Properties

Label 891.2.f.f.82.9
Level $891$
Weight $2$
Character 891.82
Analytic conductor $7.115$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(82,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(9\) over \(\Q(\zeta_{5})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 82.9
Character \(\chi\) \(=\) 891.82
Dual form 891.2.f.f.163.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.719701 + 2.21501i) q^{2} +(-2.77028 + 2.01272i) q^{4} +(-0.0979645 + 0.301504i) q^{5} +(1.14758 - 0.833769i) q^{7} +(-2.68358 - 1.94973i) q^{8} -0.738340 q^{10} +(-3.24416 + 0.689532i) q^{11} +(1.29696 + 3.99162i) q^{13} +(2.67273 + 1.94185i) q^{14} +(0.271005 - 0.834068i) q^{16} +(-1.92957 + 5.93860i) q^{17} +(-2.50622 - 1.82087i) q^{19} +(-0.335455 - 1.03242i) q^{20} +(-3.86214 - 6.68959i) q^{22} -4.52050 q^{23} +(3.96378 + 2.87985i) q^{25} +(-7.90807 + 5.74555i) q^{26} +(-1.50098 + 4.61954i) q^{28} +(-2.36916 + 1.72130i) q^{29} +(-2.94857 - 9.07476i) q^{31} -4.59165 q^{32} -14.5428 q^{34} +(0.138962 + 0.427681i) q^{35} +(-0.685637 + 0.498145i) q^{37} +(2.22953 - 6.86179i) q^{38} +(0.850747 - 0.618104i) q^{40} +(3.13058 + 2.27450i) q^{41} +3.55302 q^{43} +(7.59937 - 8.43978i) q^{44} +(-3.25341 - 10.0130i) q^{46} +(6.02798 + 4.37959i) q^{47} +(-1.54134 + 4.74375i) q^{49} +(-3.52617 + 10.8525i) q^{50} +(-11.6270 - 8.44748i) q^{52} +(2.06517 + 6.35595i) q^{53} +(0.109916 - 1.04568i) q^{55} -4.70526 q^{56} +(-5.51778 - 4.00890i) q^{58} +(9.76870 - 7.09737i) q^{59} +(1.42776 - 4.39418i) q^{61} +(17.9786 - 13.0622i) q^{62} +(-3.84663 - 11.8387i) q^{64} -1.33054 q^{65} +9.96771 q^{67} +(-6.60733 - 20.3353i) q^{68} +(-0.847308 + 0.615605i) q^{70} +(0.905630 - 2.78724i) q^{71} +(-3.43158 + 2.49319i) q^{73} +(-1.59685 - 1.16018i) q^{74} +10.6078 q^{76} +(-3.14803 + 3.49617i) q^{77} +(-1.04509 - 3.21646i) q^{79} +(0.224926 + 0.163418i) q^{80} +(-2.78496 + 8.57123i) q^{82} +(-4.16786 + 12.8273i) q^{83} +(-1.60148 - 1.16355i) q^{85} +(2.55711 + 7.86998i) q^{86} +(10.0503 + 4.47482i) q^{88} +2.69745 q^{89} +(4.81645 + 3.49936i) q^{91} +(12.5230 - 9.09852i) q^{92} +(-5.36249 + 16.5041i) q^{94} +(0.794521 - 0.577253i) q^{95} +(-1.62464 - 5.00013i) q^{97} -11.6168 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + q^{2} - 11 q^{4} + 8 q^{5} + 2 q^{7} + 3 q^{8} - 4 q^{10} + 2 q^{11} + 11 q^{13} + 10 q^{14} + 9 q^{16} - 10 q^{17} + 4 q^{19} + 45 q^{20} + 16 q^{22} - 20 q^{23} - 11 q^{25} - 6 q^{26} - 27 q^{28}+ \cdots - 164 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.719701 + 2.21501i 0.508906 + 1.56625i 0.794104 + 0.607782i \(0.207941\pi\)
−0.285198 + 0.958469i \(0.592059\pi\)
