Properties

Label 891.2.k.a.161.19
Level $891$
Weight $2$
Character 891.161
Analytic conductor $7.115$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(161,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.161");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.k (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(20\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 161.19
Character \(\chi\) \(=\) 891.161
Dual form 891.2.k.a.404.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.89658 + 1.37794i) q^{2} +(1.08024 + 3.32465i) q^{4} +(1.71732 + 2.36369i) q^{5} +(-1.25106 + 0.406493i) q^{7} +(-1.08356 + 3.33484i) q^{8} +6.84930i q^{10} +(0.273229 + 3.30535i) q^{11} +(3.47331 - 4.78060i) q^{13} +(-2.93285 - 0.952942i) q^{14} +(-0.994050 + 0.722219i) q^{16} +(-3.07734 + 2.23582i) q^{17} +(-2.83716 - 0.921851i) q^{19} +(-6.00331 + 8.26284i) q^{20} +(-4.03639 + 6.64535i) q^{22} -0.0847109i q^{23} +(-1.09275 + 3.36315i) q^{25} +(13.1748 - 4.28075i) q^{26} +(-2.70289 - 3.72021i) q^{28} +(-1.36073 - 4.18789i) q^{29} +(2.08597 + 1.51555i) q^{31} +4.13245 q^{32} -8.91726 q^{34} +(-3.10929 - 2.25903i) q^{35} +(-2.11787 - 6.51815i) q^{37} +(-4.11064 - 5.65782i) q^{38} +(-9.74334 + 3.16580i) q^{40} +(-1.39682 + 4.29896i) q^{41} +3.38516i q^{43} +(-10.6940 + 4.47897i) q^{44} +(0.116727 - 0.160661i) q^{46} +(4.51901 + 1.46832i) q^{47} +(-4.26321 + 3.09740i) q^{49} +(-6.70672 + 4.87272i) q^{50} +(19.6458 + 6.38331i) q^{52} +(2.46224 - 3.38898i) q^{53} +(-7.34360 + 6.32218i) q^{55} -4.61254i q^{56} +(3.18995 - 9.81766i) q^{58} +(13.3498 - 4.33762i) q^{59} +(-5.77176 - 7.94414i) q^{61} +(1.86787 + 5.74871i) q^{62} +(9.82561 + 7.13872i) q^{64} +17.2646 q^{65} -3.78414 q^{67} +(-10.7576 - 7.81585i) q^{68} +(-2.78419 - 8.56886i) q^{70} +(2.61027 + 3.59273i) q^{71} +(8.30569 - 2.69868i) q^{73} +(4.96493 - 15.2805i) q^{74} -10.4284i q^{76} +(-1.68543 - 4.02412i) q^{77} +(-3.26965 + 4.50028i) q^{79} +(-3.41421 - 1.10934i) q^{80} +(-8.57291 + 6.22858i) q^{82} +(-1.02090 + 0.741727i) q^{83} +(-10.5696 - 3.43426i) q^{85} +(-4.66456 + 6.42021i) q^{86} +(-11.3189 - 2.67036i) q^{88} -13.6071i q^{89} +(-2.40203 + 7.39268i) q^{91} +(0.281634 - 0.0915083i) q^{92} +(6.54740 + 9.01173i) q^{94} +(-2.69335 - 8.28929i) q^{95} +(11.1424 + 8.09543i) q^{97} -12.3536 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 10 q^{4} + 10 q^{7} + 10 q^{13} - 10 q^{16} - 50 q^{19} + 22 q^{22} + 4 q^{25} - 20 q^{28} + 12 q^{31} + 20 q^{34} - 6 q^{37} - 30 q^{40} - 40 q^{46} + 2 q^{49} + 10 q^{52} - 18 q^{55} + 58 q^{58}+ \cdots - 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.89658 + 1.37794i 1.34108 + 0.974354i 0.999403 + 0.0345375i \(0.0109958\pi\)
0.341680 + 0.939816i \(0.389004\pi\)
\(3\) 0 0
\(4\) 1.08024 + 3.32465i 0.540121 + 1.66232i
\(5\) 1.71732 + 2.36369i 0.768009 + 1.05707i 0.996505 + 0.0835293i \(0.0266192\pi\)
−0.228496 + 0.973545i \(0.573381\pi\)
\(6\) 0 0
\(7\) −1.25106 + 0.406493i −0.472855 + 0.153640i −0.535744 0.844381i \(-0.679969\pi\)
0.0628885 + 0.998021i \(0.479969\pi\)
\(8\) −1.08356 + 3.33484i −0.383095 + 1.17904i
\(9\) 0 0
\(10\) 6.84930i 2.16594i
\(11\) 0.273229 + 3.30535i 0.0823816 + 0.996601i
\(12\) 0 0
\(13\) 3.47331 4.78060i 0.963323 1.32590i 0.0179743 0.999838i \(-0.494278\pi\)
0.945348 0.326062i \(-0.105722\pi\)
\(14\) −2.93285 0.952942i −0.783838 0.254684i
\(15\) 0 0
\(16\) −0.994050 + 0.722219i −0.248512 + 0.180555i
\(17\) −3.07734 + 2.23582i −0.746365 + 0.542266i −0.894698 0.446671i \(-0.852609\pi\)
0.148333 + 0.988938i \(0.452609\pi\)
\(18\) 0 0
\(19\) −2.83716 0.921851i −0.650890 0.211487i −0.0350836 0.999384i \(-0.511170\pi\)
−0.615807 + 0.787897i \(0.711170\pi\)
\(20\) −6.00331 + 8.26284i −1.34238 + 1.84763i
\(21\) 0 0
\(22\) −4.03639 + 6.64535i −0.860561 + 1.41679i
\(23\) 0.0847109i 0.0176634i −0.999961 0.00883172i \(-0.997189\pi\)
0.999961 0.00883172i \(-0.00281126\pi\)
\(24\) 0 0
\(25\) −1.09275 + 3.36315i −0.218550 + 0.672629i
\(26\) 13.1748 4.28075i 2.58379 0.839525i
\(27\) 0 0
\(28\) −2.70289 3.72021i −0.510799 0.703054i
\(29\) −1.36073 4.18789i −0.252681 0.777671i −0.994278 0.106826i \(-0.965931\pi\)
0.741597 0.670846i \(-0.234069\pi\)
\(30\) 0 0
\(31\) 2.08597 + 1.51555i 0.374652 + 0.272200i 0.759137 0.650931i \(-0.225621\pi\)
−0.384486 + 0.923131i \(0.625621\pi\)
\(32\) 4.13245 0.730521
\(33\) 0 0
\(34\) −8.91726 −1.52930
\(35\) −3.10929 2.25903i −0.525566 0.381846i
\(36\) 0 0
\(37\) −2.11787 6.51815i −0.348176 1.07158i −0.959861 0.280475i \(-0.909508\pi\)
0.611685 0.791102i \(-0.290492\pi\)
\(38\) −4.11064 5.65782i −0.666835 0.917819i
\(39\) 0 0
\(40\) −9.74334 + 3.16580i −1.54056 + 0.500558i
\(41\) −1.39682 + 4.29896i −0.218146 + 0.671385i 0.780769 + 0.624820i \(0.214828\pi\)
−0.998915 + 0.0465655i \(0.985172\pi\)
\(42\) 0 0
\(43\) 3.38516i 0.516231i 0.966114 + 0.258116i \(0.0831016\pi\)
−0.966114 + 0.258116i \(0.916898\pi\)
\(44\) −10.6940 + 4.47897i −1.61218 + 0.675230i
\(45\) 0 0
\(46\) 0.116727 0.160661i 0.0172104 0.0236881i
\(47\) 4.51901 + 1.46832i 0.659166 + 0.214176i 0.619451 0.785035i \(-0.287355\pi\)
0.0397146 + 0.999211i \(0.487355\pi\)
\(48\) 0 0
\(49\) −4.26321 + 3.09740i −0.609030 + 0.442486i
\(50\) −6.70672 + 4.87272i −0.948473 + 0.689106i
\(51\) 0 0
\(52\) 19.6458 + 6.38331i 2.72439 + 0.885206i
\(53\) 2.46224 3.38898i 0.338215 0.465512i −0.605704 0.795690i \(-0.707109\pi\)
0.943919 + 0.330177i \(0.107109\pi\)
\(54\) 0 0
\(55\) −7.34360 + 6.32218i −0.990211 + 0.852482i
\(56\) 4.61254i 0.616376i
\(57\) 0 0
\(58\) 3.18995 9.81766i 0.418861 1.28912i
\(59\) 13.3498 4.33762i 1.73800 0.564711i 0.743434 0.668810i \(-0.233196\pi\)
0.994567 + 0.104099i \(0.0331959\pi\)
\(60\) 0 0
\(61\) −5.77176 7.94414i −0.738998 1.01714i −0.998676 0.0514476i \(-0.983616\pi\)
0.259678 0.965695i \(-0.416384\pi\)
\(62\) 1.86787 + 5.74871i 0.237219 + 0.730086i
\(63\) 0 0
\(64\) 9.82561 + 7.13872i 1.22820 + 0.892340i
\(65\) 17.2646 2.14142
\(66\) 0 0
\(67\) −3.78414 −0.462306 −0.231153 0.972917i \(-0.574250\pi\)
−0.231153 + 0.972917i \(0.574250\pi\)
\(68\) −10.7576 7.81585i −1.30455 0.947810i
\(69\) 0 0
\(70\) −2.78419 8.56886i −0.332775 1.02417i
