 2.52482i
\(521\) −5.99155 + 1.94677i −0.262494 + 0.0852896i −0.437308 0.899312i \(-0.644068\pi\)
0.174813 + 0.984602i \(0.444068\pi\)
\(522\) 0 0
\(523\) −12.7364 17.5301i −0.556923 0.766538i 0.434008 0.900909i \(-0.357099\pi\)
−0.990931 + 0.134370i \(0.957099\pi\)
\(524\) −8.40970 25.8824i −0.367380 1.13068i
\(525\) 0 0
\(526\) −28.9936 21.0651i −1.26418 0.918480i
\(527\) 9.80774 0.427232
\(528\) 0 0
\(529\) 22.9928 0.999688
\(530\) −23.2121 16.8646i −1.00827 0.732551i
\(531\) 0 0
\(532\) 4.23907 + 13.0465i 0.183787 + 0.565638i
\(533\) −15.7001 21.6093i −0.680045 0.936001i
\(534\) 0 0
\(535\) −8.55565 + 2.77990i −0.369893 + 0.120186i
\(536\) −4.10033 + 12.6195i −0.177107 + 0.545080i
\(537\) 0 0
\(538\) 4.71142i 0.203124i
\(539\) 11.4028 + 13.2451i 0.491155 + 0.570507i
\(540\) 0 0
\(541\) 13.1964 18.1633i 0.567357 0.780899i −0.424882 0.905249i \(-0.639684\pi\)
0.992238 + 0.124349i \(0.0396844\pi\)
\(542\) 47.4574 + 15.4198i 2.03847 + 0.662339i
\(543\) 0 0
\(544\) −12.7170 + 9.23941i −0.545235 + 0.396137i
\(545\) −23.6080 + 17.1522i −1.01126 + 0.734720i
\(546\) 0 0
\(547\) −22.2818 7.23979i −0.952701 0.309551i −0.208888 0.977940i \(-0.566984\pi\)
−0.743813 + 0.668388i \(0.766984\pi\)
\(548\) −12.9077 + 17.7659i −0.551390 + 0.758923i
\(549\) 0 0
\(550\) −17.9385 20.8367i −0.764901 0.888480i
\(551\) 13.1361i 0.559617i
\(552\) 0 0
\(553\) 2.26118 6.95920i 0.0961552 0.295935i
\(554\) −55.0412 + 17.8840i −2.33847 + 0.759816i
\(555\) 0 0
\(556\) 1.07778 + 1.48344i 0.0457081 + 0.0629119i
\(557\) 1.09525 + 3.37084i 0.0464074 + 0.142827i 0.971575 0.236731i \(-0.0760760\pi\)
−0.925168 + 0.379558i \(0.876076\pi\)
\(558\) 0 0
\(559\) 16.1831 + 11.7577i 0.684471 + 0.497297i
\(560\) −4.72231 −0.199554
\(561\) 0 0
\(562\) −30.5325 −1.28794
\(563\) −14.9273 10.8453i −0.629110 0.457075i 0.226982 0.973899i \(-0.427114\pi\)
−0.856092 + 0.516824i \(0.827114\pi\)
\(564\) 0 0
\(565\) 4.25625 + 13.0994i 0.179062 + 0.551096i
\(566\) −27.2401 37.4927i −1.14499 1.57594i
\(567\) 0 0
\(568\) −14.8096 + 4.81192i −0.621395 + 0.201904i
\(569\) −4.42849 + 13.6295i −0.185652 + 0.571378i −0.999959 0.00905622i \(-0.997117\pi\)
0.814307 + 0.580435i \(0.197117\pi\)
\(570\) 0 0
\(571\) 40.1760i 1.68132i 0.541567 + 0.840658i \(0.317831\pi\)
−0.541567 + 0.840658i \(0.682169\pi\)
\(572\) 15.7313 66.6804i 0.657758 2.78805i
\(573\) 0 0
\(574\) 8.19333 11.2771i 0.341983 0.470699i
\(575\) −0.284895 0.0925680i −0.0118809 0.00386035i
\(576\) 0 0
\(577\) 24.3026 17.6568i 1.01173 0.735064i 0.0471580 0.998887i \(-0.484984\pi\)
0.964571 + 0.263823i \(0.0849836\pi\)
\(578\) 4.80036 3.48767i 0.199669 0.145068i
\(579\) 0 0
\(580\) 42.7727 + 13.8977i 1.77604 + 0.577071i
\(581\) −0.975698 + 1.34293i −0.0404788 + 0.0557142i
\(582\) 0 0
