Properties

Label 891.2.g.c.593.4
Level $891$
Weight $2$
Character 891.593
Analytic conductor $7.115$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(296,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.296");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.g (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 593.4
Root \(0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 891.593
Dual form 891.2.g.c.296.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 1.50000i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(1.22474 - 0.707107i) q^{5} +(-2.12132 - 1.22474i) q^{7} +1.73205 q^{8} -2.44949i q^{10} +(-3.31552 + 0.0857864i) q^{11} +(4.24264 - 2.44949i) q^{13} +(-3.67423 + 2.12132i) q^{14} +(2.50000 - 4.33013i) q^{16} -7.34847i q^{19} +(-1.22474 - 0.707107i) q^{20} +(-2.74264 + 5.04757i) q^{22} +(-2.44949 + 1.41421i) q^{23} +(-1.50000 + 2.59808i) q^{25} -8.48528i q^{26} +2.44949i q^{28} +(3.46410 - 6.00000i) q^{29} +(2.00000 + 3.46410i) q^{31} +(-2.59808 - 4.50000i) q^{32} -3.46410 q^{35} +8.00000 q^{37} +(-11.0227 - 6.36396i) q^{38} +(2.12132 - 1.22474i) q^{40} +(-3.46410 - 6.00000i) q^{41} +(-2.12132 - 1.22474i) q^{43} +(1.73205 + 2.82843i) q^{44} +4.89898i q^{46} +(2.44949 + 1.41421i) q^{47} +(-0.500000 - 0.866025i) q^{49} +(2.59808 + 4.50000i) q^{50} +(-4.24264 - 2.44949i) q^{52} +9.89949i q^{53} +(-4.00000 + 2.44949i) q^{55} +(-3.67423 - 2.12132i) q^{56} +(-6.00000 - 10.3923i) q^{58} +(-9.79796 + 5.65685i) q^{59} +(4.24264 + 2.44949i) q^{61} +6.92820 q^{62} +1.00000 q^{64} +(3.46410 - 6.00000i) q^{65} +(2.00000 + 3.46410i) q^{67} +(-3.00000 + 5.19615i) q^{70} -2.82843i q^{71} +(6.92820 - 12.0000i) q^{74} +(-6.36396 + 3.67423i) q^{76} +(7.13834 + 3.87868i) q^{77} +(10.6066 + 6.12372i) q^{79} -7.07107i q^{80} -12.0000 q^{82} +(-6.92820 + 12.0000i) q^{83} +(-3.67423 + 2.12132i) q^{86} +(-5.74264 + 0.148586i) q^{88} -7.07107i q^{89} -12.0000 q^{91} +(2.44949 + 1.41421i) q^{92} +(4.24264 - 2.44949i) q^{94} +(-5.19615 - 9.00000i) q^{95} +(5.00000 - 8.66025i) q^{97} -1.73205 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{4} + 20 q^{16} + 12 q^{22} - 12 q^{25} + 16 q^{31} + 64 q^{37} - 4 q^{49} - 32 q^{55} - 48 q^{58} + 8 q^{64} + 16 q^{67} - 24 q^{70} - 96 q^{82} - 12 q^{88} - 96 q^{91} + 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 1.50000i 0.612372 1.06066i −0.378467 0.925615i \(-0.623549\pi\)
0.990839 0.135045i \(-0.0431180\pi\)
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.22474 0.707107i 0.547723 0.316228i −0.200480 0.979698i \(-0.564250\pi\)
0.748203 + 0.663470i \(0.230917\pi\)
\(6\) 0 0
\(7\) −2.12132 1.22474i −0.801784 0.462910i 0.0423108 0.999104i \(-0.486528\pi\)
−0.844094 + 0.536194i \(0.819861\pi\)
\(8\) 1.73205 0.612372
\(9\) 0 0
\(10\) 2.44949i 0.774597i
\(11\) −3.31552 + 0.0857864i −0.999665 + 0.0258656i
\(12\) 0 0
\(13\) 4.24264 2.44949i 1.17670 0.679366i 0.221449 0.975172i \(-0.428921\pi\)
0.955248 + 0.295806i \(0.0955881\pi\)
\(14\) −3.67423 + 2.12132i −0.981981 + 0.566947i
\(15\) 0 0
\(16\) 2.50000 4.33013i 0.625000 1.08253i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 7.34847i 1.68585i −0.538028 0.842927i \(-0.680830\pi\)
0.538028 0.842927i \(-0.319170\pi\)
\(20\) −1.22474 0.707107i −0.273861 0.158114i
\(21\) 0 0
\(22\) −2.74264 + 5.04757i −0.584733 + 1.07614i
\(23\) −2.44949 + 1.41421i −0.510754 + 0.294884i −0.733144 0.680074i \(-0.761948\pi\)
0.222390 + 0.974958i \(0.428614\pi\)
\(24\) 0 0
\(25\) −1.50000 + 2.59808i −0.300000 + 0.519615i
\(26\) 8.48528i 1.66410i
\(27\) 0 0
\(28\) 2.44949i 0.462910i
\(29\) 3.46410 6.00000i 0.643268 1.11417i −0.341431 0.939907i \(-0.610912\pi\)
0.984699 0.174265i \(-0.0557550\pi\)
\(30\) 0 0
\(31\) 2.00000 + 3.46410i 0.359211 + 0.622171i 0.987829 0.155543i \(-0.0497126\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) −2.59808 4.50000i −0.459279 0.795495i
\(33\) 0 0
\(34\) 0 0
\(35\) −3.46410 −0.585540
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) −11.0227 6.36396i −1.78812 1.03237i
\(39\) 0 0
\(40\) 2.12132 1.22474i 0.335410 0.193649i
\(41\) −3.46410 6.00000i −0.541002 0.937043i −0.998847 0.0480106i \(-0.984712\pi\)
0.457845 0.889032i \(-0.348621\pi\)
\(42\) 0 0
\(43\) −2.12132 1.22474i −0.323498 0.186772i 0.329452 0.944172i \(-0.393136\pi\)
−0.652951 + 0.757400i \(0.726469\pi\)
\(44\) 1.73205 + 2.82843i 0.261116 + 0.426401i
\(45\) 0 0
\(46\) 4.89898i 0.722315i
\(47\) 2.44949 + 1.41421i 0.357295 + 0.206284i 0.667893 0.744257i \(-0.267196\pi\)
−0.310599 + 0.950541i \(0.600530\pi\)
\(48\) 0 0
\(49\) −0.500000 0.866025i −0.0714286 0.123718i
\(50\) 2.59808 + 4.50000i 0.367423 + 0.636396i
\(51\) 0 0
\(52\) −4.24264 2.44949i −0.588348 0.339683i
\(53\) 9.89949i 1.35980i 0.733305 + 0.679900i \(0.237977\pi\)
−0.733305 + 0.679900i \(0.762023\pi\)
\(54\) 0 0
\(55\) −4.00000 + 2.44949i −0.539360 + 0.330289i
\(56\) −3.67423 2.12132i −0.490990 0.283473i
\(57\) 0 0
\(58\) −6.00000 10.3923i −0.787839 1.36458i
\(59\) −9.79796 + 5.65685i −1.27559 + 0.736460i −0.976034 0.217620i \(-0.930171\pi\)
−0.299552 + 0.954080i \(0.596837\pi\)
\(60\) 0 0
\(61\) 4.24264 + 2.44949i 0.543214 + 0.313625i 0.746381 0.665519i \(-0.231790\pi\)
−0.203166 + 0.979144i \(0.565123\pi\)
\(62\) 6.92820 0.879883
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 3.46410 6.00000i 0.429669 0.744208i
\(66\) 0 0
\(67\) 2.00000 + 3.46410i 0.244339 + 0.423207i 0.961946 0.273241i \(-0.0880957\pi\)
−0.717607 + 0.696449i \(0.754762\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −3.00000 + 5.19615i −0.358569 + 0.621059i
\(71\) 2.82843i 0.335673i −0.985815 0.167836i \(-0.946322\pi\)
0.985815 0.167836i \(-0.0536780\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 6.92820 12.0000i 0.805387 1.39497i
\(75\) 0 0
\(76\) −6.36396 + 3.67423i −0.729996 + 0.421464i
