Properties

Label 891.2.g.c.296.3
Level $891$
Weight $2$
Character 891.296
Analytic conductor $7.115$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(296,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.296");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.g (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 296.3
Root \(-0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 891.296
Dual form 891.2.g.c.593.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 1.50000i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-1.22474 - 0.707107i) q^{5} +(2.12132 - 1.22474i) q^{7} +1.73205 q^{8} -2.44949i q^{10} +(1.58346 - 2.91421i) q^{11} +(-4.24264 - 2.44949i) q^{13} +(3.67423 + 2.12132i) q^{14} +(2.50000 + 4.33013i) q^{16} -7.34847i q^{19} +(1.22474 - 0.707107i) q^{20} +(5.74264 - 0.148586i) q^{22} +(2.44949 + 1.41421i) q^{23} +(-1.50000 - 2.59808i) q^{25} -8.48528i q^{26} +2.44949i q^{28} +(3.46410 + 6.00000i) q^{29} +(2.00000 - 3.46410i) q^{31} +(-2.59808 + 4.50000i) q^{32} -3.46410 q^{35} +8.00000 q^{37} +(11.0227 - 6.36396i) q^{38} +(-2.12132 - 1.22474i) q^{40} +(-3.46410 + 6.00000i) q^{41} +(2.12132 - 1.22474i) q^{43} +(1.73205 + 2.82843i) q^{44} +4.89898i q^{46} +(-2.44949 + 1.41421i) q^{47} +(-0.500000 + 0.866025i) q^{49} +(2.59808 - 4.50000i) q^{50} +(4.24264 - 2.44949i) q^{52} +9.89949i q^{53} +(-4.00000 + 2.44949i) q^{55} +(3.67423 - 2.12132i) q^{56} +(-6.00000 + 10.3923i) q^{58} +(9.79796 + 5.65685i) q^{59} +(-4.24264 + 2.44949i) q^{61} +6.92820 q^{62} +1.00000 q^{64} +(3.46410 + 6.00000i) q^{65} +(2.00000 - 3.46410i) q^{67} +(-3.00000 - 5.19615i) q^{70} -2.82843i q^{71} +(6.92820 + 12.0000i) q^{74} +(6.36396 + 3.67423i) q^{76} +(-0.210133 - 8.12132i) q^{77} +(-10.6066 + 6.12372i) q^{79} -7.07107i q^{80} -12.0000 q^{82} +(-6.92820 - 12.0000i) q^{83} +(3.67423 + 2.12132i) q^{86} +(2.74264 - 5.04757i) q^{88} -7.07107i q^{89} -12.0000 q^{91} +(-2.44949 + 1.41421i) q^{92} +(-4.24264 - 2.44949i) q^{94} +(-5.19615 + 9.00000i) q^{95} +(5.00000 + 8.66025i) q^{97} -1.73205 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{4} + 20 q^{16} + 12 q^{22} - 12 q^{25} + 16 q^{31} + 64 q^{37} - 4 q^{49} - 32 q^{55} - 48 q^{58} + 8 q^{64} + 16 q^{67} - 24 q^{70} - 96 q^{82} - 12 q^{88} - 96 q^{91} + 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 1.50000i 0.612372 + 1.06066i 0.990839 + 0.135045i \(0.0431180\pi\)
−0.378467 + 0.925615i \(0.623549\pi\)
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −1.22474 0.707107i −0.547723 0.316228i 0.200480 0.979698i \(-0.435750\pi\)
−0.748203 + 0.663470i \(0.769083\pi\)
\(6\) 0 0
\(7\) 2.12132 1.22474i 0.801784 0.462910i −0.0423108 0.999104i \(-0.513472\pi\)
0.844094 + 0.536194i \(0.180139\pi\)
\(8\) 1.73205 0.612372
\(9\) 0 0
\(10\) 2.44949i 0.774597i
\(11\) 1.58346 2.91421i 0.477432 0.878668i
\(12\) 0 0
\(13\) −4.24264 2.44949i −1.17670 0.679366i −0.221449 0.975172i \(-0.571079\pi\)
−0.955248 + 0.295806i \(0.904412\pi\)
\(14\) 3.67423 + 2.12132i 0.981981 + 0.566947i
\(15\) 0 0
\(16\) 2.50000 + 4.33013i 0.625000 + 1.08253i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 7.34847i 1.68585i −0.538028 0.842927i \(-0.680830\pi\)
0.538028 0.842927i \(-0.319170\pi\)
\(20\) 1.22474 0.707107i 0.273861 0.158114i
\(21\) 0 0
\(22\) 5.74264 0.148586i 1.22434 0.0316787i
\(23\) 2.44949 + 1.41421i 0.510754 + 0.294884i 0.733144 0.680074i \(-0.238052\pi\)
−0.222390 + 0.974958i \(0.571386\pi\)
\(24\) 0 0
\(25\) −1.50000 2.59808i −0.300000 0.519615i
\(26\) 8.48528i 1.66410i
\(27\) 0 0
\(28\) 2.44949i 0.462910i
\(29\) 3.46410 + 6.00000i 0.643268 + 1.11417i 0.984699 + 0.174265i \(0.0557550\pi\)
−0.341431 + 0.939907i \(0.610912\pi\)
\(30\) 0 0
\(31\) 2.00000 3.46410i 0.359211 0.622171i −0.628619 0.777714i \(-0.716379\pi\)
0.987829 + 0.155543i \(0.0497126\pi\)
\(32\) −2.59808 + 4.50000i −0.459279 + 0.795495i
\(33\) 0 0
\(34\) 0 0
\(35\) −3.46410 −0.585540
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 11.0227 6.36396i 1.78812 1.03237i
\(39\) 0 0
\(40\) −2.12132 1.22474i −0.335410 0.193649i
\(41\) −3.46410 + 6.00000i −0.541002 + 0.937043i 0.457845 + 0.889032i \(0.348621\pi\)
−0.998847 + 0.0480106i \(0.984712\pi\)
\(42\) 0 0
\(43\) 2.12132 1.22474i 0.323498 0.186772i −0.329452 0.944172i \(-0.606864\pi\)
0.652951 + 0.757400i \(0.273531\pi\)
\(44\) 1.73205 + 2.82843i 0.261116 + 0.426401i
\(45\) 0 0
\(46\) 4.89898i 0.722315i
\(47\) −2.44949 + 1.41421i −0.357295 + 0.206284i −0.667893 0.744257i \(-0.732804\pi\)
0.310599 + 0.950541i \(0.399470\pi\)
\(48\) 0 0
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) 2.59808 4.50000i 0.367423 0.636396i
\(51\) 0 0
\(52\) 4.24264 2.44949i 0.588348 0.339683i
\(53\) 9.89949i 1.35980i 0.733305 + 0.679900i \(0.237977\pi\)
−0.733305 + 0.679900i \(0.762023\pi\)
\(54\) 0 0
\(55\) −4.00000 + 2.44949i −0.539360 + 0.330289i
\(56\) 3.67423 2.12132i 0.490990 0.283473i
\(57\) 0 0
\(58\) −6.00000 + 10.3923i −0.787839 + 1.36458i
\(59\) 9.79796 + 5.65685i 1.27559 + 0.736460i 0.976034 0.217620i \(-0.0698294\pi\)
0.299552 + 0.954080i \(0.403163\pi\)
\(60\) 0 0
\(61\) −4.24264 + 2.44949i −0.543214 + 0.313625i −0.746381 0.665519i \(-0.768210\pi\)
0.203166 + 0.979144i \(0.434877\pi\)
\(62\) 6.92820 0.879883
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 3.46410 + 6.00000i 0.429669 + 0.744208i
\(66\) 0 0
\(67\) 2.00000 3.46410i 0.244339 0.423207i −0.717607 0.696449i \(-0.754762\pi\)
0.961946 + 0.273241i \(0.0880957\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) −3.00000 5.19615i −0.358569 0.621059i
\(71\) 2.82843i 0.335673i −0.985815 0.167836i \(-0.946322\pi\)
0.985815 0.167836i \(-0.0536780\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 6.92820 + 12.0000i 0.805387 + 1.39497i
\(75\) 0 0
\(76\) 6.36396 + 3.67423i 0.729996 + 0.421464i
\(77\) −0.210133 8.12132i −0.0239469 0.925510i
