Properties

Label 891.2.k.a.161.13
Level $891$
Weight $2$
Character 891.161
Analytic conductor $7.115$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(161,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.161");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.k (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(20\) over \(\Q(\zeta_{10})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 161.13
Character \(\chi\) \(=\) 891.161
Dual form 891.2.k.a.404.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.505702 + 0.367414i) q^{2} +(-0.497292 - 1.53051i) q^{4} +(-0.749839 - 1.03206i) q^{5} +(4.60560 - 1.49645i) q^{7} +(0.697171 - 2.14567i) q^{8} -0.797419i q^{10} +(-0.591134 + 3.26352i) q^{11} +(0.490794 - 0.675520i) q^{13} +(2.87888 + 0.935406i) q^{14} +(-1.46295 + 1.06289i) q^{16} +(-0.199958 + 0.145278i) q^{17} +(2.08556 + 0.677640i) q^{19} +(-1.20669 + 1.66087i) q^{20} +(-1.49800 + 1.43318i) q^{22} -4.84746i q^{23} +(1.04219 - 3.20752i) q^{25} +(0.496392 - 0.161287i) q^{26} +(-4.58066 - 6.30474i) q^{28} +(-2.40128 - 7.39039i) q^{29} +(-1.41927 - 1.03116i) q^{31} -5.64252 q^{32} -0.154496 q^{34} +(-4.99790 - 3.63118i) q^{35} +(0.106959 + 0.329187i) q^{37} +(0.805699 + 1.10895i) q^{38} +(-2.73724 + 0.889382i) q^{40} +(-1.50228 + 4.62355i) q^{41} -0.423369i q^{43} +(5.28881 - 0.718188i) q^{44} +(1.78103 - 2.45137i) q^{46} +(7.07320 + 2.29822i) q^{47} +(13.3091 - 9.66963i) q^{49} +(1.70552 - 1.23914i) q^{50} +(-1.27796 - 0.415234i) q^{52} +(-6.95271 + 9.56959i) q^{53} +(3.81142 - 1.83703i) q^{55} -10.9254i q^{56} +(1.50100 - 4.61960i) q^{58} +(4.99606 - 1.62332i) q^{59} +(-8.19100 - 11.2739i) q^{61} +(-0.338865 - 1.04292i) q^{62} +(0.0724543 + 0.0526411i) q^{64} -1.06520 q^{65} +0.504907 q^{67} +(0.321787 + 0.233792i) q^{68} +(-1.19330 - 3.67260i) q^{70} +(6.95402 + 9.57138i) q^{71} +(3.85174 - 1.25150i) q^{73} +(-0.0668585 + 0.205769i) q^{74} -3.52895i q^{76} +(2.16117 + 15.9151i) q^{77} +(-1.30074 + 1.79032i) q^{79} +(2.19395 + 0.712856i) q^{80} +(-2.45847 + 1.78618i) q^{82} +(-3.33901 + 2.42593i) q^{83} +(0.299872 + 0.0974345i) q^{85} +(0.155552 - 0.214099i) q^{86} +(6.59032 + 3.54361i) q^{88} -13.5225i q^{89} +(1.24952 - 3.84563i) q^{91} +(-7.41908 + 2.41061i) q^{92} +(2.73253 + 3.76101i) q^{94} +(-0.864467 - 2.66055i) q^{95} +(6.43118 + 4.67252i) q^{97} +10.2832 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 10 q^{4} + 10 q^{7} + 10 q^{13} - 10 q^{16} - 50 q^{19} + 22 q^{22} + 4 q^{25} - 20 q^{28} + 12 q^{31} + 20 q^{34} - 6 q^{37} - 30 q^{40} - 40 q^{46} + 2 q^{49} + 10 q^{52} - 18 q^{55} + 58 q^{58}+ \cdots - 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.505702 + 0.367414i 0.357586 + 0.259801i 0.752044 0.659113i \(-0.229068\pi\)
−0.394459 + 0.918914i \(0.629068\pi\)
\(3\) 0 0
\(4\) −0.497292 1.53051i −0.248646 0.765254i
\(5\) −0.749839 1.03206i −0.335338 0.461553i 0.607734 0.794140i \(-0.292078\pi\)
−0.943073 + 0.332587i \(0.892078\pi\)
\(6\) 0 0
\(7\) 4.60560 1.49645i 1.74075 0.565606i 0.745822 0.666146i \(-0.232057\pi\)
0.994933 + 0.100540i \(0.0320570\pi\)
\(8\) 0.697171 2.14567i 0.246487 0.758609i
\(9\) 0 0
\(10\) 0.797419i 0.252166i
\(11\) −0.591134 + 3.26352i −0.178234 + 0.983988i
\(12\) 0 0
\(13\) 0.490794 0.675520i 0.136122 0.187356i −0.735514 0.677509i \(-0.763059\pi\)
0.871636 + 0.490154i \(0.163059\pi\)
\(14\) 2.87888 + 0.935406i 0.769414 + 0.249998i
\(15\) 0 0
\(16\) −1.46295 + 1.06289i −0.365736 + 0.265723i
\(17\) −0.199958 + 0.145278i −0.0484969 + 0.0352351i −0.611770 0.791036i \(-0.709542\pi\)
0.563273 + 0.826271i \(0.309542\pi\)
\(18\) 0 0
\(19\) 2.08556 + 0.677640i 0.478461 + 0.155461i 0.538311 0.842746i \(-0.319062\pi\)
−0.0598507 + 0.998207i \(0.519062\pi\)
\(20\) −1.20669 + 1.66087i −0.269825 + 0.371382i
\(21\) 0 0
\(22\) −1.49800 + 1.43318i −0.319375 + 0.305555i
\(23\) 4.84746i 1.01077i −0.862895 0.505383i \(-0.831351\pi\)
0.862895 0.505383i \(-0.168649\pi\)
\(24\) 0 0
\(25\) 1.04219 3.20752i 0.208437 0.641504i
\(26\) 0.496392 0.161287i 0.0973504 0.0316311i
\(27\) 0 0
\(28\) −4.58066 6.30474i −0.865664 1.19148i
\(29\) −2.40128 7.39039i −0.445907 1.37236i −0.881486 0.472210i \(-0.843456\pi\)
0.435579 0.900151i \(-0.356544\pi\)
\(30\) 0 0
\(31\) −1.41927 1.03116i −0.254908 0.185202i 0.452991 0.891515i \(-0.350357\pi\)
−0.707899 + 0.706313i \(0.750357\pi\)
\(32\) −5.64252 −0.997466
\(33\) 0 0
\(34\) −0.154496 −0.0264959
\(35\) −4.99790 3.63118i −0.844799 0.613782i
\(36\) 0 0
\(37\) 0.106959 + 0.329187i 0.0175840 + 0.0541180i 0.959464 0.281833i \(-0.0909424\pi\)
−0.941879 + 0.335951i \(0.890942\pi\)
\(38\) 0.805699 + 1.10895i 0.130702 + 0.179895i
\(39\) 0 0
\(40\) −2.73724 + 0.889382i −0.432795 + 0.140624i
\(41\) −1.50228 + 4.62355i −0.234617 + 0.722078i 0.762555 + 0.646924i \(0.223945\pi\)
−0.997172 + 0.0751541i \(0.976055\pi\)
\(42\) 0 0
\(43\) 0.423369i 0.0645632i −0.999479 0.0322816i \(-0.989723\pi\)
0.999479 0.0322816i \(-0.0102773\pi\)
\(44\) 5.28881 0.718188i 0.797318 0.108271i
\(45\) 0 0
\(46\) 1.78103 2.45137i 0.262598 0.361435i
\(47\) 7.07320 + 2.29822i 1.03173 + 0.335230i 0.775475 0.631379i \(-0.217511\pi\)
0.256257 + 0.966609i \(0.417511\pi\)
\(48\) 0 0
\(49\) 13.3091 9.66963i 1.90130 1.38138i
\(50\) 1.70552 1.23914i 0.241197 0.175240i
\(51\) 0 0
\(52\) −1.27796 0.415234i −0.177221 0.0575825i
\(53\) −6.95271 + 9.56959i −0.955029 + 1.31448i −0.00577155 + 0.999983i \(0.501837\pi\)
−0.949257 + 0.314501i \(0.898163\pi\)
\(54\) 0 0
\(55\) 3.81142 1.83703i 0.513932 0.247704i
\(56\) 10.9254i 1.45997i
\(57\) 0 0
\(58\) 1.50100 4.61960i 0.197091 0.606584i
\(59\) 4.99606 1.62332i 0.650432 0.211338i 0.0348272 0.999393i \(-0.488912\pi\)
0.615604 + 0.788055i \(0.288912\pi\)
\(60\) 0 0
\(61\) −8.19100 11.2739i −1.04875 1.44348i −0.889888 0.456179i \(-0.849218\pi\)
−0.158861 0.987301i \(-0.550782\pi\)
\(62\) −0.338865 1.04292i −0.0430359 0.132451i
\(63\) 0 0
\(64\) 0.0724543 + 0.0526411i 0.00905678 + 0.00658014i
\(65\) −1.06520 −0.132121
\(66\) 0 0
\(67\) 0.504907 0.0616842 0.0308421 0.999524i \(-0.490181\pi\)
0.0308421 + 0.999524i \(0.490181\pi\)
\(68\) 0.321787 + 0.233792i 0.0390224 + 0.0283514i
\(69\) 0 0
\(70\) −1.19330 3.67260i −0.142626 0.438959i
