Properties

Label 891.2.k.a.161.17
Level $891$
Weight $2$
Character 891.161
Analytic conductor $7.115$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(161,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.161");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.k (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(20\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 161.17
Character \(\chi\) \(=\) 891.161
Dual form 891.2.k.a.404.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.59313 + 1.15748i) q^{2} +(0.580279 + 1.78592i) q^{4} +(-1.16215 - 1.59956i) q^{5} +(-0.301636 + 0.0980075i) q^{7} +(0.0743474 - 0.228818i) q^{8} -3.89347i q^{10} +(3.21453 + 0.816584i) q^{11} +(1.13071 - 1.55629i) q^{13} +(-0.593987 - 0.192998i) q^{14} +(3.42168 - 2.48599i) q^{16} +(2.02504 - 1.47127i) q^{17} +(4.44962 + 1.44577i) q^{19} +(2.18231 - 3.00369i) q^{20} +(4.17599 + 5.02167i) q^{22} +5.40571i q^{23} +(0.337083 - 1.03743i) q^{25} +(3.60274 - 1.17060i) q^{26} +(-0.350066 - 0.481825i) q^{28} +(-2.75540 - 8.48024i) q^{29} +(0.269809 + 0.196028i) q^{31} +7.84748 q^{32} +4.92912 q^{34} +(0.507314 + 0.368585i) q^{35} +(2.37275 + 7.30257i) q^{37} +(5.41539 + 7.45364i) q^{38} +(-0.452410 + 0.146997i) q^{40} +(3.09266 - 9.51824i) q^{41} +9.18172i q^{43} +(0.406974 + 6.21472i) q^{44} +(-6.25699 + 8.61201i) q^{46} +(-8.11146 - 2.63557i) q^{47} +(-5.58174 + 4.05537i) q^{49} +(1.73782 - 1.26260i) q^{50} +(3.43553 + 1.11627i) q^{52} +(1.05383 - 1.45047i) q^{53} +(-2.42958 - 6.09082i) q^{55} +0.0763063i q^{56} +(5.42598 - 16.6994i) q^{58} +(-7.38731 + 2.40028i) q^{59} +(-1.45318 - 2.00013i) q^{61} +(0.202944 + 0.624596i) q^{62} +(5.65871 + 4.11130i) q^{64} -3.80343 q^{65} +10.8080 q^{67} +(3.80266 + 2.76279i) q^{68} +(0.381589 + 1.17441i) q^{70} +(-6.99647 - 9.62982i) q^{71} +(0.116476 - 0.0378454i) q^{73} +(-4.67246 + 14.3804i) q^{74} +8.78560i q^{76} +(-1.04965 + 0.0687367i) q^{77} +(-7.33980 + 10.1024i) q^{79} +(-7.95299 - 2.58408i) q^{80} +(15.9442 - 11.5841i) q^{82} +(-0.349113 + 0.253646i) q^{83} +(-4.70678 - 1.52933i) q^{85} +(-10.6276 + 14.6277i) q^{86} +(0.425841 - 0.674830i) q^{88} +8.15328i q^{89} +(-0.188535 + 0.580251i) q^{91} +(-9.65415 + 3.13682i) q^{92} +(-9.87200 - 13.5876i) q^{94} +(-2.85852 - 8.79763i) q^{95} +(-6.99321 - 5.08086i) q^{97} -13.5864 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 10 q^{4} + 10 q^{7} + 10 q^{13} - 10 q^{16} - 50 q^{19} + 22 q^{22} + 4 q^{25} - 20 q^{28} + 12 q^{31} + 20 q^{34} - 6 q^{37} - 30 q^{40} - 40 q^{46} + 2 q^{49} + 10 q^{52} - 18 q^{55} + 58 q^{58}+ \cdots - 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.59313 + 1.15748i 1.12651 + 0.818460i 0.985184 0.171502i \(-0.0548620\pi\)
0.141330 + 0.989962i \(0.454862\pi\)
\(3\) 0 0
\(4\) 0.580279 + 1.78592i 0.290140 + 0.892958i
\(5\) −1.16215 1.59956i −0.519728 0.715345i 0.465794 0.884893i \(-0.345769\pi\)
−0.985522 + 0.169549i \(0.945769\pi\)
\(6\) 0 0
\(7\) −0.301636 + 0.0980075i −0.114008 + 0.0370433i −0.365465 0.930825i \(-0.619090\pi\)
0.251458 + 0.967868i \(0.419090\pi\)
\(8\) 0.0743474 0.228818i 0.0262858 0.0808993i
\(9\) 0 0
\(10\) 3.89347i 1.23122i
\(11\) 3.21453 + 0.816584i 0.969217 + 0.246209i
\(12\) 0 0
\(13\) 1.13071 1.55629i 0.313603 0.431637i −0.622898 0.782303i \(-0.714045\pi\)
0.936501 + 0.350666i \(0.114045\pi\)
\(14\) −0.593987 0.192998i −0.158750 0.0515809i
\(15\) 0 0
\(16\) 3.42168 2.48599i 0.855420 0.621499i
\(17\) 2.02504 1.47127i 0.491143 0.356836i −0.314481 0.949264i \(-0.601830\pi\)
0.805624 + 0.592427i \(0.201830\pi\)
\(18\) 0 0
\(19\) 4.44962 + 1.44577i 1.02081 + 0.331682i 0.771152 0.636651i \(-0.219681\pi\)
0.249661 + 0.968333i \(0.419681\pi\)
\(20\) 2.18231 3.00369i 0.487979 0.671645i
\(21\) 0 0
\(22\) 4.17599 + 5.02167i 0.890324 + 1.07062i
\(23\) 5.40571i 1.12717i 0.826059 + 0.563584i \(0.190578\pi\)
−0.826059 + 0.563584i \(0.809422\pi\)
\(24\) 0 0
\(25\) 0.337083 1.03743i 0.0674166 0.207487i
\(26\) 3.60274 1.17060i 0.706556 0.229574i
\(27\) 0 0
\(28\) −0.350066 0.481825i −0.0661563 0.0910563i
\(29\) −2.75540 8.48024i −0.511664 1.57474i −0.789271 0.614045i \(-0.789541\pi\)
0.277607 0.960695i \(-0.410459\pi\)
\(30\) 0 0
\(31\) 0.269809 + 0.196028i 0.0484592 + 0.0352077i 0.611751 0.791050i \(-0.290465\pi\)
−0.563292 + 0.826258i \(0.690465\pi\)
\(32\) 7.84748 1.38725
\(33\) 0 0
\(34\) 4.92912 0.845336
\(35\) 0.507314 + 0.368585i 0.0857518 + 0.0623023i
\(36\) 0 0
\(37\) 2.37275 + 7.30257i 0.390078 + 1.20054i 0.932729 + 0.360577i \(0.117420\pi\)
−0.542652 + 0.839958i \(0.682580\pi\)
\(38\) 5.41539 + 7.45364i 0.878491 + 1.20914i
\(39\) 0 0
\(40\) −0.452410 + 0.146997i −0.0715323 + 0.0232423i
\(41\) 3.09266 9.51824i 0.482993 1.48650i −0.351874 0.936047i \(-0.614455\pi\)
0.834867 0.550452i \(-0.185545\pi\)
\(42\) 0 0
\(43\) 9.18172i 1.40020i 0.714045 + 0.700100i \(0.246861\pi\)
−0.714045 + 0.700100i \(0.753139\pi\)
\(44\) 0.406974 + 6.21472i 0.0613536 + 0.936905i
\(45\) 0 0
\(46\) −6.25699 + 8.61201i −0.922543 + 1.26977i
\(47\) −8.11146 2.63557i −1.18318 0.384438i −0.349631 0.936887i \(-0.613693\pi\)
−0.833546 + 0.552450i \(0.813693\pi\)
\(48\) 0 0
\(49\) −5.58174 + 4.05537i −0.797391 + 0.579339i
\(50\) 1.73782 1.26260i 0.245766 0.178559i
\(51\) 0 0
\(52\) 3.43553 + 1.11627i 0.476422 + 0.154799i
\(53\) 1.05383 1.45047i 0.144754 0.199237i −0.730483 0.682931i \(-0.760705\pi\)
0.875238 + 0.483693i \(0.160705\pi\)
\(54\) 0 0
\(55\) −2.42958 6.09082i −0.327605 0.821286i
\(56\) 0.0763063i 0.0101969i
\(57\) 0 0
\(58\) 5.42598 16.6994i 0.712466 2.19274i
\(59\) −7.38731 + 2.40028i −0.961746 + 0.312490i −0.747480 0.664285i \(-0.768736\pi\)
−0.214267 + 0.976775i \(0.568736\pi\)
\(60\) 0 0
\(61\) −1.45318 2.00013i −0.186061 0.256091i 0.705789 0.708422i \(-0.250593\pi\)
−0.891850 + 0.452331i \(0.850593\pi\)
\(62\) 0.202944 + 0.624596i 0.0257739 + 0.0793238i
\(63\) 0 0
\(64\) 5.65871 + 4.11130i 0.707339 + 0.513912i
\(65\) −3.80343 −0.471757
\(66\) 0 0
\(67\) 10.8080 1.32041 0.660205 0.751086i \(-0.270469\pi\)
0.660205 + 0.751086i \(0.270469\pi\)
\(68\) 3.80266 + 2.76279i 0.461140 + 0.335038i
\(69\) 0 0
\(70\) 0.381589 + 1.17441i 0.0456086 + 0.140369i