\(78\) 0 0
\(79\) −10.6066 + 6.12372i −1.19334 + 0.688973i −0.959062 0.283198i \(-0.908605\pi\)
−0.234274 + 0.972171i \(0.575271\pi\)
\(80\) 7.07107i 0.790569i
\(81\) 0 0
\(82\) −12.0000 −1.32518
\(83\) −6.92820 12.0000i −0.760469 1.31717i −0.942609 0.333899i \(-0.891636\pi\)
0.182140 0.983273i \(-0.441698\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 3.67423 + 2.12132i 0.396203 + 0.228748i
\(87\) 0 0
\(88\) 2.74264 5.04757i 0.292366 0.538072i
\(89\) 7.07107i 0.749532i −0.927119 0.374766i \(-0.877723\pi\)
0.927119 0.374766i \(-0.122277\pi\)
\(90\) 0 0
\(91\) −12.0000 −1.25794
\(92\) −2.44949 + 1.41421i −0.255377 + 0.147442i
\(93\) 0 0
\(94\) −4.24264 2.44949i −0.437595 0.252646i
\(95\) −5.19615 + 9.00000i −0.533114 + 0.923381i
\(96\) 0 0
\(97\) 5.00000 + 8.66025i 0.507673 + 0.879316i 0.999961 + 0.00888289i \(0.00282755\pi\)
−0.492287 + 0.870433i \(0.663839\pi\)
\(98\) −1.73205 −0.174964
\(99\) 0 0
\(100\) 3.00000 0.300000
\(101\) −6.92820 12.0000i −0.689382 1.19404i −0.972038 0.234823i \(-0.924549\pi\)
0.282656 0.959221i \(-0.408784\pi\)
\(102\) 0 0
\(103\) 2.00000 3.46410i 0.197066 0.341328i −0.750510 0.660859i \(-0.770192\pi\)
0.947576 + 0.319531i \(0.103525\pi\)
\(104\) −7.34847 4.24264i −0.720577 0.416025i
\(105\) 0 0
\(106\) −14.8492 + 8.57321i −1.44229 + 0.832704i
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 14.6969i 1.40771i 0.710343 + 0.703856i \(0.248540\pi\)
−0.710343 + 0.703856i \(0.751460\pi\)
\(110\) −7.13834 3.87868i −0.680614 0.369818i
\(111\) 0 0
\(112\) 10.6066 + 6.12372i 1.00223 + 0.578638i
\(113\) −1.22474 0.707107i −0.115214 0.0665190i 0.441285 0.897367i \(-0.354523\pi\)
−0.556500 + 0.830848i \(0.687856\pi\)
\(114\) 0 0
\(115\) −2.00000 3.46410i −0.186501 0.323029i
\(116\) −6.92820 −0.643268
\(117\) 0 0
\(118\) 19.5959i 1.80395i
\(119\) 0 0
\(120\) 0 0
\(121\) −5.98528 9.22911i −0.544116 0.839010i
\(122\) −7.34847 4.24264i −0.665299 0.384111i
\(123\) 0 0
\(124\) 2.00000 + 3.46410i 0.179605 + 0.311086i
\(125\) 11.3137i 1.01193i
\(126\) 0 0
\(127\) 7.34847i 0.652071i −0.945357 0.326036i \(-0.894287\pi\)
0.945357 0.326036i \(-0.105713\pi\)
\(128\) 6.06218 + 10.5000i 0.535826 + 0.928078i
\(129\) 0 0
\(130\) −6.00000 + 10.3923i −0.526235 + 0.911465i
\(131\) 1.73205 3.00000i 0.151330 0.262111i −0.780387 0.625297i \(-0.784978\pi\)
0.931717 + 0.363186i \(0.118311\pi\)
\(132\) 0 0
\(133\) −9.00000 15.5885i −0.780399 1.35169i
\(134\) 6.92820 0.598506
\(135\) 0 0
\(136\) 0 0
\(137\) −13.4722 + 7.77817i −1.15101 + 0.664534i −0.949132 0.314877i \(-0.898037\pi\)
−0.201875 + 0.979411i \(0.564703\pi\)
\(138\) 0 0
\(139\) 2.12132 + 1.22474i 0.179928 + 0.103882i 0.587259 0.809399i \(-0.300207\pi\)
−0.407331 + 0.913281i \(0.633540\pi\)
\(140\) 1.73205 3.00000i 0.146385 0.253546i
\(141\) 0 0
\(142\) 4.24264 2.44949i 0.356034 0.205557i
\(143\) −13.8564 + 8.48528i −1.15873 + 0.709575i
\(144\) 0 0
\(145\) 9.79796i 0.813676i
\(146\) 0 0
\(147\) 0 0
\(148\) −4.00000 + 6.92820i −0.328798 + 0.569495i
\(149\) 6.92820 12.0000i 0.567581 0.983078i −0.429224 0.903198i \(-0.641213\pi\)
0.996804 0.0798802i \(-0.0254538\pi\)
\(150\) 0 0
\(151\) 2.12132 1.22474i 0.172631 0.0996683i −0.411195 0.911547i \(-0.634888\pi\)
0.583826 + 0.811879i \(0.301555\pi\)
\(152\) 12.7279i 1.03237i
\(153\) 0 0
\(154\) 12.0000 7.34847i 0.966988 0.592157i
\(155\) −4.89898 + 2.82843i −0.393496 + 0.227185i
\(156\) 0 0
\(157\) −7.00000 + 12.1244i −0.558661 + 0.967629i 0.438948 + 0.898513i \(0.355351\pi\)
−0.997609 + 0.0691164i \(0.977982\pi\)
\(158\) −18.3712 10.6066i −1.46153 0.843816i
\(159\) 0 0
\(160\) 6.36396 3.67423i 0.503115 0.290474i
\(161\) 6.92820 0.546019
\(162\) 0 0
\(163\) 8.00000 0.626608 0.313304 0.949653i \(-0.398564\pi\)
0.313304 + 0.949653i \(0.398564\pi\)
\(164\) −3.46410 6.00000i −0.270501 0.468521i
\(165\) 0 0
\(166\) 12.0000 20.7846i 0.931381 1.61320i
\(167\) 1.73205 3.00000i 0.134030 0.232147i −0.791196 0.611562i \(-0.790541\pi\)
0.925227 + 0.379415i \(0.123875\pi\)
\(168\) 0 0
\(169\) 5.50000 + 9.52628i 0.423077 + 0.732791i
\(170\) 0 0
\(171\) 0 0
\(172\) 2.44949i 0.186772i
\(173\) 3.46410 + 6.00000i 0.263371 + 0.456172i 0.967135 0.254262i \(-0.0818324\pi\)
−0.703765 + 0.710433i \(0.748499\pi\)
\(174\) 0 0
\(175\) −6.36396 3.67423i −0.481070 0.277746i
\(176\) 16.5776 0.428932i 1.24958 0.0323320i
\(177\) 0 0
\(178\) 10.6066 6.12372i 0.794998 0.458993i
\(179\) 22.6274i 1.69125i 0.533775 + 0.845626i \(0.320773\pi\)
−0.533775 + 0.845626i \(0.679227\pi\)
\(180\) 0 0
\(181\) 8.00000 0.594635 0.297318 0.954779i \(-0.403908\pi\)
0.297318 + 0.954779i \(0.403908\pi\)
\(182\) −10.3923 18.0000i −0.770329 1.33425i
\(183\) 0 0
\(184\) 4.24264 + 2.44949i 0.312772 + 0.180579i
\(185\) −9.79796 5.65685i −0.720360 0.415900i
\(186\) 0 0
\(187\) 0 0
\(188\) 2.82843i 0.206284i
\(189\) 0 0
\(190\) −18.0000 −1.30586
\(191\) −2.44949 + 1.41421i −0.177239 + 0.102329i −0.585995 0.810315i \(-0.699296\pi\)
0.408756 + 0.912644i \(0.365963\pi\)
\(192\) 0 0
\(193\) 8.48528 + 4.89898i 0.610784 + 0.352636i 0.773272 0.634074i \(-0.218619\pi\)
−0.162488 + 0.986710i \(0.551952\pi\)
\(194\) −8.66025 + 15.0000i −0.621770 + 1.07694i
\(195\) 0 0
\(196\) −0.500000 0.866025i −0.0357143 0.0618590i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) −2.59808 4.50000i −0.183712 0.318198i
\(201\) 0 0
\(202\) 12.0000 20.7846i 0.844317 1.46240i
\(203\) 14.6969 + 8.48528i 1.03152 + 0.595550i
\(204\) 0 0
\(205\) 8.48528 4.89898i 0.592638 0.342160i
\(206\) 6.92820 0.482711
\(207\) 0 0
\(208\) 24.4949i 1.69842i
\(209\) −21.4150 11.6360i −1.48131 0.804882i
\(210\) 0 0
\(211\) −10.6066 6.12372i −0.730189 0.421575i 0.0883026 0.996094i \(-0.471856\pi\)
−0.818491 + 0.574519i \(0.805189\pi\)
\(212\) −8.57321 4.94975i −0.588811 0.339950i
\(213\) 0 0
\(214\) 0 0
\(215\) −3.46410 −0.236250