\(71\) 6.95402 + 9.57138i 0.825290 + 1.13591i 0.988781 + 0.149370i \(0.0477244\pi\)
−0.163491 + 0.986545i \(0.552276\pi\)
\(72\) 0 0
\(73\) 3.85174 1.25150i 0.450812 0.146478i −0.0748068 0.997198i \(-0.523834\pi\)
0.525618 + 0.850720i \(0.323834\pi\)
\(74\) −0.0668585 + 0.205769i −0.00777214 + 0.0239202i
\(75\) 0 0
\(76\) 3.52895i 0.404799i
\(77\) 2.16117 + 15.9151i 0.246288 + 1.81369i
\(78\) 0 0
\(79\) −1.30074 + 1.79032i −0.146345 + 0.201426i −0.875896 0.482500i \(-0.839729\pi\)
0.729551 + 0.683926i \(0.239729\pi\)
\(80\) 2.19395 + 0.712856i 0.245291 + 0.0796998i
\(81\) 0 0
\(82\) −2.45847 + 1.78618i −0.271492 + 0.197251i
\(83\) −3.33901 + 2.42593i −0.366503 + 0.266280i −0.755760 0.654849i \(-0.772732\pi\)
0.389256 + 0.921130i \(0.372732\pi\)
\(84\) 0 0
\(85\) 0.299872 + 0.0974345i 0.0325257 + 0.0105683i
\(86\) 0.155552 0.214099i 0.0167736 0.0230869i
\(87\) 0 0
\(88\) 6.59032 + 3.54361i 0.702530 + 0.377750i
\(89\) 13.5225i 1.43338i −0.697393 0.716689i \(-0.745657\pi\)
0.697393 0.716689i \(-0.254343\pi\)
\(90\) 0 0
\(91\) 1.24952 3.84563i 0.130985 0.403131i
\(92\) −7.41908 + 2.41061i −0.773493 + 0.251323i
\(93\) 0 0
\(94\) 2.73253 + 3.76101i 0.281839 + 0.387918i
\(95\) −0.864467 2.66055i −0.0886924 0.272967i
\(96\) 0 0
\(97\) 6.43118 + 4.67252i 0.652987 + 0.474423i 0.864287 0.502998i \(-0.167770\pi\)
−0.211300 + 0.977421i \(0.567770\pi\)
\(98\) 10.2832 1.03876
\(99\) 0 0
\(100\) −5.42741 −0.542741
\(101\) 4.36445 + 3.17096i 0.434279 + 0.315522i 0.783358 0.621571i \(-0.213505\pi\)
−0.349079 + 0.937093i \(0.613505\pi\)
\(102\) 0 0
\(103\) 5.08550 + 15.6516i 0.501089 + 1.54219i 0.807247 + 0.590214i \(0.200957\pi\)
−0.306157 + 0.951981i \(0.599043\pi\)
\(104\) −1.10728 1.52404i −0.108577 0.149444i
\(105\) 0 0
\(106\) −7.03201 + 2.28484i −0.683009 + 0.221923i
\(107\) −0.705070 + 2.16998i −0.0681617 + 0.209780i −0.979336 0.202242i \(-0.935177\pi\)
0.911174 + 0.412022i \(0.135177\pi\)
\(108\) 0 0
\(109\) 8.89941i 0.852409i 0.904627 + 0.426205i \(0.140150\pi\)
−0.904627 + 0.426205i \(0.859850\pi\)
\(110\) 2.60239 + 0.471381i 0.248128 + 0.0449445i
\(111\) 0 0
\(112\) −5.14718 + 7.08449i −0.486363 + 0.669421i
\(113\) −6.88671 2.23763i −0.647847 0.210498i −0.0333823 0.999443i \(-0.510628\pi\)
−0.614465 + 0.788944i \(0.710628\pi\)
\(114\) 0 0
\(115\) −5.00289 + 3.63482i −0.466522 + 0.338948i
\(116\) −10.1169 + 7.35037i −0.939332 + 0.682465i
\(117\) 0 0
\(118\) 3.12295 + 1.01471i 0.287491 + 0.0934114i
\(119\) −0.703526 + 0.968320i −0.0644921 + 0.0887658i
\(120\) 0 0
\(121\) −10.3011 3.85836i −0.936466 0.350760i
\(122\) 8.71074i 0.788634i
\(123\) 0 0
\(124\) −0.872407 + 2.68499i −0.0783445 + 0.241119i
\(125\) −10.1582 + 3.30059i −0.908574 + 0.295213i
\(126\) 0 0
\(127\) 1.69280 + 2.32994i 0.150212 + 0.206749i 0.877491 0.479593i \(-0.159216\pi\)
−0.727279 + 0.686341i \(0.759216\pi\)
\(128\) 3.50457 + 10.7860i 0.309763 + 0.953353i
\(129\) 0 0
\(130\) −0.538673 0.391369i −0.0472447 0.0343253i
\(131\) −0.563363 −0.0492213 −0.0246106 0.999697i \(-0.507835\pi\)
−0.0246106 + 0.999697i \(0.507835\pi\)
\(132\) 0 0
\(133\) 10.6193 0.920812
\(134\) 0.255333 + 0.185510i 0.0220574 + 0.0160256i
\(135\) 0 0
\(136\) 0.172314 + 0.530328i 0.0147758 + 0.0454752i
\(137\) −2.72868 3.75570i −0.233127 0.320871i 0.676386 0.736547i \(-0.263545\pi\)
−0.909513 + 0.415676i \(0.863545\pi\)
\(138\) 0 0
\(139\) −9.99398 + 3.24724i −0.847678 + 0.275427i −0.700473 0.713679i \(-0.747028\pi\)
−0.147205 + 0.989106i \(0.547028\pi\)
\(140\) −3.07214 + 9.45508i −0.259643 + 0.799100i
\(141\) 0 0
\(142\) 7.39528i 0.620598i
\(143\) 1.91445 + 2.00104i 0.160094 + 0.167335i
\(144\) 0 0
\(145\) −5.82678 + 8.01988i −0.483888 + 0.666015i
\(146\) 2.40765 + 0.782294i 0.199259 + 0.0647431i
\(147\) 0 0
\(148\) 0.450634 0.327405i 0.0370419 0.0269125i
\(149\) 12.3170 8.94886i 1.00905 0.733119i 0.0450420 0.998985i \(-0.485658\pi\)
0.964010 + 0.265866i \(0.0856578\pi\)
\(150\) 0 0
\(151\) 7.26733 + 2.36130i 0.591407 + 0.192160i 0.589404 0.807838i \(-0.299363\pi\)
0.00200261 + 0.999998i \(0.499363\pi\)
\(152\) 2.90799 4.00250i 0.235869 0.324646i
\(153\) 0 0
\(154\) −4.75452 + 8.84234i −0.383130 + 0.712536i
\(155\) 2.23798i 0.179759i
\(156\) 0 0
\(157\) −1.33807 + 4.11814i −0.106789 + 0.328663i −0.990146 0.140037i \(-0.955278\pi\)
0.883357 + 0.468701i \(0.155278\pi\)
\(158\) −1.31557 + 0.427456i −0.104662 + 0.0340066i
\(159\) 0 0
\(160\) 4.23098 + 5.82345i 0.334488 + 0.460384i
\(161\) −7.25399 22.3255i −0.571695 1.75950i
\(162\) 0 0
\(163\) −5.76502 4.18853i −0.451551 0.328071i 0.338657 0.940910i \(-0.390027\pi\)
−0.790208 + 0.612839i \(0.790027\pi\)
\(164\) 7.82346 0.610910
\(165\) 0 0
\(166\) −2.57986 −0.200236
\(167\) 6.61623 + 4.80697i 0.511979 + 0.371975i 0.813574 0.581462i \(-0.197519\pi\)
−0.301595 + 0.953436i \(0.597519\pi\)
\(168\) 0 0
\(169\) 3.80177 + 11.7007i 0.292444 + 0.900050i
\(170\) 0.115847 + 0.159450i 0.00888509 + 0.0122293i
\(171\) 0 0
\(172\) −0.647970 + 0.210538i −0.0494072 + 0.0160534i
\(173\) −2.09058 + 6.43416i −0.158944 + 0.489180i −0.998539 0.0540330i \(-0.982792\pi\)
0.839595 + 0.543213i \(0.182792\pi\)
\(174\) 0 0
\(175\) 16.3321i 1.23459i
\(176\) −2.60397 5.40266i −0.196282 0.407241i
\(177\) 0 0
\(178\) 4.96834 6.83834i 0.372393 0.512555i
\(179\) 6.85049 + 2.22586i 0.512030 + 0.166369i 0.553625 0.832766i \(-0.313244\pi\)
−0.0415954 + 0.999135i \(0.513244\pi\)
\(180\) 0 0
\(181\) 0.383330 0.278506i 0.0284927 0.0207012i −0.573448 0.819242i \(-0.694394\pi\)
0.601940 + 0.798541i \(0.294394\pi\)
\(182\) 2.04482 1.48565i 0.151572 0.110124i
\(183\) 0 0
\(184\) −10.4011 3.37951i −0.766777 0.249141i
\(185\) 0.259540 0.357226i 0.0190818 0.0262638i
\(186\) 0 0
\(187\) −0.355915 0.738445i −0.0260271 0.0540005i
\(188\) 11.9685i 0.872891i
\(189\) 0 0
\(190\) 0.540363 1.66307i 0.0392020 0.120651i
\(191\) 0.0386108 0.0125454i 0.00279378 0.000907754i −0.307620 0.951509i \(-0.599532\pi\)
0.310414 + 0.950602i \(0.399532\pi\)
\(192\) 0 0
\(193\) 6.60502 + 9.09103i 0.475440 + 0.654387i 0.977621 0.210376i \(-0.0674688\pi\)
−0.502181 + 0.864763i \(0.667469\pi\)
\(194\) 1.53551 + 4.72581i 0.110243 + 0.339294i
\(195\) 0 0
\(196\) −21.4180 15.5611i −1.52985 1.11150i