\(71\) 2.61027 + 3.59273i 0.309782 + 0.426379i 0.935313 0.353821i \(-0.115118\pi\)
−0.625531 + 0.780199i \(0.715118\pi\)
\(72\) 0 0
\(73\) 8.30569 2.69868i 0.972108 0.315857i 0.220441 0.975400i \(-0.429250\pi\)
0.751667 + 0.659543i \(0.229250\pi\)
\(74\) 4.96493 15.2805i 0.577162 1.77632i
\(75\) 0 0
\(76\) 10.4284i 1.19622i
\(77\) −1.68543 4.02412i −0.192072 0.458591i
\(78\) 0 0
\(79\) −3.26965 + 4.50028i −0.367864 + 0.506321i −0.952319 0.305105i \(-0.901308\pi\)
0.584455 + 0.811426i \(0.301308\pi\)
\(80\) −3.41421 1.10934i −0.381720 0.124028i
\(81\) 0 0
\(82\) −8.57291 + 6.22858i −0.946719 + 0.687832i
\(83\) −1.02090 + 0.741727i −0.112058 + 0.0814152i −0.642403 0.766367i \(-0.722062\pi\)
0.530345 + 0.847782i \(0.322062\pi\)
\(84\) 0 0
\(85\) −10.5696 3.43426i −1.14643 0.372498i
\(86\) −4.66456 + 6.42021i −0.502992 + 0.692309i
\(87\) 0 0
\(88\) −11.3189 2.67036i −1.20660 0.284661i
\(89\) 13.6071i 1.44234i −0.692756 0.721172i \(-0.743604\pi\)
0.692756 0.721172i \(-0.256396\pi\)
\(90\) 0 0
\(91\) −2.40203 + 7.39268i −0.251801 + 0.774964i
\(92\) 0.281634 0.0915083i 0.0293623 0.00954040i
\(93\) 0 0
\(94\) 6.54740 + 9.01173i 0.675313 + 0.929489i
\(95\) −2.69335 8.28929i −0.276332 0.850463i
\(96\) 0 0
\(97\) 11.1424 + 8.09543i 1.13134 + 0.821967i 0.985889 0.167399i \(-0.0535367\pi\)
0.145451 + 0.989365i \(0.453537\pi\)
\(98\) −12.3536 −1.24790
\(99\) 0 0
\(100\) −12.3617 −1.23617
\(101\) −10.1146 7.34872i −1.00644 0.731225i −0.0429843 0.999076i \(-0.513687\pi\)
−0.963460 + 0.267851i \(0.913687\pi\)
\(102\) 0 0
\(103\) 1.84979 + 5.69306i 0.182265 + 0.560954i 0.999891 0.0147963i \(-0.00470998\pi\)
−0.817625 + 0.575750i \(0.804710\pi\)
\(104\) 12.1790 + 16.7630i 1.19425 + 1.64375i
\(105\) 0 0
\(106\) 9.33966 3.03464i 0.907148 0.294750i
\(107\) −0.951472 + 2.92833i −0.0919823 + 0.283092i −0.986455 0.164029i \(-0.947551\pi\)
0.894473 + 0.447122i \(0.147551\pi\)
\(108\) 0 0
\(109\) 9.98777i 0.956655i −0.878181 0.478328i \(-0.841243\pi\)
0.878181 0.478328i \(-0.158757\pi\)
\(110\) −22.6393 + 1.87143i −2.15857 + 0.178433i
\(111\) 0 0
\(112\) 0.950036 1.30761i 0.0897700 0.123558i
\(113\) 4.48352 + 1.45678i 0.421774 + 0.137043i 0.512211 0.858860i \(-0.328827\pi\)
−0.0904375 + 0.995902i \(0.528827\pi\)
\(114\) 0 0
\(115\) 0.200230 0.145476i 0.0186716 0.0135657i
\(116\) 12.4533 9.04787i 1.15626 0.840074i
\(117\) 0 0
\(118\) 31.2960 + 10.1687i 2.88103 + 0.936104i
\(119\) 2.94109 4.04806i 0.269609 0.371085i
\(120\) 0 0
\(121\) −10.8507 + 1.80623i −0.986427 + 0.164203i
\(122\) 23.0198i 2.08412i
\(123\) 0 0
\(124\) −2.78530 + 8.57227i −0.250127 + 0.769813i
\(125\) 4.06738 1.32157i 0.363797 0.118205i
\(126\) 0 0
\(127\) −1.75209 2.41154i −0.155473 0.213990i 0.724174 0.689617i \(-0.242221\pi\)
−0.879647 + 0.475627i \(0.842221\pi\)
\(128\) 6.24428 + 19.2179i 0.551921 + 1.69864i
\(129\) 0 0
\(130\) 32.7437 + 23.7897i 2.87182 + 2.08650i
\(131\) 7.78501 0.680180 0.340090 0.940393i \(-0.389542\pi\)
0.340090 + 0.940393i \(0.389542\pi\)
\(132\) 0 0
\(133\) 3.92418 0.340270
\(134\) −7.17692 5.21434i −0.619991 0.450450i
\(135\) 0 0
\(136\) −4.12163 12.6851i −0.353427 1.08774i
\(137\) −3.69241 5.08217i −0.315464 0.434199i 0.621612 0.783326i \(-0.286478\pi\)
−0.937076 + 0.349127i \(0.886478\pi\)
\(138\) 0 0
\(139\) 0.498861 0.162090i 0.0423128 0.0137483i −0.287784 0.957695i \(-0.592919\pi\)
0.330097 + 0.943947i \(0.392919\pi\)
\(140\) 4.15169 12.7776i 0.350882 1.07990i
\(141\) 0 0
\(142\) 10.4107i 0.873646i
\(143\) 16.7506 + 10.1743i 1.40075 + 0.850819i
\(144\) 0 0
\(145\) 7.56206 10.4083i 0.627995 0.864361i
\(146\) 19.4710 + 6.32652i 1.61143 + 0.523587i
\(147\) 0 0
\(148\) 19.3827 14.0824i 1.59325 1.15756i
\(149\) −7.77987 + 5.65240i −0.637352 + 0.463063i −0.858939 0.512077i \(-0.828876\pi\)
0.221588 + 0.975140i \(0.428876\pi\)
\(150\) 0 0
\(151\) −9.51615 3.09198i −0.774413 0.251622i −0.104960 0.994476i \(-0.533471\pi\)
−0.669453 + 0.742854i \(0.733471\pi\)
\(152\) 6.14845 8.46262i 0.498705 0.686409i
\(153\) 0 0
\(154\) 2.34847 9.95448i 0.189245 0.802155i
\(155\) 7.53327i 0.605087i
\(156\) 0 0
\(157\) 1.01408 3.12100i 0.0809320 0.249083i −0.902401 0.430898i \(-0.858197\pi\)
0.983333 + 0.181814i \(0.0581970\pi\)
\(158\) −12.4023 + 4.02975i −0.986673 + 0.320589i
\(159\) 0 0
\(160\) 7.09674 + 9.76783i 0.561047 + 0.772214i
\(161\) 0.0344344 + 0.105978i 0.00271381 + 0.00835225i
\(162\) 0 0
\(163\) −7.00394 5.08866i −0.548591 0.398575i 0.278675 0.960386i \(-0.410105\pi\)
−0.827266 + 0.561811i \(0.810105\pi\)
\(164\) −15.8014 −1.23388
\(165\) 0 0
\(166\) −2.95828 −0.229607
\(167\) −16.0518 11.6623i −1.24212 0.902457i −0.244387 0.969678i \(-0.578587\pi\)
−0.997738 + 0.0672213i \(0.978587\pi\)
\(168\) 0 0
\(169\) −6.77304 20.8453i −0.521003 1.60348i
\(170\) −15.3138 21.0776i −1.17451 1.61658i
\(171\) 0 0
\(172\) −11.2544 + 3.65679i −0.858143 + 0.278828i
\(173\) −2.15797 + 6.64155i −0.164068 + 0.504948i −0.998966 0.0454555i \(-0.985526\pi\)
0.834899 + 0.550403i \(0.185526\pi\)
\(174\) 0 0
\(175\) 4.65169i 0.351634i
\(176\) −2.65879 3.08835i −0.200414 0.232793i
\(177\) 0 0
\(178\) 18.7498 25.8068i 1.40535 1.93430i
\(179\) 14.8154 + 4.81380i 1.10735 + 0.359800i 0.804928 0.593373i \(-0.202204\pi\)
0.302424 + 0.953173i \(0.402204\pi\)
\(180\) 0 0
\(181\) −13.0927 + 9.51241i −0.973173 + 0.707052i −0.956173 0.292804i \(-0.905412\pi\)
−0.0170005 + 0.999855i \(0.505412\pi\)
\(182\) −14.7423 + 10.7109i −1.09278 + 0.793948i
\(183\) 0 0
\(184\) 0.282497 + 0.0917890i 0.0208260 + 0.00676677i
\(185\) 11.7698 16.1998i 0.865334 1.19103i
\(186\) 0 0
\(187\) −8.23099 9.56081i −0.601910 0.699156i
\(188\) 16.6103i 1.21143i
\(189\) 0 0
\(190\) 6.31403 19.4326i 0.458068 1.40979i
\(191\) 13.9998 4.54881i 1.01299 0.329140i 0.244945 0.969537i \(-0.421230\pi\)
0.768044 + 0.640397i \(0.221230\pi\)
\(192\) 0 0
\(193\) 4.02742 + 5.54327i 0.289900 + 0.399013i 0.928982 0.370126i \(-0.120685\pi\)
−0.639082 + 0.769139i \(0.720685\pi\)
\(194\) 9.97739 + 30.7072i 0.716335 + 2.20465i
\(195\) 0 0
\(196\) −14.9031 10.8277i −1.06451 0.773408i
\(197\) −8.81639 −0.628141 −0.314071 0.949400i \(-0.601693\pi\)