\(216\) 0 0
\(217\) 9.79796i 0.665129i
\(218\) −22.0454 + 12.7279i −1.49310 + 0.862044i
\(219\) 0 0
\(220\) −0.121320 4.68885i −0.00817942 0.316122i
\(221\) 0 0
\(222\) 0 0
\(223\) 8.00000 + 13.8564i 0.535720 + 0.927894i 0.999128 + 0.0417488i \(0.0132929\pi\)
−0.463409 + 0.886145i \(0.653374\pi\)
\(224\) 12.7279i 0.850420i
\(225\) 0 0
\(226\) 2.44949i 0.162938i
\(227\) 13.8564 + 24.0000i 0.919682 + 1.59294i 0.799898 + 0.600136i \(0.204887\pi\)
0.119784 + 0.992800i \(0.461780\pi\)
\(228\) 0 0
\(229\) 5.00000 8.66025i 0.330409 0.572286i −0.652183 0.758062i \(-0.726147\pi\)
0.982592 + 0.185776i \(0.0594799\pi\)
\(230\) 3.46410 6.00000i 0.228416 0.395628i
\(231\) 0 0
\(232\) 6.00000 + 10.3923i 0.393919 + 0.682288i
\(233\) −20.7846 −1.36165 −0.680823 0.732448i \(-0.738378\pi\)
−0.680823 + 0.732448i \(0.738378\pi\)
\(234\) 0 0
\(235\) 4.00000 0.260931
\(236\) −9.79796 + 5.65685i −0.637793 + 0.368230i
\(237\) 0 0
\(238\) 0 0
\(239\) −8.66025 + 15.0000i −0.560185 + 0.970269i 0.437295 + 0.899318i \(0.355937\pi\)
−0.997480 + 0.0709510i \(0.977397\pi\)
\(240\) 0 0
\(241\) −16.9706 + 9.79796i −1.09317 + 0.631142i −0.934419 0.356177i \(-0.884080\pi\)
−0.158751 + 0.987319i \(0.550747\pi\)
\(242\) 8.66025 16.9706i 0.556702 1.09091i
\(243\) 0 0
\(244\) 4.89898i 0.313625i
\(245\) 1.22474 0.707107i 0.0782461 0.0451754i
\(246\) 0 0
\(247\) −18.0000 + 31.1769i −1.14531 + 1.98374i
\(248\) 3.46410 6.00000i 0.219971 0.381000i
\(249\) 0 0
\(250\) −16.9706 + 9.79796i −1.07331 + 0.619677i
\(251\) 5.65685i 0.357057i 0.983935 + 0.178529i \(0.0571337\pi\)
−0.983935 + 0.178529i \(0.942866\pi\)
\(252\) 0 0
\(253\) 8.00000 4.89898i 0.502956 0.307996i
\(254\) 11.0227 6.36396i 0.691626 0.399310i
\(255\) 0 0
\(256\) −9.50000 + 16.4545i −0.593750 + 1.02841i
\(257\) −8.57321 4.94975i −0.534782 0.308757i 0.208179 0.978091i \(-0.433246\pi\)
−0.742962 + 0.669334i \(0.766580\pi\)
\(258\) 0 0
\(259\) 16.9706 9.79796i 1.05450 0.608816i
\(260\) −6.92820 −0.429669
\(261\) 0 0
\(262\) 6.00000 0.370681
\(263\) −1.73205 3.00000i −0.106803 0.184988i 0.807671 0.589634i \(-0.200728\pi\)
−0.914473 + 0.404646i \(0.867395\pi\)
\(264\) 0 0
\(265\) 7.00000 12.1244i 0.430007 0.744793i
\(266\) 15.5885 27.0000i 0.955790 1.65548i
\(267\) 0 0
\(268\) 2.00000 + 3.46410i 0.122169 + 0.211604i
\(269\) 15.5563i 0.948487i −0.880394 0.474244i \(-0.842722\pi\)
0.880394 0.474244i \(-0.157278\pi\)
\(270\) 0 0
\(271\) 7.34847i 0.446388i 0.974774 + 0.223194i \(0.0716483\pi\)
−0.974774 + 0.223194i \(0.928352\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −23.3345 13.4722i −1.40969 0.813885i
\(275\) −9.94655 + 0.257359i −0.599799 + 0.0155194i
\(276\) 0 0
\(277\) 21.2132 12.2474i 1.27458 0.735878i 0.298732 0.954337i \(-0.403436\pi\)
0.975846 + 0.218459i \(0.0701031\pi\)
\(278\) 4.24264i 0.254457i
\(279\) 0 0
\(280\) −6.00000 −0.358569
\(281\) −6.92820 12.0000i −0.413302 0.715860i 0.581947 0.813227i \(-0.302291\pi\)
−0.995249 + 0.0973670i \(0.968958\pi\)
\(282\) 0 0
\(283\) 2.12132 + 1.22474i 0.126099 + 0.0728035i 0.561723 0.827325i \(-0.310139\pi\)
−0.435623 + 0.900129i \(0.643472\pi\)
\(284\) 2.44949 + 1.41421i 0.145350 + 0.0839181i
\(285\) 0 0
\(286\) −24.7279 13.4361i −1.46219 0.794496i
\(287\) 16.9706i 1.00174i
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 14.6969 8.48528i 0.863034 0.498273i
\(291\) 0 0
\(292\) 0 0
\(293\) −3.46410 + 6.00000i −0.202375 + 0.350524i −0.949293 0.314392i \(-0.898199\pi\)
0.746918 + 0.664916i \(0.231533\pi\)
\(294\) 0 0
\(295\) −8.00000 13.8564i −0.465778 0.806751i
\(296\) 13.8564 0.805387
\(297\) 0 0
\(298\) 24.0000 1.39028
\(299\) −6.92820 12.0000i −0.400668 0.693978i
\(300\) 0 0
\(301\) 3.00000 5.19615i 0.172917 0.299501i
\(302\) 3.67423 + 2.12132i 0.211428 + 0.122068i
\(303\) 0 0
\(304\) 31.8198 18.3712i 1.82499 1.05366i
\(305\) 6.92820 0.396708
\(306\) 0 0
\(307\) 7.34847i 0.419399i −0.977766 0.209700i \(-0.932751\pi\)
0.977766 0.209700i \(-0.0672486\pi\)
\(308\) 7.13834 + 3.87868i 0.406744 + 0.221008i
\(309\) 0 0
\(310\) −8.48528 4.89898i −0.481932 0.278243i
\(311\) −12.2474 7.07107i −0.694489 0.400963i 0.110802 0.993842i \(-0.464658\pi\)
−0.805292 + 0.592879i \(0.797991\pi\)
\(312\) 0 0
\(313\) 8.00000 + 13.8564i 0.452187 + 0.783210i 0.998522 0.0543564i \(-0.0173107\pi\)
−0.546335 + 0.837567i \(0.683977\pi\)
\(314\) −24.2487 −1.36843
\(315\) 0 0
\(316\) 12.2474i 0.688973i
\(317\) 15.9217 9.19239i 0.894251 0.516296i 0.0189203 0.999821i \(-0.493977\pi\)
0.875331 + 0.483525i \(0.160644\pi\)
\(318\) 0 0
\(319\) 22.9706 0.594346i 1.28610 0.0332770i
\(320\) −1.22474 0.707107i −0.0684653 0.0395285i
\(321\) 0 0
\(322\) 6.00000 + 10.3923i 0.334367 + 0.579141i
\(323\) 0 0
\(324\) 0 0
\(325\) 14.6969i 0.815239i
\(326\) 6.92820 + 12.0000i 0.383718 + 0.664619i
\(327\) 0 0
\(328\) −6.00000 + 10.3923i −0.331295 + 0.573819i
\(329\) −3.46410 + 6.00000i −0.190982 + 0.330791i
\(330\) 0 0
\(331\) −4.00000 6.92820i −0.219860 0.380808i 0.734905 0.678170i \(-0.237227\pi\)
−0.954765 + 0.297361i \(0.903893\pi\)
\(332\) 13.8564 0.760469
\(333\) 0 0
\(334\) 6.00000 0.328305
\(335\) −4.89898 + 2.82843i −0.267660 + 0.154533i
\(336\) 0 0
\(337\) 8.48528 + 4.89898i 0.462223 + 0.266864i 0.712978 0.701186i \(-0.247346\pi\)
−0.250756 + 0.968050i \(0.580679\pi\)
\(338\) −9.52628 + 16.5000i −0.518161 + 0.897482i
\(339\) 0 0
\(340\) 0 0
\(341\) −6.92820 11.3137i −0.375183 0.612672i
\(342\) 0 0
\(343\) 19.5959i 1.05808i
\(344\) 3.67423 2.12132i 0.198101 0.114374i
\(345\) 0 0
\(346\) −6.00000 + 10.3923i −0.322562 + 0.558694i
\(347\) 6.92820 12.0000i 0.371925 0.644194i −0.617936 0.786228i \(-0.712031\pi\)
0.989862 + 0.142034i \(0.0453644\pi\)
\(348\) 0 0
\(349\) −4.24264 + 2.44949i −0.227103 + 0.131118i −0.609235 0.792990i \(-0.708523\pi\)
0.382132 + 0.924108i \(0.375190\pi\)
\(350\) 12.7279i 0.680336i
