Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [891,2,Mod(82,891)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(891, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("891.82");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 891 = 3^{4} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 891.f (of order \(5\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.11467082010\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{5})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
82.1 | −0.795783 | − | 2.44917i | 0 | −3.74712 | + | 2.72245i | −1.11871 | + | 3.44302i | 0 | −1.55240 | + | 1.12788i | 5.48285 | + | 3.98353i | 0 | 9.32280 | ||||||||
82.2 | −0.673315 | − | 2.07225i | 0 | −2.22283 | + | 1.61498i | −0.467719 | + | 1.43949i | 0 | −0.546559 | + | 0.397099i | 1.31779 | + | 0.957430i | 0 | 3.29790 | ||||||||
82.3 | −0.627954 | − | 1.93264i | 0 | −1.72275 | + | 1.25165i | 1.16487 | − | 3.58510i | 0 | −2.26910 | + | 1.64860i | 0.212803 | + | 0.154610i | 0 | −7.66020 | ||||||||
82.4 | −0.379278 | − | 1.16730i | 0 | 0.399302 | − | 0.290110i | 0.0225318 | − | 0.0693456i | 0 | 2.13821 | − | 1.55350i | −2.47602 | − | 1.79893i | 0 | −0.0894928 | ||||||||
82.5 | −0.143360 | − | 0.441217i | 0 | 1.44391 | − | 1.04906i | 0.808655 | − | 2.48878i | 0 | 1.43808 | − | 1.04482i | −1.42051 | − | 1.03206i | 0 | −1.21402 | ||||||||
82.6 | −0.120315 | − | 0.370293i | 0 | 1.49539 | − | 1.08647i | −0.272242 | + | 0.837875i | 0 | −3.75331 | + | 2.72694i | −1.21221 | − | 0.880722i | 0 | 0.343014 | ||||||||
82.7 | 0.120315 | + | 0.370293i | 0 | 1.49539 | − | 1.08647i | 0.272242 | − | 0.837875i | 0 | −3.75331 | + | 2.72694i | 1.21221 | + | 0.880722i | 0 | 0.343014 | ||||||||
82.8 | 0.143360 | + | 0.441217i | 0 | 1.44391 | − | 1.04906i | −0.808655 | + | 2.48878i | 0 | 1.43808 | − | 1.04482i | 1.42051 | + | 1.03206i | 0 | −1.21402 | ||||||||
82.9 | 0.379278 | + | 1.16730i | 0 | 0.399302 | − | 0.290110i | −0.0225318 | + | 0.0693456i | 0 | 2.13821 | − | 1.55350i | 2.47602 | + | 1.79893i | 0 | −0.0894928 | ||||||||
82.10 | 0.627954 | + | 1.93264i | 0 | −1.72275 | + | 1.25165i | −1.16487 | + | 3.58510i | 0 | −2.26910 | + | 1.64860i | −0.212803 | − | 0.154610i | 0 | −7.66020 | ||||||||
82.11 | 0.673315 | + | 2.07225i | 0 | −2.22283 | + | 1.61498i | 0.467719 | − | 1.43949i | 0 | −0.546559 | + | 0.397099i | −1.31779 | − | 0.957430i | 0 | 3.29790 | ||||||||
82.12 | 0.795783 | + | 2.44917i | 0 | −3.74712 | + | 2.72245i | 1.11871 | − | 3.44302i | 0 | −1.55240 | + | 1.12788i | −5.48285 | − | 3.98353i | 0 | 9.32280 | ||||||||
163.1 | −0.795783 | + | 2.44917i | 0 | −3.74712 | − | 2.72245i | −1.11871 | − | 3.44302i | 0 | −1.55240 | − | 1.12788i | 5.48285 | − | 3.98353i | 0 | 9.32280 | ||||||||