\(77\) 7.13834 + 3.87868i 0.813489 + 0.442017i
\(78\) 0 0
\(79\) 10.6066 + 6.12372i 1.19334 + 0.688973i 0.959062 0.283198i \(-0.0913953\pi\)
0.234274 + 0.972171i \(0.424729\pi\)
\(80\) 7.07107i 0.790569i
\(81\) 0 0
\(82\) −12.0000 −1.32518
\(83\) −6.92820 + 12.0000i −0.760469 + 1.31717i 0.182140 + 0.983273i \(0.441698\pi\)
−0.942609 + 0.333899i \(0.891636\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −3.67423 + 2.12132i −0.396203 + 0.228748i
\(87\) 0 0
\(88\) −5.74264 + 0.148586i −0.612168 + 0.0158394i
\(89\) 7.07107i 0.749532i −0.927119 0.374766i \(-0.877723\pi\)
0.927119 0.374766i \(-0.122277\pi\)
\(90\) 0 0
\(91\) −12.0000 −1.25794
\(92\) 2.44949 + 1.41421i 0.255377 + 0.147442i
\(93\) 0 0
\(94\) 4.24264 2.44949i 0.437595 0.252646i
\(95\) −5.19615 9.00000i −0.533114 0.923381i
\(96\) 0 0
\(97\) 5.00000 8.66025i 0.507673 0.879316i −0.492287 0.870433i \(-0.663839\pi\)
0.999961 0.00888289i \(-0.00282755\pi\)
\(98\) −1.73205 −0.174964
\(99\) 0 0
\(100\) 3.00000 0.300000
\(101\) −6.92820 + 12.0000i −0.689382 + 1.19404i 0.282656 + 0.959221i \(0.408784\pi\)
−0.972038 + 0.234823i \(0.924549\pi\)
\(102\) 0 0
\(103\) 2.00000 + 3.46410i 0.197066 + 0.341328i 0.947576 0.319531i \(-0.103525\pi\)
−0.750510 + 0.660859i \(0.770192\pi\)
\(104\) 7.34847 4.24264i 0.720577 0.416025i
\(105\) 0 0
\(106\) 14.8492 + 8.57321i 1.44229 + 0.832704i
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 14.6969i 1.40771i 0.710343 + 0.703856i \(0.248540\pi\)
−0.710343 + 0.703856i \(0.751460\pi\)
\(110\) 0.210133 + 8.12132i 0.0200354 + 0.774338i
\(111\) 0 0
\(112\) −10.6066 + 6.12372i −1.00223 + 0.578638i
\(113\) 1.22474 0.707107i 0.115214 0.0665190i −0.441285 0.897367i \(-0.645477\pi\)
0.556500 + 0.830848i \(0.312144\pi\)
\(114\) 0 0
\(115\) −2.00000 + 3.46410i −0.186501 + 0.323029i
\(116\) −6.92820 −0.643268
\(117\) 0 0
\(118\) 19.5959i 1.80395i
\(119\) 0 0
\(120\) 0 0
\(121\) 10.9853 0.568852i 0.998662 0.0517139i
\(122\) 7.34847 4.24264i 0.665299 0.384111i
\(123\) 0 0
\(124\) 2.00000 3.46410i 0.179605 0.311086i
\(125\) 11.3137i 1.01193i
\(126\) 0 0
\(127\) 7.34847i 0.652071i −0.945357 0.326036i \(-0.894287\pi\)
0.945357 0.326036i \(-0.105713\pi\)
\(128\) 6.06218 10.5000i 0.535826 0.928078i
\(129\) 0 0
\(130\) −6.00000 10.3923i −0.526235 0.911465i
\(131\) 1.73205 + 3.00000i 0.151330 + 0.262111i 0.931717 0.363186i \(-0.118311\pi\)
−0.780387 + 0.625297i \(0.784978\pi\)
\(132\) 0 0
\(133\) −9.00000 + 15.5885i −0.780399 + 1.35169i
\(134\) 6.92820 0.598506
\(135\) 0 0
\(136\) 0 0
\(137\) 13.4722 + 7.77817i 1.15101 + 0.664534i 0.949132 0.314877i \(-0.101963\pi\)
0.201875 + 0.979411i \(0.435297\pi\)
\(138\) 0 0
\(139\) −2.12132 + 1.22474i −0.179928 + 0.103882i −0.587259 0.809399i \(-0.699793\pi\)
0.407331 + 0.913281i \(0.366460\pi\)
\(140\) 1.73205 + 3.00000i 0.146385 + 0.253546i
\(141\) 0 0
\(142\) −4.24264 2.44949i −0.356034 0.205557i
\(143\) −13.8564 + 8.48528i −1.15873 + 0.709575i
\(144\) 0 0
\(145\) 9.79796i 0.813676i
\(146\) 0 0
\(147\) 0 0
\(148\) −4.00000 6.92820i −0.328798 0.569495i
\(149\) 6.92820 + 12.0000i 0.567581 + 0.983078i 0.996804 + 0.0798802i \(0.0254538\pi\)
−0.429224 + 0.903198i \(0.641213\pi\)
\(150\) 0 0
\(151\) −2.12132 1.22474i −0.172631 0.0996683i 0.411195 0.911547i \(-0.365112\pi\)
−0.583826 + 0.811879i \(0.698445\pi\)
\(152\) 12.7279i 1.03237i
\(153\) 0 0
\(154\) 12.0000 7.34847i 0.966988 0.592157i
\(155\) 4.89898 + 2.82843i 0.393496 + 0.227185i
\(156\) 0 0
\(157\) −7.00000 12.1244i −0.558661 0.967629i −0.997609 0.0691164i \(-0.977982\pi\)
0.438948 0.898513i \(-0.355351\pi\)
\(158\) 18.3712 10.6066i 1.46153 0.843816i
\(159\) 0 0
\(160\) −6.36396 3.67423i −0.503115 0.290474i
\(161\) 6.92820 0.546019
\(162\) 0 0
\(163\) 8.00000 0.626608 0.313304 0.949653i \(-0.398564\pi\)
0.313304 + 0.949653i \(0.398564\pi\)
\(164\) −3.46410 + 6.00000i −0.270501 + 0.468521i
\(165\) 0 0
\(166\) 12.0000 + 20.7846i 0.931381 + 1.61320i
\(167\) 1.73205 + 3.00000i 0.134030 + 0.232147i 0.925227 0.379415i \(-0.123875\pi\)
−0.791196 + 0.611562i \(0.790541\pi\)
\(168\) 0 0
\(169\) 5.50000 9.52628i 0.423077 0.732791i
\(170\) 0 0
\(171\) 0 0
\(172\) 2.44949i 0.186772i
\(173\) 3.46410 6.00000i 0.263371 0.456172i −0.703765 0.710433i \(-0.748499\pi\)
0.967135 + 0.254262i \(0.0818324\pi\)
\(174\) 0 0
\(175\) 6.36396 3.67423i 0.481070 0.277746i
\(176\) −7.91732 + 14.5711i −0.596791 + 1.09834i
\(177\) 0 0
\(178\) −10.6066 6.12372i −0.794998 0.458993i
\(179\) 22.6274i 1.69125i 0.533775 + 0.845626i \(0.320773\pi\)
−0.533775 + 0.845626i \(0.679227\pi\)
\(180\) 0 0
\(181\) 8.00000 0.594635 0.297318 0.954779i \(-0.403908\pi\)
0.297318 + 0.954779i \(0.403908\pi\)
\(182\) −10.3923 + 18.0000i −0.770329 + 1.33425i
\(183\) 0 0
\(184\) −4.24264 + 2.44949i −0.312772 + 0.180579i
\(185\) 9.79796 5.65685i 0.720360 0.415900i
\(186\) 0 0
\(187\) 0 0
\(188\) 2.82843i 0.206284i
\(189\) 0 0
\(190\) −18.0000 −1.30586
\(191\) 2.44949 + 1.41421i 0.177239 + 0.102329i 0.585995 0.810315i \(-0.300704\pi\)
−0.408756 + 0.912644i \(0.634037\pi\)
\(192\) 0 0
\(193\) −8.48528 + 4.89898i −0.610784 + 0.352636i −0.773272 0.634074i \(-0.781381\pi\)
0.162488 + 0.986710i \(0.448048\pi\)
\(194\) −8.66025 15.0000i −0.621770 1.07694i
\(195\) 0 0
\(196\) −0.500000 + 0.866025i −0.0357143 + 0.0618590i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) −2.59808 + 4.50000i −0.183712 + 0.318198i
\(201\) 0 0
\(202\) 12.0000 + 20.7846i 0.844317 + 1.46240i
\(203\) −14.6969 + 8.48528i −1.03152 + 0.595550i
\(204\) 0 0
\(205\) −8.48528 4.89898i −0.592638 0.342160i
\(206\) 6.92820 0.482711
\(207\) 0 0
\(208\) 24.4949i 1.69842i
\(209\) 0.630399 + 24.3640i 0.0436056 + 1.68529i
\(210\) 0 0
\(211\) 10.6066 6.12372i 0.730189 0.421575i −0.0883026 0.996094i \(-0.528144\pi\)
0.818491 + 0.574519i \(0.194811\pi\)
\(212\) 8.57321 4.94975i 0.588811 0.339950i