\(71\) −6.99647 9.62982i −0.830329 1.14285i −0.987862 0.155336i \(-0.950354\pi\)
0.157533 0.987514i \(-0.449646\pi\)
\(72\) 0 0
\(73\) 0.116476 0.0378454i 0.0136325 0.00442947i −0.302193 0.953247i \(-0.597719\pi\)
0.315825 + 0.948817i \(0.397719\pi\)
\(74\) −4.67246 + 14.3804i −0.543163 + 1.67168i
\(75\) 0 0
\(76\) 8.78560i 1.00778i
\(77\) −1.04965 + 0.0687367i −0.119619 + 0.00783328i
\(78\) 0 0
\(79\) −7.33980 + 10.1024i −0.825792 + 1.13660i 0.162900 + 0.986643i \(0.447915\pi\)
−0.988692 + 0.149962i \(0.952085\pi\)
\(80\) −7.95299 2.58408i −0.889171 0.288909i
\(81\) 0 0
\(82\) 15.9442 11.5841i 1.76074 1.27925i
\(83\) −0.349113 + 0.253646i −0.0383202 + 0.0278412i −0.606780 0.794869i \(-0.707539\pi\)
0.568460 + 0.822711i \(0.307539\pi\)
\(84\) 0 0
\(85\) −4.70678 1.52933i −0.510522 0.165879i
\(86\) −10.6276 + 14.6277i −1.14601 + 1.57734i
\(87\) 0 0
\(88\) 0.425841 0.674830i 0.0453948 0.0719372i
\(89\) 8.15328i 0.864246i 0.901815 + 0.432123i \(0.142235\pi\)
−0.901815 + 0.432123i \(0.857765\pi\)
\(90\) 0 0
\(91\) −0.188535 + 0.580251i −0.0197638 + 0.0608268i
\(92\) −9.65415 + 3.13682i −1.00651 + 0.327036i
\(93\) 0 0
\(94\) −9.87200 13.5876i −1.01822 1.40146i
\(95\) −2.85852 8.79763i −0.293278 0.902618i
\(96\) 0 0
\(97\) −6.99321 5.08086i −0.710053 0.515884i 0.173138 0.984898i \(-0.444609\pi\)
−0.883191 + 0.469014i \(0.844609\pi\)
\(98\) −13.5864 −1.37244
\(99\) 0 0
\(100\) 2.04837 0.204837
\(101\) −1.33774 0.971925i −0.133110 0.0967102i 0.519238 0.854630i \(-0.326216\pi\)
−0.652348 + 0.757920i \(0.726216\pi\)
\(102\) 0 0
\(103\) 1.90769 + 5.87128i 0.187971 + 0.578514i 0.999987 0.00512061i \(-0.00162995\pi\)
−0.812016 + 0.583635i \(0.801630\pi\)
\(104\) −0.272041 0.374433i −0.0266758 0.0367162i
\(105\) 0 0
\(106\) 3.35778 1.09101i 0.326136 0.105968i
\(107\) −3.66316 + 11.2740i −0.354131 + 1.08990i 0.602381 + 0.798209i \(0.294219\pi\)
−0.956512 + 0.291694i \(0.905781\pi\)
\(108\) 0 0
\(109\) 3.30028i 0.316109i 0.987430 + 0.158055i \(0.0505222\pi\)
−0.987430 + 0.158055i \(0.949478\pi\)
\(110\) 3.17934 12.5157i 0.303138 1.19332i
\(111\) 0 0
\(112\) −0.788455 + 1.08522i −0.0745020 + 0.102543i
\(113\) 4.92348 + 1.59974i 0.463162 + 0.150491i 0.531297 0.847186i \(-0.321705\pi\)
−0.0681348 + 0.997676i \(0.521705\pi\)
\(114\) 0 0
\(115\) 8.64676 6.28224i 0.806314 0.585821i
\(116\) 13.5461 9.84181i 1.25772 0.913789i
\(117\) 0 0
\(118\) −14.5472 4.72668i −1.33918 0.435127i
\(119\) −0.466628 + 0.642258i −0.0427757 + 0.0588757i
\(120\) 0 0
\(121\) 9.66638 + 5.24986i 0.878762 + 0.477260i
\(122\) 4.86850i 0.440773i
\(123\) 0 0
\(124\) −0.193525 + 0.595608i −0.0173790 + 0.0534871i
\(125\) −11.4532 + 3.72135i −1.02440 + 0.332848i
\(126\) 0 0
\(127\) −2.22013 3.05575i −0.197005 0.271154i 0.699073 0.715050i \(-0.253596\pi\)
−0.896078 + 0.443896i \(0.853596\pi\)
\(128\) −0.593669 1.82713i −0.0524735 0.161497i
\(129\) 0 0
\(130\) −6.05936 4.40239i −0.531441 0.386115i
\(131\) −8.91986 −0.779332 −0.389666 0.920956i \(-0.627410\pi\)
−0.389666 + 0.920956i \(0.627410\pi\)
\(132\) 0 0
\(133\) −1.48386 −0.128667
\(134\) 17.2186 + 12.5100i 1.48746 + 1.08070i
\(135\) 0 0
\(136\) −0.186098 0.572750i −0.0159577 0.0491129i
\(137\) 2.83506 + 3.90213i 0.242216 + 0.333381i 0.912766 0.408483i \(-0.133942\pi\)
−0.670550 + 0.741864i \(0.733942\pi\)
\(138\) 0 0
\(139\) 6.84602 2.22441i 0.580672 0.188672i −0.00392986 0.999992i \(-0.501251\pi\)
0.584601 + 0.811321i \(0.301251\pi\)
\(140\) −0.363879 + 1.11990i −0.0307534 + 0.0946491i
\(141\) 0 0
\(142\) 23.4398i 1.96703i
\(143\) 4.90554 4.07942i 0.410222 0.341138i
\(144\) 0 0
\(145\) −10.3625 + 14.2627i −0.860556 + 1.18445i
\(146\) 0.229367 + 0.0745259i 0.0189826 + 0.00616781i
\(147\) 0 0
\(148\) −11.6649 + 8.47506i −0.958850 + 0.696646i
\(149\) −2.74721 + 1.99596i −0.225060 + 0.163516i −0.694601 0.719395i \(-0.744419\pi\)
0.469541 + 0.882910i \(0.344419\pi\)
\(150\) 0 0
\(151\) 8.07870 + 2.62493i 0.657435 + 0.213614i 0.618690 0.785635i \(-0.287664\pi\)
0.0387455 + 0.999249i \(0.487664\pi\)
\(152\) 0.661635 0.910663i 0.0536657 0.0738645i
\(153\) 0 0
\(154\) −1.75179 1.10544i −0.141163 0.0890788i
\(155\) 0.659389i 0.0529634i
\(156\) 0 0
\(157\) −5.71595 + 17.5919i −0.456182 + 1.40398i 0.413559 + 0.910477i \(0.364285\pi\)
−0.869742 + 0.493507i \(0.835715\pi\)
\(158\) −23.3865 + 7.59874i −1.86053 + 0.604523i
\(159\) 0 0
\(160\) −9.11993 12.5525i −0.720994 0.992363i
\(161\) −0.529800 1.63056i −0.0417541 0.128506i
\(162\) 0 0
\(163\) −15.0169 10.9104i −1.17622 0.854572i −0.184478 0.982837i \(-0.559059\pi\)
−0.991740 + 0.128265i \(0.959059\pi\)
\(164\) 18.7934 1.46752
\(165\) 0 0
\(166\) −0.849772 −0.0659551
\(167\) 11.0783 + 8.04887i 0.857266 + 0.622840i 0.927140 0.374716i \(-0.122260\pi\)
−0.0698740 + 0.997556i \(0.522260\pi\)
\(168\) 0 0
\(169\) 2.87369 + 8.84431i 0.221053 + 0.680331i
\(170\) −5.72836 7.88441i −0.439345 0.604707i
\(171\) 0 0
\(172\) −16.3978 + 5.32796i −1.25032 + 0.406253i
\(173\) 4.08796 12.5814i 0.310802 0.956549i −0.666647 0.745374i \(-0.732271\pi\)
0.977448 0.211175i \(-0.0677290\pi\)
\(174\) 0 0
\(175\) 0.345964i 0.0261524i
\(176\) 13.0291 5.19721i 0.982106 0.391755i
\(177\) 0 0
\(178\) −9.43725 + 12.9893i −0.707351 + 0.973586i
\(179\) 5.38656 + 1.75020i 0.402611 + 0.130816i 0.503321 0.864100i \(-0.332111\pi\)
−0.100710 + 0.994916i \(0.532111\pi\)
\(180\) 0 0
\(181\) 8.30217 6.03188i 0.617096 0.448346i −0.234810 0.972041i \(-0.575447\pi\)
0.851906 + 0.523695i \(0.175447\pi\)
\(182\) −0.971989 + 0.706191i −0.0720486 + 0.0523464i
\(183\) 0 0
\(184\) 1.23692 + 0.401901i 0.0911872 + 0.0296285i
\(185\) 8.92341 12.2820i 0.656062 0.902992i
\(186\) 0 0
\(187\) 7.71095 3.07584i 0.563881 0.224928i
\(188\) 16.0157i 1.16807i
\(189\) 0 0
\(190\) 5.62906 17.3245i 0.408375 1.25685i
\(191\) 5.37500 1.74644i 0.388921 0.126368i −0.108028 0.994148i \(-0.534454\pi\)
0.496949 + 0.867780i \(0.334454\pi\)
\(192\) 0 0
\(193\) −10.5617 14.5369i −0.760248 1.04639i −0.997193 0.0748686i \(-0.976146\pi\)
0.236945 0.971523i \(-0.423854\pi\)
\(194\) −5.26012 16.1890i −0.377654 1.16230i
\(195\) 0 0
\(196\) −10.4815 7.61527i −0.748680 0.543948i
\(197\) −2.51065 −0.178877 −0.0894383 0.995992i \(-0.528507\pi\)