\(351\) 0 0
\(352\) 9.00000 + 14.6969i 0.479702 + 0.783349i
\(353\) −28.1691 + 16.2635i −1.49929 + 0.865616i −1.00000 0.000817391i \(-0.999740\pi\)
−0.499292 + 0.866434i \(0.666406\pi\)
\(354\) 0 0
\(355\) −2.00000 + 3.46410i −0.106149 + 0.183855i
\(356\) 6.12372 + 3.53553i 0.324557 + 0.187383i
\(357\) 0 0
\(358\) −33.9411 + 19.5959i −1.79384 + 1.03568i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −35.0000 −1.84211
\(362\) 6.92820 + 12.0000i 0.364138 + 0.630706i
\(363\) 0 0
\(364\) 6.00000 10.3923i 0.314485 0.544705i
\(365\) 0 0
\(366\) 0 0
\(367\) −4.00000 6.92820i −0.208798 0.361649i 0.742538 0.669804i \(-0.233622\pi\)
−0.951336 + 0.308155i \(0.900289\pi\)
\(368\) 14.1421i 0.737210i
\(369\) 0 0
\(370\) 19.5959i 1.01874i
\(371\) 12.1244 + 21.0000i 0.629465 + 1.09027i
\(372\) 0 0
\(373\) 21.2132 + 12.2474i 1.09838 + 0.634149i 0.935795 0.352546i \(-0.114684\pi\)
0.162584 + 0.986695i \(0.448017\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −4.24264 + 2.44949i −0.218797 + 0.126323i
\(377\) 33.9411i 1.74806i
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) −5.19615 9.00000i −0.266557 0.461690i
\(381\) 0 0
\(382\) −4.24264 2.44949i −0.217072 0.125327i
\(383\) 31.8434 + 18.3848i 1.62712 + 0.939418i 0.984947 + 0.172859i \(0.0553004\pi\)
0.642173 + 0.766559i \(0.278033\pi\)
\(384\) 0 0
\(385\) −5.48528 + 10.0951i −0.279556 + 0.514496i
\(386\) 16.9706i 0.863779i
\(387\) 0 0
\(388\) −10.0000 −0.507673
\(389\) 8.57321 4.94975i 0.434679 0.250962i −0.266659 0.963791i \(-0.585920\pi\)
0.701338 + 0.712829i \(0.252586\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.866025 + 1.50000i −0.0437409 + 0.0757614i
\(393\) 0 0
\(394\) 0 0
\(395\) 17.3205 0.871489
\(396\) 0 0
\(397\) 8.00000 0.401508 0.200754 0.979642i \(-0.435661\pi\)
0.200754 + 0.979642i \(0.435661\pi\)
\(398\) 6.92820 + 12.0000i 0.347279 + 0.601506i
\(399\) 0 0
\(400\) 7.50000 12.9904i 0.375000 0.649519i
\(401\) −1.22474 0.707107i −0.0611608 0.0353112i 0.469108 0.883141i \(-0.344576\pi\)
−0.530269 + 0.847830i \(0.677909\pi\)
\(402\) 0 0
\(403\) −16.9706 + 9.79796i −0.845364 + 0.488071i
\(404\) 13.8564 0.689382
\(405\) 0 0
\(406\) 29.3939i 1.45879i
\(407\) 12.6677 23.3137i 0.627915 1.15562i
\(408\) 0 0
\(409\) 33.9411 + 19.5959i 1.67828 + 0.968956i 0.962757 + 0.270367i \(0.0871450\pi\)
0.715523 + 0.698589i \(0.246188\pi\)
\(410\) 14.6969 + 8.48528i 0.725830 + 0.419058i
\(411\) 0 0
\(412\) 2.00000 + 3.46410i 0.0985329 + 0.170664i
\(413\) 27.7128 1.36366
\(414\) 0 0
\(415\) 19.5959i 0.961926i
\(416\) 22.0454 12.7279i 1.08087 0.624038i
\(417\) 0 0
\(418\) −1.09188 42.1996i −0.0534057 2.06405i
\(419\) 9.79796 + 5.65685i 0.478662 + 0.276355i 0.719859 0.694121i \(-0.244207\pi\)
−0.241197 + 0.970476i \(0.577540\pi\)
\(420\) 0 0
\(421\) −4.00000 6.92820i −0.194948 0.337660i 0.751935 0.659237i \(-0.229121\pi\)
−0.946883 + 0.321577i \(0.895787\pi\)
\(422\) 21.2132i 1.03264i
\(423\) 0 0
\(424\) 17.1464i 0.832704i
\(425\) 0 0
\(426\) 0 0
\(427\) −6.00000 + 10.3923i −0.290360 + 0.502919i
\(428\) 0 0
\(429\) 0 0
\(430\) −3.00000 5.19615i −0.144673 0.250581i
\(431\) −10.3923 −0.500580 −0.250290 0.968171i \(-0.580526\pi\)
−0.250290 + 0.968171i \(0.580526\pi\)
\(432\) 0 0
\(433\) −16.0000 −0.768911 −0.384455 0.923144i \(-0.625611\pi\)
−0.384455 + 0.923144i \(0.625611\pi\)
\(434\) 14.6969 8.48528i 0.705476 0.407307i
\(435\) 0 0
\(436\) −12.7279 7.34847i −0.609557 0.351928i
\(437\) 10.3923 18.0000i 0.497131 0.861057i
\(438\) 0 0
\(439\) 2.12132 1.22474i 0.101245 0.0584539i −0.448523 0.893772i \(-0.648050\pi\)
0.549768 + 0.835318i \(0.314716\pi\)
\(440\) −6.92820 + 4.24264i −0.330289 + 0.202260i
\(441\) 0 0
\(442\) 0 0
\(443\) 19.5959 11.3137i 0.931030 0.537531i 0.0438929 0.999036i \(-0.486024\pi\)
0.887137 + 0.461506i \(0.152691\pi\)
\(444\) 0 0
\(445\) −5.00000 + 8.66025i −0.237023 + 0.410535i
\(446\) −13.8564 + 24.0000i −0.656120 + 1.13643i
\(447\) 0 0
\(448\) 2.12132 1.22474i 0.100223 0.0578638i
\(449\) 9.89949i 0.467186i 0.972334 + 0.233593i \(0.0750483\pi\)
−0.972334 + 0.233593i \(0.924952\pi\)
\(450\) 0 0
\(451\) 12.0000 + 19.5959i 0.565058 + 0.922736i
\(452\) 1.22474 0.707107i 0.0576072 0.0332595i
\(453\) 0 0
\(454\) −24.0000 + 41.5692i −1.12638 + 1.95094i
\(455\) 14.6969 + 8.48528i 0.689003 + 0.397796i
\(456\) 0 0
\(457\) 8.48528 4.89898i 0.396925 0.229165i −0.288231 0.957561i \(-0.593067\pi\)
0.685156 + 0.728396i \(0.259734\pi\)
\(458\) 17.3205 0.809334
\(459\) 0 0
\(460\) 4.00000 0.186501
\(461\) 3.46410 + 6.00000i 0.161339 + 0.279448i 0.935349 0.353726i \(-0.115085\pi\)
−0.774010 + 0.633173i \(0.781752\pi\)
\(462\) 0 0
\(463\) 14.0000 24.2487i 0.650635 1.12693i −0.332334 0.943162i \(-0.607836\pi\)
0.982969 0.183771i \(-0.0588306\pi\)
\(464\) −17.3205 + 30.0000i −0.804084 + 1.39272i
\(465\) 0 0
\(466\) −18.0000 31.1769i −0.833834 1.44424i
\(467\) 22.6274i 1.04707i 0.852004 + 0.523536i \(0.175387\pi\)
−0.852004 + 0.523536i \(0.824613\pi\)
\(468\) 0 0
\(469\) 9.79796i 0.452428i
\(470\) 3.46410 + 6.00000i 0.159787 + 0.276759i
\(471\) 0 0
\(472\) 16.9706 + 9.79796i 0.781133 + 0.450988i
\(473\) −0.210133 8.12132i −0.00966193 0.373419i
\(474\) 0 0
\(475\) −19.0919 + 11.0227i −0.875996 + 0.505756i
\(476\) 0 0
\(477\) 0 0
\(478\) −30.0000 −1.37217
\(479\) 19.0526 + 33.0000i 0.870534 + 1.50781i 0.861446 + 0.507850i \(0.169560\pi\)
0.00908799 + 0.999959i \(0.497107\pi\)
\(480\) 0 0
\(481\) −33.9411 19.5959i −1.54758 0.893497i
\(482\) −29.3939 16.9706i −1.33885 0.772988i
\(483\) 0 0
\(484\) 10.9853 0.568852i 0.499331 0.0258569i
\(485\) 14.1421i 0.642161i
\(486\) 0 0
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) −7.34847 + 4.24264i −0.332650 + 0.192055i
\(489\) 0 0
\(490\) 2.12132 + 1.22474i 0.0958315 + 0.0553283i
\(491\) −13.8564 + 24.0000i −0.625331 + 1.08310i 0.363146 + 0.931732i \(0.381703\pi\)