\(213\) 0 0
\(214\) 0 0
\(215\) −3.46410 −0.236250
\(216\) 0 0
\(217\) 9.79796i 0.665129i
\(218\) 22.0454 + 12.7279i 1.49310 + 0.862044i
\(219\) 0 0
\(220\) 4.12132 + 2.23936i 0.277859 + 0.150977i
\(221\) 0 0
\(222\) 0 0
\(223\) 8.00000 13.8564i 0.535720 0.927894i −0.463409 0.886145i \(-0.653374\pi\)
0.999128 0.0417488i \(-0.0132929\pi\)
\(224\) 12.7279i 0.850420i
\(225\) 0 0
\(226\) 2.44949i 0.162938i
\(227\) 13.8564 24.0000i 0.919682 1.59294i 0.119784 0.992800i \(-0.461780\pi\)
0.799898 0.600136i \(-0.204887\pi\)
\(228\) 0 0
\(229\) 5.00000 + 8.66025i 0.330409 + 0.572286i 0.982592 0.185776i \(-0.0594799\pi\)
−0.652183 + 0.758062i \(0.726147\pi\)
\(230\) 3.46410 + 6.00000i 0.228416 + 0.395628i
\(231\) 0 0
\(232\) 6.00000 10.3923i 0.393919 0.682288i
\(233\) −20.7846 −1.36165 −0.680823 0.732448i \(-0.738378\pi\)
−0.680823 + 0.732448i \(0.738378\pi\)
\(234\) 0 0
\(235\) 4.00000 0.260931
\(236\) 9.79796 + 5.65685i 0.637793 + 0.368230i
\(237\) 0 0
\(238\) 0 0
\(239\) −8.66025 15.0000i −0.560185 0.970269i −0.997480 0.0709510i \(-0.977397\pi\)
0.437295 0.899318i \(-0.355937\pi\)
\(240\) 0 0
\(241\) 16.9706 + 9.79796i 1.09317 + 0.631142i 0.934419 0.356177i \(-0.115920\pi\)
0.158751 + 0.987319i \(0.449253\pi\)
\(242\) 8.66025 16.9706i 0.556702 1.09091i
\(243\) 0 0
\(244\) 4.89898i 0.313625i
\(245\) −1.22474 0.707107i −0.0782461 0.0451754i
\(246\) 0 0
\(247\) −18.0000 31.1769i −1.14531 1.98374i
\(248\) 3.46410 + 6.00000i 0.219971 + 0.381000i
\(249\) 0 0
\(250\) 16.9706 + 9.79796i 1.07331 + 0.619677i
\(251\) 5.65685i 0.357057i 0.983935 + 0.178529i \(0.0571337\pi\)
−0.983935 + 0.178529i \(0.942866\pi\)
\(252\) 0 0
\(253\) 8.00000 4.89898i 0.502956 0.307996i
\(254\) −11.0227 6.36396i −0.691626 0.399310i
\(255\) 0 0
\(256\) −9.50000 16.4545i −0.593750 1.02841i
\(257\) 8.57321 4.94975i 0.534782 0.308757i −0.208179 0.978091i \(-0.566754\pi\)
0.742962 + 0.669334i \(0.233420\pi\)
\(258\) 0 0
\(259\) −16.9706 9.79796i −1.05450 0.608816i
\(260\) −6.92820 −0.429669
\(261\) 0 0
\(262\) 6.00000 0.370681
\(263\) −1.73205 + 3.00000i −0.106803 + 0.184988i −0.914473 0.404646i \(-0.867395\pi\)
0.807671 + 0.589634i \(0.200728\pi\)
\(264\) 0 0
\(265\) 7.00000 + 12.1244i 0.430007 + 0.744793i
\(266\) 15.5885 + 27.0000i 0.955790 + 1.65548i
\(267\) 0 0
\(268\) 2.00000 3.46410i 0.122169 0.211604i
\(269\) 15.5563i 0.948487i −0.880394 0.474244i \(-0.842722\pi\)
0.880394 0.474244i \(-0.157278\pi\)
\(270\) 0 0
\(271\) 7.34847i 0.446388i 0.974774 + 0.223194i \(0.0716483\pi\)
−0.974774 + 0.223194i \(0.928352\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 23.3345 13.4722i 1.40969 0.813885i
\(275\) 4.75039 8.74264i 0.286459 0.527201i
\(276\) 0 0
\(277\) −21.2132 12.2474i −1.27458 0.735878i −0.298732 0.954337i \(-0.596564\pi\)
−0.975846 + 0.218459i \(0.929897\pi\)
\(278\) 4.24264i 0.254457i
\(279\) 0 0
\(280\) −6.00000 −0.358569
\(281\) −6.92820 + 12.0000i −0.413302 + 0.715860i −0.995249 0.0973670i \(-0.968958\pi\)
0.581947 + 0.813227i \(0.302291\pi\)
\(282\) 0 0
\(283\) −2.12132 + 1.22474i −0.126099 + 0.0728035i −0.561723 0.827325i \(-0.689861\pi\)
0.435623 + 0.900129i \(0.356528\pi\)
\(284\) −2.44949 + 1.41421i −0.145350 + 0.0839181i
\(285\) 0 0
\(286\) 0.727922 + 28.1331i 0.0430429 + 1.66354i
\(287\) 16.9706i 1.00174i
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) −14.6969 8.48528i −0.863034 0.498273i
\(291\) 0 0
\(292\) 0 0
\(293\) −3.46410 6.00000i −0.202375 0.350524i 0.746918 0.664916i \(-0.231533\pi\)
−0.949293 + 0.314392i \(0.898199\pi\)
\(294\) 0 0
\(295\) −8.00000 + 13.8564i −0.465778 + 0.806751i
\(296\) 13.8564 0.805387
\(297\) 0 0
\(298\) 24.0000 1.39028
\(299\) −6.92820 + 12.0000i −0.400668 + 0.693978i
\(300\) 0 0
\(301\) 3.00000 + 5.19615i 0.172917 + 0.299501i
\(302\) −3.67423 + 2.12132i −0.211428 + 0.122068i
\(303\) 0 0
\(304\) −31.8198 18.3712i −1.82499 1.05366i
\(305\) 6.92820 0.396708
\(306\) 0 0
\(307\) 7.34847i 0.419399i −0.977766 0.209700i \(-0.932751\pi\)
0.977766 0.209700i \(-0.0672486\pi\)
\(308\) −0.210133 8.12132i −0.0119734 0.462755i
\(309\) 0 0
\(310\) 8.48528 4.89898i 0.481932 0.278243i
\(311\) 12.2474 7.07107i 0.694489 0.400963i −0.110802 0.993842i \(-0.535342\pi\)
0.805292 + 0.592879i \(0.202009\pi\)
\(312\) 0 0
\(313\) 8.00000 13.8564i 0.452187 0.783210i −0.546335 0.837567i \(-0.683977\pi\)
0.998522 + 0.0543564i \(0.0173107\pi\)
\(314\) −24.2487 −1.36843
\(315\) 0 0
\(316\) 12.2474i 0.688973i
\(317\) −15.9217 9.19239i −0.894251 0.516296i −0.0189203 0.999821i \(-0.506023\pi\)
−0.875331 + 0.483525i \(0.839356\pi\)
\(318\) 0 0
\(319\) −10.9706 + 20.1903i −0.614234 + 1.13044i
\(320\) 1.22474 0.707107i 0.0684653 0.0395285i
\(321\) 0 0
\(322\) 6.00000 10.3923i 0.334367 0.579141i
\(323\) 0 0
\(324\) 0 0
\(325\) 14.6969i 0.815239i
\(326\) 6.92820 12.0000i 0.383718 0.664619i
\(327\) 0 0
\(328\) −6.00000 10.3923i −0.331295 0.573819i
\(329\) −3.46410 6.00000i −0.190982 0.330791i
\(330\) 0 0
\(331\) −4.00000 + 6.92820i −0.219860 + 0.380808i −0.954765 0.297361i \(-0.903893\pi\)
0.734905 + 0.678170i \(0.237227\pi\)
\(332\) 13.8564 0.760469
\(333\) 0 0
\(334\) 6.00000 0.328305
\(335\) 4.89898 + 2.82843i 0.267660 + 0.154533i
\(336\) 0 0
\(337\) −8.48528 + 4.89898i −0.462223 + 0.266864i −0.712978 0.701186i \(-0.752654\pi\)
0.250756 + 0.968050i \(0.419321\pi\)
\(338\) −9.52628 16.5000i −0.518161 0.897482i
\(339\) 0 0
\(340\) 0 0
\(341\) −6.92820 11.3137i −0.375183 0.612672i
\(342\) 0 0
\(343\) 19.5959i 1.05808i
\(344\) −3.67423 2.12132i −0.198101 0.114374i
\(345\) 0 0
\(346\) −6.00000 10.3923i −0.322562 0.558694i
\(347\) 6.92820 + 12.0000i 0.371925 + 0.644194i 0.989862 0.142034i \(-0.0453644\pi\)
−0.617936 + 0.786228i \(0.712031\pi\)
\(348\) 0 0
\(349\) 4.24264 + 2.44949i 0.227103 + 0.131118i 0.609235 0.792990i \(-0.291477\pi\)
−0.382132 + 0.924108i \(0.624810\pi\)