\(583\) 11.8745 + 7.21260i 0.491793 + 0.298715i
\(584\) 30.6223i 1.26716i
\(585\) 0 0
\(586\) −3.21104 + 9.88258i −0.132647 + 0.408246i
\(587\) 11.6264 3.77764i 0.479872 0.155920i −0.0590851 0.998253i \(-0.518818\pi\)
0.538957 + 0.842333i \(0.318818\pi\)
\(588\) 0 0
\(589\) −4.52114 6.22281i −0.186290 0.256406i
\(590\) −29.7097 91.4370i −1.22313 3.76440i
\(591\) 0 0
\(592\) 6.81281 + 4.94979i 0.280005 + 0.203435i
\(593\) −26.0062 −1.06795 −0.533973 0.845502i \(-0.679301\pi\)
−0.533973 + 0.845502i \(0.679301\pi\)
\(594\) 0 0
\(595\) 14.6191 0.599327
\(596\) 27.1964 + 19.7593i 1.11401 + 0.809374i
\(597\) 0 0
\(598\) −0.362626 1.11605i −0.0148289 0.0456387i
\(599\) −9.73610 13.4006i −0.397806 0.547534i 0.562385 0.826875i \(-0.309884\pi\)
−0.960192 + 0.279342i \(0.909884\pi\)
\(600\) 0 0
\(601\) 31.6708 10.2905i 1.29188 0.419756i 0.419129 0.907927i \(-0.362336\pi\)
0.872748 + 0.488170i \(0.162336\pi\)
\(602\) −3.22586 + 9.92816i −0.131476 + 0.404642i
\(603\) 0 0
\(604\) 34.9779i 1.42323i
\(605\) 22.9035 + 22.5458i 0.931160 + 0.916616i
\(606\) 0 0
\(607\) 26.2150 36.0819i 1.06404 1.46452i 0.188064 0.982157i \(-0.439779\pi\)
0.875972 0.482362i \(-0.160221\pi\)
\(608\) 11.7244 + 3.80950i 0.475489 + 0.154496i
\(609\) 0 0
\(610\) 54.4118 39.5325i 2.20307 1.60062i
\(611\) −22.7154 + 16.5037i −0.918966 + 0.667668i
\(612\) 0 0
\(613\) −11.7116 3.80532i −0.473026 0.153695i 0.0627963 0.998026i \(-0.479998\pi\)
−0.535822 + 0.844331i \(0.679998\pi\)
\(614\) 15.2873 21.0411i 0.616943 0.849149i
\(615\) 0 0
\(616\) 15.2461 1.26028i 0.614281 0.0507781i
\(617\) 15.5987i 0.627979i −0.949426 0.313989i \(-0.898334\pi\)
0.949426 0.313989i \(-0.101666\pi\)
\(618\) 0 0
\(619\) −11.4359 + 35.1960i −0.459647 + 1.41465i 0.405945 + 0.913897i \(0.366942\pi\)
−0.865592 + 0.500750i \(0.833058\pi\)
\(620\) 25.0455 8.13776i 1.00585 0.326820i
\(621\) 0 0
\(622\) 10.8117 + 14.8810i 0.433508 + 0.596673i
\(623\) −5.53118 17.0232i −0.221602 0.682020i
\(624\) 0 0
\(625\) 24.4131 + 17.7372i 0.976524 + 0.709486i
\(626\) 75.8276 3.03068
\(627\) 0 0
\(628\) 11.4717 0.457770
\(629\) −21.0908 15.3234i −0.840947 0.610984i
\(630\) 0 0
\(631\) 13.3328 + 41.0343i 0.530772 + 1.63355i 0.752611 + 0.658465i \(0.228794\pi\)
−0.221840 + 0.975083i \(0.571206\pi\)
\(632\) 11.4649 + 15.7801i 0.456049 + 0.627697i
\(633\) 0 0
\(634\) −26.8223 + 8.71510i −1.06525 + 0.346121i
\(635\) −2.69124 + 8.28279i −0.106799 + 0.328692i
\(636\) 0 0
\(637\) 31.1390i 1.23377i
\(638\) −33.3224 7.86144i −1.31925 0.311238i
\(639\) 0 0
\(640\) −34.7017 + 47.7629i −1.37171 + 1.88799i
\(641\) −47.2318 15.3465i −1.86554 0.606152i −0.993075 0.117481i \(-0.962518\pi\)
−0.872468 0.488671i \(-0.837482\pi\)
\(642\) 0 0
\(643\) −26.8339 + 19.4960i −1.05823 + 0.768846i −0.973759 0.227581i \(-0.926918\pi\)