−0.0894383 + 0.995992i \(0.528507\pi\)
\(198\) 0 0
\(199\) 12.2300 0.866959 0.433479 0.901163i \(-0.357286\pi\)
0.433479 + 0.901163i \(0.357286\pi\)
\(200\) −0.212322 0.154261i −0.0150134 0.0109079i
\(201\) 0 0
\(202\) −1.00621 3.09681i −0.0707970 0.217891i
\(203\) 1.66225 + 2.28790i 0.116667 + 0.160579i
\(204\) 0 0
\(205\) −18.8191 + 6.11470i −1.31438 + 0.427069i
\(206\) −3.75667 + 11.5618i −0.261739 + 0.805551i
\(207\) 0 0
\(208\) 8.13606i 0.564134i
\(209\) 13.1228 + 8.28095i 0.907726 + 0.572806i
\(210\) 0 0
\(211\) −14.8533 + 20.4438i −1.02254 + 1.40741i −0.112134 + 0.993693i \(0.535769\pi\)
−0.910407 + 0.413714i \(0.864231\pi\)
\(212\) 3.20193 + 1.04037i 0.219910 + 0.0714530i
\(213\) 0 0
\(214\) −18.8853 + 13.7210i −1.29098 + 0.937948i
\(215\) 14.6867 10.6705i 1.00162 0.727723i
\(216\) 0 0
\(217\) −0.100596 0.0326858i −0.00682893 0.00221885i
\(218\) −3.82000 + 5.25778i −0.258723 + 0.356102i
\(219\) 0 0
\(220\) 9.46785 7.87341i 0.638323 0.530825i
\(221\) 4.81513i 0.323900i
\(222\) 0 0
\(223\) 4.35365 13.3991i 0.291542 0.897273i −0.692819 0.721111i \(-0.743632\pi\)
0.984361 0.176162i \(-0.0563683\pi\)
\(224\) −2.36708 + 0.769112i −0.158157 + 0.0513884i
\(225\) 0 0
\(226\) 5.99210 + 8.24741i 0.398588 + 0.548610i
\(227\) 4.81543 + 14.8204i 0.319611 + 0.983663i 0.973815 + 0.227344i \(0.0730041\pi\)
−0.654203 + 0.756319i \(0.726996\pi\)
\(228\) 0 0
\(229\) −16.6515 12.0981i −1.10037 0.799462i −0.119246 0.992865i \(-0.538048\pi\)
−0.981119 + 0.193403i \(0.938048\pi\)
\(230\) 21.0470 1.38780
\(231\) 0 0
\(232\) −2.14529 −0.140845
\(233\) 2.11851 + 1.53918i 0.138788 + 0.100835i 0.655013 0.755618i \(-0.272663\pi\)
−0.516225 + 0.856453i \(0.672663\pi\)
\(234\) 0 0
\(235\) 5.21096 + 16.0377i 0.339925 + 1.04618i
\(236\) −8.57341 11.8003i −0.558081 0.768133i
\(237\) 0 0
\(238\) −1.48680 + 0.483090i −0.0963748 + 0.0313141i
\(239\) −6.88161 + 21.1794i −0.445134 + 1.36998i 0.437202 + 0.899363i \(0.355969\pi\)
−0.882336 + 0.470619i \(0.844031\pi\)
\(240\) 0 0
\(241\) 24.5862i 1.58374i 0.610690 + 0.791870i \(0.290892\pi\)
−0.610690 + 0.791870i \(0.709108\pi\)
\(242\) 9.32322 + 19.5523i 0.599319 + 1.25687i
\(243\) 0 0
\(244\) 2.72882 3.75589i 0.174695 0.240447i
\(245\) 12.9736 + 4.21538i 0.828854 + 0.269311i
\(246\) 0 0
\(247\) 7.28127 5.29015i 0.463296 0.336604i
\(248\) 0.0649143 0.0471630i 0.00412206 0.00299485i
\(249\) 0 0
\(250\) −22.5538 7.32816i −1.42643 0.463474i
\(251\) 7.34629 10.1113i 0.463694 0.638220i −0.511576 0.859238i \(-0.670938\pi\)
0.975270 + 0.221018i \(0.0709381\pi\)
\(252\) 0 0
\(253\) −4.41422 + 17.3768i −0.277519 + 1.09247i
\(254\) 7.43797i 0.466700i
\(255\) 0 0
\(256\) 5.49194 16.9024i 0.343246 1.05640i
\(257\) 11.6642 3.78992i 0.727592 0.236409i 0.0782801 0.996931i \(-0.475057\pi\)
0.649311 + 0.760523i \(0.275057\pi\)
\(258\) 0 0
\(259\) −1.43141 1.97017i −0.0889437 0.122420i
\(260\) −2.20705 6.79261i −0.136876 0.421259i
\(261\) 0 0
\(262\) −14.2105 10.3245i −0.877929 0.637853i
\(263\) −9.29043 −0.572872 −0.286436 0.958099i \(-0.592471\pi\)
−0.286436 + 0.958099i \(0.592471\pi\)
\(264\) 0 0
\(265\) −3.54482 −0.217756
\(266\) −2.36399 1.71754i −0.144945 0.105309i
\(267\) 0 0
\(268\) 6.27167 + 19.3022i 0.383103 + 1.17907i
\(269\) −12.5983 17.3401i −0.768131 1.05724i −0.996494 0.0836659i \(-0.973337\pi\)
0.228363 0.973576i \(-0.426663\pi\)
\(270\) 0 0
\(271\) −7.87807 + 2.55974i −0.478559 + 0.155493i −0.538356 0.842717i \(-0.680954\pi\)
0.0597976 + 0.998211i \(0.480954\pi\)
\(272\) 3.27144 10.0685i 0.198360 0.610490i
\(273\) 0 0
\(274\) 9.49812i 0.573802i
\(275\) 1.93071 3.05961i 0.116426 0.184501i
\(276\) 0 0
\(277\) 6.78809 9.34300i 0.407857 0.561367i −0.554837 0.831959i \(-0.687220\pi\)
0.962694 + 0.270592i \(0.0872195\pi\)
\(278\) 13.4813 + 4.38034i 0.808555 + 0.262715i
\(279\) 0 0
\(280\) 0.122056 0.0886792i 0.00729427 0.00529959i
\(281\) −1.04790 + 0.761347i −0.0625127 + 0.0454181i −0.618603 0.785704i \(-0.712301\pi\)
0.556090 + 0.831122i \(0.312301\pi\)
\(282\) 0 0
\(283\) 6.28924 + 2.04350i 0.373857 + 0.121473i 0.489918 0.871769i \(-0.337027\pi\)
−0.116061 + 0.993242i \(0.537027\pi\)
\(284\) 13.1381 18.0831i 0.779605 1.07303i
\(285\) 0 0
\(286\) 12.5370 0.820992i 0.741329 0.0485463i
\(287\) 3.17415i 0.187364i
\(288\) 0 0
\(289\) −3.31717 + 10.2092i −0.195128 + 0.600541i
\(290\) −33.0175 + 10.7280i −1.93886 + 0.629973i
\(291\) 0 0
\(292\) 0.135177 + 0.186056i 0.00791066 + 0.0108881i
\(293\) 2.13460 + 6.56961i 0.124704 + 0.383801i 0.993847 0.110761i \(-0.0353287\pi\)
−0.869143 + 0.494561i \(0.835329\pi\)
\(294\) 0 0
\(295\) 12.4245 + 9.02696i 0.723385 + 0.525570i
\(296\) 1.84737 0.107376
\(297\) 0 0
\(298\) −6.68695 −0.387365
\(299\) 8.41285 + 6.11229i 0.486528 + 0.353483i
\(300\) 0 0
\(301\) −0.899877 2.76954i −0.0518681 0.159633i
\(302\) 9.83213 + 13.5328i 0.565776 + 0.778724i
\(303\) 0 0
\(304\) 18.8193 6.11478i 1.07936 0.350706i
\(305\) −1.51052 + 4.64890i −0.0864921 + 0.266195i
\(306\) 0 0
\(307\) 11.5549i 0.659473i −0.944073 0.329737i \(-0.893040\pi\)
0.944073 0.329737i \(-0.106960\pi\)
\(308\) −0.731847 1.83470i −0.0417009 0.104542i
\(309\) 0 0
\(310\) 0.763228 1.05049i 0.0433485 0.0596640i
\(311\) −6.63931 2.15724i −0.376481 0.122326i 0.114663 0.993404i \(-0.463421\pi\)
−0.491144 + 0.871078i \(0.663421\pi\)
\(312\) 0 0
\(313\) 23.2016 16.8569i 1.31143 0.952809i 0.311433 0.950268i \(-0.399191\pi\)
0.999997 0.00254099i \(-0.000808825\pi\)
\(314\) −29.4685 + 21.4101i −1.66300 + 1.20824i
\(315\) 0 0
\(316\) −22.3011 7.24607i −1.25453 0.407623i
\(317\) −17.6372 + 24.2755i −0.990602 + 1.36345i −0.0596841 + 0.998217i \(0.519009\pi\)
−0.930918 + 0.365229i \(0.880991\pi\)
\(318\) 0 0
\(319\) −1.93247 29.5100i −0.108198 1.65224i
\(320\) 13.8294i 0.773086i
\(321\) 0 0
\(322\) 1.04329 3.21092i 0.0581404 0.178938i
\(323\) 11.1378 3.61888i 0.619722 0.201360i
\(324\) 0 0
\(325\) −1.23341 1.69764i −0.0684170 0.0941679i
\(326\) −11.2954 34.7636i −0.625592 1.92538i
\(327\) 0 0
\(328\) −1.94801 1.41531i −0.107561 0.0781476i
\(329\) 2.70501 0.149132
\(330\) 0 0
\(331\) 8.53322 0.469028 0.234514 0.972113i \(-0.424650\pi\)
0.234514 + 0.972113i \(0.424650\pi\)
\(332\) −0.655573 0.476302i −0.0359792 0.0261404i