\(350\) 12.7279i 0.680336i
\(351\) 0 0
\(352\) 9.00000 + 14.6969i 0.479702 + 0.783349i
\(353\) 28.1691 + 16.2635i 1.49929 + 0.865616i 1.00000 0.000817391i \(-0.000260184\pi\)
0.499292 + 0.866434i \(0.333594\pi\)
\(354\) 0 0
\(355\) −2.00000 3.46410i −0.106149 0.183855i
\(356\) −6.12372 + 3.53553i −0.324557 + 0.187383i
\(357\) 0 0
\(358\) 33.9411 + 19.5959i 1.79384 + 1.03568i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −35.0000 −1.84211
\(362\) 6.92820 12.0000i 0.364138 0.630706i
\(363\) 0 0
\(364\) 6.00000 + 10.3923i 0.314485 + 0.544705i
\(365\) 0 0
\(366\) 0 0
\(367\) −4.00000 + 6.92820i −0.208798 + 0.361649i −0.951336 0.308155i \(-0.900289\pi\)
0.742538 + 0.669804i \(0.233622\pi\)
\(368\) 14.1421i 0.737210i
\(369\) 0 0
\(370\) 19.5959i 1.01874i
\(371\) 12.1244 21.0000i 0.629465 1.09027i
\(372\) 0 0
\(373\) −21.2132 + 12.2474i −1.09838 + 0.634149i −0.935795 0.352546i \(-0.885316\pi\)
−0.162584 + 0.986695i \(0.551983\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 4.24264 + 2.44949i 0.218797 + 0.126323i
\(377\) 33.9411i 1.74806i
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) −5.19615 + 9.00000i −0.266557 + 0.461690i
\(381\) 0 0
\(382\) 4.24264 2.44949i 0.217072 0.125327i
\(383\) −31.8434 + 18.3848i −1.62712 + 0.939418i −0.642173 + 0.766559i \(0.721967\pi\)
−0.984947 + 0.172859i \(0.944700\pi\)
\(384\) 0 0
\(385\) 11.4853 0.297173i 0.585344 0.0151453i
\(386\) 16.9706i 0.863779i
\(387\) 0 0
\(388\) −10.0000 −0.507673
\(389\) −8.57321 4.94975i −0.434679 0.250962i 0.266659 0.963791i \(-0.414080\pi\)
−0.701338 + 0.712829i \(0.747414\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.866025 1.50000i −0.0437409 0.0757614i
\(393\) 0 0
\(394\) 0 0
\(395\) 17.3205 0.871489
\(396\) 0 0
\(397\) 8.00000 0.401508 0.200754 0.979642i \(-0.435661\pi\)
0.200754 + 0.979642i \(0.435661\pi\)
\(398\) 6.92820 12.0000i 0.347279 0.601506i
\(399\) 0 0
\(400\) 7.50000 + 12.9904i 0.375000 + 0.649519i
\(401\) 1.22474 0.707107i 0.0611608 0.0353112i −0.469108 0.883141i \(-0.655424\pi\)
0.530269 + 0.847830i \(0.322091\pi\)
\(402\) 0 0
\(403\) 16.9706 + 9.79796i 0.845364 + 0.488071i
\(404\) 13.8564 0.689382
\(405\) 0 0
\(406\) 29.3939i 1.45879i
\(407\) −26.5241 + 0.686292i −1.31475 + 0.0340182i
\(408\) 0 0
\(409\) −33.9411 + 19.5959i −1.67828 + 0.968956i −0.715523 + 0.698589i \(0.753812\pi\)
−0.962757 + 0.270367i \(0.912855\pi\)
\(410\) −14.6969 + 8.48528i −0.725830 + 0.419058i
\(411\) 0 0
\(412\) 2.00000 3.46410i 0.0985329 0.170664i
\(413\) 27.7128 1.36366
\(414\) 0 0
\(415\) 19.5959i 0.961926i
\(416\) −22.0454 12.7279i −1.08087 0.624038i
\(417\) 0 0
\(418\) 37.0919 + 20.1542i 1.81422 + 0.985775i
\(419\) −9.79796 + 5.65685i −0.478662 + 0.276355i −0.719859 0.694121i \(-0.755793\pi\)
0.241197 + 0.970476i \(0.422460\pi\)
\(420\) 0 0
\(421\) −4.00000 + 6.92820i −0.194948 + 0.337660i −0.946883 0.321577i \(-0.895787\pi\)
0.751935 + 0.659237i \(0.229121\pi\)
\(422\) 21.2132i 1.03264i
\(423\) 0 0
\(424\) 17.1464i 0.832704i
\(425\) 0 0
\(426\) 0 0
\(427\) −6.00000 10.3923i −0.290360 0.502919i
\(428\) 0 0
\(429\) 0 0
\(430\) −3.00000 + 5.19615i −0.144673 + 0.250581i
\(431\) −10.3923 −0.500580 −0.250290 0.968171i \(-0.580526\pi\)
−0.250290 + 0.968171i \(0.580526\pi\)
\(432\) 0 0
\(433\) −16.0000 −0.768911 −0.384455 0.923144i \(-0.625611\pi\)
−0.384455 + 0.923144i \(0.625611\pi\)
\(434\) −14.6969 8.48528i −0.705476 0.407307i
\(435\) 0 0
\(436\) 12.7279 7.34847i 0.609557 0.351928i
\(437\) 10.3923 + 18.0000i 0.497131 + 0.861057i
\(438\) 0 0
\(439\) −2.12132 1.22474i −0.101245 0.0584539i 0.448523 0.893772i \(-0.351950\pi\)
−0.549768 + 0.835318i \(0.685284\pi\)
\(440\) −6.92820 + 4.24264i −0.330289 + 0.202260i
\(441\) 0 0
\(442\) 0 0
\(443\) −19.5959 11.3137i −0.931030 0.537531i −0.0438929 0.999036i \(-0.513976\pi\)
−0.887137 + 0.461506i \(0.847309\pi\)
\(444\) 0 0
\(445\) −5.00000 8.66025i −0.237023 0.410535i
\(446\) −13.8564 24.0000i −0.656120 1.13643i
\(447\) 0 0
\(448\) −2.12132 1.22474i −0.100223 0.0578638i
\(449\) 9.89949i 0.467186i 0.972334 + 0.233593i \(0.0750483\pi\)
−0.972334 + 0.233593i \(0.924952\pi\)
\(450\) 0 0
\(451\) 12.0000 + 19.5959i 0.565058 + 0.922736i
\(452\) −1.22474 0.707107i −0.0576072 0.0332595i
\(453\) 0 0
\(454\) −24.0000 41.5692i −1.12638 1.95094i
\(455\) −14.6969 + 8.48528i −0.689003 + 0.397796i
\(456\) 0 0
\(457\) −8.48528 4.89898i −0.396925 0.229165i 0.288231 0.957561i \(-0.406933\pi\)
−0.685156 + 0.728396i \(0.740266\pi\)
\(458\) 17.3205 0.809334
\(459\) 0 0
\(460\) 4.00000 0.186501
\(461\) 3.46410 6.00000i 0.161339 0.279448i −0.774010 0.633173i \(-0.781752\pi\)
0.935349 + 0.353726i \(0.115085\pi\)
\(462\) 0 0
\(463\) 14.0000 + 24.2487i 0.650635 + 1.12693i 0.982969 + 0.183771i \(0.0588306\pi\)
−0.332334 + 0.943162i \(0.607836\pi\)
\(464\) −17.3205 30.0000i −0.804084 1.39272i
\(465\) 0 0
\(466\) −18.0000 + 31.1769i −0.833834 + 1.44424i
\(467\) 22.6274i 1.04707i 0.852004 + 0.523536i \(0.175387\pi\)
−0.852004 + 0.523536i \(0.824613\pi\)
\(468\) 0 0
\(469\) 9.79796i 0.452428i
\(470\) 3.46410 6.00000i 0.159787 0.276759i
\(471\) 0 0
\(472\) −16.9706 + 9.79796i −0.781133 + 0.450988i
\(473\) 7.13834 + 3.87868i 0.328221 + 0.178342i
\(474\) 0 0
\(475\) 19.0919 + 11.0227i 0.875996 + 0.505756i
\(476\) 0 0
\(477\) 0 0
\(478\) −30.0000 −1.37217
\(479\) 19.0526 33.0000i 0.870534 1.50781i 0.00908799 0.999959i \(-0.497107\pi\)
0.861446 0.507850i \(-0.169560\pi\)
\(480\) 0 0
\(481\) 33.9411 19.5959i 1.54758 0.893497i
\(482\) 29.3939 16.9706i 1.33885 0.772988i
\(483\) 0 0
\(484\) −5.98528 9.22911i −0.272058 0.419505i
\(485\) 14.1421i 0.642161i
\(486\) 0 0
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) 7.34847 + 4.24264i 0.332650 + 0.192055i
\(489\) 0 0
\(490\) −2.12132 + 1.22474i −0.0958315 + 0.0553283i
\(491\) −13.8564 24.0000i −0.625331 1.08310i −0.988477 0.151373i \(-0.951631\pi\)