\(3\) 0 0
\(4\) −2.77028 + 2.01272i −1.38514 + 1.00636i
\(5\) −0.0979645 + 0.301504i −0.0438111 + 0.134837i −0.970569 0.240821i \(-0.922583\pi\)
0.926758 + 0.375658i \(0.122583\pi\)
\(6\) 0 0
\(7\) 1.14758 0.833769i 0.433746 0.315135i −0.349399 0.936974i \(-0.613614\pi\)
0.783145 + 0.621839i \(0.213614\pi\)
\(8\) −2.68358 1.94973i −0.948787 0.689334i
\(9\) 0 0
\(10\) −0.738340 −0.233484
\(11\) −3.24416 + 0.689532i −0.978150 + 0.207902i
\(12\) 0 0
\(13\) 1.29696 + 3.99162i 0.359711 + 1.10708i 0.953227 + 0.302254i \(0.0977391\pi\)
−0.593517 + 0.804822i \(0.702261\pi\)
\(14\) 2.67273 + 1.94185i 0.714316 + 0.518981i
\(15\) 0 0
\(16\) 0.271005 0.834068i 0.0677513 0.208517i
\(17\) −1.92957 + 5.93860i −0.467989 + 1.44032i 0.387195 + 0.921998i \(0.373444\pi\)
−0.855184 + 0.518325i \(0.826556\pi\)
\(18\) 0 0
\(19\) −2.50622 1.82087i −0.574966 0.417737i 0.261940 0.965084i \(-0.415638\pi\)
−0.836906 + 0.547347i \(0.815638\pi\)
\(20\) −0.335455 1.03242i −0.0750101 0.230857i
\(21\) 0 0
\(22\) −3.86214 6.68959i −0.823412 1.42623i
\(23\) −4.52050 −0.942589 −0.471295 0.881976i \(-0.656213\pi\)
−0.471295 + 0.881976i \(0.656213\pi\)
\(24\) 0 0
\(25\) 3.96378 + 2.87985i 0.792755 + 0.575971i
\(26\) −7.90807 + 5.74555i −1.55090 + 1.12679i
\(27\) 0 0
\(28\) −1.50098 + 4.61954i −0.283659 + 0.873011i
\(29\) −2.36916 + 1.72130i −0.439942 + 0.319637i −0.785612 0.618719i \(-0.787652\pi\)
0.345670 + 0.938356i \(0.387652\pi\)
\(30\) 0 0
\(31\) −2.94857 9.07476i −0.529578 1.62987i −0.755081 0.655632i \(-0.772402\pi\)
0.225503 0.974243i \(-0.427598\pi\)
\(32\) −4.59165 −0.811697
\(33\) 0 0
\(34\) −14.5428 −2.49407
\(35\) 0.138962 + 0.427681i 0.0234889 + 0.0722913i
\(36\) 0 0
\(37\) −0.685637 + 0.498145i −0.112718 + 0.0818945i −0.642716 0.766104i \(-0.722193\pi\)
0.529998 + 0.847999i \(0.322193\pi\)
\(38\) 2.22953 6.86179i 0.361678 1.11313i
\(39\) 0 0
\(40\) 0.850747 0.618104i 0.134515 0.0977308i
\(41\) 3.13058 + 2.27450i 0.488914 + 0.355217i 0.804767 0.593591i \(-0.202290\pi\)
−0.315852 + 0.948808i \(0.602290\pi\)
\(42\) 0 0
\(43\) 3.55302 0.541830 0.270915 0.962603i \(-0.412674\pi\)
0.270915 + 0.962603i \(0.412674\pi\)
\(44\) 7.59937 8.43978i 1.14565 1.27235i
\(45\) 0 0
\(46\) −3.25341 10.0130i −0.479689 1.47633i
\(47\) 6.02798 + 4.37959i 0.879272 + 0.638828i 0.933059 0.359724i \(-0.117129\pi\)
−0.0537868 + 0.998552i \(0.517129\pi\)
\(48\) 0 0
\(49\) −1.54134 + 4.74375i −0.220191 + 0.677679i
\(50\) −3.52617 + 10.8525i −0.498676 + 1.53477i
\(51\) 0 0
\(52\) −11.6270 8.44748i −1.61237 1.17145i
\(53\) 2.06517 + 6.35595i 0.283673 + 0.873057i 0.986793 + 0.161986i \(0.0517898\pi\)