\(333\) 0 0
\(334\) 8.33283 + 25.6458i 0.455952 + 1.40328i
\(335\) −12.5605 17.2881i −0.686254 0.944548i
\(336\) 0 0
\(337\) 11.3580 3.69045i 0.618712 0.201032i 0.0171437 0.999853i \(-0.494543\pi\)
0.601568 + 0.798821i \(0.294543\pi\)
\(338\) −5.65893 + 17.4164i −0.307805 + 0.947326i
\(339\) 0 0
\(340\) 9.29335i 0.504003i
\(341\) 0.707236 + 0.850459i 0.0382990 + 0.0460549i
\(342\) 0 0
\(343\) 2.59115 3.56641i 0.139909 0.192568i
\(344\) 2.10094 + 0.682637i 0.113275 + 0.0368053i
\(345\) 0 0
\(346\) 21.0754 15.3122i 1.13302 0.823187i
\(347\) −11.6828 + 8.48806i −0.627166 + 0.455663i −0.855417 0.517939i \(-0.826699\pi\)
0.228251 + 0.973602i \(0.426699\pi\)
\(348\) 0 0
\(349\) −30.6945 9.97326i −1.64304 0.533856i −0.665826 0.746107i \(-0.731921\pi\)
−0.977215 + 0.212251i \(0.931921\pi\)
\(350\) −0.400446 + 0.551167i −0.0214047 + 0.0294611i
\(351\) 0 0
\(352\) 25.2259 + 6.40813i 1.34455 + 0.341554i
\(353\) 6.48146i 0.344973i −0.985012 0.172487i \(-0.944820\pi\)
0.985012 0.172487i \(-0.0551802\pi\)
\(354\) 0 0
\(355\) −7.27253 + 22.3825i −0.385986 + 1.18794i
\(356\) −14.5611 + 4.73118i −0.771736 + 0.250752i
\(357\) 0 0
\(358\) 6.55569 + 9.02313i 0.346479 + 0.476887i
\(359\) 2.95299 + 9.08837i 0.155853 + 0.479666i 0.998246 0.0591972i \(-0.0188541\pi\)
−0.842393 + 0.538863i \(0.818854\pi\)
\(360\) 0 0
\(361\) 2.33755 + 1.69833i 0.123029 + 0.0893858i
\(362\) 20.2082 1.06212
\(363\) 0 0
\(364\) −1.14568 −0.0600501
\(365\) −0.195899 0.142329i −0.0102538 0.00744982i
\(366\) 0 0
\(367\) −2.49364 7.67463i −0.130167 0.400613i 0.864640 0.502392i \(-0.167546\pi\)
−0.994807 + 0.101779i \(0.967546\pi\)
\(368\) 13.4386 + 18.4966i 0.700534 + 0.964202i
\(369\) 0 0
\(370\) 28.4323 9.23822i 1.47813 0.480272i
\(371\) −0.175716 + 0.540797i −0.00912270 + 0.0280768i
\(372\) 0 0
\(373\) 0.696327i 0.0360545i −0.999837 0.0180272i \(-0.994261\pi\)
0.999837 0.0180272i \(-0.00573856\pi\)
\(374\) 15.8448 + 4.02504i 0.819314 + 0.208130i
\(375\) 0 0
\(376\) −1.20613 + 1.66010i −0.0622015 + 0.0856130i
\(377\) −16.3133 5.30050i −0.840175 0.272990i
\(378\) 0 0
\(379\) 2.08014 1.51131i 0.106850 0.0776308i −0.533077 0.846066i \(-0.678965\pi\)
0.639927 + 0.768436i \(0.278965\pi\)
\(380\) 14.0531 10.2102i 0.720908 0.523770i
\(381\) 0 0
\(382\) 10.5845 + 3.43913i 0.541552 + 0.175961i
\(383\) 3.66517 5.04467i 0.187281 0.257770i −0.705044 0.709164i \(-0.749073\pi\)
0.892325 + 0.451393i \(0.149073\pi\)
\(384\) 0 0
\(385\) 1.32980 + 1.59909i 0.0677727 + 0.0814973i
\(386\) 35.3842i 1.80101i
\(387\) 0 0
\(388\) 5.01598 15.4376i 0.254648 0.783726i
\(389\) −26.1325 + 8.49096i −1.32497 + 0.430509i −0.884199 0.467111i \(-0.845295\pi\)
−0.440771 + 0.897620i \(0.645295\pi\)
\(390\) 0 0
\(391\) 7.95328 + 10.9468i 0.402215 + 0.553601i
\(392\) 0.512953 + 1.57871i 0.0259081 + 0.0797368i
\(393\) 0 0
\(394\) −3.99980 2.90602i −0.201507 0.146403i
\(395\) 24.6893 1.24225
\(396\) 0 0
\(397\) 7.45945 0.374379 0.187190 0.982324i \(-0.440062\pi\)
0.187190 + 0.982324i \(0.440062\pi\)
\(398\) 19.4839 + 14.1559i 0.976641 + 0.709571i
\(399\) 0 0
\(400\) −1.42567 4.38775i −0.0712834 0.219388i
\(401\) −1.46277 2.01333i −0.0730473 0.100541i 0.770930 0.636920i \(-0.219792\pi\)
−0.843977 + 0.536379i \(0.819792\pi\)
\(402\) 0 0
\(403\) 0.610152 0.198251i 0.0303939 0.00987556i
\(404\) 0.959514 2.95308i 0.0477376 0.146921i
\(405\) 0 0
\(406\) 5.56894i 0.276382i
\(407\) 1.66411 + 25.4119i 0.0824867 + 1.25962i
\(408\) 0 0
\(409\) −17.4089 + 23.9613i −0.860815 + 1.18481i 0.120560 + 0.992706i \(0.461531\pi\)
−0.981375 + 0.192104i \(0.938469\pi\)
\(410\) −37.0590 12.0412i −1.83021 0.594672i
\(411\) 0 0
\(412\) −9.37861 + 6.81396i −0.462051 + 0.335700i
\(413\) 1.99303 1.44802i 0.0980708 0.0712526i
\(414\) 0 0
\(415\) 0.811442 + 0.263654i 0.0398321 + 0.0129422i
\(416\) 8.87323 12.2130i 0.435046 0.598789i
\(417\) 0 0
\(418\) 11.3214 + 28.3820i 0.553747 + 1.38821i
\(419\) 9.04569i 0.441911i −0.975284 0.220955i \(-0.929082\pi\)
0.975284 0.220955i \(-0.0709175\pi\)
\(420\) 0 0
\(421\) −6.71611 + 20.6701i −0.327323 + 1.00740i 0.643058 + 0.765818i \(0.277665\pi\)
−0.970381 + 0.241579i \(0.922335\pi\)
\(422\) −47.3264 + 15.3773i −2.30381 + 0.748554i
\(423\) 0 0
\(424\) −0.253544 0.348973i −0.0123132 0.0169476i
\(425\) −0.843746 2.59678i −0.0409277 0.125962i
\(426\) 0 0
\(427\) 0.634360 + 0.460889i 0.0306988 + 0.0223040i
\(428\) −22.2601 −1.07598
\(429\) 0 0
\(430\) 35.7487 1.72396
\(431\) −14.2119 10.3256i −0.684565 0.497366i 0.190304 0.981725i \(-0.439053\pi\)
−0.874869 + 0.484359i \(0.839053\pi\)
\(432\) 0 0
\(433\) −4.84981 14.9262i −0.233067 0.717306i −0.997372 0.0724515i \(-0.976918\pi\)
0.764305 0.644855i \(-0.223082\pi\)
\(434\) −0.122430 0.168511i −0.00587684 0.00808878i
\(435\) 0 0
\(436\) −5.89402 + 1.91508i −0.282272 + 0.0917159i
\(437\) −7.81541 + 24.0534i −0.373862 + 1.15063i
\(438\) 0 0
\(439\) 11.9259i 0.569193i 0.958647 + 0.284597i \(0.0918596\pi\)
−0.958647 + 0.284597i \(0.908140\pi\)
\(440\) −1.57432 + 0.103095i −0.0750528 + 0.00491487i
\(441\) 0 0
\(442\) 5.57340 7.67113i 0.265100 0.364878i
\(443\) 14.6861 + 4.77179i 0.697756 + 0.226715i 0.636353 0.771398i \(-0.280442\pi\)
0.0614036 + 0.998113i \(0.480442\pi\)
\(444\) 0 0
\(445\) 13.0417 9.47532i 0.618234 0.449173i
\(446\) 22.4451 16.3074i 1.06281 0.772175i
\(447\) 0 0
\(448\) −2.10981 0.685519i −0.0996791 0.0323877i
\(449\) −13.6969 + 18.8521i −0.646395 + 0.889687i −0.998936 0.0461094i \(-0.985318\pi\)
0.352541 + 0.935796i \(0.385318\pi\)
\(450\) 0 0
\(451\) 17.7139 28.0712i 0.834115 1.32182i
\(452\) 9.72122i 0.457248i
\(453\) 0 0
\(454\) −9.48264 + 29.1846i −0.445042 + 1.36970i
\(455\) 1.14725 0.372765i 0.0537840 0.0174755i
\(456\) 0 0
\(457\) 0.363446 + 0.500241i 0.0170013 + 0.0234003i 0.817433 0.576024i \(-0.195396\pi\)
−0.800432 + 0.599424i \(0.795396\pi\)
\(458\) −12.5249 38.5476i −0.585249 1.80121i
\(459\) 0 0
\(460\) 16.2371 + 11.7969i 0.757058 + 0.550035i
\(461\) 22.7574 1.05992 0.529959 0.848023i \(-0.322207\pi\)
0.529959 + 0.848023i \(0.322207\pi\)
\(462\) 0 0
\(463\) 7.08852 0.329431 0.164716 0.986341i \(-0.447329\pi\)
0.164716 + 0.986341i \(0.447329\pi\)
\(464\) −30.5099 22.1667i −1.41639 1.02907i
\(465\) 0 0