−0.988477 + 0.151373i \(0.951631\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −62.3538 −2.80543
\(495\) 0 0
\(496\) 20.0000 0.898027
\(497\) −3.46410 6.00000i −0.155386 0.269137i
\(498\) 0 0
\(499\) −16.0000 + 27.7128i −0.716258 + 1.24060i 0.246214 + 0.969216i \(0.420813\pi\)
−0.962472 + 0.271380i \(0.912520\pi\)
\(500\) −9.79796 5.65685i −0.438178 0.252982i
\(501\) 0 0
\(502\) −8.48528 + 4.89898i −0.378717 + 0.218652i
\(503\) −31.1769 −1.39011 −0.695055 0.718957i \(-0.744620\pi\)
−0.695055 + 0.718957i \(0.744620\pi\)
\(504\) 0 0
\(505\) 19.5959i 0.872007i
\(506\) 14.2767 + 7.75736i 0.634676 + 0.344857i
\(507\) 0 0
\(508\) 6.36396 + 3.67423i 0.282355 + 0.163018i
\(509\) 13.4722 + 7.77817i 0.597144 + 0.344762i 0.767917 0.640549i \(-0.221293\pi\)
−0.170773 + 0.985310i \(0.554626\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −8.66025 −0.382733
\(513\) 0 0
\(514\) 17.1464i 0.756297i
\(515\) −4.89898 + 2.82843i −0.215875 + 0.124635i
\(516\) 0 0
\(517\) 0.242641 + 9.37769i 0.0106713 + 0.412430i
\(518\) 29.3939 + 16.9706i 1.29149 + 0.745644i
\(519\) 0 0
\(520\) 6.00000 + 10.3923i 0.263117 + 0.455733i
\(521\) 15.5563i 0.681536i −0.940147 0.340768i \(-0.889313\pi\)
0.940147 0.340768i \(-0.110687\pi\)
\(522\) 0 0
\(523\) 22.0454i 0.963978i −0.876177 0.481989i \(-0.839914\pi\)
0.876177 0.481989i \(-0.160086\pi\)
\(524\) 1.73205 + 3.00000i 0.0756650 + 0.131056i
\(525\) 0 0
\(526\) 3.00000 5.19615i 0.130806 0.226563i
\(527\) 0 0
\(528\) 0 0
\(529\) −7.50000 12.9904i −0.326087 0.564799i
\(530\) 24.2487 1.05330
\(531\) 0 0
\(532\) 18.0000 0.780399
\(533\) 29.3939 16.9706i 1.27319 0.735077i
\(534\) 0 0
\(535\) 0 0
\(536\) 3.46410 6.00000i 0.149626 0.259161i
\(537\) 0 0
\(538\) 23.3345 13.4722i 1.00602 0.580828i
\(539\) 1.73205 + 2.82843i 0.0746047 + 0.121829i
\(540\) 0 0
\(541\) 14.6969i 0.631871i −0.948781 0.315935i \(-0.897682\pi\)
0.948781 0.315935i \(-0.102318\pi\)
\(542\) −11.0227 + 6.36396i −0.473466 + 0.273356i
\(543\) 0 0
\(544\) 0 0
\(545\) 10.3923 18.0000i 0.445157 0.771035i
\(546\) 0 0
\(547\) 27.5772 15.9217i 1.17911 0.680762i 0.223305 0.974749i \(-0.428315\pi\)
0.955810 + 0.293987i \(0.0949821\pi\)
\(548\) 15.5563i 0.664534i
\(549\) 0 0
\(550\) −9.00000 14.6969i −0.383761 0.626680i
\(551\) 44.0908 25.4558i 1.87833 1.08446i
\(552\) 0 0
\(553\) −15.0000 + 25.9808i −0.637865 + 1.10481i
\(554\) 36.7423 + 21.2132i 1.56103 + 0.901263i
\(555\) 0 0
\(556\) −2.12132 + 1.22474i −0.0899640 + 0.0519408i
\(557\) 20.7846 0.880672 0.440336 0.897833i \(-0.354859\pi\)
0.440336 + 0.897833i \(0.354859\pi\)
\(558\) 0 0
\(559\) −12.0000 −0.507546
\(560\) −8.66025 15.0000i −0.365963 0.633866i
\(561\) 0 0
\(562\) 12.0000 20.7846i 0.506189 0.876746i
\(563\) −8.66025 + 15.0000i −0.364986 + 0.632175i −0.988774 0.149419i \(-0.952260\pi\)
0.623788 + 0.781594i \(0.285593\pi\)
\(564\) 0 0
\(565\) 1.00000 + 1.73205i 0.0420703 + 0.0728679i
\(566\) 4.24264i 0.178331i
\(567\) 0 0
\(568\) 4.89898i 0.205557i
\(569\) −6.92820 12.0000i −0.290445 0.503066i 0.683470 0.729979i \(-0.260470\pi\)
−0.973915 + 0.226913i \(0.927137\pi\)
\(570\) 0 0
\(571\) 2.12132 + 1.22474i 0.0887745 + 0.0512540i 0.543730 0.839260i \(-0.317012\pi\)
−0.454956 + 0.890514i \(0.650345\pi\)
\(572\) −0.420266 16.2426i −0.0175722 0.679139i
\(573\) 0 0
\(574\) −25.4558 + 14.6969i −1.06251 + 0.613438i
\(575\) 8.48528i 0.353861i
\(576\) 0 0
\(577\) −10.0000 −0.416305 −0.208153 0.978096i \(-0.566745\pi\)
−0.208153 + 0.978096i \(0.566745\pi\)
\(578\) −14.7224 25.5000i −0.612372 1.06066i
\(579\) 0 0
\(580\) 8.48528 + 4.89898i 0.352332 + 0.203419i
\(581\) −29.3939 16.9706i −1.21946 0.704058i
\(582\) 0 0
\(583\) 28.8492 + 15.6755i 1.19481 + 0.649213i
\(584\) 0 0
\(585\) 0 0
\(586\) −12.0000 −0.495715
\(587\) −24.4949 + 14.1421i −1.01101 + 0.583708i −0.911488 0.411327i \(-0.865066\pi\)
−0.0995246 + 0.995035i \(0.531732\pi\)
\(588\) 0 0
\(589\) −25.4558 14.6969i −1.04889 0.605577i
\(590\) 13.8564 24.0000i 0.570459 0.988064i
\(591\) 0 0
\(592\) 20.0000 + 34.6410i 0.821995 + 1.42374i
\(593\) 41.5692 1.70704 0.853522 0.521057i \(-0.174462\pi\)
0.853522 + 0.521057i \(0.174462\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.92820 + 12.0000i 0.283790 + 0.491539i
\(597\) 0 0
\(598\) 12.0000 20.7846i 0.490716 0.849946i
\(599\) 2.44949 + 1.41421i 0.100083 + 0.0577832i 0.549206 0.835687i \(-0.314930\pi\)
−0.449123 + 0.893470i \(0.648263\pi\)
\(600\) 0 0
\(601\) −16.9706 + 9.79796i −0.692244 + 0.399667i −0.804452 0.594018i \(-0.797541\pi\)
0.112208 + 0.993685i \(0.464208\pi\)
\(602\) 10.3923 0.423559
\(603\) 0 0
\(604\) 2.44949i 0.0996683i
\(605\) 0.804479 + 15.5355i 0.0327067 + 0.631609i
\(606\) 0 0
\(607\) −10.6066 6.12372i −0.430509 0.248554i 0.269055 0.963125i \(-0.413289\pi\)
−0.699563 + 0.714571i \(0.746622\pi\)
\(608\) 33.0681 + 19.0919i 1.34109 + 0.774278i
\(609\) 0 0
\(610\) 6.00000 + 10.3923i 0.242933 + 0.420772i
\(611\) 13.8564 0.560570
\(612\) 0 0
\(613\) 14.6969i 0.593604i 0.954939 + 0.296802i \(0.0959201\pi\)
−0.954939 + 0.296802i \(0.904080\pi\)
\(614\) 11.0227 6.36396i 0.444840 0.256829i
\(615\) 0 0
\(616\) −0.363961 14.0665i −0.0146644 0.566757i
\(617\) −23.2702 13.4350i −0.936821 0.540874i −0.0478587 0.998854i \(-0.515240\pi\)
−0.888962 + 0.457980i \(0.848573\pi\)
\(618\) 0 0
\(619\) 14.0000 + 24.2487i 0.562708 + 0.974638i 0.997259 + 0.0739910i \(0.0235736\pi\)
−0.434551 + 0.900647i \(0.643093\pi\)
\(620\) 5.65685i 0.227185i
\(621\) 0 0
\(622\) 24.4949i 0.982156i
\(623\) −8.66025 15.0000i −0.346966 0.600962i
\(624\) 0 0
\(625\) 0.500000 0.866025i 0.0200000 0.0346410i
\(626\) −13.8564 + 24.0000i −0.553813 + 0.959233i
\(627\) 0 0
\(628\) −7.00000 12.1244i −0.279330 0.483814i
\(629\) 0 0
\(630\) 0 0
\(631\) 44.0000 1.75161 0.875806 0.482663i \(-0.160330\pi\)
0.875806 + 0.482663i \(0.160330\pi\)