\(197\) 20.8150 1.48301 0.741504 0.670948i \(-0.234113\pi\)
0.741504 + 0.670948i \(0.234113\pi\)
\(198\) 0 0
\(199\) 14.4111 1.02158 0.510788 0.859707i \(-0.329354\pi\)
0.510788 + 0.859707i \(0.329354\pi\)
\(200\) −6.15570 4.47238i −0.435274 0.316245i
\(201\) 0 0
\(202\) 1.04206 + 3.20712i 0.0733189 + 0.225652i
\(203\) −22.1187 30.4438i −1.55243 2.13674i
\(204\) 0 0
\(205\) 5.89828 1.91647i 0.411954 0.133852i
\(206\) −3.17886 + 9.78352i −0.221482 + 0.681650i
\(207\) 0 0
\(208\) 1.50991i 0.104693i
\(209\) −3.44434 + 6.40569i −0.238250 + 0.443091i
\(210\) 0 0
\(211\) −10.6840 + 14.7053i −0.735518 + 1.01235i 0.263346 + 0.964701i \(0.415174\pi\)
−0.998864 + 0.0476521i \(0.984826\pi\)
\(212\) 18.1039 + 5.88230i 1.24338 + 0.403998i
\(213\) 0 0
\(214\) −1.15384 + 0.838313i −0.0788748 + 0.0573059i
\(215\) −0.436944 + 0.317458i −0.0297993 + 0.0216505i
\(216\) 0 0
\(217\) −8.07968 2.62525i −0.548484 0.178213i
\(218\) −3.26977 + 4.50045i −0.221457 + 0.304809i
\(219\) 0 0
\(220\) −4.70697 4.91987i −0.317344 0.331698i
\(221\) 0.206377i 0.0138824i
\(222\) 0 0
\(223\) 0.233145 0.717545i 0.0156125 0.0480504i −0.942947 0.332944i \(-0.891958\pi\)
0.958559 + 0.284893i \(0.0919581\pi\)
\(224\) −25.9872 + 8.44376i −1.73634 + 0.564172i
\(225\) 0 0
\(226\) −2.66049 3.66185i −0.176973 0.243582i
\(227\) −5.13526 15.8047i −0.340839 1.04900i −0.963774 0.266721i \(-0.914060\pi\)
0.622935 0.782274i \(-0.285940\pi\)
\(228\) 0 0
\(229\) 17.7967 + 12.9300i 1.17604 + 0.854441i 0.991719 0.128426i \(-0.0409923\pi\)
0.184318 + 0.982867i \(0.440992\pi\)
\(230\) −3.86546 −0.254881
\(231\) 0 0
\(232\) −17.5315 −1.15100
\(233\) 12.5102 + 9.08916i 0.819568 + 0.595451i 0.916589 0.399832i \(-0.130931\pi\)
−0.0970210 + 0.995282i \(0.530931\pi\)
\(234\) 0 0
\(235\) −2.93185 9.02329i −0.191252 0.588615i
\(236\) −4.96900 6.83925i −0.323455 0.445197i
\(237\) 0 0
\(238\) −0.711549 + 0.231196i −0.0461229 + 0.0149862i
\(239\) −5.81253 + 17.8891i −0.375981 + 1.15715i 0.566833 + 0.823833i \(0.308169\pi\)
−0.942814 + 0.333319i \(0.891831\pi\)
\(240\) 0 0
\(241\) 15.5682i 1.00284i 0.865205 + 0.501419i \(0.167189\pi\)
−0.865205 + 0.501419i \(0.832811\pi\)
\(242\) −3.79169 5.73596i −0.243739 0.368721i
\(243\) 0 0
\(244\) −13.1815 + 18.1428i −0.843862 + 1.16148i
\(245\) −19.9594 6.48519i −1.27516 0.414324i
\(246\) 0 0
\(247\) 1.48134 1.07626i 0.0942555 0.0684806i
\(248\) −3.20200 + 2.32639i −0.203327 + 0.147726i
\(249\) 0 0
\(250\) −6.34969 2.06314i −0.401590 0.130484i
\(251\) 8.32155 11.4536i 0.525252 0.722947i −0.461146 0.887324i \(-0.652562\pi\)
0.986397 + 0.164378i \(0.0525616\pi\)
\(252\) 0 0
\(253\) 15.8198 + 2.86550i 0.994582 + 0.180152i
\(254\) 1.80021i 0.112956i
\(255\) 0 0
\(256\) −2.13529 + 6.57176i −0.133456 + 0.410735i
\(257\) −14.1564 + 4.59968i −0.883050 + 0.286920i −0.715223 0.698896i \(-0.753675\pi\)
−0.167827 + 0.985817i \(0.553675\pi\)
\(258\) 0 0
\(259\) 0.985226 + 1.35605i 0.0612189 + 0.0842606i
\(260\) 0.529714 + 1.63029i 0.0328515 + 0.101106i
\(261\) 0 0
\(262\) −0.284894 0.206988i −0.0176008 0.0127877i
\(263\) 23.9012 1.47381 0.736906 0.675995i \(-0.236286\pi\)
0.736906 + 0.675995i \(0.236286\pi\)
\(264\) 0 0
\(265\) 15.0898 0.926962
\(266\) 5.37022 + 3.90169i 0.329269 + 0.239228i
\(267\) 0 0
\(268\) −0.251087 0.772765i −0.0153376 0.0472041i
\(269\) −4.62668 6.36807i −0.282093 0.388268i 0.644332 0.764745i \(-0.277135\pi\)
−0.926426 + 0.376477i \(0.877135\pi\)
\(270\) 0 0
\(271\) −4.67871 + 1.52020i −0.284211 + 0.0923458i −0.447654 0.894207i \(-0.647740\pi\)
0.163442 + 0.986553i \(0.447740\pi\)
\(272\) 0.138113 0.425067i 0.00837432 0.0257735i
\(273\) 0 0
\(274\) 2.90182i 0.175305i
\(275\) 9.85173 + 5.29727i 0.594082 + 0.319437i
\(276\) 0 0
\(277\) −15.5227 + 21.3651i −0.932666 + 1.28371i 0.0261441 + 0.999658i \(0.491677\pi\)
−0.958810 + 0.284047i \(0.908323\pi\)
\(278\) −6.24706 2.02979i −0.374674 0.121739i
\(279\) 0 0
\(280\) −11.2757 + 8.19229i −0.673853 + 0.489583i
\(281\) 12.8582 9.34205i 0.767057 0.557300i −0.134009 0.990980i \(-0.542785\pi\)
0.901067 + 0.433680i \(0.142785\pi\)
\(282\) 0 0
\(283\) −10.4717 3.40245i −0.622476 0.202255i −0.0192367 0.999815i \(-0.506124\pi\)
−0.603239 + 0.797560i \(0.706124\pi\)
\(284\) 11.1909 15.4030i 0.664058 0.913997i
\(285\) 0 0
\(286\) 0.232931 + 1.71533i 0.0137735 + 0.101429i
\(287\) 23.5424i 1.38966i
\(288\) 0 0
\(289\) −5.23441 + 16.1099i −0.307907 + 0.947639i
\(290\) −5.89324 + 1.91483i −0.346063 + 0.112443i
\(291\) 0 0
\(292\) −3.83088 5.27275i −0.224185 0.308564i
\(293\) 4.37823 + 13.4748i 0.255779 + 0.787207i 0.993675 + 0.112293i \(0.0358194\pi\)
−0.737896 + 0.674914i \(0.764181\pi\)
\(294\) 0 0
\(295\) −5.42161 3.93903i −0.315658 0.229339i
\(296\) 0.780897 0.0453887
\(297\) 0 0
\(298\) 9.51670 0.551288
\(299\) −3.27456 2.37911i −0.189373 0.137587i
\(300\) 0 0
\(301\) −0.633551 1.94987i −0.0365173 0.112389i
\(302\) 2.80753 + 3.86423i 0.161555 + 0.222362i
\(303\) 0 0
\(304\) −3.77132 + 1.22538i −0.216300 + 0.0702801i
\(305\) −5.49351 + 16.9073i −0.314557 + 0.968108i
\(306\) 0 0
\(307\) 11.5389i 0.658559i 0.944233 + 0.329279i \(0.106806\pi\)
−0.944233 + 0.329279i \(0.893194\pi\)
\(308\) 23.2834 11.2221i 1.32670 0.639441i
\(309\) 0 0
\(310\) −0.822266 + 1.13175i −0.0467016 + 0.0642792i
\(311\) −26.0233 8.45547i −1.47564 0.479466i −0.542836 0.839839i \(-0.682649\pi\)
−0.932808 + 0.360373i \(0.882649\pi\)
\(312\) 0 0
\(313\) −6.72263 + 4.88428i −0.379986 + 0.276076i −0.761340 0.648353i \(-0.775458\pi\)
0.381354 + 0.924429i \(0.375458\pi\)
\(314\) −2.18973 + 1.59093i −0.123573 + 0.0897814i
\(315\) 0 0
\(316\) 3.38694 + 1.10048i 0.190530 + 0.0619071i
\(317\) 8.93083 12.2922i 0.501605 0.690401i −0.480870 0.876792i \(-0.659679\pi\)
0.982476 + 0.186391i \(0.0596792\pi\)
\(318\) 0 0
\(319\) 25.5382 3.46792i 1.42986 0.194166i
\(320\) 0.114250i 0.00638676i
\(321\) 0 0
\(322\) 4.53434 13.9553i 0.252689 0.777697i
\(323\) −0.515471 + 0.167487i −0.0286816 + 0.00931920i
\(324\) 0 0
\(325\) −1.65524 2.27825i −0.0918165 0.126375i
\(326\) −1.37646 4.23630i −0.0762350 0.234627i
\(327\) 0 0
\(328\) 8.87328 + 6.44682i 0.489945 + 0.355966i
\(329\) 36.0155 1.98560
\(330\) 0 0
\(331\) 14.4144 0.792289 0.396145 0.918188i \(-0.370348\pi\)