−0.0844660 + 0.996426i \(0.526918\pi\)
\(644\) 0.315142 0.228964i 0.0124184 0.00902246i
\(645\) 0 0
\(646\) 25.2997 + 8.22038i 0.995405 + 0.323427i
\(647\) 25.8770 35.6166i 1.01733 1.40023i 0.103268 0.994654i \(-0.467070\pi\)
0.914060 0.405578i \(-0.132930\pi\)
\(648\) 0 0
\(649\) 17.9849 + 42.9407i 0.705970 + 1.68557i
\(650\) 48.9866i 1.92141i
\(651\) 0 0
\(652\) 9.35204 28.7826i 0.366254 1.12721i
\(653\) 6.51319 2.11626i 0.254881 0.0828158i −0.178790 0.983887i \(-0.557218\pi\)
0.433671 + 0.901072i \(0.357218\pi\)
\(654\) 0 0
\(655\) 13.3694 + 18.4014i 0.522384 + 0.719001i
\(656\) 1.71629 + 5.28219i 0.0670098 + 0.206235i
\(657\) 0 0
\(658\) −11.8544 8.61271i −0.462132 0.335759i
\(659\) 11.7979 0.459580 0.229790 0.973240i \(-0.426196\pi\)
0.229790 + 0.973240i \(0.426196\pi\)
\(660\) 0 0
\(661\) 44.8307 1.74371 0.871855 0.489764i \(-0.162917\pi\)
0.871855 + 0.489764i \(0.162917\pi\)
\(662\) 57.0388 + 41.4411i 2.21687 + 1.61065i
\(663\) 0 0
\(664\) −1.36734 4.20824i −0.0530631 0.163312i
\(665\) −6.73908 9.27555i −0.261330 0.359690i
\(666\) 0 0
\(667\) −0.354760 + 0.115268i −0.0137364 + 0.00446321i
\(668\) −21.4332 + 65.9646i −0.829276 + 2.55225i
\(669\) 0 0
\(670\) 25.9187i 1.00133i
\(671\) −24.6812 + 21.2482i −0.952806 + 0.820279i
\(672\) 0 0
\(673\) −22.3404 + 30.7489i −0.861159 + 1.18528i 0.120133 + 0.992758i \(0.461668\pi\)
−0.981292 + 0.192525i \(0.938332\pi\)
\(674\) 49.0427 + 15.9349i 1.88906 + 0.613791i
\(675\) 0 0
\(676\) 61.9866 45.0359i 2.38410 1.73215i
\(677\) −21.7019 + 15.7673i −0.834071 + 0.605988i −0.920708 0.390252i \(-0.872388\pi\)
0.0866368 + 0.996240i \(0.472388\pi\)
\(678\) 0 0
\(679\) −17.2305 5.59854i −0.661247 0.214852i
\(680\) −22.9054 + 31.5266i −0.878384 + 1.20899i
\(681\) 0 0
\(682\) −18.4911 + 7.74467i −0.708062 + 0.296559i
\(683\) 4.41371i 0.168886i 0.996428 + 0.0844429i \(0.0269111\pi\)
−0.996428 + 0.0844429i \(0.973089\pi\)
\(684\) 0 0
\(685\) 5.67161 17.4554i 0.216701 0.666938i
\(686\) −35.9850 + 11.6922i −1.37391 + 0.446412i
\(687\) 0 0
\(688\) −2.44482 3.36501i −0.0932081 0.128290i
\(689\) 7.64925 + 23.5420i 0.291413 + 0.896877i
\(690\) 0 0
\(691\) −13.3953 9.73223i −0.509580 0.370231i 0.303084 0.952964i \(-0.401984\pi\)
−0.812664 + 0.582732i \(0.801984\pi\)
\(692\) 24.4119 0.928003
\(693\) 0 0
\(694\) −35.5463 −1.34932
\(695\) −1.23983 0.900793i −0.0470296 0.0341690i
\(696\) 0 0
\(697\) −5.31322 16.3524i −0.201253 0.619392i
\(698\) 25.8996 + 35.6478i 0.980316 + 1.34929i
\(699\) 0 0
\(700\) 15.4652 5.02495i 0.584530 0.189925i
\(701\) 3.17601 9.77475i 0.119956 0.369187i −0.872992 0.487734i \(-0.837824\pi\)
0.992948 + 0.118547i \(0.0378236\pi\)
\(702\) 0 0
\(703\) 20.4454i 0.771114i
\(704\) 20.9113 34.4276i 0.788126 1.29754i