\(632\) −18.3712 + 10.6066i −0.730766 + 0.421908i
\(633\) 0 0
\(634\) 27.5772 + 15.9217i 1.09523 + 0.632331i
\(635\) −5.19615 + 9.00000i −0.206203 + 0.357154i
\(636\) 0 0
\(637\) 4.24264 2.44949i 0.168100 0.0970523i
\(638\) 20.7846 + 33.9411i 0.822871 + 1.34374i
\(639\) 0 0
\(640\) 17.1464i 0.677772i
\(641\) −28.1691 + 16.2635i −1.11261 + 0.642368i −0.939505 0.342535i \(-0.888715\pi\)
−0.173109 + 0.984903i \(0.555381\pi\)
\(642\) 0 0
\(643\) 14.0000 24.2487i 0.552106 0.956276i −0.446016 0.895025i \(-0.647158\pi\)
0.998122 0.0612510i \(-0.0195090\pi\)
\(644\) −3.46410 + 6.00000i −0.136505 + 0.236433i
\(645\) 0 0
\(646\) 0 0
\(647\) 19.7990i 0.778379i −0.921158 0.389189i \(-0.872755\pi\)
0.921158 0.389189i \(-0.127245\pi\)
\(648\) 0 0
\(649\) 32.0000 19.5959i 1.25611 0.769207i
\(650\) −22.0454 + 12.7279i −0.864692 + 0.499230i
\(651\) 0 0
\(652\) −4.00000 + 6.92820i −0.156652 + 0.271329i
\(653\) −23.2702 13.4350i −0.910631 0.525753i −0.0299972 0.999550i \(-0.509550\pi\)
−0.880634 + 0.473797i \(0.842883\pi\)
\(654\) 0 0
\(655\) −4.24264 + 2.44949i −0.165774 + 0.0957095i
\(656\) −34.6410 −1.35250
\(657\) 0 0
\(658\) −12.0000 −0.467809
\(659\) 19.0526 + 33.0000i 0.742182 + 1.28550i 0.951500 + 0.307650i \(0.0995425\pi\)
−0.209317 + 0.977848i \(0.567124\pi\)
\(660\) 0 0
\(661\) 11.0000 19.0526i 0.427850 0.741059i −0.568831 0.822454i \(-0.692604\pi\)
0.996682 + 0.0813955i \(0.0259377\pi\)
\(662\) 6.92820 12.0000i 0.269272 0.466393i
\(663\) 0 0
\(664\) −12.0000 20.7846i −0.465690 0.806599i
\(665\) 25.4558i 0.987135i
\(666\) 0 0
\(667\) 19.5959i 0.758757i
\(668\) 1.73205 + 3.00000i 0.0670151 + 0.116073i
\(669\) 0 0
\(670\) −8.48528 4.89898i −0.327815 0.189264i
\(671\) 0.420266 + 16.2426i 0.0162242 + 0.627040i
\(672\) 0 0
\(673\) 33.9411 19.5959i 1.30833 0.755367i 0.326516 0.945192i \(-0.394125\pi\)
0.981818 + 0.189824i \(0.0607919\pi\)
\(674\) 16.9706i 0.653682i
\(675\) 0 0
\(676\) −11.0000 −0.423077
\(677\) 13.8564 + 24.0000i 0.532545 + 0.922395i 0.999278 + 0.0379966i \(0.0120976\pi\)
−0.466733 + 0.884398i \(0.654569\pi\)
\(678\) 0 0
\(679\) 21.2132 + 12.2474i 0.814088 + 0.470014i
\(680\) 0 0
\(681\) 0 0
\(682\) 10.9706 20.1903i 0.420085 0.773125i
\(683\) 28.2843i 1.08227i −0.840937 0.541134i \(-0.817995\pi\)
0.840937 0.541134i \(-0.182005\pi\)
\(684\) 0 0
\(685\) 22.0000 0.840577
\(686\) −29.3939 + 16.9706i −1.12226 + 0.647939i
\(687\) 0 0
\(688\) 10.6066 + 6.12372i 0.404373 + 0.233465i
\(689\) 24.2487 42.0000i 0.923802 1.60007i
\(690\) 0 0
\(691\) −22.0000 38.1051i −0.836919 1.44959i −0.892458 0.451130i \(-0.851021\pi\)
0.0555386 0.998457i \(-0.482312\pi\)
\(692\) −6.92820 −0.263371
\(693\) 0 0
\(694\) 24.0000 0.911028
\(695\) −1.73205 3.00000i −0.0657004 0.113796i
\(696\) 0 0
\(697\) 0 0
\(698\) −7.34847 4.24264i −0.278144 0.160586i
\(699\) 0 0
\(700\) 6.36396 3.67423i 0.240535 0.138873i
\(701\) −20.7846 −0.785024 −0.392512 0.919747i \(-0.628394\pi\)
−0.392512 + 0.919747i \(0.628394\pi\)
\(702\) 0 0
\(703\) 58.7878i 2.21722i
\(704\) 1.58346 2.91421i 0.0596791 0.109834i
\(705\) 0 0
\(706\) −48.7904 28.1691i −1.83625 1.06016i
\(707\) −29.3939 16.9706i −1.10547 0.638244i
\(708\) 0 0
\(709\) 5.00000 + 8.66025i 0.187779 + 0.325243i 0.944509 0.328484i \(-0.106538\pi\)
−0.756730 + 0.653727i \(0.773204\pi\)
\(710\) −6.92820 −0.260011
\(711\) 0 0
\(712\) 12.2474i 0.458993i
\(713\) 9.79796 5.65685i 0.366936 0.211851i
\(714\) 0 0
\(715\) 22.9706 0.594346i 0.859050 0.0222273i
\(716\) −19.5959 11.3137i −0.732334 0.422813i
\(717\) 0 0
\(718\) 0 0
\(719\) 2.82843i 0.105483i −0.998608 0.0527413i \(-0.983204\pi\)
0.998608 0.0527413i \(-0.0167959\pi\)
\(720\) 0 0
\(721\) 9.79796i 0.364895i
\(722\) −30.3109 52.5000i −1.12805 1.95385i
\(723\) 0 0
\(724\) −4.00000 + 6.92820i −0.148659 + 0.257485i
\(725\) 10.3923 18.0000i 0.385961 0.668503i
\(726\) 0 0
\(727\) −4.00000 6.92820i −0.148352 0.256953i 0.782267 0.622944i \(-0.214063\pi\)
−0.930618 + 0.365991i \(0.880730\pi\)
\(728\) −20.7846 −0.770329
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −29.6985 17.1464i −1.09694 0.633318i −0.161523 0.986869i \(-0.551641\pi\)
−0.935415 + 0.353551i \(0.884974\pi\)
\(734\) 6.92820 12.0000i 0.255725 0.442928i
\(735\) 0 0
\(736\) −12.7279 + 7.34847i −0.469157 + 0.270868i
\(737\) −6.92820 11.3137i −0.255204 0.416746i
\(738\) 0 0
\(739\) 7.34847i 0.270318i 0.990824 + 0.135159i \(0.0431545\pi\)
−0.990824 + 0.135159i \(0.956846\pi\)
\(740\) 9.79796 5.65685i 0.360180 0.207950i
\(741\) 0 0
\(742\) −21.0000 + 36.3731i −0.770934 + 1.33530i
\(743\) −13.8564 + 24.0000i −0.508342 + 0.880475i 0.491611 + 0.870815i \(0.336408\pi\)
−0.999953 + 0.00965974i \(0.996925\pi\)
\(744\) 0 0
\(745\) −16.9706 + 9.79796i −0.621753 + 0.358969i
\(746\) 42.4264i 1.55334i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 2.00000 3.46410i 0.0729810 0.126407i −0.827225 0.561870i \(-0.810082\pi\)
0.900207 + 0.435463i \(0.143415\pi\)
\(752\) −12.2474 7.07107i −0.446619 0.257855i
\(753\) 0 0
\(754\) 50.9117 29.3939i 1.85409 1.07046i
\(755\) −3.46410 −0.126072
\(756\) 0 0
\(757\) 8.00000 0.290765 0.145382 0.989376i \(-0.453559\pi\)
0.145382 + 0.989376i \(0.453559\pi\)
\(758\) −13.8564 24.0000i −0.503287 0.871719i
\(759\) 0 0
\(760\) −9.00000 + 15.5885i −0.326464 + 0.565453i
\(761\) 6.92820 12.0000i 0.251147 0.435000i −0.712695 0.701474i \(-0.752526\pi\)
0.963842 + 0.266475i \(0.0858589\pi\)
\(762\) 0 0
\(763\) 18.0000 + 31.1769i 0.651644 + 1.12868i
\(764\) 2.82843i 0.102329i
\(765\) 0 0
\(766\) 63.6867i 2.30110i
\(767\) −27.7128 48.0000i −1.00065 1.73318i
\(768\) 0 0
\(769\) −16.9706 9.79796i −0.611974 0.353323i 0.161764 0.986830i \(-0.448282\pi\)
−0.773738 + 0.633506i \(0.781615\pi\)
\(770\) −19.8931 + 0.514719i −0.716897 + 0.0185492i
\(771\) 0 0
\(772\) −8.48528 + 4.89898i −0.305392 + 0.176318i