0.396145 + 0.918188i \(0.370348\pi\)
\(332\) 5.37337 + 3.90398i 0.294902 + 0.214259i
\(333\) 0 0
\(334\) 1.57969 + 4.86179i 0.0864369 + 0.266025i
\(335\) −0.378599 0.521097i −0.0206851 0.0284706i
\(336\) 0 0
\(337\) 7.36396 2.39269i 0.401140 0.130338i −0.101497 0.994836i \(-0.532363\pi\)
0.502637 + 0.864497i \(0.332363\pi\)
\(338\) −2.37642 + 7.31387i −0.129260 + 0.397822i
\(339\) 0 0
\(340\) 0.507411i 0.0275182i
\(341\) 4.20419 4.02226i 0.227670 0.217818i
\(342\) 0 0
\(343\) 26.9014 37.0266i 1.45254 1.99925i
\(344\) −0.908411 0.295161i −0.0489782 0.0159140i
\(345\) 0 0
\(346\) −3.42121 + 2.48566i −0.183926 + 0.133630i
\(347\) 7.00708 5.09094i 0.376160 0.273296i −0.383601 0.923499i \(-0.625316\pi\)
0.759761 + 0.650203i \(0.225316\pi\)
\(348\) 0 0
\(349\) 15.9435 + 5.18035i 0.853434 + 0.277298i 0.702884 0.711305i \(-0.251895\pi\)
0.150551 + 0.988602i \(0.451895\pi\)
\(350\) 6.00066 8.25920i 0.320749 0.441473i
\(351\) 0 0
\(352\) 3.33549 18.4145i 0.177782 0.981495i
\(353\) 11.7069i 0.623096i −0.950230 0.311548i \(-0.899153\pi\)
0.950230 0.311548i \(-0.100847\pi\)
\(354\) 0 0
\(355\) 4.66389 14.3540i 0.247534 0.761831i
\(356\) −20.6962 + 6.72461i −1.09690 + 0.356404i
\(357\) 0 0
\(358\) 2.64650 + 3.64259i 0.139872 + 0.192517i
\(359\) −5.55436 17.0946i −0.293148 0.902217i −0.983837 0.179065i \(-0.942693\pi\)
0.690689 0.723152i \(-0.257307\pi\)
\(360\) 0 0
\(361\) −11.4810 8.34140i −0.604261 0.439021i
\(362\) 0.296178 0.0155668
\(363\) 0 0
\(364\) −6.50714 −0.341067
\(365\) −4.17981 3.03681i −0.218781 0.158954i
\(366\) 0 0
\(367\) −8.48814 26.1238i −0.443077 1.36365i −0.884579 0.466391i \(-0.845554\pi\)
0.441501 0.897261i \(-0.354446\pi\)
\(368\) 5.15233 + 7.09157i 0.268584 + 0.369674i
\(369\) 0 0
\(370\) 0.262500 0.0852915i 0.0136467 0.00443409i
\(371\) −17.7010 + 54.4781i −0.918991 + 2.82836i
\(372\) 0 0
\(373\) 16.9714i 0.878744i 0.898305 + 0.439372i \(0.144799\pi\)
−0.898305 + 0.439372i \(0.855201\pi\)
\(374\) 0.0913281 0.504202i 0.00472246 0.0260717i
\(375\) 0 0
\(376\) 9.86246 13.5745i 0.508617 0.700052i
\(377\) −6.17089 2.00505i −0.317817 0.103265i
\(378\) 0 0
\(379\) 12.4374 9.03634i 0.638869 0.464165i −0.220593 0.975366i \(-0.570799\pi\)
0.859461 + 0.511201i \(0.170799\pi\)
\(380\) −3.64211 + 2.64615i −0.186836 + 0.135744i
\(381\) 0 0
\(382\) 0.0241349 + 0.00784191i 0.00123485 + 0.000401227i
\(383\) −4.87293 + 6.70702i −0.248995 + 0.342713i −0.915159 0.403093i \(-0.867935\pi\)
0.666164 + 0.745805i \(0.267935\pi\)
\(384\) 0 0
\(385\) 14.8049 14.1642i 0.754526 0.721875i
\(386\) 7.02414i 0.357519i
\(387\) 0 0
\(388\) 3.95316 12.1666i 0.200691 0.617665i
\(389\) −23.9516 + 7.78233i −1.21439 + 0.394580i −0.845037 0.534708i \(-0.820422\pi\)
−0.369355 + 0.929288i \(0.620422\pi\)
\(390\) 0 0
\(391\) 0.704229 + 0.969289i 0.0356144 + 0.0490190i
\(392\) −11.4691 35.2984i −0.579279 1.78284i
\(393\) 0 0
\(394\) 10.5262 + 7.64773i 0.530302 + 0.385287i
\(395\) 2.82307 0.142044
\(396\) 0 0
\(397\) −26.0948 −1.30966 −0.654830 0.755776i \(-0.727260\pi\)
−0.654830 + 0.755776i \(0.727260\pi\)
\(398\) 7.28772 + 5.29484i 0.365301 + 0.265406i
\(399\) 0 0
\(400\) 1.88458 + 5.80016i 0.0942292 + 0.290008i
\(401\) 2.48443 + 3.41953i 0.124067 + 0.170763i 0.866532 0.499121i \(-0.166344\pi\)
−0.742466 + 0.669884i \(0.766344\pi\)
\(402\) 0 0
\(403\) −1.39314 + 0.452658i −0.0693972 + 0.0225485i
\(404\) 2.68277 8.25672i 0.133473 0.410787i
\(405\) 0 0
\(406\) 23.5222i 1.16739i
\(407\) −1.13754 + 0.154470i −0.0563856 + 0.00765681i
\(408\) 0 0
\(409\) 14.8682 20.4643i 0.735183 1.01189i −0.263698 0.964605i \(-0.584942\pi\)
0.998881 0.0472876i \(-0.0150577\pi\)
\(410\) 3.68691 + 1.19795i 0.182084 + 0.0591625i
\(411\) 0 0
\(412\) 21.4259 15.5668i 1.05558 0.766922i
\(413\) 20.5807 14.9527i 1.01271 0.735775i
\(414\) 0 0
\(415\) 5.00743 + 1.62701i 0.245805 + 0.0798669i
\(416\) −2.76932 + 3.81164i −0.135777 + 0.186881i
\(417\) 0 0
\(418\) −4.09535 + 1.97388i −0.200310 + 0.0965454i
\(419\) 15.4907i 0.756769i 0.925649 + 0.378384i \(0.123520\pi\)
−0.925649 + 0.378384i \(0.876480\pi\)
\(420\) 0 0
\(421\) −8.97090 + 27.6096i −0.437215 + 1.34561i 0.453585 + 0.891213i \(0.350145\pi\)
−0.890800 + 0.454396i \(0.849855\pi\)
\(422\) −10.8059 + 3.51104i −0.526021 + 0.170915i
\(423\) 0 0
\(424\) 15.6860 + 21.5899i 0.761778 + 1.04850i
\(425\) 0.257588 + 0.792775i 0.0124949 + 0.0384553i
\(426\) 0 0
\(427\) −54.5954 39.6659i −2.64206 1.91957i
\(428\) 3.67180 0.177483
\(429\) 0 0
\(430\) −0.337602 −0.0162806
\(431\) 3.88324 + 2.82134i 0.187049 + 0.135899i 0.677369 0.735643i \(-0.263120\pi\)
−0.490320 + 0.871542i \(0.663120\pi\)
\(432\) 0 0
\(433\) 8.34981 + 25.6981i 0.401266 + 1.23497i 0.923973 + 0.382458i \(0.124922\pi\)
−0.522706 + 0.852513i \(0.675078\pi\)
\(434\) −3.12136 4.29618i −0.149830 0.206223i
\(435\) 0 0
\(436\) 13.6206 4.42561i 0.652310 0.211948i
\(437\) 3.28483 10.1097i 0.157135 0.483612i
\(438\) 0 0
\(439\) 31.8920i 1.52212i −0.648681 0.761061i \(-0.724679\pi\)
0.648681 0.761061i \(-0.275321\pi\)
\(440\) −1.28444 9.45877i −0.0612334 0.450929i
\(441\) 0 0
\(442\) −0.0758259 + 0.104365i −0.00360667 + 0.00496416i
\(443\) 10.6407 + 3.45736i 0.505553 + 0.164264i 0.550679 0.834717i \(-0.314369\pi\)
−0.0451259 + 0.998981i \(0.514369\pi\)
\(444\) 0 0
\(445\) −13.9560 + 10.1397i −0.661580 + 0.480666i
\(446\) 0.381538 0.277204i 0.0180664 0.0131260i
\(447\) 0 0
\(448\) 0.412471 + 0.134020i 0.0194874 + 0.00633184i
\(449\) −14.9366 + 20.5585i −0.704903 + 0.970216i 0.294989 + 0.955501i \(0.404684\pi\)
−0.999892 + 0.0147150i \(0.995316\pi\)
\(450\) 0 0
\(451\) −14.2010 7.63587i −0.668699 0.359559i
\(452\) 11.6529i 0.548107i
\(453\) 0 0
\(454\) 3.20996 9.87925i 0.150651 0.463656i
\(455\) −4.90588 + 1.59402i −0.229991 + 0.0747286i
\(456\) 0 0
\(457\) −8.77479 12.0775i −0.410467 0.564960i 0.552865 0.833271i \(-0.313535\pi\)
−0.963332 + 0.268311i \(0.913535\pi\)
\(458\) 4.24914 + 13.0775i 0.198549 + 0.611072i
\(459\) 0 0
\(460\) 8.05102 + 5.84941i 0.375381 + 0.272730i
\(461\) −13.0164 −0.606233 −0.303117 0.952953i \(-0.598027\pi\)
−0.303117 + 0.952953i \(0.598027\pi\)
\(462\) 0 0
\(463\) −4.03263 −0.187412 −0.0937062 0.995600i \(-0.529871\pi\)
−0.0937062 + 0.995600i \(0.529871\pi\)