−0.314071 + 0.949400i \(0.601693\pi\)
\(198\) 0 0
\(199\) 8.40540 0.595843 0.297921 0.954590i \(-0.403707\pi\)
0.297921 + 0.954590i \(0.403707\pi\)
\(200\) −10.0315 7.28831i −0.709334 0.515361i
\(201\) 0 0
\(202\) −9.05708 27.8748i −0.637254 1.96127i
\(203\) 3.40470 + 4.68616i 0.238963 + 0.328904i
\(204\) 0 0
\(205\) −12.5602 + 4.08106i −0.877243 + 0.285033i
\(206\) −4.33646 + 13.3462i −0.302135 + 0.929877i
\(207\) 0 0
\(208\) 7.26065i 0.503435i
\(209\) 2.27184 9.62970i 0.157147 0.666100i
\(210\) 0 0
\(211\) 10.2391 14.0929i 0.704886 0.970192i −0.295006 0.955495i \(-0.595322\pi\)
0.999892 0.0146969i \(-0.00467832\pi\)
\(212\) 13.9270 + 4.52515i 0.956509 + 0.310788i
\(213\) 0 0
\(214\) −5.83962 + 4.24273i −0.399188 + 0.290027i
\(215\) −8.00146 + 5.81340i −0.545695 + 0.396471i
\(216\) 0 0
\(217\) −3.22573 1.04810i −0.218977 0.0711499i
\(218\) 13.7626 18.9426i 0.932121 1.28295i
\(219\) 0 0
\(220\) −28.9519 17.5854i −1.95193 1.18561i
\(221\) 22.4772i 1.51198i
\(222\) 0 0
\(223\) 5.29613 16.2998i 0.354655 1.09152i −0.601554 0.798832i \(-0.705452\pi\)
0.956209 0.292684i \(-0.0945485\pi\)
\(224\) −5.16993 + 1.67981i −0.345431 + 0.112237i
\(225\) 0 0
\(226\) 6.49597 + 8.94094i 0.432106 + 0.594742i
\(227\) 5.34358 + 16.4458i 0.354666 + 1.09155i 0.956203 + 0.292704i \(0.0945551\pi\)
−0.601537 + 0.798845i \(0.705445\pi\)
\(228\) 0 0
\(229\) −12.7856 9.28930i −0.844898 0.613854i 0.0788364 0.996888i \(-0.474880\pi\)
−0.923735 + 0.383033i \(0.874880\pi\)
\(230\) 0.580210 0.0382579
\(231\) 0 0
\(232\) 15.4404 1.01371
\(233\) 2.75423 + 2.00107i 0.180436 + 0.131094i 0.674337 0.738424i \(-0.264430\pi\)
−0.493901 + 0.869518i \(0.664430\pi\)
\(234\) 0 0
\(235\) 4.28995 + 13.2031i 0.279846 + 0.861276i
\(236\) 28.8421 + 39.6978i 1.87746 + 2.58411i
\(237\) 0 0
\(238\) 11.1560 3.62481i 0.723136 0.234961i
\(239\) −1.79419 + 5.52193i −0.116056 + 0.357184i −0.992166 0.124928i \(-0.960130\pi\)
0.876110 + 0.482112i \(0.160130\pi\)
\(240\) 0 0
\(241\) 3.01020i 0.193904i 0.995289 + 0.0969521i \(0.0309094\pi\)
−0.995289 + 0.0969521i \(0.969091\pi\)
\(242\) −23.0681 11.5260i −1.48287 0.740918i
\(243\) 0 0
\(244\) 20.1765 27.7706i 1.29167 1.77783i
\(245\) −14.6426 4.75767i −0.935482 0.303956i
\(246\) 0 0
\(247\) −14.2614 + 10.3615i −0.907428 + 0.659285i
\(248\) −7.31437 + 5.31420i −0.464463 + 0.337452i
\(249\) 0 0
\(250\) 9.53515 + 3.09816i 0.603056 + 0.195945i
\(251\) −9.41803 + 12.9628i −0.594461 + 0.818205i −0.995187 0.0979925i \(-0.968758\pi\)
0.400726 + 0.916198i \(0.368758\pi\)
\(252\) 0 0
\(253\) 0.279999 0.0231455i 0.0176034 0.00145514i
\(254\) 6.98796i 0.438464i
\(255\) 0 0
\(256\) −7.13235 + 21.9511i −0.445772 + 1.37195i
\(257\) −11.8335 + 3.84495i −0.738156 + 0.239842i −0.653877 0.756601i \(-0.726859\pi\)
−0.0842791 + 0.996442i \(0.526859\pi\)
\(258\) 0 0
\(259\) 5.29917 + 7.29368i 0.329274 + 0.453207i
\(260\) 18.6500 + 57.3988i 1.15662 + 3.55972i
\(261\) 0 0
\(262\) 14.7649 + 10.7273i 0.912178 + 0.662736i
\(263\) −15.2873 −0.942655 −0.471328 0.881958i \(-0.656225\pi\)
−0.471328 + 0.881958i \(0.656225\pi\)
\(264\) 0 0
\(265\) 12.2390 0.751833
\(266\) 7.44252 + 5.40731i 0.456330 + 0.331543i
\(267\) 0 0
\(268\) −4.08779 12.5809i −0.249702 0.768502i
\(269\) −1.18129 1.62591i −0.0720247 0.0991335i 0.771485 0.636248i \(-0.219514\pi\)
−0.843509 + 0.537114i \(0.819514\pi\)
\(270\) 0 0
\(271\) −20.2438 + 6.57759i −1.22972 + 0.399560i −0.850613 0.525792i \(-0.823769\pi\)
−0.379107 + 0.925353i \(0.623769\pi\)
\(272\) 1.44428 4.44503i 0.0875723 0.269520i
\(273\) 0 0
\(274\) 14.7267i 0.889670i
\(275\) −11.4150 2.69302i −0.688347 0.162395i
\(276\) 0 0
\(277\) 14.5106 19.9722i 0.871860 1.20001i −0.106749 0.994286i \(-0.534044\pi\)
0.978609 0.205727i \(-0.0659559\pi\)
\(278\) 1.16948 + 0.379987i 0.0701407 + 0.0227901i
\(279\) 0 0
\(280\) 10.9026 7.92121i 0.651555 0.473383i
\(281\) −10.5368 + 7.65541i −0.628571 + 0.456683i −0.855905 0.517133i \(-0.826999\pi\)
0.227334 + 0.973817i \(0.426999\pi\)
\(282\) 0 0
\(283\) 18.8011 + 6.10884i 1.11761 + 0.363133i 0.808854 0.588009i \(-0.200088\pi\)
0.308754 + 0.951142i \(0.400088\pi\)
\(284\) −9.12482 + 12.5592i −0.541459 + 0.745254i
\(285\) 0 0
\(286\) 17.7491 + 42.3777i 1.04953 + 2.50585i
\(287\) 5.94605i 0.350984i
\(288\) 0 0
\(289\) −0.782142 + 2.40719i −0.0460084 + 0.141599i
\(290\) 28.6841 9.32002i 1.68439 0.547291i
\(291\) 0 0
\(292\) 17.9443 + 24.6983i 1.05011 + 1.44536i
\(293\) 1.36972 + 4.21558i 0.0800202 + 0.246277i 0.983061 0.183278i \(-0.0586707\pi\)
−0.903041 + 0.429554i \(0.858671\pi\)
\(294\) 0 0
\(295\) 33.1788 + 24.1058i 1.93174 + 1.40349i
\(296\) 24.0318 1.39682
\(297\) 0 0
\(298\) −22.5438 −1.30593
\(299\) −0.404969 0.294227i −0.0234200 0.0170156i
\(300\) 0 0
\(301\) −1.37604 4.23502i −0.0793138 0.244103i
\(302\) −13.7875 18.9769i −0.793383 1.09200i
\(303\) 0 0
\(304\) 3.48606 1.13269i 0.199939 0.0649642i
\(305\) 8.86552 27.2853i 0.507638 1.56235i
\(306\) 0 0
\(307\) 11.0942i 0.633182i 0.948562 + 0.316591i \(0.102538\pi\)
−0.948562 + 0.316591i \(0.897462\pi\)
\(308\) 11.5581 9.95048i 0.658584 0.566981i
\(309\) 0 0
\(310\) −10.3804 + 14.2874i −0.589569 + 0.811472i
\(311\) 7.46221 + 2.42462i 0.423143 + 0.137487i 0.512845 0.858481i \(-0.328592\pi\)
−0.0897022 + 0.995969i \(0.528592\pi\)
\(312\) 0 0
\(313\) −26.1681 + 19.0122i −1.47911 + 1.07463i −0.501265 + 0.865294i \(0.667132\pi\)
−0.977843 + 0.209340i \(0.932868\pi\)
\(314\) 6.22384 4.52188i 0.351232 0.255185i
\(315\) 0 0
\(316\) −18.4939 6.00902i −1.04036 0.338034i
\(317\) −7.07124 + 9.73273i −0.397161 + 0.546645i −0.960029 0.279902i \(-0.909698\pi\)
0.562868 + 0.826547i \(0.309698\pi\)
\(318\) 0 0
\(319\) 13.4707 5.64193i 0.754212 0.315888i
\(320\) 35.4842i 1.98363i
\(321\) 0 0
\(322\) −0.0807245 + 0.248445i −0.00449860 + 0.0138453i
\(323\) 10.7920 3.50654i 0.600484 0.195109i
\(324\) 0 0
\(325\) 12.2824 + 16.9053i 0.681305 + 0.937735i
\(326\) −6.27163 19.3021i −0.347354 1.06904i
\(327\) 0 0
\(328\) −12.8228 9.31633i −0.708023 0.514409i
\(329\) −6.25041 −0.344596
\(330\) 0 0
\(331\) −30.0746 −1.65305 −0.826524 0.562901i \(-0.809685\pi\)
−0.826524 + 0.562901i \(0.809685\pi\)