\(773\) 32.5269i 1.16991i −0.811065 0.584956i \(-0.801112\pi\)
0.811065 0.584956i \(-0.198888\pi\)
\(774\) 0 0
\(775\) −12.0000 −0.431053
\(776\) 8.66025 + 15.0000i 0.310885 + 0.538469i
\(777\) 0 0
\(778\) 14.8492 + 8.57321i 0.532371 + 0.307365i
\(779\) 44.0908 + 25.4558i 1.57972 + 0.912050i
\(780\) 0 0
\(781\) −8.24264 4.47871i −0.294945 0.160261i
\(782\) 0 0
\(783\) 0 0
\(784\) −5.00000 −0.178571
\(785\) 17.1464 9.89949i 0.611982 0.353328i
\(786\) 0 0
\(787\) −10.6066 6.12372i −0.378085 0.218287i 0.298900 0.954284i \(-0.403380\pi\)
−0.676985 + 0.735997i \(0.736714\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 15.0000 + 25.9808i 0.533676 + 0.924354i
\(791\) −3.46410 −0.123169
\(792\) 0 0
\(793\) 24.0000 0.852265
\(794\) 6.92820 + 12.0000i 0.245873 + 0.425864i
\(795\) 0 0
\(796\) −4.00000 + 6.92820i −0.141776 + 0.245564i
\(797\) −23.2702 13.4350i −0.824271 0.475893i 0.0276160 0.999619i \(-0.491208\pi\)
−0.851887 + 0.523725i \(0.824542\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 15.5885 0.551135
\(801\) 0 0
\(802\) 2.44949i 0.0864945i
\(803\) 0 0
\(804\) 0 0
\(805\) −8.48528 4.89898i −0.299067 0.172666i
\(806\) −29.3939 16.9706i −1.03536 0.597763i
\(807\) 0 0
\(808\) −12.0000 20.7846i −0.422159 0.731200i
\(809\) 20.7846 0.730748 0.365374 0.930861i \(-0.380941\pi\)
0.365374 + 0.930861i \(0.380941\pi\)
\(810\) 0 0
\(811\) 22.0454i 0.774119i −0.922055 0.387059i \(-0.873491\pi\)
0.922055 0.387059i \(-0.126509\pi\)
\(812\) −14.6969 + 8.48528i −0.515761 + 0.297775i
\(813\) 0 0
\(814\) 45.9411 1.18869i 1.61024 0.0416636i
\(815\) −9.79796 5.65685i −0.343208 0.198151i
\(816\) 0 0
\(817\) −9.00000 15.5885i −0.314870 0.545371i
\(818\) 67.8823i 2.37345i
\(819\) 0 0
\(820\) 9.79796i 0.342160i
\(821\) −6.92820 12.0000i −0.241796 0.418803i 0.719430 0.694565i \(-0.244403\pi\)
−0.961226 + 0.275762i \(0.911070\pi\)
\(822\) 0 0
\(823\) −4.00000 + 6.92820i −0.139431 + 0.241502i −0.927281 0.374365i \(-0.877861\pi\)
0.787850 + 0.615867i \(0.211194\pi\)
\(824\) 3.46410 6.00000i 0.120678 0.209020i
\(825\) 0 0
\(826\) 24.0000 + 41.5692i 0.835067 + 1.44638i
\(827\) −41.5692 −1.44550 −0.722752 0.691108i \(-0.757123\pi\)
−0.722752 + 0.691108i \(0.757123\pi\)
\(828\) 0 0
\(829\) −46.0000 −1.59765 −0.798823 0.601566i \(-0.794544\pi\)
−0.798823 + 0.601566i \(0.794544\pi\)
\(830\) −29.3939 + 16.9706i −1.02028 + 0.589057i
\(831\) 0 0
\(832\) −4.24264 2.44949i −0.147087 0.0849208i
\(833\) 0 0
\(834\) 0 0
\(835\) −4.24264 + 2.44949i −0.146823 + 0.0847681i
\(836\) 20.7846 12.7279i 0.718851 0.440204i
\(837\) 0 0
\(838\) 19.5959i 0.676930i
\(839\) −17.1464 + 9.89949i −0.591960 + 0.341769i −0.765872 0.642993i \(-0.777693\pi\)
0.173912 + 0.984761i \(0.444359\pi\)
\(840\) 0 0
\(841\) −9.50000 + 16.4545i −0.327586 + 0.567396i
\(842\) 6.92820 12.0000i 0.238762 0.413547i
\(843\) 0 0
\(844\) 10.6066 6.12372i 0.365094 0.210787i
\(845\) 15.5563i 0.535155i
\(846\) 0 0
\(847\) −24.0000 12.2474i −0.824650 0.420827i
\(848\) −42.8661 + 24.7487i −1.47203 + 0.849875i
\(849\) 0 0
\(850\) 0 0
\(851\) 19.5959 + 11.3137i 0.671739 + 0.387829i
\(852\) 0 0
\(853\) −29.6985 + 17.1464i −1.01686 + 0.587083i −0.913192 0.407530i \(-0.866390\pi\)
−0.103665 + 0.994612i \(0.533057\pi\)
\(854\) −20.7846 −0.711235
\(855\) 0 0
\(856\) 0 0
\(857\) −17.3205 30.0000i −0.591657 1.02478i −0.994009 0.109295i \(-0.965141\pi\)
0.402352 0.915485i \(-0.368193\pi\)
\(858\) 0 0
\(859\) 20.0000 34.6410i 0.682391 1.18194i −0.291858 0.956462i \(-0.594273\pi\)
0.974249 0.225475i \(-0.0723932\pi\)
\(860\) 1.73205 3.00000i 0.0590624 0.102299i
\(861\) 0 0
\(862\) −9.00000 15.5885i −0.306541 0.530945i
\(863\) 19.7990i 0.673965i −0.941511 0.336983i \(-0.890594\pi\)
0.941511 0.336983i \(-0.109406\pi\)
\(864\) 0 0
\(865\) 9.79796i 0.333141i
\(866\) −13.8564 24.0000i −0.470860 0.815553i
\(867\) 0 0
\(868\) 8.48528 + 4.89898i 0.288009 + 0.166282i
\(869\) 1.05066 + 40.6066i 0.0356414 + 1.37748i
\(870\) 0 0
\(871\) −16.9706 + 9.79796i −0.575026 + 0.331991i
\(872\) 25.4558i 0.862044i
\(873\) 0 0
\(874\) 36.0000 1.21772
\(875\) 13.8564 + 24.0000i 0.468432 + 0.811348i
\(876\) 0 0
\(877\) 46.6690 + 26.9444i 1.57590 + 0.909847i 0.995422 + 0.0955723i \(0.0304681\pi\)
0.580479 + 0.814275i \(0.302865\pi\)
\(878\) 3.67423 + 2.12132i 0.123999 + 0.0715911i
\(879\) 0 0
\(880\) −20.6066 11.1968i −0.694648 0.377444i
\(881\) 9.89949i 0.333522i 0.985997 + 0.166761i \(0.0533309\pi\)
−0.985997 + 0.166761i \(0.946669\pi\)
\(882\) 0 0
\(883\) −28.0000 −0.942275 −0.471138 0.882060i \(-0.656156\pi\)
−0.471138 + 0.882060i \(0.656156\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 33.9411 + 19.5959i 1.14027 + 0.658338i
\(887\) 27.7128 48.0000i 0.930505 1.61168i 0.148046 0.988980i \(-0.452702\pi\)
0.782459 0.622702i \(-0.213965\pi\)
\(888\) 0 0
\(889\) −9.00000 15.5885i −0.301850 0.522820i
\(890\) −17.3205 −0.580585
\(891\) 0 0
\(892\) −16.0000 −0.535720
\(893\) 10.3923 + 18.0000i 0.347765 + 0.602347i
\(894\) 0 0
\(895\) 16.0000 27.7128i 0.534821 0.926337i
\(896\) 25.7196 + 14.8492i 0.859233 + 0.496078i
\(897\) 0 0
\(898\) −14.8492 + 8.57321i −0.495526 + 0.286092i
\(899\) 27.7128 0.924274
\(900\) 0 0
\(901\) 0 0
\(902\) −19.0016 + 34.9706i −0.632683 + 1.16439i
\(903\) 0 0
\(904\) −2.12132 1.22474i −0.0705541 0.0407344i
\(905\) −9.79796 5.65685i −0.325695 0.188040i
\(906\) 0 0
\(907\) 26.0000 + 45.0333i 0.863316 + 1.49531i 0.868710 + 0.495321i \(0.164950\pi\)
−0.00539395 + 0.999985i \(0.501717\pi\)
\(908\) −27.7128 −0.919682
\(909\) 0 0
\(910\) 29.3939i 0.974398i
\(911\) −46.5403 + 26.8701i −1.54195 + 0.890245i −0.543233 + 0.839582i \(0.682800\pi\)
−0.998716 + 0.0506629i \(0.983867\pi\)
\(912\) 0 0
\(913\) −45.9411 + 1.18869i −1.52043 + 0.0393400i
\(914\) 14.6969 + 8.48528i 0.486132 + 0.280668i
\(915\) 0 0
\(916\) 5.00000 + 8.66025i 0.165205 + 0.286143i