\(705\) 0 0
\(706\) −12.1844 + 16.7704i −0.458568 + 0.631164i
\(707\) −15.6412 5.08214i −0.588248 0.191133i
\(708\) 0 0
\(709\) 38.9344 28.2875i 1.46221 1.06236i 0.479434 0.877578i \(-0.340842\pi\)
0.982779 0.184783i \(-0.0591581\pi\)
\(710\) 24.6077 17.8785i 0.923509 0.670969i
\(711\) 0 0
\(712\) 45.3774 + 14.7440i 1.70059 + 0.552555i
\(713\) −0.128383 + 0.176704i −0.00480799 + 0.00661763i
\(714\) 0 0
\(715\) 4.71720 + 57.0657i 0.176413 + 2.13414i
\(716\) 54.4559i 2.03511i
\(717\) 0 0
\(718\) 13.0623 40.2017i 0.487482 1.50031i
\(719\) 46.0534 14.9636i 1.71750 0.558050i 0.725947 0.687750i \(-0.241402\pi\)
0.991553 + 0.129700i \(0.0414016\pi\)
\(720\) 0 0
\(721\) −4.62838 6.37042i −0.172370 0.237247i
\(722\) 7.31722 + 22.5201i 0.272319 + 0.838111i
\(723\) 0 0
\(724\) −45.7687 33.2529i −1.70098 1.23583i
\(725\) −15.5714 −0.578308
\(726\) 0 0
\(727\) 28.9349 1.07314 0.536568 0.843857i \(-0.319721\pi\)
0.536568 + 0.843857i \(0.319721\pi\)
\(728\) 22.0507 + 16.0208i 0.817253 + 0.593769i
\(729\) 0 0
\(730\) 18.4841 + 56.8881i 0.684126 + 2.10552i
\(731\) 7.56860 + 10.4173i 0.279935 + 0.385297i
\(732\) 0 0
\(733\) 15.9390 5.17891i 0.588722 0.191287i 0.000517936 1.00000i \(-0.499835\pi\)
0.588204 + 0.808712i \(0.299835\pi\)
\(734\) 22.6879 69.8261i 0.837424 2.57733i
\(735\) 0 0
\(736\) 0.350063i 0.0129035i
\(737\) 1.03394 + 12.5079i 0.0380855 + 0.460735i
\(738\) 0 0
\(739\) 16.0114 22.0378i 0.588990 0.810675i −0.405655 0.914026i \(-0.632957\pi\)
0.994645 + 0.103351i \(0.0329566\pi\)
\(740\) −66.5727 21.6308i −2.44726 0.795163i
\(741\) 0 0
\(742\) −10.4509 + 7.59301i −0.383664 + 0.278748i
\(743\) 35.8419 26.0407i 1.31491 0.955340i 0.314932 0.949114i \(-0.398018\pi\)
0.999981 0.00622608i \(-0.00198184\pi\)
\(744\) 0 0
\(745\) −26.7211 8.68220i −0.978984 0.318091i
\(746\) −4.64095 + 6.38772i −0.169917 + 0.233871i
\(747\) 0 0
\(748\) 22.8948 37.6931i 0.837118 1.37820i
\(749\) 4.05028i 0.147994i
\(750\) 0 0
\(751\) 8.73534 26.8846i 0.318757 0.981033i −0.655423 0.755262i \(-0.727510\pi\)
0.974180 0.225771i \(-0.0724902\pi\)
\(752\) 5.55257 1.80414i 0.202481 0.0657902i
\(753\) 0 0
\(754\) −35.8546 49.3497i −1.30575 1.79721i
\(755\) 9.03379 + 27.8031i 0.328773 + 1.01186i
\(756\) 0 0
\(757\) −13.9254 10.1174i −0.506129 0.367724i 0.305224 0.952280i \(-0.401269\pi\)
−0.811353 + 0.584556i \(0.801269\pi\)
\(758\) 56.5961 2.05566
\(759\) 0 0
\(760\) 30.5619 1.10860
\(761\) −39.1803 28.4662i −1.42028 1.03190i −0.991725 0.128384i \(-0.959021\pi\)
−0.428560 0.903513i \(-0.640979\pi\)
\(762\) 0 0
\(763\) 4.05996 + 12.4953i 0.146981 + 0.452360i
\(764\) −30.2463 41.6305i −1.09427 1.50614i
\(765\) 0 0
\(766\) −20.1757 + 6.55549i −0.728978 + 0.236859i
\(767\) −25.6317 + 78.8862i −0.925506 + 2.84841i