−0.703120 + 0.711071i \(0.748210\pi\)
\(54\) 0 0
\(55\) 0.109916 1.04568i 0.0148210 0.140999i
\(56\) −4.70526 −0.628766
\(57\) 0 0
\(58\) −5.51778 4.00890i −0.724520 0.526395i
\(59\) 9.76870 7.09737i 1.27178 0.923999i 0.272504 0.962155i \(-0.412148\pi\)
0.999272 + 0.0381555i \(0.0121482\pi\)
\(60\) 0 0
\(61\) 1.42776 4.39418i 0.182806 0.562618i −0.817098 0.576499i \(-0.804419\pi\)
0.999904 + 0.0138810i \(0.00441859\pi\)
\(62\) 17.9786 13.0622i 2.28329 1.65890i
\(63\) 0 0
\(64\) −3.84663 11.8387i −0.480828 1.47984i
\(65\) −1.33054 −0.165034
\(66\) 0 0
\(67\) 9.96771 1.21775 0.608875 0.793266i \(-0.291621\pi\)
0.608875 + 0.793266i \(0.291621\pi\)
\(68\) −6.60733 20.3353i −0.801256 2.46601i
\(69\) 0 0
\(70\) −0.847308 + 0.615605i −0.101273 + 0.0735789i
\(71\) 0.905630 2.78724i 0.107479 0.330785i −0.882826 0.469701i \(-0.844362\pi\)
0.990304 + 0.138916i \(0.0443618\pi\)
\(72\) 0 0
\(73\) −3.43158 + 2.49319i −0.401636 + 0.291806i −0.770207 0.637794i \(-0.779847\pi\)
0.368571 + 0.929600i \(0.379847\pi\)
\(74\) −1.59685 1.16018i −0.185630 0.134868i
\(75\) 0 0
\(76\) 10.6078 1.21680
\(77\) −3.14803 + 3.49617i −0.358752 + 0.398426i
\(78\) 0 0
\(79\) −1.04509 3.21646i −0.117582 0.361880i 0.874895 0.484313i \(-0.160930\pi\)
−0.992477 + 0.122433i \(0.960930\pi\)
\(80\) 0.224926 + 0.163418i 0.0251475 + 0.0182707i
\(81\) 0 0
\(82\) −2.78496 + 8.57123i −0.307548 + 0.946534i
\(83\) −4.16786 + 12.8273i −0.457482 + 1.40798i 0.410715 + 0.911764i \(0.365279\pi\)
−0.868196 + 0.496221i \(0.834721\pi\)
\(84\) 0 0
\(85\) −1.60148 1.16355i −0.173705 0.126204i
\(86\) 2.55711 + 7.86998i 0.275740 + 0.848642i
\(87\) 0 0
\(88\) 10.0503 + 4.47482i 1.07137 + 0.477018i
\(89\) 2.69745 0.285929 0.142965 0.989728i \(-0.454336\pi\)
0.142965 + 0.989728i \(0.454336\pi\)
\(90\) 0 0
\(91\) 4.81645 + 3.49936i 0.504902 + 0.366833i
\(92\) 12.5230 9.09852i 1.30562 0.948586i
\(93\) 0 0
\(94\) −5.36249 + 16.5041i −0.553099 + 1.70226i
\(95\) 0.794521 0.577253i 0.0815161 0.0592249i
\(96\) 0 0
\(97\) −1.62464 5.00013i −0.164957 0.507686i 0.834076 0.551650i \(-0.186001\pi\)
−0.999033 + 0.0439637i \(0.986001\pi\)
\(98\) −11.6168 −1.17347
\(99\) 0 0
\(100\) −16.7771 −1.67771
\(101\) −2.94485 9.06333i −0.293024 0.901835i −0.983878 0.178841i \(-0.942765\pi\)
0.690854 0.722994i \(-0.257235\pi\)
\(102\) 0 0
\(103\) −7.71449 + 5.60490i −0.760131 + 0.552267i −0.898951 0.438050i \(-0.855669\pi\)
0.138820 + 0.990318i \(0.455669\pi\)
\(104\) 4.30211 13.2405i 0.421857 1.29834i
\(105\) 0 0
\(106\) −12.5922 + 9.14877i −1.22306 + 0.888607i
\(107\) −4.18472 3.04038i −0.404552 0.293924i 0.366840 0.930284i \(-0.380440\pi\)