\(917\) 8.48528i 0.280209i
\(918\) 0 0
\(919\) 36.7423i 1.21202i 0.795458 + 0.606009i \(0.207230\pi\)
−0.795458 + 0.606009i \(0.792770\pi\)
\(920\) −3.46410 6.00000i −0.114208 0.197814i
\(921\) 0 0
\(922\) −6.00000 + 10.3923i −0.197599 + 0.342252i
\(923\) −6.92820 + 12.0000i −0.228045 + 0.394985i
\(924\) 0 0
\(925\) −12.0000 20.7846i −0.394558 0.683394i
\(926\) 48.4974 1.59372
\(927\) 0 0
\(928\) −36.0000 −1.18176
\(929\) 8.57321 4.94975i 0.281278 0.162396i −0.352724 0.935727i \(-0.614744\pi\)
0.634002 + 0.773332i \(0.281411\pi\)
\(930\) 0 0
\(931\) 6.36396 + 3.67423i 0.208570 + 0.120418i
\(932\) 10.3923 18.0000i 0.340411 0.589610i
\(933\) 0 0
\(934\) −33.9411 + 19.5959i −1.11059 + 0.641198i
\(935\) 0 0
\(936\) 0 0
\(937\) 29.3939i 0.960256i 0.877198 + 0.480128i \(0.159410\pi\)
−0.877198 + 0.480128i \(0.840590\pi\)
\(938\) 14.6969 8.48528i 0.479872 0.277054i
\(939\) 0 0
\(940\) −2.00000 + 3.46410i −0.0652328 + 0.112987i
\(941\) −13.8564 + 24.0000i −0.451706 + 0.782378i −0.998492 0.0548946i \(-0.982518\pi\)
0.546786 + 0.837272i \(0.315851\pi\)
\(942\) 0 0
\(943\) −16.9706 + 9.79796i −0.552638 + 0.319065i
\(944\) 56.5685i 1.84115i
\(945\) 0 0
\(946\) 12.0000 7.34847i 0.390154 0.238919i
\(947\) 19.5959 11.3137i 0.636782 0.367646i −0.146592 0.989197i \(-0.546830\pi\)
0.783374 + 0.621551i \(0.213497\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −33.0681 19.0919i −1.07287 0.619422i
\(951\) 0 0
\(952\) 0 0
\(953\) −20.7846 −0.673280 −0.336640 0.941634i \(-0.609290\pi\)
−0.336640 + 0.941634i \(0.609290\pi\)
\(954\) 0 0
\(955\) 4.00000 0.129437
\(956\) −8.66025 15.0000i −0.280093 0.485135i
\(957\) 0 0
\(958\) −33.0000 + 57.1577i −1.06618 + 1.84668i
\(959\) −19.0526 + 33.0000i −0.615239 + 1.06563i
\(960\) 0 0
\(961\) 7.50000 + 12.9904i 0.241935 + 0.419045i
\(962\) 67.8823i 2.18861i
\(963\) 0 0
\(964\) 19.5959i 0.631142i
\(965\) −6.92820 12.0000i −0.223027 0.386294i
\(966\) 0 0
\(967\) −36.0624 20.8207i −1.15969 0.669547i −0.208460 0.978031i \(-0.566845\pi\)
−0.951230 + 0.308483i \(0.900179\pi\)
\(968\) −10.3668 15.9853i −0.333202 0.513786i
\(969\) 0 0
\(970\) 21.2132 12.2474i 0.681115 0.393242i
\(971\) 56.5685i 1.81537i 0.419651 + 0.907685i \(0.362152\pi\)
−0.419651 + 0.907685i \(0.637848\pi\)
\(972\) 0 0
\(973\) 6.00000 0.192351
\(974\) 6.92820 + 12.0000i 0.221994 + 0.384505i
\(975\) 0 0
\(976\) −21.2132 12.2474i −0.679018 0.392031i
\(977\) −30.6186 17.6777i −0.979576 0.565559i −0.0774342 0.996997i \(-0.524673\pi\)
−0.902142 + 0.431439i \(0.858006\pi\)
\(978\) 0 0
\(979\) −20.6066 11.1968i −0.658590 0.357851i
\(980\) 1.41421i 0.0451754i
\(981\) 0 0
\(982\) −48.0000 −1.53174
\(983\) 41.6413 24.0416i 1.32815 0.766809i 0.343138 0.939285i \(-0.388510\pi\)
0.985014 + 0.172476i \(0.0551767\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −18.0000 31.1769i −0.572656 0.991870i
\(989\) 6.92820 0.220304
\(990\) 0 0
\(991\) −52.0000 −1.65183 −0.825917 0.563791i \(-0.809342\pi\)
−0.825917 + 0.563791i \(0.809342\pi\)
\(992\) 10.3923 + 18.0000i 0.329956 + 0.571501i
\(993\) 0 0
\(994\) 6.00000 10.3923i 0.190308 0.329624i
\(995\) −9.79796 5.65685i −0.310616 0.179334i
\(996\) 0 0
\(997\) 21.2132 12.2474i 0.671829 0.387881i −0.124940 0.992164i \(-0.539874\pi\)
0.796769 + 0.604284i \(0.206541\pi\)
\(998\) −55.4256 −1.75447
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.g.c.296.3 8
3.2 odd 2 inner 891.2.g.c.296.2 8
9.2 odd 6 inner 891.2.g.c.593.1 8
9.4 even 3 99.2.d.a.98.2 yes 4
9.5 odd 6 99.2.d.a.98.3 yes 4
9.7 even 3 inner 891.2.g.c.593.4 8
11.10 odd 2 inner 891.2.g.c.296.1 8
33.32 even 2 inner 891.2.g.c.296.4 8
36.23 even 6 1584.2.b.e.593.1 4
36.31 odd 6 1584.2.b.e.593.3 4
45.4 even 6 2475.2.f.e.2276.3 4
45.13 odd 12 2475.2.d.a.2474.8 8
45.14 odd 6 2475.2.f.e.2276.1 4
45.22 odd 12 2475.2.d.a.2474.2 8
45.23 even 12 2475.2.d.a.2474.3 8
45.32 even 12 2475.2.d.a.2474.5 8
72.5 odd 6 6336.2.b.s.2177.4 4
72.13 even 6 6336.2.b.s.2177.2 4
72.59 even 6 6336.2.b.t.2177.3 4
72.67 odd 6 6336.2.b.t.2177.1 4
99.32 even 6 99.2.d.a.98.1 4
99.43 odd 6 inner 891.2.g.c.593.2 8
99.65 even 6 inner 891.2.g.c.593.3 8
99.76 odd 6 99.2.d.a.98.4 yes 4
396.131 odd 6 1584.2.b.e.593.2 4
396.175 even 6 1584.2.b.e.593.4 4
495.32 odd 12 2475.2.d.a.2474.4 8
495.274 odd 6 2475.2.f.e.2276.2 4
495.329 even 6 2475.2.f.e.2276.4 4
495.373 even 12 2475.2.d.a.2474.1 8
495.428 odd 12 2475.2.d.a.2474.6 8
495.472 even 12 2475.2.d.a.2474.7 8
792.131 odd 6 6336.2.b.t.2177.4 4
792.373 odd 6 6336.2.b.s.2177.1 4
792.571 even 6 6336.2.b.t.2177.2 4
792.725 even 6 6336.2.b.s.2177.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.d.a.98.1 4 99.32 even 6
99.2.d.a.98.2 yes 4 9.4 even 3
99.2.d.a.98.3 yes 4 9.5 odd 6
99.2.d.a.98.4 yes 4 99.76 odd 6
891.2.g.c.296.1 8 11.10 odd 2 inner
891.2.g.c.296.2 8 3.2 odd 2 inner
891.2.g.c.296.3 8 1.1 even 1 trivial
891.2.g.c.296.4 8 33.32 even 2 inner
891.2.g.c.593.1 8 9.2 odd 6 inner
891.2.g.c.593.2 8 99.43 odd 6 inner
891.2.g.c.593.3 8 99.65 even 6 inner
891.2.g.c.593.4 8 9.7 even 3 inner
1584.2.b.e.593.1 4 36.23 even 6
1584.2.b.e.593.2 4 396.131 odd 6
1584.2.b.e.593.3 4 36.31 odd 6
1584.2.b.e.593.4 4 396.175 even 6
2475.2.d.a.2474.1 8 495.373 even 12
2475.2.d.a.2474.2 8 45.22 odd 12
2475.2.d.a.2474.3 8 45.23 even 12
2475.2.d.a.2474.4 8 495.32 odd 12
2475.2.d.a.2474.5 8 45.32 even 12
2475.2.d.a.2474.6 8 495.428 odd 12
2475.2.d.a.2474.7 8 495.472 even 12
2475.2.d.a.2474.8 8 45.13 odd 12
2475.2.f.e.2276.1 4 45.14 odd 6
2475.2.f.e.2276.2 4 495.274 odd 6
2475.2.f.e.2276.3 4 45.4 even 6
2475.2.f.e.2276.4 4 495.329 even 6
6336.2.b.s.2177.1 4 792.373 odd 6
6336.2.b.s.2177.2 4 72.13 even 6
6336.2.b.s.2177.3 4 792.725 even 6
6336.2.b.s.2177.4 4 72.5 odd 6
6336.2.b.t.2177.1 4 72.67 odd 6
6336.2.b.t.2177.2 4 792.571 even 6
6336.2.b.t.2177.3 4 72.59 even 6
6336.2.b.t.2177.4 4 792.131 odd 6