\(768\) 0 0
\(769\) 10.3749i 0.374129i −0.982348 0.187065i \(-0.940103\pi\)
0.982348 0.187065i \(-0.0598974\pi\)
\(770\) −27.5624 + 11.5440i −0.993279 + 0.416017i
\(771\) 0 0
\(772\) −14.0788 + 19.3778i −0.506707 + 0.697423i
\(773\) −7.58873 2.46573i −0.272947 0.0886860i 0.169345 0.985557i \(-0.445835\pi\)
−0.442293 + 0.896871i \(0.645835\pi\)
\(774\) 0 0
\(775\) −7.37646 + 5.35931i −0.264970 + 0.192512i
\(776\) 39.0704 28.3863i 1.40255 1.01901i
\(777\) 0 0
\(778\) −58.1636 18.8985i −2.08527 0.677544i
\(779\) −7.92601 + 10.9092i −0.283979 + 0.390863i
\(780\) 0 0
\(781\) −11.1620 + 9.60950i −0.399409 + 0.343855i
\(782\) 0.755389i 0.0270126i
\(783\) 0 0
\(784\) 2.00084 6.15795i 0.0714585 0.219927i
\(785\) −9.11857 + 2.96280i −0.325456 + 0.105747i
\(786\) 0 0
\(787\) 10.4053 + 14.3217i 0.370909 + 0.510513i 0.953148 0.302505i \(-0.0978230\pi\)
−0.582239 + 0.813018i \(0.697823\pi\)
\(788\) 9.52384 + 29.3114i 0.339273 + 1.04417i
\(789\) 0 0
\(790\) −30.8238 22.3948i −1.09666 0.796770i
\(791\) 6.20131 0.220493
\(792\) 0 0
\(793\) −58.0249 −2.06052
\(794\) −37.7095 27.3976i −1.33826 0.972304i
\(795\) 0 0
\(796\) 9.07987 + 27.9450i 0.321827 + 0.990483i
\(797\) −18.4947 25.4558i −0.655116 0.901690i 0.344191 0.938900i \(-0.388153\pi\)
−0.999307 + 0.0372092i \(0.988153\pi\)
\(798\) 0 0
\(799\) −17.1894 + 5.58519i −0.608119 + 0.197590i
\(800\) 4.51574 13.8980i 0.159656 0.491370i
\(801\) 0 0
\(802\) 23.2933i 0.822516i
\(803\) −11.1895 26.7159i −0.394867 0.942783i
\(804\) 0 0
\(805\) −0.191365 + 0.263391i −0.00674472 + 0.00928331i
\(806\) −33.9699 11.0375i −1.19654 0.388780i
\(807\) 0 0
\(808\) 35.4666 25.7680i 1.24771 0.906515i
\(809\) −17.3896 + 12.6343i −0.611384 + 0.444197i −0.849902 0.526942i \(-0.823339\pi\)
0.238517 + 0.971138i \(0.423339\pi\)
\(810\) 0 0
\(811\) 31.2311 + 10.1476i 1.09667 + 0.356331i 0.800822 0.598903i \(-0.204396\pi\)
0.295852 + 0.955234i \(0.404396\pi\)
\(812\) 11.9019 16.3816i 0.417676 0.574882i
\(813\) 0 0
\(814\) 51.8639 + 12.2358i 1.81783 + 0.428864i
\(815\) 25.2940i 0.886011i
\(816\) 0 0
\(817\) 3.12061 9.60424i 0.109176 0.336010i
\(818\) −0.00343919 + 0.00111746i −0.000120249 + 3.90711e-5i
\(819\) 0 0
\(820\) −27.1361 37.3497i −0.947635 1.30431i
\(821\) −17.3211 53.3089i −0.604511 1.86049i −0.500116 0.865959i \(-0.666709\pi\)
−0.104396 0.994536i \(-0.533291\pi\)
\(822\) 0 0
\(823\) −43.2106 31.3943i −1.50623 1.09434i −0.967817 0.251653i \(-0.919026\pi\)
−0.538409 0.842684i \(-0.680974\pi\)
\(824\) 20.9898 0.731215
\(825\) 0 0
\(826\) −43.2866 −1.50613
\(827\) 15.2821 + 11.1031i 0.531410 + 0.386092i 0.820885 0.571094i \(-0.193481\pi\)
−0.289475 + 0.957186i \(0.593481\pi\)
\(828\) 0 0
\(829\) −8.51237 26.1984i −0.295647 0.909907i −0.983003 0.183587i \(-0.941229\pi\)