−0.771393 + 0.636359i \(0.780440\pi\)
\(108\) 0 0
\(109\) 14.4767 1.38661 0.693307 0.720643i \(-0.256153\pi\)
0.693307 + 0.720643i \(0.256153\pi\)
\(110\) 2.39529 0.509109i 0.228382 0.0485416i
\(111\) 0 0
\(112\) −0.384419 1.18312i −0.0363242 0.111794i
\(113\) 6.01230 + 4.36819i 0.565589 + 0.410925i 0.833500 0.552519i \(-0.186333\pi\)
−0.267911 + 0.963444i \(0.586333\pi\)
\(114\) 0 0
\(115\) 0.442849 1.36295i 0.0412958 0.127096i
\(116\) 3.09874 9.53694i 0.287711 0.885482i
\(117\) 0 0
\(118\) 22.7513 + 16.5298i 2.09443 + 1.52169i
\(119\) 2.73708 + 8.42386i 0.250908 + 0.772214i
\(120\) 0 0
\(121\) 10.0491 4.47390i 0.913554 0.406718i
\(122\) 10.7607 0.974231
\(123\) 0 0
\(124\) 26.4333 + 19.2049i 2.37378 + 1.72465i
\(125\) −2.53897 + 1.84467i −0.227092 + 0.164992i
\(126\) 0 0
\(127\) −4.08040 + 12.5582i −0.362077 + 1.11436i 0.589715 + 0.807612i \(0.299240\pi\)
−0.951791 + 0.306746i \(0.900760\pi\)
\(128\) 16.0250 11.6428i 1.41642 1.02909i
\(129\) 0 0
\(130\) −0.957594 2.94717i −0.0839866 0.258484i
\(131\) −7.30043 −0.637841 −0.318921 0.947781i \(-0.603320\pi\)
−0.318921 + 0.947781i \(0.603320\pi\)
\(132\) 0 0
\(133\) −4.39429 −0.381033
\(134\) 7.17377 + 22.0786i 0.619719 + 1.90730i
\(135\) 0 0
\(136\) 16.7568 12.1746i 1.43689 1.04396i
\(137\) 3.03063 9.32733i 0.258924 0.796887i −0.734107 0.679034i \(-0.762399\pi\)
0.993031 0.117853i \(-0.0376012\pi\)
\(138\) 0 0
\(139\) 7.66697 5.57038i 0.650304 0.472473i −0.213071 0.977037i \(-0.568347\pi\)
0.863375 + 0.504563i \(0.168347\pi\)
\(140\) −1.24577 0.905103i −0.105287 0.0764951i
\(141\) 0 0
\(142\) 6.82556 0.572789
\(143\) −6.95987 12.0551i −0.582014 1.00810i
\(144\) 0 0
\(145\) −0.286884 0.882938i −0.0238244 0.0733240i
\(146\) −7.99216 5.80665i −0.661436 0.480562i
\(147\) 0 0
\(148\) 0.896778 2.76000i 0.0737147 0.226870i
\(149\) −1.27545 + 3.92544i −0.104489 + 0.321584i −0.989610 0.143776i \(-0.954075\pi\)
0.885121 + 0.465361i \(0.154075\pi\)
\(150\) 0 0
\(151\) 14.3805 + 10.4480i 1.17027 + 0.850249i 0.991041 0.133559i \(-0.0426404\pi\)
0.179227 + 0.983808i \(0.442640\pi\)
\(152\) 3.17541 + 9.77291i 0.257560 + 0.792688i
\(153\) 0 0
\(154\) −10.0097 4.45673i −0.806605 0.359134i
\(155\) 3.02493 0.242968
\(156\) 0 0
\(157\) 1.63200 + 1.18571i 0.130247 + 0.0946303i 0.651002 0.759076i \(-0.274349\pi\)
−0.520754 + 0.853707i \(0.674349\pi\)
\(158\) 6.37235 4.62978i 0.506957 0.368326i
\(159\) 0 0
\(160\) 0.449819 1.38440i 0.0355613 0.109446i
\(161\) −5.18765 + 3.76905i −0.408844 + 0.297043i
\(162\) 0 0
\(163\) −0.488377 1.50307i −0.0382526 0.117729i 0.930107 0.367289i \(-0.119714\pi\)
−0.968359 + 0.249560i \(0.919714\pi\)
\(164\) −13.2505 −1.03469