0.363146 0.931732i \(-0.381703\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −62.3538 −2.80543
\(495\) 0 0
\(496\) 20.0000 0.898027
\(497\) −3.46410 + 6.00000i −0.155386 + 0.269137i
\(498\) 0 0
\(499\) −16.0000 27.7128i −0.716258 1.24060i −0.962472 0.271380i \(-0.912520\pi\)
0.246214 0.969216i \(-0.420813\pi\)
\(500\) 9.79796 5.65685i 0.438178 0.252982i
\(501\) 0 0
\(502\) 8.48528 + 4.89898i 0.378717 + 0.218652i
\(503\) −31.1769 −1.39011 −0.695055 0.718957i \(-0.744620\pi\)
−0.695055 + 0.718957i \(0.744620\pi\)
\(504\) 0 0
\(505\) 19.5959i 0.872007i
\(506\) −0.420266 16.2426i −0.0186831 0.722073i
\(507\) 0 0
\(508\) −6.36396 + 3.67423i −0.282355 + 0.163018i
\(509\) −13.4722 + 7.77817i −0.597144 + 0.344762i −0.767917 0.640549i \(-0.778707\pi\)
0.170773 + 0.985310i \(0.445374\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −8.66025 −0.382733
\(513\) 0 0
\(514\) 17.1464i 0.756297i
\(515\) 4.89898 + 2.82843i 0.215875 + 0.124635i
\(516\) 0 0
\(517\) −8.24264 4.47871i −0.362511 0.196974i
\(518\) −29.3939 + 16.9706i −1.29149 + 0.745644i
\(519\) 0 0
\(520\) 6.00000 10.3923i 0.263117 0.455733i
\(521\) 15.5563i 0.681536i −0.940147 0.340768i \(-0.889313\pi\)
0.940147 0.340768i \(-0.110687\pi\)
\(522\) 0 0
\(523\) 22.0454i 0.963978i −0.876177 0.481989i \(-0.839914\pi\)
0.876177 0.481989i \(-0.160086\pi\)
\(524\) 1.73205 3.00000i 0.0756650 0.131056i
\(525\) 0 0
\(526\) 3.00000 + 5.19615i 0.130806 + 0.226563i
\(527\) 0 0
\(528\) 0 0
\(529\) −7.50000 + 12.9904i −0.326087 + 0.564799i
\(530\) 24.2487 1.05330
\(531\) 0 0
\(532\) 18.0000 0.780399
\(533\) −29.3939 16.9706i −1.27319 0.735077i
\(534\) 0 0
\(535\) 0 0
\(536\) 3.46410 + 6.00000i 0.149626 + 0.259161i
\(537\) 0 0
\(538\) −23.3345 13.4722i −1.00602 0.580828i
\(539\) 1.73205 + 2.82843i 0.0746047 + 0.121829i
\(540\) 0 0
\(541\) 14.6969i 0.631871i −0.948781 0.315935i \(-0.897682\pi\)
0.948781 0.315935i \(-0.102318\pi\)
\(542\) 11.0227 + 6.36396i 0.473466 + 0.273356i
\(543\) 0 0
\(544\) 0 0
\(545\) 10.3923 + 18.0000i 0.445157 + 0.771035i
\(546\) 0 0
\(547\) −27.5772 15.9217i −1.17911 0.680762i −0.223305 0.974749i \(-0.571685\pi\)
−0.955810 + 0.293987i \(0.905018\pi\)
\(548\) 15.5563i 0.664534i
\(549\) 0 0
\(550\) −9.00000 14.6969i −0.383761 0.626680i
\(551\) −44.0908 25.4558i −1.87833 1.08446i
\(552\) 0 0
\(553\) −15.0000 25.9808i −0.637865 1.10481i
\(554\) −36.7423 + 21.2132i −1.56103 + 0.901263i
\(555\) 0 0
\(556\) 2.12132 + 1.22474i 0.0899640 + 0.0519408i
\(557\) 20.7846 0.880672 0.440336 0.897833i \(-0.354859\pi\)
0.440336 + 0.897833i \(0.354859\pi\)
\(558\) 0 0
\(559\) −12.0000 −0.507546
\(560\) −8.66025 + 15.0000i −0.365963 + 0.633866i
\(561\) 0 0
\(562\) 12.0000 + 20.7846i 0.506189 + 0.876746i
\(563\) −8.66025 15.0000i −0.364986 0.632175i 0.623788 0.781594i \(-0.285593\pi\)
−0.988774 + 0.149419i \(0.952260\pi\)
\(564\) 0 0
\(565\) 1.00000 1.73205i 0.0420703 0.0728679i
\(566\) 4.24264i 0.178331i
\(567\) 0 0
\(568\) 4.89898i 0.205557i
\(569\) −6.92820 + 12.0000i −0.290445 + 0.503066i −0.973915 0.226913i \(-0.927137\pi\)
0.683470 + 0.729979i \(0.260470\pi\)
\(570\) 0 0
\(571\) −2.12132 + 1.22474i −0.0887745 + 0.0512540i −0.543730 0.839260i \(-0.682988\pi\)
0.454956 + 0.890514i \(0.349655\pi\)
\(572\) 14.2767 + 7.75736i 0.596938 + 0.324351i
\(573\) 0 0
\(574\) 25.4558 + 14.6969i 1.06251 + 0.613438i
\(575\) 8.48528i 0.353861i
\(576\) 0 0
\(577\) −10.0000 −0.416305 −0.208153 0.978096i \(-0.566745\pi\)
−0.208153 + 0.978096i \(0.566745\pi\)
\(578\) −14.7224 + 25.5000i −0.612372 + 1.06066i
\(579\) 0 0
\(580\) −8.48528 + 4.89898i −0.352332 + 0.203419i
\(581\) 29.3939 16.9706i 1.21946 0.704058i
\(582\) 0 0
\(583\) −0.849242 32.8219i −0.0351720 1.35935i
\(584\) 0 0
\(585\) 0 0
\(586\) −12.0000 −0.495715
\(587\) 24.4949 + 14.1421i 1.01101 + 0.583708i 0.911488 0.411327i \(-0.134934\pi\)
0.0995246 + 0.995035i \(0.468268\pi\)
\(588\) 0 0
\(589\) 25.4558 14.6969i 1.04889 0.605577i
\(590\) 13.8564 + 24.0000i 0.570459 + 0.988064i
\(591\) 0 0
\(592\) 20.0000 34.6410i 0.821995 1.42374i
\(593\) 41.5692 1.70704 0.853522 0.521057i \(-0.174462\pi\)
0.853522 + 0.521057i \(0.174462\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.92820 12.0000i 0.283790 0.491539i
\(597\) 0 0
\(598\) 12.0000 + 20.7846i 0.490716 + 0.849946i
\(599\) −2.44949 + 1.41421i −0.100083 + 0.0577832i −0.549206 0.835687i \(-0.685070\pi\)
0.449123 + 0.893470i \(0.351737\pi\)
\(600\) 0 0
\(601\) 16.9706 + 9.79796i 0.692244 + 0.399667i 0.804452 0.594018i \(-0.202459\pi\)
−0.112208 + 0.993685i \(0.535792\pi\)
\(602\) 10.3923 0.423559
\(603\) 0 0
\(604\) 2.44949i 0.0996683i
\(605\) 13.0519 8.46447i 0.530636 0.344129i
\(606\) 0 0
\(607\) 10.6066 6.12372i 0.430509 0.248554i −0.269055 0.963125i \(-0.586711\pi\)
0.699563 + 0.714571i \(0.253378\pi\)
\(608\) −33.0681 + 19.0919i −1.34109 + 0.774278i
\(609\) 0 0
\(610\) 6.00000 10.3923i 0.242933 0.420772i
\(611\) 13.8564 0.560570
\(612\) 0 0
\(613\) 14.6969i 0.593604i 0.954939 + 0.296802i \(0.0959201\pi\)
−0.954939 + 0.296802i \(0.904080\pi\)
\(614\) −11.0227 6.36396i −0.444840 0.256829i
\(615\) 0 0
\(616\) 12.3640 + 6.71807i 0.498158 + 0.270679i
\(617\) 23.2702 13.4350i 0.936821 0.540874i 0.0478587 0.998854i \(-0.484760\pi\)
0.888962 + 0.457980i \(0.151427\pi\)
\(618\) 0 0
\(619\) 14.0000 24.2487i 0.562708 0.974638i −0.434551 0.900647i \(-0.643093\pi\)
0.997259 0.0739910i \(-0.0235736\pi\)
\(620\) 5.65685i 0.227185i
\(621\) 0 0
\(622\) 24.4949i 0.982156i
\(623\) −8.66025 + 15.0000i −0.346966 + 0.600962i
\(624\) 0 0
\(625\) 0.500000 + 0.866025i 0.0200000 + 0.0346410i
\(626\) −13.8564 24.0000i −0.553813 0.959233i
\(627\) 0 0
\(628\) −7.00000 + 12.1244i −0.279330 + 0.483814i
\(629\) 0 0
\(630\) 0 0
\(631\) 44.0000 1.75161 0.875806 0.482663i \(-0.160330\pi\)