\(464\) 11.3681 + 8.25943i 0.527752 + 0.383434i
\(465\) 0 0
\(466\) 2.98693 + 9.19282i 0.138367 + 0.425849i
\(467\) −24.7492 34.0643i −1.14525 1.57631i −0.755170 0.655529i \(-0.772446\pi\)
−0.390085 0.920779i \(-0.627554\pi\)
\(468\) 0 0
\(469\) 2.32540 0.755569i 0.107377 0.0348889i
\(470\) 1.83265 5.64030i 0.0845336 0.260168i
\(471\) 0 0
\(472\) 11.8516i 0.545516i
\(473\) 1.38167 + 0.250268i 0.0635294 + 0.0115073i
\(474\) 0 0
\(475\) 4.34709 5.98325i 0.199458 0.274530i
\(476\) 1.83188 + 0.595214i 0.0839641 + 0.0272816i
\(477\) 0 0
\(478\) −9.51213 + 6.91097i −0.435075 + 0.316100i
\(479\) 6.01551 4.37052i 0.274856 0.199694i −0.441815 0.897106i \(-0.645665\pi\)
0.716670 + 0.697412i \(0.245665\pi\)
\(480\) 0 0
\(481\) 0.274868 + 0.0893099i 0.0125329 + 0.00407218i
\(482\) −5.71999 + 7.87289i −0.260538 + 0.358600i
\(483\) 0 0
\(484\) −0.782577 + 17.6847i −0.0355717 + 0.803849i
\(485\) 10.1410i 0.460480i
\(486\) 0 0
\(487\) 4.00699 12.3322i 0.181574 0.558827i −0.818299 0.574793i \(-0.805082\pi\)
0.999873 + 0.0159664i \(0.00508249\pi\)
\(488\) −29.9007 + 9.71532i −1.35354 + 0.439792i
\(489\) 0 0
\(490\) −7.71075 10.6129i −0.348336 0.479443i
\(491\) −9.95139 30.6272i −0.449100 1.38219i −0.877924 0.478799i \(-0.841072\pi\)
0.428825 0.903388i \(-0.358928\pi\)
\(492\) 0 0
\(493\) 1.55382 + 1.12891i 0.0699804 + 0.0508437i
\(494\) 1.14455 0.0514957
\(495\) 0 0
\(496\) 3.17233 0.142442
\(497\) 46.3506 + 33.6757i 2.07911 + 1.51056i
\(498\) 0 0
\(499\) −7.99350 24.6015i −0.357838 1.10131i −0.954346 0.298705i \(-0.903445\pi\)
0.596507 0.802608i \(-0.296555\pi\)
\(500\) 10.1032 + 13.9058i 0.451827 + 0.621886i
\(501\) 0 0
\(502\) 8.41645 2.73467i 0.375645 0.122054i
\(503\) 0.339066 1.04354i 0.0151182 0.0465290i −0.943213 0.332189i \(-0.892213\pi\)
0.958331 + 0.285660i \(0.0922128\pi\)
\(504\) 0 0
\(505\) 6.88210i 0.306250i
\(506\) 6.94728 + 7.26151i 0.308844 + 0.322813i
\(507\) 0 0
\(508\) 2.72418 3.74951i 0.120866 0.166357i
\(509\) 6.65980 + 2.16390i 0.295190 + 0.0959132i 0.452868 0.891577i \(-0.350401\pi\)
−0.157678 + 0.987491i \(0.550401\pi\)
\(510\) 0 0
\(511\) 15.8668 11.5279i 0.701904 0.509963i
\(512\) 14.8558 10.7934i 0.656539 0.477003i
\(513\) 0 0
\(514\) −8.84890 2.87518i −0.390308 0.126819i
\(515\) 12.3401 16.9847i 0.543771 0.748436i
\(516\) 0 0
\(517\) −11.6815 + 21.7250i −0.513752 + 0.955463i
\(518\) 1.04774i 0.0460351i
\(519\) 0 0
\(520\) −0.742624 + 2.28556i −0.0325662 + 0.100229i
\(521\) 7.27467 2.36368i 0.318709 0.103555i −0.145294 0.989389i \(-0.546413\pi\)
0.464003 + 0.885834i \(0.346413\pi\)
\(522\) 0 0
\(523\) −18.3418 25.2453i −0.802029 1.10390i −0.992505 0.122206i \(-0.961003\pi\)
0.190476 0.981692i \(-0.438997\pi\)
\(524\) 0.280156 + 0.862233i 0.0122387 + 0.0376668i
\(525\) 0 0
\(526\) 12.0869 + 8.78164i 0.527014 + 0.382898i
\(527\) 0.433599 0.0188879
\(528\) 0 0
\(529\) −0.497894 −0.0216476
\(530\) 7.63097 + 5.54423i 0.331468 + 0.240826i
\(531\) 0 0
\(532\) −5.28091 16.2530i −0.228956 0.704656i
\(533\) 2.38599 + 3.28404i 0.103349 + 0.142247i
\(534\) 0 0
\(535\) 2.76825 0.899460i 0.119682 0.0388870i
\(536\) 0.352007 1.08337i 0.0152044 0.0467943i
\(537\) 0 0
\(538\) 4.92026i 0.212127i
\(539\) 23.6896 + 49.1506i 1.02038 + 2.11707i
\(540\) 0 0
\(541\) −16.7402 + 23.0409i −0.719717 + 0.990605i 0.279817 + 0.960053i \(0.409726\pi\)
−0.999533 + 0.0305514i \(0.990274\pi\)
\(542\) −2.92458 0.950253i −0.125621 0.0408169i
\(543\) 0 0
\(544\) 1.12827 0.819734i 0.0483740 0.0351458i
\(545\) 9.18477 6.67313i 0.393432 0.285845i
\(546\) 0 0
\(547\) −38.3795 12.4703i −1.64099 0.533189i −0.664229 0.747529i \(-0.731240\pi\)
−0.976759 + 0.214340i \(0.931240\pi\)
\(548\) −4.39118 + 6.04394i −0.187582 + 0.258185i
\(549\) 0 0
\(550\) 3.03575 + 6.29851i 0.129445 + 0.268569i
\(551\) 17.0403i 0.725942i
\(552\) 0 0
\(553\) −3.31157 + 10.1920i −0.140822 + 0.433407i
\(554\) −15.6997 + 5.10114i −0.667016 + 0.216727i
\(555\) 0 0
\(556\) 9.93986 + 13.6810i 0.421544 + 0.580206i
\(557\) 5.23145 + 16.1007i 0.221664 + 0.682211i 0.998613 + 0.0526476i \(0.0167660\pi\)
−0.776950 + 0.629563i \(0.783234\pi\)
\(558\) 0 0
\(559\) −0.285994 0.207787i −0.0120963 0.00878845i
\(560\) 11.1712 0.472070
\(561\) 0 0
\(562\) 9.93484 0.419076
\(563\) 18.8334 + 13.6833i 0.793734 + 0.576682i 0.909069 0.416645i \(-0.136794\pi\)
−0.115335 + 0.993327i \(0.536794\pi\)
\(564\) 0 0
\(565\) 2.85454 + 8.78539i 0.120092 + 0.369604i
\(566\) −4.04544 5.56807i −0.170042 0.234043i
\(567\) 0 0
\(568\) 25.3852 8.24815i 1.06514 0.346085i
\(569\) 7.03113 21.6396i 0.294760 0.907179i −0.688542 0.725197i \(-0.741749\pi\)
0.983302 0.181982i \(-0.0582513\pi\)
\(570\) 0 0
\(571\) 28.8962i 1.20927i 0.796503 + 0.604634i \(0.206681\pi\)
−0.796503 + 0.604634i \(0.793319\pi\)
\(572\) 2.11057 3.92518i 0.0882473 0.164120i
\(573\) 0 0
\(574\) −8.64980 + 11.9054i −0.361036 + 0.496923i
\(575\) −15.5483 5.05196i −0.648410 0.210681i
\(576\) 0 0
\(577\) 25.9942 18.8859i 1.08215 0.786229i 0.104094 0.994567i \(-0.466806\pi\)
0.978057 + 0.208339i \(0.0668056\pi\)
\(578\) −8.56605 + 6.22360i −0.356301 + 0.258868i
\(579\) 0 0
\(580\) 15.1721 + 4.92972i 0.629988 + 0.204695i
\(581\) −11.7479 + 16.1695i −0.487383 + 0.670825i
\(582\) 0 0
\(583\) −27.1206 28.3472i −1.12322 1.17402i
\(584\) 9.13707i 0.378095i
\(585\) 0 0
\(586\) −2.73676 + 8.42287i −0.113054 + 0.347945i
\(587\) 3.52838 1.14644i 0.145632 0.0473187i −0.235294 0.971924i \(-0.575605\pi\)
0.380926 + 0.924606i \(0.375605\pi\)
\(588\) 0 0
\(589\) −2.26122 3.11230i −0.0931719 0.128240i
\(590\) −1.29446 3.98395i −0.0532923 0.164017i
\(591\) 0 0
\(592\) −0.506366 0.367897i −0.0208115 0.0151205i
\(593\) −38.2706 −1.57159 −0.785793 0.618490i \(-0.787745\pi\)
−0.785793 + 0.618490i \(0.787745\pi\)
\(594\) 0 0
\(595\) 1.52690 0.0625968
\(596\) −19.8215 14.4011i −0.811919 0.589894i
\(597\) 0 0
\(598\) −0.781835 2.40624i −0.0319716 0.0983985i
\(599\) 7.34752 + 10.1130i 0.300212 + 0.413206i 0.932297 0.361692i \(-0.117801\pi\)
−0.632086 + 0.774898i \(0.717801\pi\)
\(600\) 0 0
\(601\) 21.7428 7.06468i 0.886909 0.288174i 0.170086 0.985429i \(-0.445596\pi\)
0.716823 + 0.697255i \(0.245596\pi\)
\(602\) 0.396022 1.21883i 0.0161406 0.0496758i
\(603\) 0 0