\(466\) 1.59349 + 4.90425i 0.0738169 + 0.227185i
\(467\) 3.50195 + 4.82002i 0.162051 + 0.223044i 0.882319 0.470652i \(-0.155981\pi\)
−0.720268 + 0.693696i \(0.755981\pi\)
\(468\) 0 0
\(469\) −3.26009 + 1.05927i −0.150537 + 0.0489124i
\(470\) −10.2615 + 31.5817i −0.473328 + 1.45675i
\(471\) 0 0
\(472\) 1.86880i 0.0860187i
\(473\) −7.49764 + 29.5149i −0.344742 + 1.35710i
\(474\) 0 0
\(475\) 2.99978 4.12885i 0.137639 0.189444i
\(476\) −1.41779 0.460669i −0.0649844 0.0211147i
\(477\) 0 0
\(478\) −35.4780 + 25.7763i −1.62273 + 1.17898i
\(479\) 1.42565 1.03580i 0.0651398 0.0473269i −0.554739 0.832025i \(-0.687182\pi\)
0.619879 + 0.784698i \(0.287182\pi\)
\(480\) 0 0
\(481\) 14.0478 + 4.56441i 0.640525 + 0.208119i
\(482\) −28.4580 + 39.1691i −1.29623 + 1.78410i
\(483\) 0 0
\(484\) −3.76661 + 20.3097i −0.171210 + 0.923170i
\(485\) 17.0908i 0.776052i
\(486\) 0 0
\(487\) −5.37983 + 16.5574i −0.243783 + 0.750288i 0.752051 + 0.659105i \(0.229065\pi\)
−0.995834 + 0.0911829i \(0.970935\pi\)
\(488\) −0.565706 + 0.183809i −0.0256083 + 0.00832065i
\(489\) 0 0
\(490\) 15.7895 + 21.7323i 0.713295 + 0.981767i
\(491\) −10.3841 31.9589i −0.468626 1.44228i −0.854364 0.519675i \(-0.826053\pi\)
0.385738 0.922608i \(-0.373947\pi\)
\(492\) 0 0
\(493\) −18.0565 13.1188i −0.813225 0.590843i
\(494\) 17.7233 0.797407
\(495\) 0 0
\(496\) 1.41052 0.0633344
\(497\) 3.05418 + 2.21899i 0.136999 + 0.0995355i
\(498\) 0 0
\(499\) 6.03285 + 18.5672i 0.270068 + 0.831183i 0.990482 + 0.137639i \(0.0439514\pi\)
−0.720415 + 0.693543i \(0.756049\pi\)
\(500\) −13.2921 18.2949i −0.594439 0.818175i
\(501\) 0 0
\(502\) 23.4072 7.60546i 1.04471 0.339448i
\(503\) −7.43631 + 22.8866i −0.331569 + 1.02046i 0.636819 + 0.771013i \(0.280250\pi\)
−0.968388 + 0.249450i \(0.919750\pi\)
\(504\) 0 0
\(505\) 3.26932i 0.145483i
\(506\) −27.1457 + 22.5742i −1.20677 + 1.00355i
\(507\) 0 0
\(508\) 4.16902 5.73816i 0.184970 0.254590i
\(509\) 16.6684 + 5.41589i 0.738814 + 0.240055i 0.654161 0.756355i \(-0.273022\pi\)
0.0846527 + 0.996411i \(0.473022\pi\)
\(510\) 0 0
\(511\) −0.0314243 + 0.0228311i −0.00139013 + 0.00100999i
\(512\) 25.2051 18.3126i 1.11392 0.809309i
\(513\) 0 0
\(514\) 22.9693 + 7.46319i 1.01313 + 0.329187i
\(515\) 7.17444 9.87476i 0.316143 0.435134i
\(516\) 0 0
\(517\) −23.9223 15.0958i −1.05210 0.663913i
\(518\) 4.79557i 0.210705i
\(519\) 0 0
\(520\) −0.282775 + 0.870292i −0.0124005 + 0.0381648i
\(521\) 7.32063 2.37862i 0.320723 0.104209i −0.144231 0.989544i \(-0.546071\pi\)
0.464954 + 0.885335i \(0.346071\pi\)
\(522\) 0 0
\(523\) −7.75187 10.6695i −0.338966 0.466546i 0.605173 0.796094i \(-0.293104\pi\)
−0.944139 + 0.329547i \(0.893104\pi\)
\(524\) −5.17601 15.9301i −0.226115 0.695911i
\(525\) 0 0
\(526\) −14.8009 10.7535i −0.645349 0.468873i
\(527\) 0.834784 0.0363638
\(528\) 0 0
\(529\) −6.22172 −0.270509
\(530\) −5.64736 4.10305i −0.245306 0.178225i
\(531\) 0 0
\(532\) −0.861054 2.65005i −0.0373314 0.114894i
\(533\) −11.3162 15.5755i −0.490160 0.674648i
\(534\) 0 0
\(535\) 22.2906 7.24266i 0.963708 0.313128i
\(536\) 0.803548 2.47307i 0.0347080 0.106820i
\(537\) 0 0
\(538\) 42.2072i 1.81968i
\(539\) −21.2542 + 8.47815i −0.915484 + 0.365180i
\(540\) 0 0
\(541\) −8.36941 + 11.5195i −0.359829 + 0.495262i −0.950101 0.311942i \(-0.899021\pi\)
0.590272 + 0.807204i \(0.299021\pi\)
\(542\) −15.5136 5.04069i −0.666368 0.216516i
\(543\) 0 0
\(544\) 15.8914 11.5458i 0.681339 0.495022i
\(545\) 5.27899 3.83541i 0.226127 0.164291i
\(546\) 0 0
\(547\) 35.9640 + 11.6854i 1.53771 + 0.499632i 0.950744 0.309978i \(-0.100322\pi\)
0.586967 + 0.809611i \(0.300322\pi\)
\(548\) −5.32374 + 7.32750i −0.227419 + 0.313015i
\(549\) 0 0
\(550\) 6.61731 2.63960i 0.282163 0.112553i
\(551\) 41.7175i 1.77723i
\(552\) 0 0
\(553\) 1.22384 3.76659i 0.0520430 0.160172i
\(554\) 21.6286 7.02757i 0.918913 0.298573i
\(555\) 0 0
\(556\) 7.94520 + 10.9356i 0.336952 + 0.463774i
\(557\) 4.83577 + 14.8830i 0.204898 + 0.630612i 0.999718 + 0.0237660i \(0.00756565\pi\)
−0.794819 + 0.606846i \(0.792434\pi\)
\(558\) 0 0
\(559\) 14.2894 + 10.3819i 0.604378 + 0.439106i
\(560\) 2.65217 0.112075
\(561\) 0 0
\(562\) −2.55069 −0.107594
\(563\) 13.0398 + 9.47394i 0.549561 + 0.399279i 0.827623 0.561284i \(-0.189692\pi\)
−0.278063 + 0.960563i \(0.589692\pi\)
\(564\) 0 0
\(565\) −3.16294 9.73453i −0.133066 0.409535i
\(566\) 7.65428 + 10.5352i 0.321734 + 0.442828i
\(567\) 0 0
\(568\) −2.72364 + 0.884966i −0.114282 + 0.0371323i
\(569\) −7.49721 + 23.0740i −0.314299 + 0.967314i 0.661743 + 0.749731i \(0.269817\pi\)
−0.976042 + 0.217583i \(0.930183\pi\)
\(570\) 0 0
\(571\) 16.7867i 0.702501i −0.936282 0.351250i \(-0.885757\pi\)
0.936282 0.351250i \(-0.114243\pi\)
\(572\) 10.1321 + 6.39368i 0.423643 + 0.267333i
\(573\) 0 0
\(574\) −3.67401 + 5.05683i −0.153350 + 0.211068i
\(575\) 5.60807 + 1.82217i 0.233873 + 0.0759899i
\(576\) 0 0
\(577\) 5.58119 4.05497i 0.232348 0.168811i −0.465519 0.885038i \(-0.654132\pi\)
0.697867 + 0.716227i \(0.254132\pi\)
\(578\) −17.1016 + 12.4250i −0.711333 + 0.516814i
\(579\) 0 0
\(580\) −31.4851 10.2301i −1.30735 0.424783i
\(581\) 0.0804460 0.110724i 0.00333746 0.00459362i
\(582\) 0 0
\(583\) 4.57199 3.80204i 0.189353 0.157464i
\(584\) 0.0294655i 0.00121929i
\(585\) 0 0
\(586\) −4.20349 + 12.9370i −0.173644 + 0.534422i
\(587\) 23.3789 7.59628i 0.964952 0.313532i 0.216176 0.976354i \(-0.430642\pi\)
0.748777 + 0.662822i \(0.230642\pi\)
\(588\) 0 0
\(589\) 0.917138 + 1.26233i 0.0377900 + 0.0520135i
\(590\) 9.34543 + 28.7623i 0.384745 + 1.18412i
\(591\) 0 0
\(592\) 26.2729 + 19.0884i 1.07981 + 0.784529i
\(593\) 25.3400 1.04059 0.520295 0.853987i \(-0.325822\pi\)
0.520295 + 0.853987i \(0.325822\pi\)
\(594\) 0 0
\(595\) 1.56962 0.0643481
\(596\) −5.15877 3.74807i −0.211312 0.153527i
\(597\) 0 0
\(598\) 6.32793 + 19.4754i 0.258768 + 0.796407i
\(599\) 12.7726 + 17.5799i 0.521873 + 0.718297i 0.985865 0.167543i \(-0.0535832\pi\)
−0.463992 + 0.885840i \(0.653583\pi\)
\(600\) 0 0
\(601\) −17.8627 + 5.80394i −0.728634 + 0.236748i −0.649762 0.760137i \(-0.725132\pi\)
−0.0788714 + 0.996885i \(0.525132\pi\)
\(602\) 1.77206 5.45383i 0.0722236 0.222281i
\(603\) 0 0
\(604\) 15.9511i 0.649040i