\(332\) −3.56880 2.59289i −0.195863 0.142303i
\(333\) 0 0
\(334\) −14.3735 44.2370i −0.786481 2.42054i
\(335\) −6.49858 8.94453i −0.355056 0.488692i
\(336\) 0 0
\(337\) −20.9200 + 6.79732i −1.13958 + 0.370273i −0.817211 0.576339i \(-0.804481\pi\)
−0.322374 + 0.946612i \(0.604481\pi\)
\(338\) 15.8780 48.8676i 0.863651 2.65805i
\(339\) 0 0
\(340\) 38.8499i 2.10693i
\(341\) −4.43947 + 7.30896i −0.240411 + 0.395802i
\(342\) 0 0
\(343\) 9.48682 13.0575i 0.512240 0.705038i
\(344\) −11.2890 3.66800i −0.608660 0.197766i
\(345\) 0 0
\(346\) −13.2445 + 9.62266i −0.712026 + 0.517317i
\(347\) −12.2670 + 8.91252i −0.658529 + 0.478449i −0.866166 0.499757i \(-0.833423\pi\)
0.207637 + 0.978206i \(0.433423\pi\)
\(348\) 0 0
\(349\) −17.8759 5.80824i −0.956876 0.310908i −0.211370 0.977406i \(-0.567792\pi\)
−0.745507 + 0.666498i \(0.767792\pi\)
\(350\) 6.40977 8.82229i 0.342616 0.471571i
\(351\) 0 0
\(352\) 1.12910 + 13.6592i 0.0601815 + 0.728037i
\(353\) 8.84248i 0.470638i 0.971918 + 0.235319i \(0.0756134\pi\)
−0.971918 + 0.235319i \(0.924387\pi\)
\(354\) 0 0
\(355\) −4.00942 + 12.3397i −0.212798 + 0.654925i
\(356\) 45.2386 14.6989i 2.39764 0.779041i
\(357\) 0 0
\(358\) 21.4653 + 29.5445i 1.13448 + 1.56147i
\(359\) −5.57195 17.1487i −0.294076 0.905074i −0.983530 0.180744i \(-0.942149\pi\)
0.689454 0.724330i \(-0.257851\pi\)
\(360\) 0 0
\(361\) −8.17163 5.93703i −0.430086 0.312476i
\(362\) −37.9389 −1.99402
\(363\) 0 0
\(364\) −27.1728 −1.42424
\(365\) 20.6424 + 14.9976i 1.08047 + 0.785009i
\(366\) 0 0
\(367\) 9.67789 + 29.7855i 0.505182 + 1.55479i 0.800465 + 0.599379i \(0.204586\pi\)
−0.295284 + 0.955410i \(0.595414\pi\)
\(368\) 0.0611798 + 0.0842068i 0.00318922 + 0.00438958i
\(369\) 0 0
\(370\) 44.6447 14.5059i 2.32097 0.754128i
\(371\) −1.70280 + 5.24069i −0.0884052 + 0.272083i
\(372\) 0 0
\(373\) 3.36802i 0.174390i −0.996191 0.0871948i \(-0.972210\pi\)
0.996191 0.0871948i \(-0.0277903\pi\)
\(374\) −2.43645 29.4747i −0.125986 1.52410i
\(375\) 0 0
\(376\) −9.79321 + 13.4792i −0.505046 + 0.695136i
\(377\) −24.7469 8.04074i −1.27453 0.414119i
\(378\) 0 0
\(379\) −19.5313 + 14.1903i −1.00326 + 0.728908i −0.962784 0.270273i \(-0.912886\pi\)
−0.0404716 + 0.999181i \(0.512886\pi\)
\(380\) 24.6495 17.9089i 1.26449 0.918707i
\(381\) 0 0
\(382\) 32.8197 + 10.6638i 1.67920 + 0.545605i
\(383\) −5.31898 + 7.32094i −0.271787 + 0.374083i −0.922992 0.384819i \(-0.874264\pi\)
0.651205 + 0.758902i \(0.274264\pi\)
\(384\) 0 0
\(385\) 6.61735 10.8945i 0.337251 0.555237i
\(386\) 16.0628i 0.817575i
\(387\) 0 0
\(388\) −14.8779 + 45.7896i −0.755313 + 2.32461i
\(389\) −24.8106 + 8.06147i −1.25795 + 0.408733i −0.860763 0.509005i \(-0.830013\pi\)
−0.397186 + 0.917738i \(0.630013\pi\)
\(390\) 0 0
\(391\) 0.189398 + 0.260684i 0.00957829 + 0.0131834i
\(392\) −5.70992 17.5733i −0.288395 0.887588i
\(393\) 0 0
\(394\) −16.7210 12.1485i −0.842390 0.612032i
\(395\) −16.2523 −0.817742
\(396\) 0 0
\(397\) 19.8829 0.997896 0.498948 0.866632i \(-0.333720\pi\)
0.498948 + 0.866632i \(0.333720\pi\)
\(398\) 15.9415 + 11.5822i 0.799075 + 0.580562i
\(399\) 0 0
\(400\) −1.34268 4.13234i −0.0671340 0.206617i
\(401\) −5.84032 8.03852i −0.291652 0.401424i 0.637898 0.770121i \(-0.279804\pi\)
−0.929550 + 0.368697i \(0.879804\pi\)
\(402\) 0 0
\(403\) 14.4904 4.70823i 0.721821 0.234534i
\(404\) 13.5056 41.5660i 0.671929 2.06799i
\(405\) 0 0
\(406\) 13.5792i 0.673922i
\(407\) 20.9661 8.78127i 1.03925 0.435271i
\(408\) 0 0
\(409\) 0.000906684 0.00124794i 4.48326e−5 6.17068e-5i −0.808995 0.587816i \(-0.799988\pi\)
0.809039 + 0.587754i \(0.199988\pi\)
\(410\) −29.4449 9.56722i −1.45418 0.472491i
\(411\) 0 0
\(412\) −16.9292 + 12.2998i −0.834042 + 0.605967i
\(413\) −14.9382 + 10.8532i −0.735061 + 0.534053i
\(414\) 0 0
\(415\) −3.50643 1.13931i −0.172124 0.0559264i
\(416\) 14.3533 19.7556i 0.703727 0.968597i
\(417\) 0 0
\(418\) 17.5779 15.1330i 0.859764 0.740179i
\(419\) 15.4410i 0.754342i −0.926144 0.377171i \(-0.876897\pi\)
0.926144 0.377171i \(-0.123103\pi\)
\(420\) 0 0
\(421\) 7.57531 23.3144i 0.369198 1.13627i −0.578112 0.815957i \(-0.696210\pi\)
0.947310 0.320318i \(-0.103790\pi\)
\(422\) 38.8383 12.6193i 1.89062 0.614300i
\(423\) 0 0
\(424\) 8.63374 + 11.8833i 0.419292 + 0.577105i
\(425\) −4.15662 12.7928i −0.201626 0.620540i
\(426\) 0 0
\(427\) 10.4500 + 7.59240i 0.505713 + 0.367422i
\(428\) −10.7635 −0.520273
\(429\) 0 0
\(430\) −23.1859 −1.11812
\(431\) −9.71012 7.05482i −0.467720 0.339818i 0.328832 0.944388i \(-0.393345\pi\)
−0.796552 + 0.604570i \(0.793345\pi\)
\(432\) 0 0
\(433\) 0.277208 + 0.853159i 0.0133218 + 0.0410002i 0.957496 0.288445i \(-0.0931383\pi\)
−0.944175 + 0.329445i \(0.893138\pi\)
\(434\) −4.67362 6.43269i −0.224341 0.308779i
\(435\) 0 0
\(436\) 33.2058 10.7892i 1.59027 0.516710i
\(437\) −0.0780908 + 0.240339i −0.00373559 + 0.0114970i
\(438\) 0 0
\(439\) 4.35120i 0.207672i 0.994594 + 0.103836i \(0.0331116\pi\)
−0.994594 + 0.103836i \(0.966888\pi\)
\(440\) −13.1263 31.3402i −0.625770 1.49408i
\(441\) 0 0
\(442\) −30.9724 + 42.6299i −1.47321 + 2.02770i
\(443\) −36.5642 11.8804i −1.73722 0.564456i −0.742756 0.669563i \(-0.766482\pi\)
−0.994461 + 0.105107i \(0.966482\pi\)
\(444\) 0 0
\(445\) 32.1629 23.3677i 1.52467 1.10773i
\(446\) 32.5048 23.6161i 1.53915 1.11825i
\(447\) 0 0
\(448\) −15.1942 4.93691i −0.717861 0.233247i
\(449\) −10.6492 + 14.6573i −0.502566 + 0.691723i −0.982644 0.185503i \(-0.940608\pi\)
0.480078 + 0.877226i \(0.340608\pi\)
\(450\) 0 0
\(451\) −14.5912 3.44237i −0.687075 0.162095i
\(452\) 16.4798i 0.775144i
\(453\) 0 0
\(454\) −12.5269 + 38.5540i −0.587919 + 1.80943i
\(455\) −21.5991 + 7.01796i −1.01258 + 0.329007i
\(456\) 0 0
\(457\) −18.9286 26.0530i −0.885444 1.21871i −0.974883 0.222717i \(-0.928507\pi\)
0.0894390 0.995992i \(-0.471493\pi\)
\(458\) −11.4488 35.2358i −0.534967 1.64646i
\(459\) 0 0
\(460\) 0.699953 + 0.508545i 0.0326355 + 0.0237111i
\(461\) 39.0951 1.82084 0.910420 0.413684i \(-0.135758\pi\)
0.910420 + 0.413684i \(0.135758\pi\)
\(462\) 0 0
\(463\) −17.0365 −0.791753 −0.395877 0.918304i \(-0.629559\pi\)
−0.395877 + 0.918304i \(0.629559\pi\)