\(604\) 12.2970i 0.500356i
\(605\) 3.74211 + 13.5246i 0.152138 + 0.549852i
\(606\) 0 0
\(607\) 17.8663 24.5908i 0.725171 0.998112i −0.274166 0.961682i \(-0.588402\pi\)
0.999336 0.0364291i \(-0.0115983\pi\)
\(608\) −11.7678 3.82360i −0.477248 0.155067i
\(609\) 0 0
\(610\) −8.99005 + 6.53165i −0.363997 + 0.264459i
\(611\) 5.02398 3.65013i 0.203248 0.147669i
\(612\) 0 0
\(613\) 1.41405 + 0.459451i 0.0571128 + 0.0185571i 0.337434 0.941349i \(-0.390441\pi\)
−0.280321 + 0.959906i \(0.590441\pi\)
\(614\) −4.23955 + 5.83524i −0.171094 + 0.235491i
\(615\) 0 0
\(616\) 35.6552 + 6.45837i 1.43659 + 0.260215i
\(617\) 33.6261i 1.35373i −0.736105 0.676867i \(-0.763337\pi\)
0.736105 0.676867i \(-0.236663\pi\)
\(618\) 0 0
\(619\) 0.873090 2.68710i 0.0350925 0.108004i −0.931976 0.362520i \(-0.881916\pi\)
0.967068 + 0.254517i \(0.0819164\pi\)
\(620\) 3.42525 1.11293i 0.137561 0.0446964i
\(621\) 0 0
\(622\) −10.0534 13.8373i −0.403103 0.554824i
\(623\) −20.2357 62.2791i −0.810726 2.49516i
\(624\) 0 0
\(625\) −2.61899 1.90281i −0.104760 0.0761123i
\(626\) −5.19420 −0.207602
\(627\) 0 0
\(628\) 6.96826 0.278064
\(629\) −0.0692110 0.0502848i −0.00275962 0.00200498i
\(630\) 0 0
\(631\) 2.32895 + 7.16777i 0.0927140 + 0.285344i 0.986651 0.162848i \(-0.0520680\pi\)
−0.893937 + 0.448192i \(0.852068\pi\)
\(632\) 2.93459 + 4.03912i 0.116732 + 0.160667i
\(633\) 0 0
\(634\) 9.03268 2.93490i 0.358734 0.116560i
\(635\) 1.13532 3.49416i 0.0450538 0.138661i
\(636\) 0 0
\(637\) 13.7364i 0.544255i
\(638\) 14.1889 + 7.62935i 0.561743 + 0.302049i
\(639\) 0 0
\(640\) 8.50394 11.7047i 0.336148 0.462668i
\(641\) −18.3222 5.95325i −0.723685 0.235139i −0.0760647 0.997103i \(-0.524236\pi\)
−0.647620 + 0.761963i \(0.724236\pi\)
\(642\) 0 0
\(643\) 15.1868 11.0339i 0.598909 0.435133i −0.246583 0.969122i \(-0.579308\pi\)
0.845491 + 0.533989i \(0.179308\pi\)
\(644\) −30.5620 + 22.2046i −1.20431 + 0.874984i
\(645\) 0 0
\(646\) −0.322212 0.104693i −0.0126772 0.00411909i
\(647\) 1.43599 1.97647i 0.0564545 0.0777030i −0.779856 0.625959i \(-0.784708\pi\)
0.836311 + 0.548256i \(0.184708\pi\)
\(648\) 0 0
\(649\) 2.34439 + 17.2643i 0.0920254 + 0.677685i
\(650\) 1.76028i 0.0690437i
\(651\) 0 0
\(652\) −3.54368 + 10.9063i −0.138781 + 0.427125i
\(653\) −18.9913 + 6.17063i −0.743185 + 0.241476i −0.656046 0.754721i \(-0.727772\pi\)
−0.0871389 + 0.996196i \(0.527772\pi\)
\(654\) 0 0
\(655\) 0.422432 + 0.581427i 0.0165058 + 0.0227182i
\(656\) −2.71658 8.36077i −0.106065 0.326433i
\(657\) 0 0
\(658\) 18.2131 + 13.2326i 0.710022 + 0.515861i
\(659\) −35.6839 −1.39005 −0.695024 0.718986i \(-0.744606\pi\)
−0.695024 + 0.718986i \(0.744606\pi\)
\(660\) 0 0
\(661\) −8.91749 −0.346850 −0.173425 0.984847i \(-0.555483\pi\)
−0.173425 + 0.984847i \(0.555483\pi\)
\(662\) 7.28941 + 5.29607i 0.283311 + 0.205838i
\(663\) 0 0
\(664\) 2.87739 + 8.85570i 0.111664 + 0.343668i
\(665\) −7.96278 10.9598i −0.308783 0.425004i
\(666\) 0 0
\(667\) −35.8246 + 11.6401i −1.38714 + 0.450708i
\(668\) 4.06691 12.5167i 0.157353 0.484284i
\(669\) 0 0
\(670\) 0.402623i 0.0155547i
\(671\) 41.6347 20.0671i 1.60729 0.774680i
\(672\) 0 0
\(673\) −6.42648 + 8.84529i −0.247723 + 0.340961i −0.914712 0.404106i \(-0.867583\pi\)
0.666989 + 0.745067i \(0.267583\pi\)
\(674\) 4.60308 + 1.49563i 0.177304 + 0.0576096i
\(675\) 0 0
\(676\) 16.0174 11.6373i 0.616052 0.447588i
\(677\) 19.2277 13.9698i 0.738981 0.536901i −0.153411 0.988163i \(-0.549026\pi\)
0.892392 + 0.451261i \(0.149026\pi\)
\(678\) 0 0
\(679\) 36.6117 + 11.8958i 1.40503 + 0.456521i
\(680\) 0.418125 0.575499i 0.0160343 0.0220694i
\(681\) 0 0
\(682\) 3.60390 0.489388i 0.138001 0.0187396i
\(683\) 24.2759i 0.928892i −0.885602 0.464446i \(-0.846254\pi\)
0.885602 0.464446i \(-0.153746\pi\)
\(684\) 0 0
\(685\) −1.83006 + 5.63234i −0.0699229 + 0.215201i
\(686\) 27.2082 8.84048i 1.03881 0.337531i
\(687\) 0 0
\(688\) 0.449995 + 0.619366i 0.0171559 + 0.0236131i
\(689\) 3.05210 + 9.39340i 0.116276 + 0.357860i
\(690\) 0 0
\(691\) 26.3977 + 19.1791i 1.00422 + 0.729606i 0.962988 0.269544i \(-0.0868728\pi\)
0.0412285 + 0.999150i \(0.486873\pi\)
\(692\) 10.8872 0.413868
\(693\) 0 0
\(694\) 5.41398 0.205512
\(695\) 10.8452 + 7.87953i 0.411383 + 0.298887i
\(696\) 0 0
\(697\) −0.371307 1.14277i −0.0140643 0.0432853i
\(698\) 6.15932 + 8.47757i 0.233134 + 0.320881i
\(699\) 0 0
\(700\) −24.9965 + 8.12185i −0.944778 + 0.306977i
\(701\) −11.0658 + 34.0571i −0.417951 + 1.28632i 0.491634 + 0.870802i \(0.336400\pi\)
−0.909585 + 0.415518i \(0.863600\pi\)
\(702\) 0 0
\(703\) 0.759020i 0.0286270i
\(704\) −0.214625 + 0.205338i −0.00808900 + 0.00773897i
\(705\) 0 0
\(706\) 4.30129 5.92021i 0.161881 0.222810i
\(707\) 24.8461 + 8.07299i 0.934434 + 0.303616i
\(708\) 0 0
\(709\) −2.97546 + 2.16180i −0.111746 + 0.0811882i −0.642255 0.766491i \(-0.722001\pi\)
0.530509 + 0.847679i \(0.322001\pi\)
\(710\) 7.63240 5.54527i 0.286439 0.208110i
\(711\) 0 0
\(712\) −29.0147 9.42746i −1.08737 0.353309i
\(713\) −4.99851 + 6.87986i −0.187196 + 0.257653i
\(714\) 0 0
\(715\) 0.629674 3.47629i 0.0235485 0.130006i
\(716\) 11.5916i 0.433200i
\(717\) 0 0
\(718\) 3.47193 10.6855i 0.129571 0.398780i
\(719\) −12.2052 + 3.96571i −0.455177 + 0.147896i −0.527627 0.849476i \(-0.676918\pi\)
0.0724502 + 0.997372i \(0.476918\pi\)
\(720\) 0 0
\(721\) 46.8436 + 64.4747i 1.74455 + 2.40116i
\(722\) −2.74120 8.43653i −0.102017 0.313975i
\(723\) 0 0
\(724\) −0.616883 0.448192i −0.0229263 0.0166569i
\(725\) −26.2074 −0.973318
\(726\) 0 0
\(727\) −41.9125 −1.55445 −0.777224 0.629224i \(-0.783373\pi\)
−0.777224 + 0.629224i \(0.783373\pi\)
\(728\) −7.38033 5.36212i −0.273533 0.198733i
\(729\) 0 0
\(730\) −0.997974 3.07145i −0.0369367 0.113679i
\(731\) 0.0615062 + 0.0846560i 0.00227489 + 0.00313111i
\(732\) 0 0
\(733\) −24.7362 + 8.03729i −0.913653 + 0.296864i −0.727861 0.685725i \(-0.759485\pi\)
−0.185793 + 0.982589i \(0.559485\pi\)
\(734\) 5.30579 16.3295i 0.195840 0.602734i
\(735\) 0 0
\(736\) 27.3519i 1.00820i
\(737\) −0.298468 + 1.64777i −0.0109942 + 0.0606966i
\(738\) 0 0
\(739\) −17.3756 + 23.9154i −0.639171 + 0.879744i −0.998571 0.0534398i \(-0.982981\pi\)
0.359400 + 0.933184i \(0.382981\pi\)
\(740\) −0.675805 0.219582i −0.0248431 0.00807201i