\(165\) 0 0
\(166\) −31.4124 −2.43807
\(167\) 4.73464 + 14.5717i 0.366378 + 1.12759i 0.949114 + 0.314933i \(0.101982\pi\)
−0.582736 + 0.812661i \(0.698018\pi\)
\(168\) 0 0
\(169\) −3.73371 + 2.71270i −0.287208 + 0.208669i
\(170\) 1.42468 4.38471i 0.109268 0.336292i
\(171\) 0 0
\(172\) −9.84284 + 7.15124i −0.750510 + 0.545277i
\(173\) 0.797722 + 0.579579i 0.0606497 + 0.0440646i 0.617697 0.786416i \(-0.288066\pi\)
−0.557047 + 0.830481i \(0.688066\pi\)
\(174\) 0 0
\(175\) 6.94990 0.525363
\(176\) −0.304067 + 2.89271i −0.0229199 + 0.218046i
\(177\) 0 0
\(178\) 1.94136 + 5.97489i 0.145511 + 0.447837i
\(179\) 9.08186 + 6.59836i 0.678810 + 0.493185i 0.872963 0.487787i \(-0.162196\pi\)
−0.194153 + 0.980971i \(0.562196\pi\)
\(180\) 0 0
\(181\) 5.53932 17.0483i 0.411735 1.26719i −0.503405 0.864051i \(-0.667919\pi\)
0.915139 0.403138i \(-0.132081\pi\)
\(182\) −4.28472 + 13.1870i −0.317604 + 0.977486i
\(183\) 0 0
\(184\) 12.1311 + 8.81376i 0.894317 + 0.649759i
\(185\) −0.0830244 0.255523i −0.00610408 0.0187864i
\(186\) 0 0
\(187\) 2.16497 20.5963i 0.158318 1.50615i
\(188\) −25.5141 −1.86081
\(189\) 0 0
\(190\) 1.85044 + 1.34442i 0.134245 + 0.0975348i
\(191\) −10.4266 + 7.57534i −0.754440 + 0.548133i −0.897200 0.441625i \(-0.854402\pi\)
0.142760 + 0.989757i \(0.454402\pi\)
\(192\) 0 0
\(193\) −7.15406 + 22.0179i −0.514960 + 1.58489i 0.268393 + 0.963309i \(0.413507\pi\)
−0.783354 + 0.621576i \(0.786493\pi\)
\(194\) 9.90609 7.19719i 0.711216 0.516728i
\(195\) 0 0
\(196\) −5.27793 16.2438i −0.376995 1.16027i
\(197\) 1.07766 0.0767801 0.0383900 0.999263i \(-0.487777\pi\)
0.0383900 + 0.999263i \(0.487777\pi\)
\(198\) 0 0
\(199\) 16.4307 1.16474 0.582371 0.812923i \(-0.302125\pi\)
0.582371 + 0.812923i \(0.302125\pi\)
\(200\) −5.02216 15.4566i −0.355120 1.09295i
\(201\) 0 0
\(202\) 17.9560 13.0458i 1.26338 0.917897i
\(203\) −1.28365 + 3.95067i −0.0900945 + 0.277282i
\(204\) 0 0
\(205\) −0.992456 + 0.721062i −0.0693161 + 0.0503611i
\(206\) −17.9671 13.0538i −1.25182 0.909503i
\(207\) 0 0
\(208\) 3.68076 0.255215
\(209\) 9.38611 + 4.17908i 0.649251 + 0.289073i
\(210\) 0 0
\(211\) −4.61974 14.2181i −0.318036 0.978814i −0.974487 0.224445i \(-0.927943\pi\)
0.656451 0.754369i \(-0.272057\pi\)
\(212\) −18.5139 13.4511i −1.27154 0.923827i
\(213\) 0 0
\(214\) 3.72273 11.4574i 0.254480 0.783210i
\(215\) −0.348070 + 1.07125i −0.0237382 + 0.0730585i
\(216\) 0 0
\(217\) −10.9500 7.95563i −0.743333 0.540063i
\(218\) 10.4189 + 32.0660i 0.705655 + 2.17178i
\(219\) 0 0
\(220\) 1.80016 + 3.11804i 0.121367 + 0.210218i
\(221\) −26.2072 −1.76289
\(222\) 0 0