\(464\) 4.37721 + 3.18023i 0.203207 + 0.147638i
\(465\) 0 0
\(466\) 2.46626 + 7.59036i 0.114247 + 0.351617i
\(467\) 13.3070 + 18.3156i 0.615776 + 0.847543i 0.997037 0.0769242i \(-0.0245100\pi\)
−0.381261 + 0.924468i \(0.624510\pi\)
\(468\) 0 0
\(469\) 4.73418 1.53823i 0.218604 0.0710287i
\(470\) −10.0569 + 30.9521i −0.463892 + 1.42771i
\(471\) 0 0
\(472\) 49.2196i 2.26552i
\(473\) −11.1891 + 0.924922i −0.514477 + 0.0425280i
\(474\) 0 0
\(475\) 6.20064 8.53445i 0.284505 0.391587i
\(476\) 16.6355 + 5.40519i 0.762485 + 0.247746i
\(477\) 0 0
\(478\) −11.0117 + 8.00049i −0.503665 + 0.365934i
\(479\) 11.0022 7.99356i 0.502703 0.365235i −0.307346 0.951598i \(-0.599441\pi\)
0.810048 + 0.586363i \(0.199441\pi\)
\(480\) 0 0
\(481\) −38.5167 12.5148i −1.75621 0.570627i
\(482\) −4.14789 + 5.70909i −0.188931 + 0.260042i
\(483\) 0 0
\(484\) −17.7265 34.1235i −0.805749 1.55107i
\(485\) 40.2397i 1.82719i
\(486\) 0 0
\(487\) 2.70549 8.32664i 0.122597 0.377316i −0.870858 0.491534i \(-0.836436\pi\)
0.993456 + 0.114218i \(0.0364362\pi\)
\(488\) 32.7465 10.6400i 1.48236 0.481649i
\(489\) 0 0
\(490\) −21.2150 29.2000i −0.958398 1.31912i
\(491\) −10.3756 31.9327i −0.468242 1.44110i −0.854859 0.518861i \(-0.826356\pi\)
0.386616 0.922241i \(-0.373644\pi\)
\(492\) 0 0
\(493\) 13.5508 + 9.84523i 0.610297 + 0.443407i
\(494\) −41.3253 −1.85931
\(495\) 0 0
\(496\) −3.16812 −0.142253
\(497\) −4.72602 3.43365i −0.211991 0.154020i
\(498\) 0 0
\(499\) 0.694327 + 2.13692i 0.0310824 + 0.0956617i 0.965394 0.260795i \(-0.0839847\pi\)
−0.934312 + 0.356457i \(0.883985\pi\)
\(500\) 8.78751 + 12.0950i 0.392990 + 0.540904i
\(501\) 0 0
\(502\) −35.7241 + 11.6075i −1.59444 + 0.518066i
\(503\) 5.15181 15.8556i 0.229708 0.706968i −0.768072 0.640364i \(-0.778784\pi\)
0.997779 0.0666040i \(-0.0212164\pi\)
\(504\) 0 0
\(505\) 36.5280i 1.62547i
\(506\) 0.562934 + 0.341926i 0.0250254 + 0.0152005i
\(507\) 0 0
\(508\) 6.12484 8.43012i 0.271746 0.374026i
\(509\) −9.95760 3.23542i −0.441363 0.143407i 0.0799015 0.996803i \(-0.474539\pi\)
−0.521264 + 0.853395i \(0.674539\pi\)
\(510\) 0 0
\(511\) −9.29390 + 6.75242i −0.411138 + 0.298709i
\(512\) −11.0790 + 8.04940i −0.489629 + 0.355737i
\(513\) 0 0
\(514\) −27.7414 9.01372i −1.22362 0.397578i
\(515\) −10.2800 + 14.1491i −0.452989 + 0.623486i
\(516\) 0 0
\(517\) −3.61858 + 15.3381i −0.159145 + 0.674570i
\(518\) 21.1350i 0.928618i
\(519\) 0 0
\(520\) −18.7072 + 57.5749i −0.820365 + 2.52482i
\(521\) 5.99155 1.94677i 0.262494 0.0852896i −0.174813 0.984602i \(-0.555932\pi\)
0.437308 + 0.899312i \(0.355932\pi\)
\(522\) 0 0
\(523\) −12.7364 17.5301i −0.556923 0.766538i 0.434008 0.900909i \(-0.357099\pi\)
−0.990931 + 0.134370i \(0.957099\pi\)
\(524\) 8.40970 + 25.8824i 0.367380 + 1.13068i
\(525\) 0 0
\(526\) −28.9936 21.0651i −1.26418 0.918480i
\(527\) −9.80774 −0.427232
\(528\) 0 0
\(529\) 22.9928 0.999688
\(530\) 23.2121 + 16.8646i 1.00827 + 0.732551i
\(531\) 0 0
\(532\) 4.23907 + 13.0465i 0.183787 + 0.565638i
\(533\) 15.7001 + 21.6093i 0.680045 + 0.936001i
\(534\) 0 0
\(535\) −8.55565 + 2.77990i −0.369893 + 0.120186i
\(536\) 4.10033 12.6195i 0.177107 0.545080i
\(537\) 0 0
\(538\) 4.71142i 0.203124i
\(539\) −11.4028 13.2451i −0.491155 0.570507i
\(540\) 0 0
\(541\) 13.1964 18.1633i 0.567357 0.780899i −0.424882 0.905249i \(-0.639684\pi\)
0.992238 + 0.124349i \(0.0396844\pi\)
\(542\) −47.4574 15.4198i −2.03847 0.662339i
\(543\) 0 0
\(544\) −12.7170 + 9.23941i −0.545235 + 0.396137i
\(545\) 23.6080 17.1522i 1.01126 0.734720i
\(546\) 0 0
\(547\) −22.2818 7.23979i −0.952701 0.309551i −0.208888 0.977940i \(-0.566984\pi\)
−0.743813 + 0.668388i \(0.766984\pi\)
\(548\) 12.9077 17.7659i 0.551390 0.758923i
\(549\) 0 0
\(550\) −17.9385 20.8367i −0.764901 0.888480i
\(551\) 13.1361i 0.559617i
\(552\) 0 0
\(553\) 2.26118 6.95920i 0.0961552 0.295935i
\(554\) 55.0412 17.8840i 2.33847 0.759816i
\(555\) 0 0
\(556\) 1.07778 + 1.48344i 0.0457081 + 0.0629119i
\(557\) −1.09525 3.37084i −0.0464074 0.142827i 0.925168 0.379558i \(-0.123924\pi\)
−0.971575 + 0.236731i \(0.923924\pi\)
\(558\) 0 0
\(559\) 16.1831 + 11.7577i 0.684471 + 0.497297i
\(560\) 4.72231 0.199554
\(561\) 0 0
\(562\) −30.5325 −1.28794
\(563\) 14.9273 + 10.8453i 0.629110 + 0.457075i 0.856092 0.516824i \(-0.172886\pi\)
−0.226982 + 0.973899i \(0.572886\pi\)
\(564\) 0 0
\(565\) 4.25625 + 13.0994i 0.179062 + 0.551096i
\(566\) 27.2401 + 37.4927i 1.14499 + 1.57594i
\(567\) 0 0
\(568\) −14.8096 + 4.81192i −0.621395 + 0.201904i
\(569\) 4.42849 13.6295i 0.185652 0.571378i −0.814307 0.580435i \(-0.802883\pi\)
0.999959 + 0.00905622i \(0.00288272\pi\)
\(570\) 0 0
\(571\) 40.1760i 1.68132i 0.541567 + 0.840658i \(0.317831\pi\)
−0.541567 + 0.840658i \(0.682169\pi\)
\(572\) −15.7313 + 66.6804i −0.657758 + 2.78805i
\(573\) 0 0
\(574\) 8.19333 11.2771i 0.341983 0.470699i
\(575\) 0.284895 + 0.0925680i 0.0118809 + 0.00386035i
\(576\) 0 0
\(577\) 24.3026 17.6568i 1.01173 0.735064i 0.0471580 0.998887i \(-0.484984\pi\)
0.964571 + 0.263823i \(0.0849836\pi\)
\(578\) −4.80036 + 3.48767i −0.199669 + 0.145068i
\(579\) 0 0
\(580\) 42.7727 + 13.8977i 1.77604 + 0.577071i
\(581\) 0.975698 1.34293i 0.0404788 0.0557142i
\(582\) 0 0
\(583\) 11.8745 + 7.21260i 0.491793 + 0.298715i
\(584\) 30.6223i 1.26716i
\(585\) 0 0
\(586\) −3.21104 + 9.88258i −0.132647 + 0.408246i
\(587\) −11.6264 + 3.77764i −0.479872 + 0.155920i −0.538957 0.842333i \(-0.681182\pi\)
0.0590851 + 0.998253i \(0.481182\pi\)
\(588\) 0 0
\(589\) −4.52114 6.22281i −0.186290 0.256406i
\(590\) 29.7097 + 91.4370i 1.22313 + 3.76440i
\(591\) 0 0
\(592\) 6.81281 + 4.94979i 0.280005 + 0.203435i
\(593\) 26.0062 1.06795 0.533973 0.845502i \(-0.320699\pi\)
0.533973 + 0.845502i \(0.320699\pi\)
\(594\) 0 0
\(595\) 14.6191 0.599327
\(596\) −27.1964 19.7593i −1.11401 0.809374i
\(597\) 0 0
\(598\) −0.362626 1.11605i −0.0148289 0.0456387i
\(599\) 9.73610 + 13.4006i 0.397806 + 0.547534i 0.960192 0.279342i \(-0.0901162\pi\)
−0.562385 + 0.826875i \(0.690116\pi\)
\(600\) 0 0
\(601\) 31.6708 10.2905i 1.29188 0.419756i 0.419129 0.907927i \(-0.362336\pi\)
0.872748 + 0.488170i \(0.162336\pi\)
\(602\) 3.22586 9.92816i 0.131476 0.404642i