\(741\) 0 0
\(742\) −28.9675 + 21.0461i −1.06343 + 0.772627i
\(743\) −12.0744 + 8.77259i −0.442968 + 0.321835i −0.786813 0.617191i \(-0.788270\pi\)
0.343845 + 0.939026i \(0.388270\pi\)
\(744\) 0 0
\(745\) −18.4716 6.00179i −0.676747 0.219888i
\(746\) −6.23552 + 8.58246i −0.228299 + 0.314226i
\(747\) 0 0
\(748\) −0.953203 + 0.911955i −0.0348525 + 0.0333444i
\(749\) 11.0492i 0.403729i
\(750\) 0 0
\(751\) −5.59944 + 17.2333i −0.204327 + 0.628853i 0.795414 + 0.606067i \(0.207254\pi\)
−0.999740 + 0.0227859i \(0.992746\pi\)
\(752\) −12.7905 + 4.15587i −0.466420 + 0.151549i
\(753\) 0 0
\(754\) −2.38395 3.28123i −0.0868185 0.119495i
\(755\) −3.01231 9.27095i −0.109629 0.337404i
\(756\) 0 0
\(757\) 5.28836 + 3.84222i 0.192209 + 0.139648i 0.679728 0.733465i \(-0.262098\pi\)
−0.487519 + 0.873112i \(0.662098\pi\)
\(758\) 9.60973 0.349041
\(759\) 0 0
\(760\) −6.31136 −0.228937
\(761\) −26.3742 19.1620i −0.956064 0.694621i −0.00383069 0.999993i \(-0.501219\pi\)
−0.952233 + 0.305372i \(0.901219\pi\)
\(762\) 0 0
\(763\) 13.3175 + 40.9872i 0.482127 + 1.48384i
\(764\) −0.0384017 0.0528554i −0.00138932 0.00191224i
\(765\) 0 0
\(766\) −4.92851 + 1.60137i −0.178074 + 0.0578598i
\(767\) 1.35545 4.17165i 0.0489426 0.150630i
\(768\) 0 0
\(769\) 40.3044i 1.45341i 0.686948 + 0.726707i \(0.258950\pi\)
−0.686948 + 0.726707i \(0.741050\pi\)
\(770\) 12.6910 1.72336i 0.457352 0.0621055i
\(771\) 0 0
\(772\) 10.6293 14.6299i 0.382556 0.526543i
\(773\) 9.02009 + 2.93080i 0.324430 + 0.105414i 0.466704 0.884414i \(-0.345441\pi\)
−0.142274 + 0.989827i \(0.545441\pi\)
\(774\) 0 0
\(775\) −4.78661 + 3.47767i −0.171940 + 0.124922i
\(776\) 14.5093 10.5416i 0.520855 0.378423i
\(777\) 0 0
\(778\) −14.9717 4.86460i −0.536761 0.174404i
\(779\) −6.26621 + 8.62470i −0.224510 + 0.309012i
\(780\) 0 0
\(781\) −35.3472 + 17.0366i −1.26482 + 0.609618i
\(782\) 0.748915i 0.0267812i
\(783\) 0 0
\(784\) −9.19272 + 28.2923i −0.328311 + 1.01044i
\(785\) 5.25352 1.70697i 0.187506 0.0609245i
\(786\) 0 0
\(787\) −24.2354 33.3572i −0.863899 1.18905i −0.980626 0.195891i \(-0.937240\pi\)
0.116727 0.993164i \(-0.462760\pi\)
\(788\) −10.3511 31.8576i −0.368744 1.13488i
\(789\) 0 0
\(790\) 1.42763 + 1.03723i 0.0507928 + 0.0369032i
\(791\) −35.0659 −1.24680
\(792\) 0 0
\(793\) −11.6359 −0.413202
\(794\) −13.1962 9.58760i −0.468316 0.340251i
\(795\) 0 0
\(796\) −7.16653 22.0563i −0.254011 0.781765i
\(797\) 7.50605 + 10.3312i 0.265878 + 0.365950i 0.920993 0.389580i \(-0.127380\pi\)
−0.655115 + 0.755529i \(0.727380\pi\)
\(798\) 0 0
\(799\) −1.74822 + 0.568032i −0.0618477 + 0.0200955i
\(800\) −5.88056 + 18.0985i −0.207909 + 0.639878i
\(801\) 0 0
\(802\) 2.64208i 0.0932950i
\(803\) 1.80742 + 13.3100i 0.0637824 + 0.469700i
\(804\) 0 0
\(805\) −17.6020 + 24.2271i −0.620390 + 0.853893i
\(806\) −0.870827 0.282949i −0.0306736 0.00996644i
\(807\) 0 0
\(808\) 9.84660 7.15398i 0.346402 0.251676i
\(809\) 33.5935 24.4071i 1.18108 0.858107i 0.188790 0.982017i \(-0.439543\pi\)
0.992293 + 0.123910i \(0.0395435\pi\)
\(810\) 0 0
\(811\) 5.10222 + 1.65781i 0.179163 + 0.0582137i 0.397225 0.917721i \(-0.369973\pi\)
−0.218061 + 0.975935i \(0.569973\pi\)
\(812\) −35.5950 + 48.9924i −1.24914 + 1.71929i
\(813\) 0 0
\(814\) −0.632009 0.339831i −0.0221519 0.0119111i
\(815\) 9.09060i 0.318430i
\(816\) 0 0
\(817\) 0.286892 0.882962i 0.0100371 0.0308909i
\(818\) 15.0377 4.88605i 0.525782 0.170837i
\(819\) 0 0
\(820\) −5.86634 8.07432i −0.204861 0.281968i
\(821\) 9.85555 + 30.3323i 0.343961 + 1.05860i 0.962138 + 0.272564i \(0.0878716\pi\)
−0.618177 + 0.786039i \(0.712128\pi\)
\(822\) 0 0
\(823\) 21.1304 + 15.3521i 0.736560 + 0.535142i 0.891632 0.452761i \(-0.149561\pi\)
−0.155072 + 0.987903i \(0.549561\pi\)
\(824\) 37.1286 1.29344
\(825\) 0 0
\(826\) 15.9015 0.553285
\(827\) 31.8832 + 23.1645i 1.10869 + 0.805508i 0.982456 0.186493i \(-0.0597120\pi\)
0.126231 + 0.992001i \(0.459712\pi\)
\(828\) 0 0
\(829\) −10.5153 32.3627i −0.365211 1.12400i −0.949849 0.312710i \(-0.898763\pi\)
0.584638 0.811294i \(-0.301237\pi\)
\(830\) 1.93448 + 2.66259i 0.0671469 + 0.0924197i
\(831\) 0 0
\(832\) 0.0711203 0.0231084i 0.00246565 0.000801139i
\(833\) −1.25648 + 3.86704i −0.0435343 + 0.133985i
\(834\) 0 0
\(835\) 10.4328i 0.361043i
\(836\) 11.5168 + 2.08609i 0.398317 + 0.0721488i
\(837\) 0 0
\(838\) −5.69149 + 7.83367i −0.196609 + 0.270610i
\(839\) 54.2126 + 17.6148i 1.87163 + 0.608129i 0.990917 + 0.134474i \(0.0429345\pi\)
0.880711 + 0.473655i \(0.157065\pi\)
\(840\) 0 0
\(841\) −25.3902 + 18.4471i −0.875524 + 0.636106i
\(842\) −14.6808 + 10.6662i −0.505933 + 0.367582i
\(843\) 0 0
\(844\) 27.8196 + 9.03915i 0.957592 + 0.311140i
\(845\) 9.22511 12.6973i 0.317353 0.436800i
\(846\) 0 0
\(847\) −53.2167 2.35493i −1.82855 0.0809163i
\(848\) 21.3898i 0.734528i
\(849\) 0 0
\(850\) −0.161014 + 0.495550i −0.00552273 + 0.0169972i
\(851\) 1.59572 0.518482i 0.0547007 0.0177733i
\(852\) 0 0
\(853\) 19.0102 + 26.1653i 0.650898 + 0.895884i 0.999138 0.0415213i \(-0.0132204\pi\)
−0.348240 + 0.937406i \(0.613220\pi\)
\(854\) −13.0352 40.1182i −0.446056 1.37282i
\(855\) 0 0
\(856\) 4.16452 + 3.02570i 0.142340 + 0.103416i
\(857\) −33.6573 −1.14971 −0.574855 0.818255i \(-0.694942\pi\)
−0.574855 + 0.818255i \(0.694942\pi\)
\(858\) 0 0
\(859\) −38.0426 −1.29800 −0.648998 0.760790i \(-0.724812\pi\)
−0.648998 + 0.760790i \(0.724812\pi\)
\(860\) 0.703162 + 0.510877i 0.0239776 + 0.0174208i
\(861\) 0 0
\(862\) 0.927162 + 2.85351i 0.0315793 + 0.0971910i
\(863\) −9.20216 12.6657i −0.313245 0.431145i 0.623145 0.782107i \(-0.285855\pi\)
−0.936390 + 0.350962i \(0.885855\pi\)
\(864\) 0 0
\(865\) 8.20807 2.66696i 0.279083 0.0906795i
\(866\) −5.21932 + 16.0634i −0.177360 + 0.545857i
\(867\) 0 0
\(868\) 13.6715i 0.464042i
\(869\) −5.07382 5.30331i −0.172117 0.179902i
\(870\) 0 0
\(871\) 0.247806 0.341075i 0.00839657 0.0115569i
\(872\) 19.0952 + 6.20441i 0.646646 + 0.210108i
\(873\) 0 0
\(874\) 5.37559 3.90559i 0.181832 0.132109i
\(875\) −41.8453 + 30.4024i −1.41463 + 1.02779i
\(876\) 0 0
\(877\) 14.0197 + 4.55529i 0.473413 + 0.153821i 0.536000 0.844218i \(-0.319935\pi\)
−0.0625864 + 0.998040i \(0.519935\pi\)
\(878\) 11.7176 16.1279i 0.395449 0.544289i