0.687357 0.726320i \(-0.258771\pi\)
\(830\) 5.08031 + 6.99245i 0.176340 + 0.242711i
\(831\) 0 0
\(832\) 68.2548 22.1773i 2.36631 0.768860i
\(833\) −6.19412 + 19.0635i −0.214614 + 0.660513i
\(834\) 0 0
\(835\) 57.9694i 2.00611i
\(836\) −34.4695 + 2.84934i −1.19215 + 0.0985464i
\(837\) 0 0
\(838\) 21.2768 29.2850i 0.734996 1.01164i
\(839\) 3.41825 + 1.11066i 0.118011 + 0.0383441i 0.367427 0.930052i \(-0.380239\pi\)
−0.249416 + 0.968396i \(0.580239\pi\)
\(840\) 0 0
\(841\) 7.77466 5.64862i 0.268092 0.194780i
\(842\) −46.4931 + 33.7792i −1.60226 + 1.16411i
\(843\) 0 0
\(844\) 57.9144 + 18.8175i 1.99350 + 0.647726i
\(845\) −37.6403 + 51.8074i −1.29487 + 1.78223i
\(846\) 0 0
\(847\) 12.8406 6.67044i 0.441209 0.229199i
\(848\) 5.14709i 0.176752i
\(849\) 0 0
\(850\) 9.74436 29.9900i 0.334229 1.02865i
\(851\) 0.552158 0.179407i 0.0189277 0.00614999i
\(852\) 0 0
\(853\) 8.06180 + 11.0961i 0.276031 + 0.379924i 0.924414 0.381390i \(-0.124555\pi\)
−0.648383 + 0.761314i \(0.724555\pi\)
\(854\) −9.35741 28.7991i −0.320204 0.985486i
\(855\) 0 0
\(856\) −8.73455 6.34602i −0.298541 0.216902i
\(857\) 3.65311 0.124788 0.0623939 0.998052i \(-0.480127\pi\)
0.0623939 + 0.998052i \(0.480127\pi\)
\(858\) 0 0
\(859\) 24.8986 0.849529 0.424764 0.905304i \(-0.360357\pi\)
0.424764 + 0.905304i \(0.360357\pi\)
\(860\) 27.9710 + 20.3221i 0.953803 + 0.692979i
\(861\) 0 0
\(862\) −8.69486 26.7600i −0.296148 0.911450i
\(863\) −4.84824 6.67303i −0.165036 0.227152i 0.718487 0.695540i \(-0.244835\pi\)
−0.883523 + 0.468388i \(0.844835\pi\)
\(864\) 0 0
\(865\) −19.4045 + 6.30490i −0.659773 + 0.214373i
\(866\) 0.649859 2.00006i 0.0220831 0.0679648i
\(867\) 0 0
\(868\) 11.8566i 0.402440i
\(869\) 15.7684 + 9.57772i 0.534906 + 0.324902i
\(870\) 0 0
\(871\) −13.1435 + 18.0905i −0.445350 + 0.612972i
\(872\) −33.3076 10.8223i −1.12794 0.366490i
\(873\) 0 0
\(874\) −0.479279 + 0.348216i −0.0162118 + 0.0117786i
\(875\) 4.55131 3.30672i 0.153863 0.111788i
\(876\) 0 0
\(877\) 9.45445 + 3.07194i 0.319254 + 0.103732i 0.464260 0.885699i \(-0.346320\pi\)
−0.145006 + 0.989431i \(0.546320\pi\)
\(878\) 5.99572 8.25240i 0.202346 0.278505i
\(879\) 0 0
\(880\) 2.73391 11.5883i 0.0921600 0.390640i
\(881\) 46.2212i 1.55723i 0.627501 + 0.778616i \(0.284078\pi\)
−0.627501 + 0.778616i \(0.715922\pi\)
\(882\) 0 0
\(883\) 9.04674 27.8430i 0.304447 0.936991i −0.675436 0.737419i \(-0.736045\pi\)
0.979883 0.199573i \(-0.0639554\pi\)
\(884\) 74.7289 24.2809i 2.51340 0.816654i
\(885\) 0 0
\(886\) −52.9763 72.9156i −1.77977 2.44965i
\(887\) −15.4801 47.6429i −0.519772 1.59969i −0.774428 0.632662i \(-0.781962\pi\)
0.254656 0.967032i \(-0.418038\pi\)
\(888\) 0 0
\(889\) 3.17224 + 2.30477i 0.106393 + 0.0772994i
\(890\) −93.1987 −3.12403