\(605\) −2.83630 21.5631i −0.115312 0.876663i
\(606\) 0 0
\(607\) 28.2291 38.8540i 1.14578 1.57704i 0.391930 0.919995i \(-0.371807\pi\)
0.753854 0.657042i \(-0.228193\pi\)
\(608\) 34.9183 + 11.3456i 1.41612 + 0.460127i
\(609\) 0 0
\(610\) −7.78745 + 5.65792i −0.315305 + 0.229082i
\(611\) −13.2734 + 9.64370i −0.536985 + 0.390142i
\(612\) 0 0
\(613\) 1.96455 + 0.638321i 0.0793474 + 0.0257815i 0.348422 0.937338i \(-0.386718\pi\)
−0.269074 + 0.963119i \(0.586718\pi\)
\(614\) 13.3745 18.4085i 0.539753 0.742906i
\(615\) 0 0
\(616\) −0.0623105 + 0.245289i −0.00251056 + 0.00988296i
\(617\) 34.5882i 1.39247i −0.717814 0.696235i \(-0.754857\pi\)
0.717814 0.696235i \(-0.245143\pi\)
\(618\) 0 0
\(619\) 8.47676 26.0888i 0.340710 1.04860i −0.623131 0.782117i \(-0.714140\pi\)
0.963841 0.266479i \(-0.0858603\pi\)
\(620\) 1.17761 0.382630i 0.0472941 0.0153668i
\(621\) 0 0
\(622\) −8.08033 11.1216i −0.323992 0.445936i
\(623\) −0.799083 2.45932i −0.0320146 0.0985307i
\(624\) 0 0
\(625\) 14.8503 + 10.7894i 0.594012 + 0.431575i
\(626\) 56.4746 2.25718
\(627\) 0 0
\(628\) −34.7345 −1.38606
\(629\) 15.5490 + 11.2970i 0.619979 + 0.450441i
\(630\) 0 0
\(631\) −8.09100 24.9015i −0.322098 0.991315i −0.972734 0.231925i \(-0.925498\pi\)
0.650636 0.759390i \(-0.274502\pi\)
\(632\) 1.76591 + 2.43056i 0.0702439 + 0.0966825i
\(633\) 0 0
\(634\) −56.1966 + 18.2594i −2.23185 + 0.725173i
\(635\) −2.30773 + 7.10247i −0.0915796 + 0.281853i
\(636\) 0 0
\(637\) 13.2723i 0.525866i
\(638\) 31.0784 49.2501i 1.23041 1.94983i
\(639\) 0 0
\(640\) −2.23267 + 3.07300i −0.0882539 + 0.121471i
\(641\) 5.81496 + 1.88940i 0.229677 + 0.0746266i 0.421595 0.906784i \(-0.361471\pi\)
−0.191917 + 0.981411i \(0.561471\pi\)
\(642\) 0 0
\(643\) 0.662093 0.481039i 0.0261104 0.0189703i −0.574654 0.818397i \(-0.694863\pi\)
0.600764 + 0.799426i \(0.294863\pi\)
\(644\) 2.60461 1.89236i 0.102636 0.0745693i
\(645\) 0 0
\(646\) 21.9327 + 7.12636i 0.862930 + 0.280383i
\(647\) −3.42533 + 4.71456i −0.134664 + 0.185349i −0.871023 0.491242i \(-0.836543\pi\)
0.736360 + 0.676590i \(0.236543\pi\)
\(648\) 0 0
\(649\) −25.7068 + 1.68342i −1.00908 + 0.0660800i
\(650\) 4.13220i 0.162078i
\(651\) 0 0
\(652\) 10.7711 33.1501i 0.421830 1.29826i
\(653\) 2.47667 0.804718i 0.0969195 0.0314911i −0.260156 0.965567i \(-0.583774\pi\)
0.357075 + 0.934076i \(0.383774\pi\)
\(654\) 0 0
\(655\) 10.3662 + 14.2679i 0.405041 + 0.557491i
\(656\) −13.0802 40.2567i −0.510696 1.57176i
\(657\) 0 0
\(658\) 4.30944 + 3.13099i 0.168000 + 0.122059i
\(659\) −22.5035 −0.876613 −0.438306 0.898826i \(-0.644422\pi\)
−0.438306 + 0.898826i \(0.644422\pi\)
\(660\) 0 0
\(661\) −6.46574 −0.251488 −0.125744 0.992063i \(-0.540132\pi\)
−0.125744 + 0.992063i \(0.540132\pi\)
\(662\) 13.5945 + 9.87701i 0.528367 + 0.383881i
\(663\) 0 0
\(664\) 0.0320830 + 0.0987412i 0.00124506 + 0.00383190i
\(665\) 1.72447 + 2.37353i 0.0668720 + 0.0920414i
\(666\) 0 0
\(667\) 45.8417 14.8949i 1.77500 0.576732i
\(668\) −7.94608 + 24.4555i −0.307443 + 0.946213i
\(669\) 0 0
\(670\) 42.0807i 1.62572i
\(671\) −3.03802 7.61613i −0.117281 0.294017i
\(672\) 0 0
\(673\) 0.208907 0.287536i 0.00805278 0.0110837i −0.804972 0.593313i \(-0.797820\pi\)
0.813024 + 0.582230i \(0.197820\pi\)
\(674\) 22.3665 + 7.26731i 0.861524 + 0.279926i
\(675\) 0 0
\(676\) −14.1276 + 10.2643i −0.543371 + 0.394782i
\(677\) 23.6606 17.1904i 0.909350 0.660681i −0.0315007 0.999504i \(-0.510029\pi\)
0.940850 + 0.338823i \(0.110029\pi\)
\(678\) 0 0
\(679\) 2.60737 + 0.847185i 0.100062 + 0.0325120i
\(680\) −0.699874 + 0.963294i −0.0268389 + 0.0369406i
\(681\) 0 0
\(682\) 0.142333 + 2.17350i 0.00545021 + 0.0832278i
\(683\) 26.1630i 1.00110i −0.865708 0.500549i \(-0.833132\pi\)
0.865708 0.500549i \(-0.166868\pi\)
\(684\) 0 0
\(685\) 2.94692 9.06969i 0.112596 0.346535i
\(686\) 8.25607 2.68256i 0.315218 0.102421i
\(687\) 0 0
\(688\) 22.8257 + 31.4169i 0.870222 + 1.19776i
\(689\) −1.06578 3.28012i −0.0406029 0.124963i
\(690\) 0 0
\(691\) −36.1043 26.2313i −1.37347 0.997885i −0.997457 0.0712711i \(-0.977294\pi\)
−0.376014 0.926614i \(-0.622706\pi\)
\(692\) 24.8415 0.944334
\(693\) 0 0
\(694\) −28.4370 −1.07945
\(695\) −11.5142 8.36552i −0.436757 0.317322i
\(696\) 0 0
\(697\) −7.74119 23.8249i −0.293218 0.902433i
\(698\) −37.3566 51.4170i −1.41397 1.94616i
\(699\) 0 0
\(700\) −0.617863 + 0.200756i −0.0233530 + 0.00758786i
\(701\) 3.87098 11.9137i 0.146205 0.449972i −0.850959 0.525232i \(-0.823979\pi\)
0.997164 + 0.0752595i \(0.0239785\pi\)
\(702\) 0 0
\(703\) 35.9241i 1.35490i
\(704\) 14.8329 + 17.8367i 0.559035 + 0.672245i
\(705\) 0 0
\(706\) 7.50215 10.3258i 0.282347 0.388617i
\(707\) 0.498767 + 0.162059i 0.0187581 + 0.00609486i
\(708\) 0 0
\(709\) 9.09600 6.60863i 0.341607 0.248192i −0.403732 0.914877i \(-0.632287\pi\)
0.745340 + 0.666685i \(0.232287\pi\)
\(710\) −37.4934 + 27.2406i −1.40710 + 1.02232i
\(711\) 0 0
\(712\) 1.86562 + 0.606176i 0.0699169 + 0.0227174i
\(713\) −1.05967 + 1.45851i −0.0396850 + 0.0546217i
\(714\) 0 0
\(715\) −12.2262 3.10582i −0.457235 0.116151i
\(716\) 10.6356i 0.397469i
\(717\) 0 0
\(718\) −5.81508 + 17.8970i −0.217017 + 0.667909i
\(719\) −8.20360 + 2.66551i −0.305942 + 0.0994067i −0.457965 0.888970i \(-0.651421\pi\)
0.152022 + 0.988377i \(0.451421\pi\)
\(720\) 0 0
\(721\) −1.15086 1.58402i −0.0428602 0.0589920i
\(722\) 1.75825 + 5.41133i 0.0654352 + 0.201389i
\(723\) 0 0
\(724\) 15.5900 + 11.3268i 0.579398 + 0.420957i
\(725\) −9.72649 −0.361233
\(726\) 0 0
\(727\) −47.4032 −1.75809 −0.879044 0.476740i \(-0.841818\pi\)
−0.879044 + 0.476740i \(0.841818\pi\)
\(728\) 0.118755 + 0.0862803i 0.00440134 + 0.00319776i
\(729\) 0 0
\(730\) −0.147350 0.453496i −0.00545366 0.0167847i
\(731\) 13.5088 + 18.5933i 0.499642 + 0.687698i
\(732\) 0 0
\(733\) −14.7226 + 4.78367i −0.543792 + 0.176689i −0.568016 0.823018i \(-0.692289\pi\)
0.0242235 + 0.999707i \(0.492289\pi\)
\(734\) 4.91052 15.1130i 0.181251 0.557832i
\(735\) 0 0
\(736\) 42.4212i 1.56367i
\(737\) 34.7427 + 8.82565i 1.27976 + 0.325097i
\(738\) 0 0
\(739\) 25.0234 34.4418i 0.920502 1.26696i −0.0429492 0.999077i \(-0.513675\pi\)
0.963451 0.267885i \(-0.0863246\pi\)
\(740\) 27.1127 + 8.80946i 0.996683 + 0.323842i