\(879\) 0 0
\(880\) −3.62334 + 6.73859i −0.122143 + 0.227158i
\(881\) 29.1468i 0.981981i −0.871165 0.490990i \(-0.836635\pi\)
0.871165 0.490990i \(-0.163365\pi\)
\(882\) 0 0
\(883\) 0.109578 0.337245i 0.00368758 0.0113492i −0.949196 0.314686i \(-0.898101\pi\)
0.952883 + 0.303337i \(0.0981008\pi\)
\(884\) 0.315862 0.102630i 0.0106236 0.00345181i
\(885\) 0 0
\(886\) 4.11072 + 5.65792i 0.138102 + 0.190082i
\(887\) −0.796860 2.45248i −0.0267560 0.0823464i 0.936787 0.349900i \(-0.113785\pi\)
−0.963543 + 0.267554i \(0.913785\pi\)
\(888\) 0 0
\(889\) 11.2830 + 8.19759i 0.378420 + 0.274938i
\(890\) −10.7831 −0.361449
\(891\) 0 0
\(892\) −1.21415 −0.0406528
\(893\) 13.1942 + 9.58616i 0.441528 + 0.320789i
\(894\) 0 0
\(895\) −2.83953 8.73919i −0.0949151 0.292119i
\(896\) 32.2813 + 44.4314i 1.07844 + 1.48435i
\(897\) 0 0
\(898\) −15.1070 + 4.90855i −0.504126 + 0.163801i
\(899\) −4.21260 + 12.9651i −0.140498 + 0.432409i
\(900\) 0 0
\(901\) 2.92359i 0.0973989i
\(902\) −4.37596 9.07913i −0.145703 0.302302i
\(903\) 0 0
\(904\) −9.60242 + 13.2166i −0.319372 + 0.439578i
\(905\) −0.574872 0.186787i −0.0191094 0.00620902i
\(906\) 0 0
\(907\) −15.1705 + 11.0220i −0.503728 + 0.365980i −0.810439 0.585823i \(-0.800771\pi\)
0.306711 + 0.951803i \(0.400771\pi\)
\(908\) −21.6355 + 15.7191i −0.718000 + 0.521657i
\(909\) 0 0
\(910\) −3.06658 0.996391i −0.101656 0.0330301i
\(911\) 7.20004 9.91000i 0.238548 0.328333i −0.672912 0.739723i \(-0.734957\pi\)
0.911459 + 0.411390i \(0.134957\pi\)
\(912\) 0 0
\(913\) −5.94327 12.3310i −0.196694 0.408095i
\(914\) 9.33158i 0.308661i
\(915\) 0 0
\(916\) 10.9394 33.6680i 0.361448 1.11242i
\(917\) −2.59463 + 0.843046i −0.0856822 + 0.0278398i
\(918\) 0 0
\(919\) −14.4656 19.9102i −0.477175 0.656775i 0.500784 0.865572i \(-0.333045\pi\)
−0.977959 + 0.208797i \(0.933045\pi\)
\(920\) 4.31125 + 13.2687i 0.142138 + 0.437455i
\(921\) 0 0
\(922\) −6.58241 4.78240i −0.216780 0.157500i
\(923\) 9.87866 0.325160
\(924\) 0 0
\(925\) 1.16735 0.0383821
\(926\) −2.03931 1.48165i −0.0670160 0.0486899i
\(927\) 0 0
\(928\) 13.5493 + 41.7004i 0.444777 + 1.36888i
\(929\) −11.3549 15.6287i −0.372543 0.512761i 0.581047 0.813870i \(-0.302643\pi\)
−0.953590 + 0.301109i \(0.902643\pi\)
\(930\) 0 0
\(931\) 34.3095 11.1478i 1.12445 0.365355i
\(932\) 7.68983 23.6669i 0.251889 0.775234i
\(933\) 0 0
\(934\) 26.3196i 0.861203i
\(935\) −0.495244 + 0.921043i −0.0161962 + 0.0301213i
\(936\) 0 0
\(937\) 29.8196 41.0432i 0.974165 1.34082i 0.0342499 0.999413i \(-0.489096\pi\)
0.939915 0.341409i \(-0.110904\pi\)
\(938\) 1.45357 + 0.472293i 0.0474607 + 0.0154209i
\(939\) 0 0
\(940\) −12.3522 + 8.97443i −0.402886 + 0.292714i
\(941\) 24.4499 17.7639i 0.797043 0.579085i −0.113002 0.993595i \(-0.536047\pi\)
0.910045 + 0.414509i \(0.136047\pi\)
\(942\) 0 0
\(943\) 22.4125 + 7.28227i 0.729852 + 0.237143i
\(944\) −5.58355 + 7.68510i −0.181729 + 0.250129i
\(945\) 0 0
\(946\) 0.606763 + 0.634207i 0.0197276 + 0.0206199i
\(947\) 11.3912i 0.370165i 0.982723 + 0.185083i \(0.0592553\pi\)
−0.982723 + 0.185083i \(0.940745\pi\)
\(948\) 0 0
\(949\) 1.04499 3.21616i 0.0339219 0.104401i
\(950\) 4.39666 1.42856i 0.142647 0.0463487i
\(951\) 0 0
\(952\) 1.58722 + 2.18462i 0.0514421 + 0.0708039i
\(953\) 14.8543 + 45.7168i 0.481178 + 1.48091i 0.837441 + 0.546527i \(0.184051\pi\)
−0.356263 + 0.934386i \(0.615949\pi\)
\(954\) 0 0
\(955\) −0.0418995 0.0304418i −0.00135584 0.000985073i
\(956\) 30.2700 0.979002
\(957\) 0 0
\(958\) 4.64785 0.150165
\(959\) −18.1874 13.2139i −0.587303 0.426700i
\(960\) 0 0
\(961\) −8.62849 26.5558i −0.278338 0.856638i
\(962\) 0.106188 + 0.146155i 0.00342362 + 0.00471221i
\(963\) 0 0
\(964\) 23.8273 7.74196i 0.767426 0.249352i
\(965\) 4.42983 13.6336i 0.142601 0.438882i
\(966\) 0 0
\(967\) 13.2274i 0.425363i −0.977122 0.212681i \(-0.931780\pi\)
0.977122 0.212681i \(-0.0682197\pi\)
\(968\) −15.4604 + 19.4129i −0.496916 + 0.623954i
\(969\) 0 0
\(970\) 3.72596 5.12834i 0.119633 0.164661i
\(971\) −25.6742 8.34206i −0.823925 0.267710i −0.133441 0.991057i \(-0.542603\pi\)
−0.690484 + 0.723347i \(0.742603\pi\)
\(972\) 0 0
\(973\) −41.1690 + 29.9110i −1.31982 + 0.958903i
\(974\) 6.55738 4.76422i 0.210112 0.152655i
\(975\) 0 0
\(976\) 23.9660 + 7.78701i 0.767132 + 0.249256i
\(977\) −23.2218 + 31.9621i −0.742931 + 1.02256i 0.255513 + 0.966806i \(0.417756\pi\)
−0.998445 + 0.0557519i \(0.982244\pi\)
\(978\) 0 0
\(979\) 44.1308 + 7.99358i 1.41043 + 0.255476i
\(980\) 33.7730i 1.07884i
\(981\) 0 0
\(982\) 6.22044 19.1445i 0.198502 0.610927i
\(983\) −31.7553 + 10.3179i −1.01284 + 0.329091i −0.767984 0.640469i \(-0.778740\pi\)
−0.244853 + 0.969560i \(0.578740\pi\)
\(984\) 0 0
\(985\) −15.6079 21.4824i −0.497309 0.684487i
\(986\) 0.370990 + 1.14179i 0.0118147 + 0.0363620i
\(987\) 0 0
\(988\) −2.38388 1.73199i −0.0758413 0.0551020i
\(989\) −2.05226 −0.0652582
\(990\) 0 0
\(991\) 0.780068 0.0247797 0.0123898 0.999923i \(-0.496056\pi\)
0.0123898 + 0.999923i \(0.496056\pi\)
\(992\) 8.00826 + 5.81834i 0.254263 + 0.184733i
\(993\) 0 0
\(994\) 11.0667 + 34.0597i 0.351014 + 1.08031i
\(995\) −10.8060 14.8732i −0.342573 0.471512i
\(996\) 0 0
\(997\) −41.7246 + 13.5571i −1.32143 + 0.429359i −0.882986 0.469399i \(-0.844471\pi\)
−0.438445 + 0.898758i \(0.644471\pi\)
\(998\) 4.99660 15.3779i 0.158164 0.486780i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.k.a.161.13 80
3.2 odd 2 inner 891.2.k.a.161.8 80
9.2 odd 6 99.2.p.a.95.5 yes 80
9.4 even 3 99.2.p.a.29.5 80
9.5 odd 6 297.2.t.a.62.6 80
9.7 even 3 297.2.t.a.260.6 80
11.8 odd 10 inner 891.2.k.a.404.8 80
33.8 even 10 inner 891.2.k.a.404.13 80
99.41 even 30 297.2.t.a.8.6 80
99.52 odd 30 297.2.t.a.206.6 80
99.74 even 30 99.2.p.a.41.5 yes 80
99.85 odd 30 99.2.p.a.74.5 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.p.a.29.5 80 9.4 even 3
99.2.p.a.41.5 yes 80 99.74 even 30
99.2.p.a.74.5 yes 80 99.85 odd 30
99.2.p.a.95.5 yes 80 9.2 odd 6
297.2.t.a.8.6 80 99.41 even 30
297.2.t.a.62.6 80 9.5 odd 6
297.2.t.a.206.6 80 99.52 odd 30
297.2.t.a.260.6 80 9.7 even 3
891.2.k.a.161.8 80 3.2 odd 2 inner
891.2.k.a.161.13 80 1.1 even 1 trivial
891.2.k.a.404.8 80 11.8 odd 10 inner
891.2.k.a.404.13 80 33.8 even 10 inner