\(891\) 0 0
\(892\) 59.9122 2.00601
\(893\) 11.4676 + 8.33171i 0.383749 + 0.278810i
\(894\) 0 0
\(895\) 14.0644 + 43.2858i 0.470121 + 1.44688i
\(896\) 15.6239 + 21.5045i 0.521958 + 0.718413i
\(897\) 0 0
\(898\) −40.3940 + 13.1248i −1.34797 + 0.437980i
\(899\) −3.50850 + 10.7981i −0.117015 + 0.360136i
\(900\) 0 0
\(901\) 15.9342i 0.530845i
\(902\) 22.9300 + 26.6346i 0.763486 + 0.886837i
\(903\) 0 0
\(904\) −9.71628 + 13.3733i −0.323159 + 0.444790i
\(905\) 44.9688 + 14.6112i 1.49481 + 0.485694i
\(906\) 0 0
\(907\) −11.2620 + 8.18232i −0.373949 + 0.271690i −0.758846 0.651270i \(-0.774237\pi\)
0.384898 + 0.922959i \(0.374237\pi\)
\(908\) 48.9042 35.5310i 1.62294 1.17914i
\(909\) 0 0
\(910\) −50.6347 16.4522i −1.67852 0.545385i
\(911\) 8.15884 11.2297i 0.270315 0.372056i −0.652181 0.758063i \(-0.726146\pi\)
0.922496 + 0.386007i \(0.126146\pi\)
\(912\) 0 0
\(913\) −2.73061 3.17177i −0.0903700 0.104970i
\(914\) 75.4942i 2.49713i
\(915\) 0 0
\(916\) 17.0721 52.5424i 0.564077 1.73605i
\(917\) 9.73950 3.16456i 0.321627 0.104503i
\(918\) 0 0
\(919\) 11.1835 + 15.3927i 0.368908 + 0.507759i 0.952604 0.304214i \(-0.0983938\pi\)
−0.583695 + 0.811973i \(0.698394\pi\)
\(920\) −0.268178 0.825367i −0.00884157 0.0272116i
\(921\) 0 0
\(922\) 74.1469 + 53.8709i 2.44190 + 1.77414i
\(923\) −26.2417 −0.863755
\(924\) 0 0
\(925\) 24.2358 0.796868
\(926\) 32.3111 + 23.4754i 1.06181 + 0.771448i
\(927\) 0 0
\(928\) −5.62314 17.3062i −0.184588 0.568105i
\(929\) −9.51861 13.1012i −0.312296 0.429838i 0.623800 0.781584i \(-0.285588\pi\)
−0.936095 + 0.351746i \(0.885588\pi\)
\(930\) 0 0
\(931\) 14.9508 4.85780i 0.489992 0.159208i
\(932\) 3.67760 11.3185i 0.120464 0.370749i
\(933\) 0 0
\(934\) 53.0733i 1.73661i
\(935\) −8.46353 + 35.8745i −0.276787 + 1.17322i
\(936\) 0 0
\(937\) −24.7387 + 34.0498i −0.808177 + 1.11236i 0.183425 + 0.983034i \(0.441281\pi\)
−0.991602 + 0.129326i \(0.958719\pi\)
\(938\) −11.0983 3.60607i −0.362373 0.117742i
\(939\) 0 0
\(940\) −39.2615 + 28.5251i −1.28057 + 0.930388i
\(941\) −0.342321 + 0.248710i −0.0111593 + 0.00810773i −0.593351 0.804944i \(-0.702195\pi\)
0.582192 + 0.813052i \(0.302195\pi\)
\(942\) 0 0
\(943\) 0.364169 + 0.118326i 0.0118590 + 0.00385322i
\(944\) 10.1377 13.9533i 0.329954 0.454142i
\(945\) 0 0
\(946\) −22.4955 13.6638i −0.731393 0.444249i
\(947\) 12.5861i 0.408994i 0.978867 + 0.204497i \(0.0655558\pi\)
−0.978867 + 0.204497i \(0.934444\pi\)
\(948\) 0 0
\(949\) 15.9469 49.0796i 0.517659 1.59319i
\(950\) −23.5200 + 7.64211i −0.763089 + 0.247943i
\(951\) 0 0
\(952\) 10.3128 + 14.1944i 0.334240 + 0.460042i
\(953\) −16.7845 51.6574i −0.543703 1.67335i −0.724053 0.689745i \(-0.757723\pi\)
0.180349 0.983603i \(-0.442277\pi\)
\(954\) 0 0
\(955\) 34.7941 + 25.2794i 1.12591 + 0.818022i