\(741\) 0 0
\(742\) −0.905899 + 0.658174i −0.0332566 + 0.0241623i
\(743\) 39.0636 28.3814i 1.43310 1.04121i 0.443676 0.896187i \(-0.353674\pi\)
0.989428 0.145024i \(-0.0463259\pi\)
\(744\) 0 0
\(745\) 6.38532 + 2.07472i 0.233940 + 0.0760118i
\(746\) 0.805983 1.10934i 0.0295091 0.0406159i
\(747\) 0 0
\(748\) 9.96770 + 11.9863i 0.364455 + 0.438261i
\(749\) 3.75967i 0.137375i
\(750\) 0 0
\(751\) 7.95196 24.4736i 0.290171 0.893055i −0.694630 0.719368i \(-0.744432\pi\)
0.984801 0.173688i \(-0.0555683\pi\)
\(752\) −34.3068 + 11.1470i −1.25104 + 0.406488i
\(753\) 0 0
\(754\) −19.8540 27.3266i −0.723038 0.995177i
\(755\) −5.18991 15.9729i −0.188880 0.581314i
\(756\) 0 0
\(757\) −41.1683 29.9105i −1.49629 1.08712i −0.971832 0.235676i \(-0.924269\pi\)
−0.524454 0.851439i \(-0.675731\pi\)
\(758\) 5.06324 0.183905
\(759\) 0 0
\(760\) −2.22558 −0.0807302
\(761\) 17.2680 + 12.5459i 0.625964 + 0.454789i 0.854999 0.518629i \(-0.173557\pi\)
−0.229036 + 0.973418i \(0.573557\pi\)
\(762\) 0 0
\(763\) −0.323452 0.995483i −0.0117098 0.0360389i
\(764\) 6.23800 + 8.58587i 0.225683 + 0.310626i
\(765\) 0 0
\(766\) 11.6782 3.79447i 0.421950 0.137100i
\(767\) −4.61738 + 14.2108i −0.166724 + 0.513123i
\(768\) 0 0
\(769\) 21.6072i 0.779176i 0.920989 + 0.389588i \(0.127383\pi\)
−0.920989 + 0.389588i \(0.872617\pi\)
\(770\) 0.267624 + 4.08677i 0.00964451 + 0.147277i
\(771\) 0 0
\(772\) 19.8330 27.2978i 0.713806 0.982469i
\(773\) −9.33763 3.03398i −0.335851 0.109125i 0.136236 0.990676i \(-0.456499\pi\)
−0.472088 + 0.881552i \(0.656499\pi\)
\(774\) 0 0
\(775\) 0.294314 0.213832i 0.0105721 0.00768106i
\(776\) −1.68252 + 1.22242i −0.0603989 + 0.0438824i
\(777\) 0 0
\(778\) −51.4606 16.7206i −1.84495 0.599461i
\(779\) 27.5224 37.8813i 0.986091 1.35724i
\(780\) 0 0
\(781\) −14.6268 36.6685i −0.523388 1.31210i
\(782\) 26.6454i 0.952837i
\(783\) 0 0
\(784\) −9.01729 + 27.7524i −0.322046 + 0.991155i
\(785\) 34.7820 11.3014i 1.24142 0.403363i
\(786\) 0 0
\(787\) −20.6415 28.4106i −0.735791 1.01273i −0.998850 0.0479495i \(-0.984731\pi\)
0.263059 0.964780i \(-0.415269\pi\)
\(788\) −1.45688 4.48381i −0.0518992 0.159729i
\(789\) 0 0
\(790\) 39.3332 + 28.5773i 1.39941 + 1.01673i
\(791\) −1.64189 −0.0583787
\(792\) 0 0
\(793\) −4.75591 −0.168887
\(794\) 11.8839 + 8.63415i 0.421744 + 0.306415i
\(795\) 0 0
\(796\) 7.09679 + 21.8417i 0.251539 + 0.774158i
\(797\) −28.6152 39.3855i −1.01360 1.39511i −0.916592 0.399823i \(-0.869072\pi\)
−0.0970114 0.995283i \(-0.530928\pi\)
\(798\) 0 0
\(799\) −20.3036 + 6.59705i −0.718291 + 0.233387i
\(800\) 2.64525 8.14125i 0.0935238 0.287837i
\(801\) 0 0
\(802\) 4.90063i 0.173047i
\(803\) 0.405320 0.0265426i 0.0143034 0.000936667i
\(804\) 0 0
\(805\) −1.99247 + 2.74240i −0.0702252 + 0.0966567i
\(806\) 1.20152 + 0.390399i 0.0423219 + 0.0137512i
\(807\) 0 0
\(808\) −0.321851 + 0.233839i −0.0113227 + 0.00822642i
\(809\) 1.95603 1.42114i 0.0687705 0.0499647i −0.552869 0.833268i \(-0.686467\pi\)
0.621639 + 0.783304i \(0.286467\pi\)
\(810\) 0 0
\(811\) 22.4513 + 7.29488i 0.788373 + 0.256158i 0.675411 0.737441i \(-0.263966\pi\)
0.112962 + 0.993599i \(0.463966\pi\)
\(812\) −3.12142 + 4.29626i −0.109540 + 0.150769i
\(813\) 0 0
\(814\) −26.7625 + 42.4106i −0.938026 + 1.48649i
\(815\) 36.7000i 1.28555i
\(816\) 0 0
\(817\) −13.2746 + 40.8552i −0.464421 + 1.42934i
\(818\) −55.4693 + 18.0231i −1.93944 + 0.630162i
\(819\) 0 0
\(820\) −21.8407 30.0611i −0.762710 1.04978i
\(821\) 11.0595 + 34.0375i 0.385978 + 1.18792i 0.935768 + 0.352615i \(0.114708\pi\)
−0.549791 + 0.835303i \(0.685292\pi\)
\(822\) 0 0
\(823\) 29.0377 + 21.0971i 1.01219 + 0.735400i 0.964667 0.263470i \(-0.0848672\pi\)
0.0475233 + 0.998870i \(0.484867\pi\)
\(824\) 1.48529 0.0517424
\(825\) 0 0
\(826\) 4.85122 0.168796
\(827\) −11.6799 8.48596i −0.406151 0.295086i 0.365891 0.930658i \(-0.380764\pi\)
−0.772042 + 0.635572i \(0.780764\pi\)
\(828\) 0 0
\(829\) −16.7616 51.5868i −0.582153 1.79168i −0.610415 0.792082i \(-0.708997\pi\)
0.0282623 0.999601i \(-0.491003\pi\)
\(830\) 0.987561 + 1.35926i 0.0342787 + 0.0471806i
\(831\) 0 0
\(832\) 12.7967 4.15791i 0.443647 0.144150i
\(833\) −5.33666 + 16.4245i −0.184904 + 0.569077i
\(834\) 0 0
\(835\) 27.0744i 0.936948i
\(836\) −7.17418 + 28.2416i −0.248124 + 0.976754i
\(837\) 0 0
\(838\) 10.4702 14.4110i 0.361686 0.497819i
\(839\) −52.8843 17.1832i −1.82577 0.593228i −0.999554 0.0298743i \(-0.990489\pi\)
−0.826216 0.563354i \(-0.809511\pi\)
\(840\) 0 0
\(841\) −40.8607 + 29.6870i −1.40899 + 1.02369i
\(842\) −34.6248 + 25.1564i −1.19325 + 0.866946i
\(843\) 0 0
\(844\) −45.1299 14.6636i −1.55343 0.504742i
\(845\) 10.8073 14.8750i 0.371784 0.511717i
\(846\) 0 0
\(847\) −3.43025 0.636170i −0.117865 0.0218591i
\(848\) 7.58286i 0.260396i
\(849\) 0 0
\(850\) 1.66152 5.11363i 0.0569897 0.175396i
\(851\) −39.4756 + 12.8264i −1.35321 + 0.439683i
\(852\) 0 0
\(853\) 9.48804 + 13.0592i 0.324864 + 0.447137i 0.939945 0.341327i \(-0.110876\pi\)
−0.615080 + 0.788465i \(0.710876\pi\)
\(854\) 0.477149 + 1.46851i 0.0163277 + 0.0502515i
\(855\) 0 0
\(856\) 2.30735 + 1.67639i 0.0788637 + 0.0572979i
\(857\) −47.3541 −1.61758 −0.808792 0.588095i \(-0.799878\pi\)
−0.808792 + 0.588095i \(0.799878\pi\)
\(858\) 0 0
\(859\) −8.33033 −0.284227 −0.142114 0.989850i \(-0.545390\pi\)
−0.142114 + 0.989850i \(0.545390\pi\)
\(860\) 27.5790 + 20.0373i 0.940437 + 0.683268i
\(861\) 0 0
\(862\) −10.6899 32.9000i −0.364098 1.12058i
\(863\) 3.57452 + 4.91990i 0.121678 + 0.167475i 0.865511 0.500890i \(-0.166994\pi\)
−0.743833 + 0.668366i \(0.766994\pi\)
\(864\) 0 0
\(865\) −24.8756 + 8.08256i −0.845795 + 0.274815i
\(866\) 9.55034 29.3929i 0.324534 0.998812i
\(867\) 0 0
\(868\) 0.198624i 0.00674172i
\(869\) −31.8434 + 26.4808i −1.08021 + 0.898299i
\(870\) 0 0
\(871\) 12.2207 16.8204i 0.414084 0.569938i
\(872\) 0.755163 + 0.245367i 0.0255730 + 0.00830918i
\(873\) 0 0
\(874\) −40.2922 + 29.2740i −1.36290 + 0.990208i
\(875\) 3.08996 2.24499i 0.104460 0.0758945i
\(876\) 0 0
\(877\) −11.8358 3.84570i −0.399668 0.129860i 0.102285 0.994755i \(-0.467385\pi\)
−0.501953 + 0.864895i \(0.667385\pi\)
\(878\) −13.8040 + 18.9996i −0.465862 + 0.641204i
\(879\) 0 0