\(603\) 0 0
\(604\) 34.9779i 1.42323i
\(605\) −22.9035 22.5458i −0.931160 0.916616i
\(606\) 0 0
\(607\) 26.2150 36.0819i 1.06404 1.46452i 0.188064 0.982157i \(-0.439779\pi\)
0.875972 0.482362i \(-0.160221\pi\)
\(608\) −11.7244 3.80950i −0.475489 0.154496i
\(609\) 0 0
\(610\) 54.4118 39.5325i 2.20307 1.60062i
\(611\) 22.7154 16.5037i 0.918966 0.667668i
\(612\) 0 0
\(613\) −11.7116 3.80532i −0.473026 0.153695i 0.0627963 0.998026i \(-0.479998\pi\)
−0.535822 + 0.844331i \(0.679998\pi\)
\(614\) −15.2873 + 21.0411i −0.616943 + 0.849149i
\(615\) 0 0
\(616\) 15.2461 1.26028i 0.614281 0.0507781i
\(617\) 15.5987i 0.627979i 0.949426 + 0.313989i \(0.101666\pi\)
−0.949426 + 0.313989i \(0.898334\pi\)
\(618\) 0 0
\(619\) −11.4359 + 35.1960i −0.459647 + 1.41465i 0.405945 + 0.913897i \(0.366942\pi\)
−0.865592 + 0.500750i \(0.833058\pi\)
\(620\) −25.0455 + 8.13776i −1.00585 + 0.326820i
\(621\) 0 0
\(622\) 10.8117 + 14.8810i 0.433508 + 0.596673i
\(623\) 5.53118 + 17.0232i 0.221602 + 0.682020i
\(624\) 0 0
\(625\) 24.4131 + 17.7372i 0.976524 + 0.709486i
\(626\) −75.8276 −3.03068
\(627\) 0 0
\(628\) 11.4717 0.457770
\(629\) 21.0908 + 15.3234i 0.840947 + 0.610984i
\(630\) 0 0
\(631\) 13.3328 + 41.0343i 0.530772 + 1.63355i 0.752611 + 0.658465i \(0.228794\pi\)
−0.221840 + 0.975083i \(0.571206\pi\)
\(632\) −11.4649 15.7801i −0.456049 0.627697i
\(633\) 0 0
\(634\) −26.8223 + 8.71510i −1.06525 + 0.346121i
\(635\) 2.69124 8.28279i 0.106799 0.328692i
\(636\) 0 0
\(637\) 31.1390i 1.23377i
\(638\) 33.3224 + 7.86144i 1.31925 + 0.311238i
\(639\) 0 0
\(640\) −34.7017 + 47.7629i −1.37171 + 1.88799i
\(641\) 47.2318 + 15.3465i 1.86554 + 0.606152i 0.993075 + 0.117481i \(0.0374818\pi\)
0.872468 + 0.488671i \(0.162518\pi\)
\(642\) 0 0
\(643\) −26.8339 + 19.4960i −1.05823 + 0.768846i −0.973759 0.227581i \(-0.926918\pi\)
−0.0844660 + 0.996426i \(0.526918\pi\)
\(644\) −0.315142 + 0.228964i −0.0124184 + 0.00902246i
\(645\) 0 0
\(646\) 25.2997 + 8.22038i 0.995405 + 0.323427i
\(647\) −25.8770 + 35.6166i −1.01733 + 1.40023i −0.103268 + 0.994654i \(0.532930\pi\)
−0.914060 + 0.405578i \(0.867070\pi\)
\(648\) 0 0
\(649\) 17.9849 + 42.9407i 0.705970 + 1.68557i
\(650\) 48.9866i 1.92141i
\(651\) 0 0
\(652\) 9.35204 28.7826i 0.366254 1.12721i
\(653\) −6.51319 + 2.11626i −0.254881 + 0.0828158i −0.433671 0.901072i \(-0.642782\pi\)
0.178790 + 0.983887i \(0.442782\pi\)
\(654\) 0 0
\(655\) 13.3694 + 18.4014i 0.522384 + 0.719001i
\(656\) −1.71629 5.28219i −0.0670098 0.206235i
\(657\) 0 0
\(658\) −11.8544 8.61271i −0.462132 0.335759i
\(659\) −11.7979 −0.459580 −0.229790 0.973240i \(-0.573804\pi\)
−0.229790 + 0.973240i \(0.573804\pi\)
\(660\) 0 0
\(661\) 44.8307 1.74371 0.871855 0.489764i \(-0.162917\pi\)
0.871855 + 0.489764i \(0.162917\pi\)
\(662\) −57.0388 41.4411i −2.21687 1.61065i
\(663\) 0 0
\(664\) −1.36734 4.20824i −0.0530631 0.163312i
\(665\) 6.73908 + 9.27555i 0.261330 + 0.359690i
\(666\) 0 0
\(667\) −0.354760 + 0.115268i −0.0137364 + 0.00446321i
\(668\) 21.4332 65.9646i 0.829276 2.55225i
\(669\) 0 0
\(670\) 25.9187i 1.00133i
\(671\) 24.6812 21.2482i 0.952806 0.820279i
\(672\) 0 0
\(673\) −22.3404 + 30.7489i −0.861159 + 1.18528i 0.120133 + 0.992758i \(0.461668\pi\)
−0.981292 + 0.192525i \(0.938332\pi\)
\(674\) −49.0427 15.9349i −1.88906 0.613791i
\(675\) 0 0
\(676\) 61.9866 45.0359i 2.38410 1.73215i
\(677\) 21.7019 15.7673i 0.834071 0.605988i −0.0866368 0.996240i \(-0.527612\pi\)
0.920708 + 0.390252i \(0.127612\pi\)
\(678\) 0 0
\(679\) −17.2305 5.59854i −0.661247 0.214852i
\(680\) 22.9054 31.5266i 0.878384 1.20899i
\(681\) 0 0
\(682\) −18.4911 + 7.74467i −0.708062 + 0.296559i
\(683\) 4.41371i 0.168886i −0.996428 0.0844429i \(-0.973089\pi\)
0.996428 0.0844429i \(-0.0269111\pi\)
\(684\) 0 0
\(685\) 5.67161 17.4554i 0.216701 0.666938i
\(686\) 35.9850 11.6922i 1.37391 0.446412i
\(687\) 0 0
\(688\) −2.44482 3.36501i −0.0932081 0.128290i
\(689\) −7.64925 23.5420i −0.291413 0.896877i
\(690\) 0 0
\(691\) −13.3953 9.73223i −0.509580 0.370231i 0.303084 0.952964i \(-0.401984\pi\)
−0.812664 + 0.582732i \(0.801984\pi\)
\(692\) −24.4119 −0.928003
\(693\) 0 0
\(694\) −35.5463 −1.34932
\(695\) 1.23983 + 0.900793i 0.0470296 + 0.0341690i
\(696\) 0 0
\(697\) −5.31322 16.3524i −0.201253 0.619392i
\(698\) −25.8996 35.6478i −0.980316 1.34929i
\(699\) 0 0
\(700\) 15.4652 5.02495i 0.584530 0.189925i
\(701\) −3.17601 + 9.77475i −0.119956 + 0.369187i −0.992948 0.118547i \(-0.962176\pi\)
0.872992 + 0.487734i \(0.162176\pi\)
\(702\) 0 0
\(703\) 20.4454i 0.771114i
\(704\) −20.9113 + 34.4276i −0.788126 + 1.29754i
\(705\) 0 0
\(706\) −12.1844 + 16.7704i −0.458568 + 0.631164i
\(707\) 15.6412 + 5.08214i 0.588248 + 0.191133i
\(708\) 0 0
\(709\) 38.9344 28.2875i 1.46221 1.06236i 0.479434 0.877578i \(-0.340842\pi\)
0.982779 0.184783i \(-0.0591581\pi\)
\(710\) −24.6077 + 17.8785i −0.923509 + 0.670969i
\(711\) 0 0
\(712\) 45.3774 + 14.7440i 1.70059 + 0.552555i
\(713\) 0.128383 0.176704i 0.00480799 0.00661763i
\(714\) 0 0
\(715\) 4.71720 + 57.0657i 0.176413 + 2.13414i
\(716\) 54.4559i 2.03511i
\(717\) 0 0
\(718\) 13.0623 40.2017i 0.487482 1.50031i
\(719\) −46.0534 + 14.9636i −1.71750 + 0.558050i −0.991553 0.129700i \(-0.958598\pi\)
−0.725947 + 0.687750i \(0.758598\pi\)
\(720\) 0 0
\(721\) −4.62838 6.37042i −0.172370 0.237247i
\(722\) −7.31722 22.5201i −0.272319 0.838111i
\(723\) 0 0
\(724\) −45.7687 33.2529i −1.70098 1.23583i
\(725\) 15.5714 0.578308
\(726\) 0 0
\(727\) 28.9349 1.07314 0.536568 0.843857i \(-0.319721\pi\)
0.536568 + 0.843857i \(0.319721\pi\)
\(728\) −22.0507 16.0208i −0.817253 0.593769i
\(729\) 0 0
\(730\) 18.4841 + 56.8881i 0.684126 + 2.10552i
\(731\) −7.56860 10.4173i −0.279935 0.385297i
\(732\) 0 0
\(733\) 15.9390 5.17891i 0.588722 0.191287i 0.000517936 1.00000i \(-0.499835\pi\)
0.588204 + 0.808712i \(0.299835\pi\)
\(734\) −22.6879 + 69.8261i −0.837424 + 2.57733i
\(735\) 0 0
\(736\) 0.350063i 0.0129035i
\(737\) −1.03394 12.5079i −0.0380855 0.460735i
\(738\) 0 0
\(739\) 16.0114 22.0378i 0.588990 0.810675i −0.405655 0.914026i \(-0.632957\pi\)
0.994645 + 0.103351i \(0.0329566\pi\)
\(740\) 66.5727 + 21.6308i 2.44726 + 0.795163i