\(956\) 20.2966 0.656440
\(957\) 0 0
\(958\) 31.8812 1.03003
\(959\) −6.68529 4.85714i −0.215879 0.156845i
\(960\) 0 0
\(961\) −7.52513 23.1600i −0.242746 0.747096i
\(962\) 55.8052 + 76.8092i 1.79923 + 2.47643i
\(963\) 0 0
\(964\) −10.0079 + 3.25175i −0.322332 + 0.104732i
\(965\) 6.18619 19.0391i 0.199141 0.612892i
\(966\) 0 0
\(967\) 26.8497i 0.863429i −0.902010 0.431714i \(-0.857909\pi\)
0.902010 0.431714i \(-0.142091\pi\)
\(968\) −5.73382 + 38.1425i −0.184292 + 1.22595i
\(969\) 0 0
\(970\) −55.4480 + 76.3177i −1.78033 + 2.45041i
\(971\) −25.9476 8.43088i −0.832697 0.270560i −0.138516 0.990360i \(-0.544233\pi\)
−0.694181 + 0.719801i \(0.744233\pi\)
\(972\) 0 0
\(973\) −0.558215 + 0.405567i −0.0178956 + 0.0130019i
\(974\) −16.6048 + 12.0641i −0.532053 + 0.386559i
\(975\) 0 0
\(976\) 11.4748 + 3.72840i 0.367300 + 0.119343i
\(977\) −20.2465 + 27.8669i −0.647742 + 0.891540i −0.998999 0.0447387i \(-0.985754\pi\)
0.351257 + 0.936279i \(0.385754\pi\)
\(978\) 0 0
\(979\) 44.9761 3.71784i 1.43744 0.118823i
\(980\) 53.8209i 1.71925i
\(981\) 0 0
\(982\) 24.3234 74.8598i 0.776191 2.38887i
\(983\) 15.6042 5.07013i 0.497698 0.161712i −0.0494022 0.998779i \(-0.515732\pi\)
0.547100 + 0.837067i \(0.315732\pi\)
\(984\) 0 0
\(985\) −15.1406 20.8392i −0.482419 0.663992i
\(986\) −12.1340 37.3445i −0.386424 1.18929i
\(987\) 0 0
\(988\) −49.8540 36.2210i −1.58607 1.15234i
\(989\) −0.286760 −0.00911842
\(990\) 0 0
\(991\) 59.6539 1.89497 0.947484 0.319804i \(-0.103617\pi\)
0.947484 + 0.319804i \(0.103617\pi\)
\(992\) −8.62017 6.26292i −0.273691 0.198848i
\(993\) 0 0
\(994\) −4.23188 13.0244i −0.134227 0.413108i
\(995\) −14.4348 19.8677i −0.457613 0.629850i
\(996\) 0 0
\(997\) 38.7308 12.5844i 1.22662 0.398551i 0.377128 0.926161i \(-0.376912\pi\)
0.849487 + 0.527610i \(0.176912\pi\)
\(998\) 1.62771 5.00958i 0.0515243 0.158575i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.k.a.161.2 80
3.2 odd 2 inner 891.2.k.a.161.19 80
9.2 odd 6 99.2.p.a.95.10 yes 80
9.4 even 3 99.2.p.a.29.10 80
9.5 odd 6 297.2.t.a.62.1 80
9.7 even 3 297.2.t.a.260.1 80
11.8 odd 10 inner 891.2.k.a.404.19 80
33.8 even 10 inner 891.2.k.a.404.2 80
99.41 even 30 297.2.t.a.8.1 80
99.52 odd 30 297.2.t.a.206.1 80
99.74 even 30 99.2.p.a.41.10 yes 80
99.85 odd 30 99.2.p.a.74.10 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.29.10 80 9.4 even 3
99.2.p.a.41.10 yes 80 99.74 even 30
99.2.p.a.74.10 yes 80 99.85 odd 30
99.2.p.a.95.10 yes 80 9.2 odd 6
297.2.t.a.8.1 80 99.41 even 30
297.2.t.a.62.1 80 9.5 odd 6
297.2.t.a.206.1 80 99.52 odd 30
297.2.t.a.260.1 80 9.7 even 3
891.2.k.a.161.2 80 1.1 even 1 trivial
891.2.k.a.161.19 80 3.2 odd 2 inner
891.2.k.a.404.2 80 33.8 even 10 inner
891.2.k.a.404.19 80 11.8 odd 10 inner