0.875806 + 0.482663i \(0.160330\pi\)
\(632\) 18.3712 + 10.6066i 0.730766 + 0.421908i
\(633\) 0 0
\(634\) −27.5772 + 15.9217i −1.09523 + 0.632331i
\(635\) −5.19615 9.00000i −0.206203 0.357154i
\(636\) 0 0
\(637\) −4.24264 2.44949i −0.168100 0.0970523i
\(638\) 20.7846 + 33.9411i 0.822871 + 1.34374i
\(639\) 0 0
\(640\) 17.1464i 0.677772i
\(641\) 28.1691 + 16.2635i 1.11261 + 0.642368i 0.939505 0.342535i \(-0.111285\pi\)
0.173109 + 0.984903i \(0.444619\pi\)
\(642\) 0 0
\(643\) 14.0000 + 24.2487i 0.552106 + 0.956276i 0.998122 + 0.0612510i \(0.0195090\pi\)
−0.446016 + 0.895025i \(0.647158\pi\)
\(644\) −3.46410 6.00000i −0.136505 0.236433i
\(645\) 0 0
\(646\) 0 0
\(647\) 19.7990i 0.778379i −0.921158 0.389189i \(-0.872755\pi\)
0.921158 0.389189i \(-0.127245\pi\)
\(648\) 0 0
\(649\) 32.0000 19.5959i 1.25611 0.769207i
\(650\) 22.0454 + 12.7279i 0.864692 + 0.499230i
\(651\) 0 0
\(652\) −4.00000 6.92820i −0.156652 0.271329i
\(653\) 23.2702 13.4350i 0.910631 0.525753i 0.0299972 0.999550i \(-0.490450\pi\)
0.880634 + 0.473797i \(0.157117\pi\)
\(654\) 0 0
\(655\) 4.24264 + 2.44949i 0.165774 + 0.0957095i
\(656\) −34.6410 −1.35250
\(657\) 0 0
\(658\) −12.0000 −0.467809
\(659\) 19.0526 33.0000i 0.742182 1.28550i −0.209317 0.977848i \(-0.567124\pi\)
0.951500 0.307650i \(-0.0995425\pi\)
\(660\) 0 0
\(661\) 11.0000 + 19.0526i 0.427850 + 0.741059i 0.996682 0.0813955i \(-0.0259377\pi\)
−0.568831 + 0.822454i \(0.692604\pi\)
\(662\) 6.92820 + 12.0000i 0.269272 + 0.466393i
\(663\) 0 0
\(664\) −12.0000 + 20.7846i −0.465690 + 0.806599i
\(665\) 25.4558i 0.987135i
\(666\) 0 0
\(667\) 19.5959i 0.758757i
\(668\) 1.73205 3.00000i 0.0670151 0.116073i
\(669\) 0 0
\(670\) 8.48528 4.89898i 0.327815 0.189264i
\(671\) −14.2767 7.75736i −0.551145 0.299470i
\(672\) 0 0
\(673\) −33.9411 19.5959i −1.30833 0.755367i −0.326516 0.945192i \(-0.605875\pi\)
−0.981818 + 0.189824i \(0.939208\pi\)
\(674\) 16.9706i 0.653682i
\(675\) 0 0
\(676\) −11.0000 −0.423077
\(677\) 13.8564 24.0000i 0.532545 0.922395i −0.466733 0.884398i \(-0.654569\pi\)
0.999278 0.0379966i \(-0.0120976\pi\)
\(678\) 0 0
\(679\) −21.2132 + 12.2474i −0.814088 + 0.470014i
\(680\) 0 0
\(681\) 0 0
\(682\) −22.9706 + 0.594346i −0.879588 + 0.0227587i
\(683\) 28.2843i 1.08227i −0.840937 0.541134i \(-0.817995\pi\)
0.840937 0.541134i \(-0.182005\pi\)
\(684\) 0 0
\(685\) 22.0000 0.840577
\(686\) 29.3939 + 16.9706i 1.12226 + 0.647939i
\(687\) 0 0
\(688\) −10.6066 + 6.12372i −0.404373 + 0.233465i
\(689\) 24.2487 + 42.0000i 0.923802 + 1.60007i
\(690\) 0 0
\(691\) −22.0000 + 38.1051i −0.836919 + 1.44959i 0.0555386 + 0.998457i \(0.482312\pi\)
−0.892458 + 0.451130i \(0.851021\pi\)
\(692\) −6.92820 −0.263371
\(693\) 0 0
\(694\) 24.0000 0.911028
\(695\) −1.73205 + 3.00000i −0.0657004 + 0.113796i
\(696\) 0 0
\(697\) 0 0
\(698\) 7.34847 4.24264i 0.278144 0.160586i
\(699\) 0 0
\(700\) −6.36396 3.67423i −0.240535 0.138873i
\(701\) −20.7846 −0.785024 −0.392512 0.919747i \(-0.628394\pi\)
−0.392512 + 0.919747i \(0.628394\pi\)
\(702\) 0 0
\(703\) 58.7878i 2.21722i
\(704\) −3.31552 + 0.0857864i −0.124958 + 0.00323320i
\(705\) 0 0
\(706\) 48.7904 28.1691i 1.83625 1.06016i
\(707\) 29.3939 16.9706i 1.10547 0.638244i
\(708\) 0 0
\(709\) 5.00000 8.66025i 0.187779 0.325243i −0.756730 0.653727i \(-0.773204\pi\)
0.944509 + 0.328484i \(0.106538\pi\)
\(710\) −6.92820 −0.260011
\(711\) 0 0
\(712\) 12.2474i 0.458993i
\(713\) −9.79796 5.65685i −0.366936 0.211851i
\(714\) 0 0
\(715\) −10.9706 + 20.1903i −0.410276 + 0.755073i
\(716\) 19.5959 11.3137i 0.732334 0.422813i
\(717\) 0 0
\(718\) 0 0
\(719\) 2.82843i 0.105483i −0.998608 0.0527413i \(-0.983204\pi\)
0.998608 0.0527413i \(-0.0167959\pi\)
\(720\) 0 0
\(721\) 9.79796i 0.364895i
\(722\) −30.3109 + 52.5000i −1.12805 + 1.95385i
\(723\) 0 0
\(724\) −4.00000 6.92820i −0.148659 0.257485i
\(725\) 10.3923 + 18.0000i 0.385961 + 0.668503i
\(726\) 0 0
\(727\) −4.00000 + 6.92820i −0.148352 + 0.256953i −0.930618 0.365991i \(-0.880730\pi\)
0.782267 + 0.622944i \(0.214063\pi\)
\(728\) −20.7846 −0.770329
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 29.6985 17.1464i 1.09694 0.633318i 0.161523 0.986869i \(-0.448359\pi\)
0.935415 + 0.353551i \(0.115026\pi\)
\(734\) 6.92820 + 12.0000i 0.255725 + 0.442928i
\(735\) 0 0
\(736\) 12.7279 + 7.34847i 0.469157 + 0.270868i
\(737\) −6.92820 11.3137i −0.255204 0.416746i
\(738\) 0 0
\(739\) 7.34847i 0.270318i 0.990824 + 0.135159i \(0.0431545\pi\)
−0.990824 + 0.135159i \(0.956846\pi\)
\(740\) −9.79796 5.65685i −0.360180 0.207950i
\(741\) 0 0
\(742\) −21.0000 36.3731i −0.770934 1.33530i
\(743\) −13.8564 24.0000i −0.508342 0.880475i −0.999953 0.00965974i \(-0.996925\pi\)
0.491611 0.870815i \(-0.336408\pi\)
\(744\) 0 0
\(745\) 16.9706 + 9.79796i 0.621753 + 0.358969i
\(746\) 42.4264i 1.55334i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 2.00000 + 3.46410i 0.0729810 + 0.126407i 0.900207 0.435463i \(-0.143415\pi\)
−0.827225 + 0.561870i \(0.810082\pi\)
\(752\) 12.2474 7.07107i 0.446619 0.257855i
\(753\) 0 0
\(754\) −50.9117 29.3939i −1.85409 1.07046i
\(755\) −3.46410 −0.126072
\(756\) 0 0
\(757\) 8.00000 0.290765 0.145382 0.989376i \(-0.453559\pi\)
0.145382 + 0.989376i \(0.453559\pi\)
\(758\) −13.8564 + 24.0000i −0.503287 + 0.871719i
\(759\) 0 0
\(760\) −9.00000 15.5885i −0.326464 0.565453i
\(761\) 6.92820 + 12.0000i 0.251147 + 0.435000i 0.963842 0.266475i \(-0.0858589\pi\)
−0.712695 + 0.701474i \(0.752526\pi\)
\(762\) 0 0
\(763\) 18.0000 31.1769i 0.651644 1.12868i
\(764\) 2.82843i 0.102329i
\(765\) 0 0
\(766\) 63.6867i 2.30110i
\(767\) −27.7128 + 48.0000i −1.00065 + 1.73318i
\(768\) 0 0
\(769\) 16.9706 9.79796i 0.611974 0.353323i −0.161764 0.986830i \(-0.551718\pi\)
0.773738 + 0.633506i \(0.218385\pi\)
\(770\) 9.50079 17.4853i 0.342385 0.630126i
\(771\) 0 0
\(772\) 8.48528 + 4.89898i 0.305392 + 0.176318i