\(741\) 0 0
\(742\) −10.4509 + 7.59301i −0.383664 + 0.278748i
\(743\) −35.8419 + 26.0407i −1.31491 + 0.955340i −0.314932 + 0.949114i \(0.601982\pi\)
−0.999981 + 0.00622608i \(0.998018\pi\)
\(744\) 0 0
\(745\) −26.7211 8.68220i −0.978984 0.318091i
\(746\) 4.64095 6.38772i 0.169917 0.233871i
\(747\) 0 0
\(748\) 22.8948 37.6931i 0.837118 1.37820i
\(749\) 4.05028i 0.147994i
\(750\) 0 0
\(751\) 8.73534 26.8846i 0.318757 0.981033i −0.655423 0.755262i \(-0.727510\pi\)
0.974180 0.225771i \(-0.0724902\pi\)
\(752\) −5.55257 + 1.80414i −0.202481 + 0.0657902i
\(753\) 0 0
\(754\) −35.8546 49.3497i −1.30575 1.79721i
\(755\) −9.03379 27.8031i −0.328773 1.01186i
\(756\) 0 0
\(757\) −13.9254 10.1174i −0.506129 0.367724i 0.305224 0.952280i \(-0.401269\pi\)
−0.811353 + 0.584556i \(0.801269\pi\)
\(758\) −56.5961 −2.05566
\(759\) 0 0
\(760\) 30.5619 1.10860
\(761\) 39.1803 + 28.4662i 1.42028 + 1.03190i 0.991725 + 0.128384i \(0.0409791\pi\)
0.428560 + 0.903513i \(0.359021\pi\)
\(762\) 0 0
\(763\) 4.05996 + 12.4953i 0.146981 + 0.452360i
\(764\) 30.2463 + 41.6305i 1.09427 + 1.50614i
\(765\) 0 0
\(766\) −20.1757 + 6.55549i −0.728978 + 0.236859i
\(767\) 25.6317 78.8862i 0.925506 2.84841i
\(768\) 0 0
\(769\) 10.3749i 0.374129i −0.982348 0.187065i \(-0.940103\pi\)
0.982348 0.187065i \(-0.0598974\pi\)
\(770\) 27.5624 11.5440i 0.993279 0.416017i
\(771\) 0 0
\(772\) −14.0788 + 19.3778i −0.506707 + 0.697423i
\(773\) 7.58873 + 2.46573i 0.272947 + 0.0886860i 0.442293 0.896871i \(-0.354165\pi\)
−0.169345 + 0.985557i \(0.554165\pi\)
\(774\) 0 0
\(775\) −7.37646 + 5.35931i −0.264970 + 0.192512i
\(776\) −39.0704 + 28.3863i −1.40255 + 1.01901i
\(777\) 0 0
\(778\) −58.1636 18.8985i −2.08527 0.677544i
\(779\) 7.92601 10.9092i 0.283979 0.390863i
\(780\) 0 0
\(781\) −11.1620 + 9.60950i −0.399409 + 0.343855i
\(782\) 0.755389i 0.0270126i
\(783\) 0 0
\(784\) 2.00084 6.15795i 0.0714585 0.219927i
\(785\) 9.11857 2.96280i 0.325456 0.105747i
\(786\) 0 0
\(787\) 10.4053 + 14.3217i 0.370909 + 0.510513i 0.953148 0.302505i \(-0.0978230\pi\)
−0.582239 + 0.813018i \(0.697823\pi\)
\(788\) −9.52384 29.3114i −0.339273 1.04417i
\(789\) 0 0
\(790\) −30.8238 22.3948i −1.09666 0.796770i
\(791\) −6.20131 −0.220493
\(792\) 0 0
\(793\) −58.0249 −2.06052
\(794\) 37.7095 + 27.3976i 1.33826 + 0.972304i
\(795\) 0 0
\(796\) 9.07987 + 27.9450i 0.321827 + 0.990483i
\(797\) 18.4947 + 25.4558i 0.655116 + 0.901690i 0.999307 0.0372092i \(-0.0118468\pi\)
−0.344191 + 0.938900i \(0.611847\pi\)
\(798\) 0 0
\(799\) −17.1894 + 5.58519i −0.608119 + 0.197590i
\(800\) −4.51574 + 13.8980i −0.159656 + 0.491370i
\(801\) 0 0
\(802\) 23.2933i 0.822516i
\(803\) 11.1895 + 26.7159i 0.394867 + 0.942783i
\(804\) 0 0
\(805\) −0.191365 + 0.263391i −0.00674472 + 0.00928331i
\(806\) 33.9699 + 11.0375i 1.19654 + 0.388780i
\(807\) 0 0
\(808\) 35.4666 25.7680i 1.24771 0.906515i
\(809\) 17.3896 12.6343i 0.611384 0.444197i −0.238517 0.971138i \(-0.576661\pi\)
0.849902 + 0.526942i \(0.176661\pi\)
\(810\) 0 0
\(811\) 31.2311 + 10.1476i 1.09667 + 0.356331i 0.800822 0.598903i \(-0.204396\pi\)
0.295852 + 0.955234i \(0.404396\pi\)
\(812\) −11.9019 + 16.3816i −0.417676 + 0.574882i
\(813\) 0 0
\(814\) 51.8639 + 12.2358i 1.81783 + 0.428864i
\(815\) 25.2940i 0.886011i
\(816\) 0 0
\(817\) 3.12061 9.60424i 0.109176 0.336010i
\(818\) 0.00343919 0.00111746i 0.000120249 3.90711e-5i
\(819\) 0 0
\(820\) −27.1361 37.3497i −0.947635 1.30431i
\(821\) 17.3211 + 53.3089i 0.604511 + 1.86049i 0.500116 + 0.865959i \(0.333291\pi\)
0.104396 + 0.994536i \(0.466709\pi\)
\(822\) 0 0
\(823\) −43.2106 31.3943i −1.50623 1.09434i −0.967817 0.251653i \(-0.919026\pi\)
−0.538409 0.842684i \(-0.680974\pi\)
\(824\) −20.9898 −0.731215
\(825\) 0 0
\(826\) −43.2866 −1.50613
\(827\) −15.2821 11.1031i −0.531410 0.386092i 0.289475 0.957186i \(-0.406519\pi\)
−0.820885 + 0.571094i \(0.806519\pi\)
\(828\) 0 0
\(829\) −8.51237 26.1984i −0.295647 0.909907i −0.983003 0.183587i \(-0.941229\pi\)
0.687357 0.726320i \(-0.258771\pi\)
\(830\) −5.08031 6.99245i −0.176340 0.242711i
\(831\) 0 0
\(832\) 68.2548 22.1773i 2.36631 0.768860i
\(833\) 6.19412 19.0635i 0.214614 0.660513i
\(834\) 0 0
\(835\) 57.9694i 2.00611i
\(836\) 34.4695 2.84934i 1.19215 0.0985464i
\(837\) 0 0
\(838\) 21.2768 29.2850i 0.734996 1.01164i
\(839\) −3.41825 1.11066i −0.118011 0.0383441i 0.249416 0.968396i \(-0.419761\pi\)
−0.367427 + 0.930052i \(0.619761\pi\)
\(840\) 0 0
\(841\) 7.77466 5.64862i 0.268092 0.194780i
\(842\) 46.4931 33.7792i 1.60226 1.16411i
\(843\) 0 0
\(844\) 57.9144 + 18.8175i 1.99350 + 0.647726i
\(845\) 37.6403 51.8074i 1.29487 1.78223i
\(846\) 0 0
\(847\) 12.8406 6.67044i 0.441209 0.229199i
\(848\) 5.14709i 0.176752i
\(849\) 0 0
\(850\) 9.74436 29.9900i 0.334229 1.02865i
\(851\) −0.552158 + 0.179407i −0.0189277 + 0.00614999i
\(852\) 0 0
\(853\) 8.06180 + 11.0961i 0.276031 + 0.379924i 0.924414 0.381390i \(-0.124555\pi\)
−0.648383 + 0.761314i \(0.724555\pi\)
\(854\) 9.35741 + 28.7991i 0.320204 + 0.985486i
\(855\) 0 0
\(856\) −8.73455 6.34602i −0.298541 0.216902i
\(857\) −3.65311 −0.124788 −0.0623939 0.998052i \(-0.519873\pi\)
−0.0623939 + 0.998052i \(0.519873\pi\)
\(858\) 0 0
\(859\) 24.8986 0.849529 0.424764 0.905304i \(-0.360357\pi\)
0.424764 + 0.905304i \(0.360357\pi\)
\(860\) −27.9710 20.3221i −0.953803 0.692979i
\(861\) 0 0
\(862\) −8.69486 26.7600i −0.296148 0.911450i
\(863\) 4.84824 + 6.67303i 0.165036 + 0.227152i 0.883523 0.468388i \(-0.155165\pi\)
−0.718487 + 0.695540i \(0.755165\pi\)
\(864\) 0 0
\(865\) −19.4045 + 6.30490i −0.659773 + 0.214373i
\(866\) −0.649859 + 2.00006i −0.0220831 + 0.0679648i
\(867\) 0 0
\(868\) 11.8566i 0.402440i
\(869\) −15.7684 9.57772i −0.534906 0.324902i
\(870\) 0 0
\(871\) −13.1435 + 18.0905i −0.445350 + 0.612972i
\(872\) 33.3076 + 10.8223i 1.12794 + 0.366490i
\(873\) 0 0
\(874\) −0.479279 + 0.348216i −0.0162118 + 0.0117786i
\(875\) −4.55131 + 3.30672i −0.153863 + 0.111788i
\(876\) 0 0
\(877\) 9.45445 + 3.07194i 0.319254 + 0.103732i 0.464260 0.885699i \(-0.346320\pi\)
−0.145006 + 0.989431i \(0.546320\pi\)
\(878\) −5.99572 + 8.25240i −0.202346 + 0.278505i