\(223\) −1.55839 1.13224i −0.104358 0.0758203i 0.534383 0.845243i \(-0.320544\pi\)
−0.638740 + 0.769422i \(0.720544\pi\)
\(224\) −5.26931 + 3.82838i −0.352070 + 0.255794i
\(225\) 0 0
\(226\) −5.34854 + 16.4611i −0.355779 + 1.09498i
\(227\) 12.9532 9.41108i 0.859737 0.624635i −0.0680764 0.997680i \(-0.521686\pi\)
0.927813 + 0.373045i \(0.121686\pi\)
\(228\) 0 0
\(229\) −0.161593 0.497332i −0.0106784 0.0328646i 0.945575 0.325403i \(-0.105500\pi\)
−0.956254 + 0.292539i \(0.905500\pi\)
\(230\) 3.33766 0.220079
\(231\) 0 0
\(232\) 9.71389 0.637748
\(233\) −3.16820 9.75073i −0.207556 0.638792i −0.999599 0.0283260i \(-0.990982\pi\)
0.792043 0.610466i \(-0.209018\pi\)
\(234\) 0 0
\(235\) −1.91099 + 1.38842i −0.124659 + 0.0905703i
\(236\) −12.7769 + 39.3234i −0.831708 + 2.55973i
\(237\) 0 0
\(238\) −16.6891 + 12.1253i −1.08179 + 0.785969i
\(239\) 7.79977 + 5.66686i 0.504525 + 0.366559i 0.810743 0.585403i \(-0.199064\pi\)
−0.306218 + 0.951962i \(0.599064\pi\)
\(240\) 0 0
\(241\) −0.278731 −0.0179547 −0.00897733 0.999960i \(-0.502858\pi\)
−0.00897733 + 0.999960i \(0.502858\pi\)
\(242\) 17.1421 + 19.0390i 1.10193 + 1.22387i
\(243\) 0 0
\(244\) 4.88900 + 15.0468i 0.312986 + 0.963272i
\(245\) −1.27926 0.929440i −0.0817292 0.0593797i
\(246\) 0 0
\(247\) 4.01778 12.3655i 0.255645 0.786795i
\(248\) −9.78064 + 30.1017i −0.621071 + 1.91146i
\(249\) 0 0
\(250\) −5.91326 4.29624i −0.373988 0.271718i
\(251\) 1.36753 + 4.20881i 0.0863175 + 0.265658i 0.984894 0.173159i \(-0.0553975\pi\)
−0.898576 + 0.438817i \(0.855398\pi\)
\(252\) 0 0
\(253\) 14.6652 3.11703i 0.921993 0.195966i
\(254\) −30.7532 −1.92963
\(255\) 0 0
\(256\) 17.1811 + 12.4828i 1.07382 + 0.780173i
\(257\) −2.95657 + 2.14807i −0.184426 + 0.133993i −0.676168 0.736748i \(-0.736360\pi\)
0.491742 + 0.870741i \(0.336360\pi\)
\(258\) 0 0
\(259\) −0.371489 + 1.14333i −0.0230832 + 0.0710429i
\(260\) 3.68598 2.67802i 0.228595 0.166084i
\(261\) 0 0
\(262\) −5.25413 16.1705i −0.324601 0.999019i
\(263\) −14.4524 −0.891174 −0.445587 0.895239i \(-0.647005\pi\)
−0.445587 + 0.895239i \(0.647005\pi\)
\(264\) 0 0
\(265\) −2.11866 −0.130148
\(266\) −3.16257 9.73340i −0.193910 0.596793i
\(267\) 0 0
\(268\) −27.6133 + 20.0622i −1.68675 + 1.22550i
\(269\) 0.283600 0.872830i 0.0172914 0.0532174i −0.942039 0.335505i \(-0.891093\pi\)
0.959330 + 0.282287i \(0.0910931\pi\)
\(270\) 0 0
\(271\) 2.13921 1.55422i 0.129948 0.0944124i −0.520913 0.853610i \(-0.674408\pi\)
0.650860 + 0.759197i \(0.274408\pi\)
\(272\) 4.43028 + 3.21878i 0.268625 + 0.195167i
\(273\) 0 0
\(274\) 22.8413 1.37989
\(275\) −14.8449 6.60954i −0.895179 0.398570i
\(276\) 0 0
\(277\) 8.93198 + 27.4898i 0.536671 + 1.65170i 0.740011 + 0.672594i \(0.234820\pi\)