\(773\) 32.5269i 1.16991i −0.811065 0.584956i \(-0.801112\pi\)
0.811065 0.584956i \(-0.198888\pi\)
\(774\) 0 0
\(775\) −12.0000 −0.431053
\(776\) 8.66025 15.0000i 0.310885 0.538469i
\(777\) 0 0
\(778\) −14.8492 + 8.57321i −0.532371 + 0.307365i
\(779\) −44.0908 + 25.4558i −1.57972 + 0.912050i
\(780\) 0 0
\(781\) 0.242641 + 9.37769i 0.00868237 + 0.335560i
\(782\) 0 0
\(783\) 0 0
\(784\) −5.00000 −0.178571
\(785\) −17.1464 9.89949i −0.611982 0.353328i
\(786\) 0 0
\(787\) 10.6066 6.12372i 0.378085 0.218287i −0.298900 0.954284i \(-0.596620\pi\)
0.676985 + 0.735997i \(0.263286\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 15.0000 25.9808i 0.533676 0.924354i
\(791\) −3.46410 −0.123169
\(792\) 0 0
\(793\) 24.0000 0.852265
\(794\) 6.92820 12.0000i 0.245873 0.425864i
\(795\) 0 0
\(796\) −4.00000 6.92820i −0.141776 0.245564i
\(797\) 23.2702 13.4350i 0.824271 0.475893i −0.0276160 0.999619i \(-0.508792\pi\)
0.851887 + 0.523725i \(0.175458\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 15.5885 0.551135
\(801\) 0 0
\(802\) 2.44949i 0.0864945i
\(803\) 0 0
\(804\) 0 0
\(805\) 8.48528 4.89898i 0.299067 0.172666i
\(806\) 29.3939 16.9706i 1.03536 0.597763i
\(807\) 0 0
\(808\) −12.0000 + 20.7846i −0.422159 + 0.731200i
\(809\) 20.7846 0.730748 0.365374 0.930861i \(-0.380941\pi\)
0.365374 + 0.930861i \(0.380941\pi\)
\(810\) 0 0
\(811\) 22.0454i 0.774119i −0.922055 0.387059i \(-0.873491\pi\)
0.922055 0.387059i \(-0.126509\pi\)
\(812\) 14.6969 + 8.48528i 0.515761 + 0.297775i
\(813\) 0 0
\(814\) −21.9411 + 40.3805i −0.769036 + 1.41534i
\(815\) 9.79796 5.65685i 0.343208 0.198151i
\(816\) 0 0
\(817\) −9.00000 + 15.5885i −0.314870 + 0.545371i
\(818\) 67.8823i 2.37345i
\(819\) 0 0
\(820\) 9.79796i 0.342160i
\(821\) −6.92820 + 12.0000i −0.241796 + 0.418803i −0.961226 0.275762i \(-0.911070\pi\)
0.719430 + 0.694565i \(0.244403\pi\)
\(822\) 0 0
\(823\) −4.00000 6.92820i −0.139431 0.241502i 0.787850 0.615867i \(-0.211194\pi\)
−0.927281 + 0.374365i \(0.877861\pi\)
\(824\) 3.46410 + 6.00000i 0.120678 + 0.209020i
\(825\) 0 0
\(826\) 24.0000 41.5692i 0.835067 1.44638i
\(827\) −41.5692 −1.44550 −0.722752 0.691108i \(-0.757123\pi\)
−0.722752 + 0.691108i \(0.757123\pi\)
\(828\) 0 0
\(829\) −46.0000 −1.59765 −0.798823 0.601566i \(-0.794544\pi\)
−0.798823 + 0.601566i \(0.794544\pi\)
\(830\) 29.3939 + 16.9706i 1.02028 + 0.589057i
\(831\) 0 0
\(832\) 4.24264 2.44949i 0.147087 0.0849208i
\(833\) 0 0
\(834\) 0 0
\(835\) 4.24264 + 2.44949i 0.146823 + 0.0847681i
\(836\) 20.7846 12.7279i 0.718851 0.440204i
\(837\) 0 0
\(838\) 19.5959i 0.676930i
\(839\) 17.1464 + 9.89949i 0.591960 + 0.341769i 0.765872 0.642993i \(-0.222307\pi\)
−0.173912 + 0.984761i \(0.555641\pi\)
\(840\) 0 0
\(841\) −9.50000 16.4545i −0.327586 0.567396i
\(842\) 6.92820 + 12.0000i 0.238762 + 0.413547i
\(843\) 0 0
\(844\) −10.6066 6.12372i −0.365094 0.210787i
\(845\) 15.5563i 0.535155i
\(846\) 0 0
\(847\) −24.0000 12.2474i −0.824650 0.420827i
\(848\) 42.8661 + 24.7487i 1.47203 + 0.849875i
\(849\) 0 0
\(850\) 0 0
\(851\) −19.5959 + 11.3137i −0.671739 + 0.387829i
\(852\) 0 0
\(853\) 29.6985 + 17.1464i 1.01686 + 0.587083i 0.913192 0.407530i \(-0.133610\pi\)
0.103665 + 0.994612i \(0.466943\pi\)
\(854\) −20.7846 −0.711235
\(855\) 0 0
\(856\) 0 0
\(857\) −17.3205 + 30.0000i −0.591657 + 1.02478i 0.402352 + 0.915485i \(0.368193\pi\)
−0.994009 + 0.109295i \(0.965141\pi\)
\(858\) 0 0
\(859\) 20.0000 + 34.6410i 0.682391 + 1.18194i 0.974249 + 0.225475i \(0.0723932\pi\)
−0.291858 + 0.956462i \(0.594273\pi\)
\(860\) 1.73205 + 3.00000i 0.0590624 + 0.102299i
\(861\) 0 0
\(862\) −9.00000 + 15.5885i −0.306541 + 0.530945i
\(863\) 19.7990i 0.673965i −0.941511 0.336983i \(-0.890594\pi\)
0.941511 0.336983i \(-0.109406\pi\)
\(864\) 0 0
\(865\) 9.79796i 0.333141i
\(866\) −13.8564 + 24.0000i −0.470860 + 0.815553i
\(867\) 0 0
\(868\) −8.48528 + 4.89898i −0.288009 + 0.166282i
\(869\) −35.6917 19.3934i −1.21076 0.657876i
\(870\) 0 0
\(871\) 16.9706 + 9.79796i 0.575026 + 0.331991i
\(872\) 25.4558i 0.862044i
\(873\) 0 0
\(874\) 36.0000 1.21772
\(875\) 13.8564 24.0000i 0.468432 0.811348i
\(876\) 0 0
\(877\) −46.6690 + 26.9444i −1.57590 + 0.909847i −0.580479 + 0.814275i \(0.697135\pi\)
−0.995422 + 0.0955723i \(0.969532\pi\)
\(878\) −3.67423 + 2.12132i −0.123999 + 0.0715911i
\(879\) 0 0
\(880\) 0.606602 + 23.4442i 0.0204485 + 0.790305i
\(881\) 9.89949i 0.333522i 0.985997 + 0.166761i \(0.0533309\pi\)
−0.985997 + 0.166761i \(0.946669\pi\)
\(882\) 0 0
\(883\) −28.0000 −0.942275 −0.471138 0.882060i \(-0.656156\pi\)
−0.471138 + 0.882060i \(0.656156\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −33.9411 + 19.5959i −1.14027 + 0.658338i
\(887\) 27.7128 + 48.0000i 0.930505 + 1.61168i 0.782459 + 0.622702i \(0.213965\pi\)
0.148046 + 0.988980i \(0.452702\pi\)
\(888\) 0 0
\(889\) −9.00000 + 15.5885i −0.301850 + 0.522820i
\(890\) −17.3205 −0.580585
\(891\) 0 0
\(892\) −16.0000 −0.535720
\(893\) 10.3923 18.0000i 0.347765 0.602347i
\(894\) 0 0
\(895\) 16.0000 + 27.7128i 0.534821 + 0.926337i
\(896\) −25.7196 + 14.8492i −0.859233 + 0.496078i
\(897\) 0 0
\(898\) 14.8492 + 8.57321i 0.495526 + 0.286092i
\(899\) 27.7128 0.924274
\(900\) 0 0
\(901\) 0 0
\(902\) 39.7862 1.02944i 1.32473 0.0342765i
\(903\) 0 0
\(904\) 2.12132 1.22474i 0.0705541 0.0407344i
\(905\) 9.79796 5.65685i 0.325695 0.188040i
\(906\) 0 0
\(907\) 26.0000 45.0333i 0.863316 1.49531i −0.00539395 0.999985i \(-0.501717\pi\)
0.868710 0.495321i \(-0.164950\pi\)
\(908\) −27.7128 −0.919682
\(909\) 0 0
\(910\) 29.3939i 0.974398i
\(911\) 46.5403 + 26.8701i 1.54195 + 0.890245i 0.998716 + 0.0506629i \(0.0161334\pi\)
0.543233 + 0.839582i \(0.317200\pi\)
\(912\) 0 0
\(913\) 21.9411 40.3805i 0.726145 1.33640i
\(914\) −14.6969 + 8.48528i −0.486132 + 0.280668i
\(915\) 0 0
\(916\) 5.00000 8.66025i 0.165205 0.286143i