\(879\) 0 0
\(880\) 2.73391 11.5883i 0.0921600 0.390640i
\(881\) 46.2212i 1.55723i −0.627501 0.778616i \(-0.715922\pi\)
0.627501 0.778616i \(-0.284078\pi\)
\(882\) 0 0
\(883\) 9.04674 27.8430i 0.304447 0.936991i −0.675436 0.737419i \(-0.736045\pi\)
0.979883 0.199573i \(-0.0639554\pi\)
\(884\) −74.7289 + 24.2809i −2.51340 + 0.816654i
\(885\) 0 0
\(886\) −52.9763 72.9156i −1.77977 2.44965i
\(887\) 15.4801 + 47.6429i 0.519772 + 1.59969i 0.774428 + 0.632662i \(0.218038\pi\)
−0.254656 + 0.967032i \(0.581962\pi\)
\(888\) 0 0
\(889\) 3.17224 + 2.30477i 0.106393 + 0.0772994i
\(890\) 93.1987 3.12403
\(891\) 0 0
\(892\) 59.9122 2.00601
\(893\) −11.4676 8.33171i −0.383749 0.278810i
\(894\) 0 0
\(895\) 14.0644 + 43.2858i 0.470121 + 1.44688i
\(896\) −15.6239 21.5045i −0.521958 0.718413i
\(897\) 0 0
\(898\) −40.3940 + 13.1248i −1.34797 + 0.437980i
\(899\) 3.50850 10.7981i 0.117015 0.360136i
\(900\) 0 0
\(901\) 15.9342i 0.530845i
\(902\) −22.9300 26.6346i −0.763486 0.886837i
\(903\) 0 0
\(904\) −9.71628 + 13.3733i −0.323159 + 0.444790i
\(905\) −44.9688 14.6112i −1.49481 0.485694i
\(906\) 0 0
\(907\) −11.2620 + 8.18232i −0.373949 + 0.271690i −0.758846 0.651270i \(-0.774237\pi\)
0.384898 + 0.922959i \(0.374237\pi\)
\(908\) −48.9042 + 35.5310i −1.62294 + 1.17914i
\(909\) 0 0
\(910\) −50.6347 16.4522i −1.67852 0.545385i
\(911\) −8.15884 + 11.2297i −0.270315 + 0.372056i −0.922496 0.386007i \(-0.873854\pi\)
0.652181 + 0.758063i \(0.273854\pi\)
\(912\) 0 0
\(913\) −2.73061 3.17177i −0.0903700 0.104970i
\(914\) 75.4942i 2.49713i
\(915\) 0 0
\(916\) 17.0721 52.5424i 0.564077 1.73605i
\(917\) −9.73950 + 3.16456i −0.321627 + 0.104503i
\(918\) 0 0
\(919\) 11.1835 + 15.3927i 0.368908 + 0.507759i 0.952604 0.304214i \(-0.0983938\pi\)
−0.583695 + 0.811973i \(0.698394\pi\)
\(920\) 0.268178 + 0.825367i 0.00884157 + 0.0272116i
\(921\) 0 0
\(922\) 74.1469 + 53.8709i 2.44190 + 1.77414i
\(923\) 26.2417 0.863755
\(924\) 0 0
\(925\) 24.2358 0.796868
\(926\) −32.3111 23.4754i −1.06181 0.771448i
\(927\) 0 0
\(928\) −5.62314 17.3062i −0.184588 0.568105i
\(929\) 9.51861 + 13.1012i 0.312296 + 0.429838i 0.936095 0.351746i \(-0.114412\pi\)
−0.623800 + 0.781584i \(0.714412\pi\)
\(930\) 0 0
\(931\) 14.9508 4.85780i 0.489992 0.159208i
\(932\) −3.67760 + 11.3185i −0.120464 + 0.370749i
\(933\) 0 0
\(934\) 53.0733i 1.73661i
\(935\) 8.46353 35.8745i 0.276787 1.17322i
\(936\) 0 0
\(937\) −24.7387 + 34.0498i −0.808177 + 1.11236i 0.183425 + 0.983034i \(0.441281\pi\)
−0.991602 + 0.129326i \(0.958719\pi\)
\(938\) 11.0983 + 3.60607i 0.362373 + 0.117742i
\(939\) 0 0
\(940\) −39.2615 + 28.5251i −1.28057 + 0.930388i
\(941\) 0.342321 0.248710i 0.0111593 0.00810773i −0.582192 0.813052i \(-0.697805\pi\)
0.593351 + 0.804944i \(0.297805\pi\)
\(942\) 0 0
\(943\) 0.364169 + 0.118326i 0.0118590 + 0.00385322i
\(944\) −10.1377 + 13.9533i −0.329954 + 0.454142i
\(945\) 0 0
\(946\) −22.4955 13.6638i −0.731393 0.444249i
\(947\) 12.5861i 0.408994i −0.978867 0.204497i \(-0.934444\pi\)
0.978867 0.204497i \(-0.0655558\pi\)
\(948\) 0 0
\(949\) 15.9469 49.0796i 0.517659 1.59319i
\(950\) 23.5200 7.64211i 0.763089 0.247943i
\(951\) 0 0
\(952\) 10.3128 + 14.1944i 0.334240 + 0.460042i
\(953\) 16.7845 + 51.6574i 0.543703 + 1.67335i 0.724053 + 0.689745i \(0.242277\pi\)
−0.180349 + 0.983603i \(0.557723\pi\)
\(954\) 0 0
\(955\) 34.7941 + 25.2794i 1.12591 + 0.818022i
\(956\) −20.2966 −0.656440
\(957\) 0 0
\(958\) 31.8812 1.03003
\(959\) 6.68529 + 4.85714i 0.215879 + 0.156845i
\(960\) 0 0
\(961\) −7.52513 23.1600i −0.242746 0.747096i
\(962\) −55.8052 76.8092i −1.79923 2.47643i
\(963\) 0 0
\(964\) −10.0079 + 3.25175i −0.322332 + 0.104732i
\(965\) −6.18619 + 19.0391i −0.199141 + 0.612892i
\(966\) 0 0
\(967\) 26.8497i 0.863429i −0.902010 0.431714i \(-0.857909\pi\)
0.902010 0.431714i \(-0.142091\pi\)
\(968\) 5.73382 38.1425i 0.184292 1.22595i
\(969\) 0 0
\(970\) −55.4480 + 76.3177i −1.78033 + 2.45041i
\(971\) 25.9476 + 8.43088i 0.832697 + 0.270560i 0.694181 0.719801i \(-0.255767\pi\)
0.138516 + 0.990360i \(0.455767\pi\)
\(972\) 0 0
\(973\) −0.558215 + 0.405567i −0.0178956 + 0.0130019i
\(974\) 16.6048 12.0641i 0.532053 0.386559i
\(975\) 0 0
\(976\) 11.4748 + 3.72840i 0.367300 + 0.119343i
\(977\) 20.2465 27.8669i 0.647742 0.891540i −0.351257 0.936279i \(-0.614246\pi\)
0.998999 + 0.0447387i \(0.0142455\pi\)
\(978\) 0 0
\(979\) 44.9761 3.71784i 1.43744 0.118823i
\(980\) 53.8209i 1.71925i
\(981\) 0 0
\(982\) 24.3234 74.8598i 0.776191 2.38887i
\(983\) −15.6042 + 5.07013i −0.497698 + 0.161712i −0.547100 0.837067i \(-0.684268\pi\)
0.0494022 + 0.998779i \(0.484268\pi\)
\(984\) 0 0
\(985\) −15.1406 20.8392i −0.482419 0.663992i
\(986\) 12.1340 + 37.3445i 0.386424 + 1.18929i
\(987\) 0 0
\(988\) −49.8540 36.2210i −1.58607 1.15234i
\(989\) 0.286760 0.00911842
\(990\) 0 0
\(991\) 59.6539 1.89497 0.947484 0.319804i \(-0.103617\pi\)
0.947484 + 0.319804i \(0.103617\pi\)
\(992\) 8.62017 + 6.26292i 0.273691 + 0.198848i
\(993\) 0 0
\(994\) −4.23188 13.0244i −0.134227 0.413108i
\(995\) 14.4348 + 19.8677i 0.457613 + 0.629850i
\(996\) 0 0
\(997\) 38.7308 12.5844i 1.22662 0.398551i 0.377128 0.926161i \(-0.376912\pi\)
0.849487 + 0.527610i \(0.176912\pi\)
\(998\) −1.62771 + 5.00958i −0.0515243 + 0.158575i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.k.a.161.19 80
3.2 odd 2 inner 891.2.k.a.161.2 80
9.2 odd 6 297.2.t.a.260.1 80
9.4 even 3 297.2.t.a.62.1 80
9.5 odd 6 99.2.p.a.29.10 80
9.7 even 3 99.2.p.a.95.10 yes 80
11.8 odd 10 inner 891.2.k.a.404.2 80
33.8 even 10 inner 891.2.k.a.404.19 80
99.41 even 30 99.2.p.a.74.10 yes 80
99.52 odd 30 99.2.p.a.41.10 yes 80
99.74 even 30 297.2.t.a.206.1 80
99.85 odd 30 297.2.t.a.8.1 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.29.10 80 9.5 odd 6
99.2.p.a.41.10 yes 80 99.52 odd 30
99.2.p.a.74.10 yes 80 99.41 even 30
99.2.p.a.95.10 yes 80 9.7 even 3
297.2.t.a.8.1 80 99.85 odd 30
297.2.t.a.62.1 80 9.4 even 3
297.2.t.a.206.1 80 99.74 even 30
297.2.t.a.260.1 80 9.2 odd 6
891.2.k.a.161.2 80 3.2 odd 2 inner
891.2.k.a.161.19 80 1.1 even 1 trivial
891.2.k.a.404.2 80 11.8 odd 10 inner
891.2.k.a.404.19 80 33.8 even 10 inner