−0.203341 + 0.979108i \(0.565180\pi\)
\(278\) 17.8564 + 12.9734i 1.07095 + 0.778094i
\(279\) 0 0
\(280\) 0.460948 1.41865i 0.0275469 0.0847807i
\(281\) 2.70160 8.31468i 0.161164 0.496012i −0.837569 0.546331i \(-0.816024\pi\)
0.998733 + 0.0503194i \(0.0160239\pi\)
\(282\) 0 0
\(283\) 18.7832 + 13.6468i 1.11654 + 0.811216i 0.983681 0.179919i \(-0.0575835\pi\)
0.132861 + 0.991135i \(0.457583\pi\)
\(284\) 3.10111 + 9.54422i 0.184017 + 0.566345i
\(285\) 0 0
\(286\) 21.6933 24.0923i 1.28275 1.42461i
\(287\) 5.48901 0.324006
\(288\) 0 0
\(289\) −17.7905 12.9255i −1.04650 0.760326i
\(290\) 1.74925 1.27090i 0.102719 0.0746300i
\(291\) 0 0
\(292\) 4.48833 13.8137i 0.262660 0.808383i
\(293\) 16.9694 12.3290i 0.991366 0.720269i 0.0311460 0.999515i \(-0.490084\pi\)
0.960220 + 0.279245i \(0.0900843\pi\)
\(294\) 0 0
\(295\) 1.18290 + 3.64059i 0.0688711 + 0.211963i
\(296\) 2.81121 0.163398
\(297\) 0 0
\(298\) −9.61284 −0.556857
\(299\) −5.86289 18.0441i −0.339059 1.04352i
\(300\) 0 0
\(301\) 4.07739 2.96240i 0.235017 0.170750i
\(302\) −12.7929 + 39.3724i −0.736147 + 2.26563i
\(303\) 0 0
\(304\) −2.19793 + 1.59689i −0.126060 + 0.0915879i
\(305\) 1.18499 + 0.860949i 0.0678526 + 0.0492978i
\(306\) 0 0
\(307\) 23.1324 1.32024 0.660118 0.751162i \(-0.270506\pi\)
0.660118 + 0.751162i \(0.270506\pi\)
\(308\) 1.68409 16.0215i 0.0959601 0.912909i
\(309\) 0 0
\(310\) 2.17704 + 6.70026i 0.123648 + 0.380549i
\(311\) −16.5159 11.9995i −0.936533 0.680431i 0.0110507 0.999939i \(-0.496482\pi\)
−0.947584 + 0.319508i \(0.896482\pi\)
\(312\) 0 0
\(313\) −10.5187 + 32.3733i −0.594554 + 1.82985i −0.0376200 + 0.999292i \(0.511978\pi\)
−0.556934 + 0.830557i \(0.688022\pi\)
\(314\) −1.45182 + 4.46825i −0.0819311 + 0.252158i
\(315\) 0 0
\(316\) 9.36904 + 6.80701i 0.527050 + 0.382924i
\(317\) −8.47337 26.0784i −0.475912 1.46471i −0.844724 0.535203i \(-0.820235\pi\)
0.368812 0.929504i \(-0.379765\pi\)
\(318\) 0 0
\(319\) 6.49904 7.21777i 0.363876 0.404117i
\(320\) 3.94625 0.220602
\(321\) 0 0
\(322\) −12.0821 8.77813i −0.673307 0.489186i
\(323\) 15.6494 11.3699i 0.870754 0.632640i
\(324\) 0 0
\(325\) −6.35443 + 19.5569i −0.352480 + 1.08482i
\(326\) 2.97783 2.16352i 0.164927 0.119826i
\(327\) 0 0
\(328\) −3.96648 12.2076i −0.219012 0.674051i
\(329\) 10.5692 0.582698
\(330\) 0 0
\(331\) −17.9724 −0.987854 −0.493927 0.869503i \(-0.664439\pi\)
−0.493927 + 0.869503i \(0.664439\pi\)
\(332\) −14.2718 43.9241i −0.783266 2.41065i
\(333\) 0 0
\(334\) −28.8690 + 20.9746i −1.57964 + 1.14768i
\(335\) −0.976482 + 3.00530i −0.0533509 + 0.164197i
\(336\) 0 0