163.2 | −0.673315 | + | 2.07225i | 0 | −2.22283 | − | 1.61498i | −0.467719 | − | 1.43949i | 0 | −0.546559 | − | 0.397099i | 1.31779 | − | 0.957430i | 0 | 3.29790 | ||||||||
163.3 | −0.627954 | + | 1.93264i | 0 | −1.72275 | − | 1.25165i | 1.16487 | + | 3.58510i | 0 | −2.26910 | − | 1.64860i | 0.212803 | − | 0.154610i | 0 | −7.66020 | ||||||||
163.4 | −0.379278 | + | 1.16730i | 0 | 0.399302 | + | 0.290110i | 0.0225318 | + | 0.0693456i | 0 | 2.13821 | + | 1.55350i | −2.47602 | + | 1.79893i | 0 | −0.0894928 | ||||||||
163.5 | −0.143360 | + | 0.441217i | 0 | 1.44391 | + | 1.04906i | 0.808655 | + | 2.48878i | 0 | 1.43808 | + | 1.04482i | −1.42051 | + | 1.03206i | 0 | −1.21402 | ||||||||
163.6 | −0.120315 | + | 0.370293i | 0 | 1.49539 | + | 1.08647i | −0.272242 | − | 0.837875i | 0 | −3.75331 | − | 2.72694i | −1.21221 | + | 0.880722i | 0 | 0.343014 | ||||||||
163.7 | 0.120315 | − | 0.370293i | 0 | 1.49539 | + | 1.08647i | 0.272242 | + | 0.837875i | 0 | −3.75331 | − | 2.72694i | 1.21221 | − | 0.880722i | 0 | 0.343014 | ||||||||
163.8 | 0.143360 | − | 0.441217i | 0 | 1.44391 | + | 1.04906i | −0.808655 | − | 2.48878i | 0 | 1.43808 | + | 1.04482i | 1.42051 | − | 1.03206i | 0 | −1.21402 | ||||||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
11.c | even | 5 | 1 | inner |
33.h | odd | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 891.2.f.g | ✓ | 48 |
3.b | odd | 2 | 1 | inner | 891.2.f.g | ✓ | 48 |
9.c | even | 3 | 2 | 891.2.n.l | 96 | ||
9.d | odd | 6 | 2 | 891.2.n.l | 96 | ||
11.c | even | 5 | 1 | inner | 891.2.f.g | ✓ | 48 |
11.c | even | 5 | 1 | 9801.2.a.cr | 24 | ||
11.d | odd | 10 | 1 | 9801.2.a.cq | 24 | ||
33.f | even | 10 | 1 | 9801.2.a.cq | 24 | ||
33.h | odd | 10 | 1 | inner | 891.2.f.g | ✓ | 48 |
33.h | odd | 10 | 1 | 9801.2.a.cr | 24 | ||
99.m | even | 15 | 2 | 891.2.n.l | 96 | ||
99.n | odd | 30 | 2 | 891.2.n.l | 96 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
891.2.f.g | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
891.2.f.g | ✓ | 48 | 3.b | odd | 2 | 1 | inner |
891.2.f.g | ✓ | 48 | 11.c | even | 5 | 1 | inner |
891.2.f.g | ✓ | 48 | 33.h | odd | 10 | 1 | inner |
891.2.n.l | 96 | 9.c | even | 3 | 2 | ||
891.2.n.l | 96 | 9.d | odd | 6 | 2 | ||
891.2.n.l | 96 | 99.m | even | 15 | 2 | ||
891.2.n.l | 96 | 99.n | odd | 30 | 2 | ||
9801.2.a.cq | 24 | 11.d | odd | 10 | 1 | ||
9801.2.a.cq | 24 | 33.f | even | 10 | 1 | ||
9801.2.a.cr | 24 | 11.c | even | 5 | 1 | ||
9801.2.a.cr | 24 | 33.h | odd | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{48} + 16 T_{2}^{46} + 180 T_{2}^{44} + 1718 T_{2}^{42} + 14576 T_{2}^{40} + 96790 T_{2}^{38} + \cdots + 707281 \)
acting on \(S_{2}^{\mathrm{new}}(891, [\chi])\).