\(917\) 8.48528i 0.280209i
\(918\) 0 0
\(919\) 36.7423i 1.21202i 0.795458 + 0.606009i \(0.207230\pi\)
−0.795458 + 0.606009i \(0.792770\pi\)
\(920\) −3.46410 + 6.00000i −0.114208 + 0.197814i
\(921\) 0 0
\(922\) −6.00000 10.3923i −0.197599 0.342252i
\(923\) −6.92820 12.0000i −0.228045 0.394985i
\(924\) 0 0
\(925\) −12.0000 + 20.7846i −0.394558 + 0.683394i
\(926\) 48.4974 1.59372
\(927\) 0 0
\(928\) −36.0000 −1.18176
\(929\) −8.57321 4.94975i −0.281278 0.162396i 0.352724 0.935727i \(-0.385256\pi\)
−0.634002 + 0.773332i \(0.718589\pi\)
\(930\) 0 0
\(931\) −6.36396 + 3.67423i −0.208570 + 0.120418i
\(932\) 10.3923 + 18.0000i 0.340411 + 0.589610i
\(933\) 0 0
\(934\) 33.9411 + 19.5959i 1.11059 + 0.641198i
\(935\) 0 0
\(936\) 0 0
\(937\) 29.3939i 0.960256i 0.877198 + 0.480128i \(0.159410\pi\)
−0.877198 + 0.480128i \(0.840590\pi\)
\(938\) −14.6969 8.48528i −0.479872 0.277054i
\(939\) 0 0
\(940\) −2.00000 3.46410i −0.0652328 0.112987i
\(941\) −13.8564 24.0000i −0.451706 0.782378i 0.546786 0.837272i \(-0.315851\pi\)
−0.998492 + 0.0548946i \(0.982518\pi\)
\(942\) 0 0
\(943\) 16.9706 + 9.79796i 0.552638 + 0.319065i
\(944\) 56.5685i 1.84115i
\(945\) 0 0
\(946\) 12.0000 7.34847i 0.390154 0.238919i
\(947\) −19.5959 11.3137i −0.636782 0.367646i 0.146592 0.989197i \(-0.453170\pi\)
−0.783374 + 0.621551i \(0.786503\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 33.0681 19.0919i 1.07287 0.619422i
\(951\) 0 0
\(952\) 0 0
\(953\) −20.7846 −0.673280 −0.336640 0.941634i \(-0.609290\pi\)
−0.336640 + 0.941634i \(0.609290\pi\)
\(954\) 0 0
\(955\) 4.00000 0.129437
\(956\) −8.66025 + 15.0000i −0.280093 + 0.485135i
\(957\) 0 0
\(958\) −33.0000 57.1577i −1.06618 1.84668i
\(959\) −19.0526 33.0000i −0.615239 1.06563i
\(960\) 0 0
\(961\) 7.50000 12.9904i 0.241935 0.419045i
\(962\) 67.8823i 2.18861i
\(963\) 0 0
\(964\) 19.5959i 0.631142i
\(965\) −6.92820 + 12.0000i −0.223027 + 0.386294i
\(966\) 0 0
\(967\) 36.0624 20.8207i 1.15969 0.669547i 0.208460 0.978031i \(-0.433155\pi\)
0.951230 + 0.308483i \(0.0998214\pi\)
\(968\) 19.0271 0.985281i 0.611553 0.0316681i
\(969\) 0 0
\(970\) −21.2132 12.2474i −0.681115 0.393242i
\(971\) 56.5685i 1.81537i 0.419651 + 0.907685i \(0.362152\pi\)
−0.419651 + 0.907685i \(0.637848\pi\)
\(972\) 0 0
\(973\) 6.00000 0.192351
\(974\) 6.92820 12.0000i 0.221994 0.384505i
\(975\) 0 0
\(976\) 21.2132 12.2474i 0.679018 0.392031i
\(977\) 30.6186 17.6777i 0.979576 0.565559i 0.0774342 0.996997i \(-0.475327\pi\)
0.902142 + 0.431439i \(0.141994\pi\)
\(978\) 0 0
\(979\) 0.606602 + 23.4442i 0.0193871 + 0.749281i
\(980\) 1.41421i 0.0451754i
\(981\) 0 0
\(982\) −48.0000 −1.53174
\(983\) −41.6413 24.0416i −1.32815 0.766809i −0.343138 0.939285i \(-0.611490\pi\)
−0.985014 + 0.172476i \(0.944823\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −18.0000 + 31.1769i −0.572656 + 0.991870i
\(989\) 6.92820 0.220304
\(990\) 0 0
\(991\) −52.0000 −1.65183 −0.825917 0.563791i \(-0.809342\pi\)
−0.825917 + 0.563791i \(0.809342\pi\)
\(992\) 10.3923 18.0000i 0.329956 0.571501i
\(993\) 0 0
\(994\) 6.00000 + 10.3923i 0.190308 + 0.329624i
\(995\) 9.79796 5.65685i 0.310616 0.179334i
\(996\) 0 0
\(997\) −21.2132 12.2474i −0.671829 0.387881i 0.124940 0.992164i \(-0.460126\pi\)
−0.796769 + 0.604284i \(0.793459\pi\)
\(998\) −55.4256 −1.75447
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.g.c.593.4 8
3.2 odd 2 inner 891.2.g.c.593.1 8
9.2 odd 6 99.2.d.a.98.3 yes 4
9.4 even 3 inner 891.2.g.c.296.3 8
9.5 odd 6 inner 891.2.g.c.296.2 8
9.7 even 3 99.2.d.a.98.2 yes 4
11.10 odd 2 inner 891.2.g.c.593.2 8
33.32 even 2 inner 891.2.g.c.593.3 8
36.7 odd 6 1584.2.b.e.593.3 4
36.11 even 6 1584.2.b.e.593.1 4
45.2 even 12 2475.2.d.a.2474.5 8
45.7 odd 12 2475.2.d.a.2474.2 8
45.29 odd 6 2475.2.f.e.2276.1 4
45.34 even 6 2475.2.f.e.2276.3 4
45.38 even 12 2475.2.d.a.2474.3 8
45.43 odd 12 2475.2.d.a.2474.8 8
72.11 even 6 6336.2.b.t.2177.3 4
72.29 odd 6 6336.2.b.s.2177.4 4
72.43 odd 6 6336.2.b.t.2177.1 4
72.61 even 6 6336.2.b.s.2177.2 4
99.32 even 6 inner 891.2.g.c.296.4 8
99.43 odd 6 99.2.d.a.98.4 yes 4
99.65 even 6 99.2.d.a.98.1 4
99.76 odd 6 inner 891.2.g.c.296.1 8
396.43 even 6 1584.2.b.e.593.4 4
396.263 odd 6 1584.2.b.e.593.2 4
495.43 even 12 2475.2.d.a.2474.1 8
495.142 even 12 2475.2.d.a.2474.7 8
495.164 even 6 2475.2.f.e.2276.4 4
495.263 odd 12 2475.2.d.a.2474.6 8
495.362 odd 12 2475.2.d.a.2474.4 8
495.439 odd 6 2475.2.f.e.2276.2 4
792.43 even 6 6336.2.b.t.2177.2 4
792.461 even 6 6336.2.b.s.2177.3 4
792.637 odd 6 6336.2.b.s.2177.1 4
792.659 odd 6 6336.2.b.t.2177.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.d.a.98.1 4 99.65 even 6
99.2.d.a.98.2 yes 4 9.7 even 3
99.2.d.a.98.3 yes 4 9.2 odd 6
99.2.d.a.98.4 yes 4 99.43 odd 6
891.2.g.c.296.1 8 99.76 odd 6 inner
891.2.g.c.296.2 8 9.5 odd 6 inner
891.2.g.c.296.3 8 9.4 even 3 inner
891.2.g.c.296.4 8 99.32 even 6 inner
891.2.g.c.593.1 8 3.2 odd 2 inner
891.2.g.c.593.2 8 11.10 odd 2 inner
891.2.g.c.593.3 8 33.32 even 2 inner
891.2.g.c.593.4 8 1.1 even 1 trivial
1584.2.b.e.593.1 4 36.11 even 6
1584.2.b.e.593.2 4 396.263 odd 6
1584.2.b.e.593.3 4 36.7 odd 6
1584.2.b.e.593.4 4 396.43 even 6
2475.2.d.a.2474.1 8 495.43 even 12
2475.2.d.a.2474.2 8 45.7 odd 12
2475.2.d.a.2474.3 8 45.38 even 12
2475.2.d.a.2474.4 8 495.362 odd 12
2475.2.d.a.2474.5 8 45.2 even 12
2475.2.d.a.2474.6 8 495.263 odd 12
2475.2.d.a.2474.7 8 495.142 even 12
2475.2.d.a.2474.8 8 45.43 odd 12
2475.2.f.e.2276.1 4 45.29 odd 6
2475.2.f.e.2276.2 4 495.439 odd 6
2475.2.f.e.2276.3 4 45.34 even 6
2475.2.f.e.2276.4 4 495.164 even 6
6336.2.b.s.2177.1 4 792.637 odd 6
6336.2.b.s.2177.2 4 72.61 even 6
6336.2.b.s.2177.3 4 792.461 even 6
6336.2.b.s.2177.4 4 72.29 odd 6
6336.2.b.t.2177.1 4 72.43 odd 6
6336.2.b.t.2177.2 4 792.43 even 6
6336.2.b.t.2177.3 4 72.11 even 6
6336.2.b.t.2177.4 4 792.659 odd 6