\(880\) −23.4550 14.8009i −0.790668 0.498938i
\(881\) 59.2385i 1.99580i −0.0647993 0.997898i \(-0.520641\pi\)
0.0647993 0.997898i \(-0.479359\pi\)
\(882\) 0 0
\(883\) −13.1258 + 40.3970i −0.441718 + 1.35947i 0.444325 + 0.895866i \(0.353444\pi\)
−0.886043 + 0.463603i \(0.846556\pi\)
\(884\) 8.59941 2.79412i 0.289229 0.0939764i
\(885\) 0 0
\(886\) 17.8736 + 24.6009i 0.600475 + 0.826483i
\(887\) 7.11097 + 21.8853i 0.238763 + 0.734837i 0.996600 + 0.0823929i \(0.0262562\pi\)
−0.757837 + 0.652444i \(0.773744\pi\)
\(888\) 0 0
\(889\) 0.969159 + 0.704135i 0.0325045 + 0.0236159i
\(890\) 31.7446 1.06408
\(891\) 0 0
\(892\) 26.4561 0.885815
\(893\) −32.2825 23.4546i −1.08029 0.784878i
\(894\) 0 0
\(895\) −3.46043 10.6501i −0.115670 0.355994i
\(896\) 0.358144 + 0.492943i 0.0119648 + 0.0164681i
\(897\) 0 0
\(898\) −43.6418 + 14.1801i −1.45635 + 0.473196i
\(899\) 0.918932 2.82818i 0.0306481 0.0943251i
\(900\) 0 0
\(901\) 4.48773i 0.149508i
\(902\) 60.7124 24.2177i 2.02150 0.806362i
\(903\) 0 0
\(904\) 0.732096 1.00764i 0.0243492 0.0335137i
\(905\) −19.2967 6.26988i −0.641444 0.208418i
\(906\) 0 0
\(907\) 9.13320 6.63566i 0.303263 0.220333i −0.425737 0.904847i \(-0.639985\pi\)
0.729000 + 0.684513i \(0.239985\pi\)
\(908\) −23.6736 + 17.1999i −0.785637 + 0.570799i
\(909\) 0 0
\(910\) 2.25919 + 0.734055i 0.0748914 + 0.0243337i
\(911\) 14.3967 19.8153i 0.476983 0.656511i −0.500939 0.865483i \(-0.667012\pi\)
0.977922 + 0.208972i \(0.0670118\pi\)
\(912\) 0 0
\(913\) −1.32936 + 0.530271i −0.0439953 + 0.0175494i
\(914\) 1.21763i 0.0402756i
\(915\) 0 0
\(916\) 11.9436 36.7585i 0.394626 1.21454i
\(917\) 2.69055 0.874214i 0.0888499 0.0288691i
\(918\) 0 0
\(919\) 20.6927 + 28.4811i 0.682590 + 0.939504i 0.999961 0.00879691i \(-0.00280018\pi\)
−0.317371 + 0.948301i \(0.602800\pi\)
\(920\) −0.794623 2.44560i −0.0261980 0.0806290i
\(921\) 0 0
\(922\) 36.2555 + 26.3412i 1.19401 + 0.867501i
\(923\) −22.8978 −0.753689
\(924\) 0 0
\(925\) 8.37575 0.275393
\(926\) 11.2929 + 8.20480i 0.371109 + 0.269626i
\(927\) 0 0
\(928\) −21.6229 66.5485i −0.709807 2.18456i
\(929\) −10.6528 14.6623i −0.349506 0.481054i 0.597681 0.801734i \(-0.296089\pi\)
−0.947188 + 0.320679i \(0.896089\pi\)
\(930\) 0 0
\(931\) −30.6998 + 9.97496i −1.00614 + 0.326916i
\(932\) −1.51953 + 4.67663i −0.0497738 + 0.153188i
\(933\) 0 0
\(934\) 11.7324i 0.383894i
\(935\) −13.8813 8.75954i −0.453966 0.286468i
\(936\) 0 0
\(937\) −17.7777 + 24.4689i −0.580772 + 0.799365i −0.993780 0.111363i \(-0.964478\pi\)
0.413007 + 0.910728i \(0.364478\pi\)
\(938\) −6.41983 2.08593i −0.209615 0.0681080i
\(939\) 0 0
\(940\) −25.6181 + 18.6127i −0.835571 + 0.607078i
\(941\) −21.1984 + 15.4015i −0.691047 + 0.502075i −0.877004 0.480483i \(-0.840461\pi\)
0.185957 + 0.982558i \(0.440461\pi\)
\(942\) 0 0
\(943\) 51.4529 + 16.7180i 1.67554 + 0.544414i
\(944\) −19.3099 + 26.5778i −0.628484 + 0.865035i
\(945\) 0 0
\(946\) −46.1076 + 38.3428i −1.49909 + 1.24663i
\(947\) 32.3323i 1.05066i 0.850899 + 0.525330i \(0.176058\pi\)
−0.850899 + 0.525330i \(0.823942\pi\)
\(948\) 0 0
\(949\) 0.0728024 0.224063i 0.00236327 0.00727339i
\(950\) 9.55809 3.10561i 0.310106 0.100759i
\(951\) 0 0
\(952\) 0.112267 + 0.154523i 0.00363861 + 0.00500812i
\(953\) 10.9868 + 33.8138i 0.355897 + 1.09534i 0.955488 + 0.295031i \(0.0953299\pi\)
−0.599591 + 0.800306i \(0.704670\pi\)
\(954\) 0 0
\(955\) −9.04008 6.56800i −0.292530 0.212536i
\(956\) −41.8179 −1.35249
\(957\) 0 0
\(958\) 3.47017 0.112116
\(959\) −1.23759 0.899164i −0.0399640 0.0290355i
\(960\) 0 0
\(961\) −9.54516 29.3770i −0.307908 0.947644i
\(962\) 17.0968 + 23.5317i 0.551223 + 0.758693i
\(963\) 0 0
\(964\) −43.9090 + 14.2669i −1.41421 + 0.459506i
\(965\) −10.9784 + 33.7881i −0.353408 + 1.08768i
\(966\) 0 0
\(967\) 43.8479i 1.41005i −0.709181 0.705027i \(-0.750935\pi\)
0.709181 0.705027i \(-0.249065\pi\)
\(968\) 1.91993 1.82153i 0.0617090 0.0585461i
\(969\) 0 0
\(970\) −19.7822 + 27.2278i −0.635168 + 0.874233i
\(971\) −24.4501 7.94432i −0.784641 0.254945i −0.110820 0.993840i \(-0.535348\pi\)
−0.673820 + 0.738895i \(0.735348\pi\)
\(972\) 0 0
\(973\) −1.84700 + 1.34192i −0.0592120 + 0.0430200i
\(974\) −27.7356 + 20.1511i −0.888706 + 0.645683i
\(975\) 0 0
\(976\) −9.94464 3.23121i −0.318320 0.103428i
\(977\) −9.75359 + 13.4247i −0.312045 + 0.429493i −0.936018 0.351953i \(-0.885518\pi\)
0.623973 + 0.781446i \(0.285518\pi\)
\(978\) 0 0
\(979\) −6.65784 + 26.2090i −0.212785 + 0.837642i
\(980\) 25.6159i 0.818269i
\(981\) 0 0
\(982\) 20.4485 62.9340i 0.652538 2.00830i
\(983\) −39.8580 + 12.9506i −1.27127 + 0.413061i −0.865498 0.500912i \(-0.832998\pi\)
−0.405774 + 0.913974i \(0.632998\pi\)
\(984\) 0 0
\(985\) 2.91775 + 4.01594i 0.0929672 + 0.127958i
\(986\) −13.5817 41.8001i −0.432528 1.33119i
\(987\) 0 0
\(988\) 13.6729 + 9.93397i 0.434994 + 0.316042i
\(989\) −49.6337 −1.57826
\(990\) 0 0
\(991\) −21.9883 −0.698482 −0.349241 0.937033i \(-0.613561\pi\)
−0.349241 + 0.937033i \(0.613561\pi\)
\(992\) 2.11732 + 1.53833i 0.0672251 + 0.0488419i
\(993\) 0 0
\(994\) 2.29728 + 7.07030i 0.0728653 + 0.224256i
\(995\) −14.2130 19.5625i −0.450583 0.620174i
\(996\) 0 0
\(997\) 45.0088 14.6242i 1.42544 0.463154i 0.508115 0.861289i \(-0.330342\pi\)
0.917327 + 0.398135i \(0.130342\pi\)
\(998\) −11.8800 + 36.5629i −0.376055 + 1.15738i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.k.a.161.17 80
3.2 odd 2 inner 891.2.k.a.161.4 80
9.2 odd 6 99.2.p.a.95.2 yes 80
9.4 even 3 99.2.p.a.29.2 80
9.5 odd 6 297.2.t.a.62.9 80
9.7 even 3 297.2.t.a.260.9 80
11.8 odd 10 inner 891.2.k.a.404.4 80
33.8 even 10 inner 891.2.k.a.404.17 80
99.41 even 30 297.2.t.a.8.9 80
99.52 odd 30 297.2.t.a.206.9 80
99.74 even 30 99.2.p.a.41.2 yes 80
99.85 odd 30 99.2.p.a.74.2 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.29.2 80 9.4 even 3
99.2.p.a.41.2 yes 80 99.74 even 30
99.2.p.a.74.2 yes 80 99.85 odd 30
99.2.p.a.95.2 yes 80 9.2 odd 6
297.2.t.a.8.9 80 99.41 even 30
297.2.t.a.62.9 80 9.5 odd 6
297.2.t.a.206.9 80 99.52 odd 30
297.2.t.a.260.9 80 9.7 even 3
891.2.k.a.161.4 80 3.2 odd 2 inner
891.2.k.a.161.17 80 1.1 even 1 trivial
891.2.k.a.404.4 80 11.8 odd 10 inner
891.2.k.a.404.17 80 33.8 even 10 inner