\(337\) −8.87665 + 6.44927i −0.483542 + 0.351314i −0.802695 0.596389i \(-0.796601\pi\)
0.319153 + 0.947703i \(0.396601\pi\)
\(338\) −8.69581 6.31788i −0.472990 0.343647i
\(339\) 0 0
\(340\) 6.77845 0.367613
\(341\) 15.8229 + 27.4068i 0.856860 + 1.48416i
\(342\) 0 0
\(343\) 5.25475 + 16.1724i 0.283730 + 0.873230i
\(344\) −9.53479 6.92743i −0.514082 0.373502i
\(345\) 0 0
\(346\) −0.709654 + 2.18409i −0.0381512 + 0.117417i
\(347\) 6.82891 21.0172i 0.366595 1.12826i −0.582381 0.812916i \(-0.697879\pi\)
0.948976 0.315348i \(-0.102121\pi\)
\(348\) 0 0
\(349\) 14.8889 + 10.8174i 0.796986 + 0.579044i 0.910028 0.414546i \(-0.136060\pi\)
−0.113042 + 0.993590i \(0.536060\pi\)
\(350\) 5.00185 + 15.3941i 0.267360 + 0.822850i
\(351\) 0 0
\(352\) 14.8960 3.16609i 0.793961 0.168753i
\(353\) 33.0708 1.76018 0.880089 0.474808i \(-0.157483\pi\)
0.880089 + 0.474808i \(0.157483\pi\)
\(354\) 0 0
\(355\) 0.751645 + 0.546102i 0.0398932 + 0.0289841i
\(356\) −7.47269 + 5.42923i −0.396052 + 0.287749i
\(357\) 0 0
\(358\) −8.07922 + 24.8653i −0.427000 + 1.31417i
\(359\) −2.42595 + 1.76256i −0.128037 + 0.0930242i −0.649960 0.759968i \(-0.725215\pi\)
0.521924 + 0.852992i \(0.325215\pi\)
\(360\) 0 0
\(361\) −2.90578 8.94306i −0.152936 0.470687i
\(362\) 41.7488 2.19427
\(363\) 0 0
\(364\) −20.3862 −1.06852
\(365\) −0.415533 1.27888i −0.0217500 0.0669396i
\(366\) 0 0
\(367\) −1.34496 + 0.977170i −0.0702063 + 0.0510078i −0.622335 0.782751i \(-0.713816\pi\)
0.552129 + 0.833759i \(0.313816\pi\)
\(368\) −1.22508 + 3.77040i −0.0638616 + 0.196546i
\(369\) 0 0
\(370\) 0.506234 0.367800i 0.0263178 0.0191210i
\(371\) 7.66936 + 5.57211i 0.398173 + 0.289290i
\(372\) 0 0
\(373\) −21.5087 −1.11368 −0.556839 0.830621i \(-0.687986\pi\)
−0.556839 + 0.830621i \(0.687986\pi\)
\(374\) 47.1791 10.0277i 2.43957 0.518521i
\(375\) 0 0
\(376\) −7.63753 23.5059i −0.393876 1.21222i
\(377\) −9.94346 7.22435i −0.512114 0.372073i
\(378\) 0 0
\(379\) 3.83779 11.8115i 0.197134 0.606715i −0.802811 0.596233i \(-0.796663\pi\)
0.999945 0.0104822i \(-0.00333665\pi\)
\(380\) −1.03919 + 3.19830i −0.0533094 + 0.164069i
\(381\) 0 0
\(382\) −24.2835 17.6430i −1.24245 0.902694i
\(383\) 0.247114 + 0.760538i 0.0126269 + 0.0388617i 0.957171 0.289522i \(-0.0934962\pi\)
−0.944545 + 0.328383i \(0.893496\pi\)
\(384\) 0 0
\(385\) −0.745714 1.29165i −0.0380051 0.0658283i
\(386\) −53.9188 −2.74439
\(387\) 0 0
\(388\) 14.5646 + 10.5818i 0.739404 + 0.537209i
\(389\) 1.40501 1.02080i 0.0712367 0.0517565i −0.551597 0.834111i \(-0.685981\pi\)
0.622834 + 0.782354i \(0.285981\pi\)
\(390\) 0 0
\(391\) 8.72261 26.8454i 0.441122 1.35763i
\(392\) 13.3854 9.72503i 0.676062 0.491188i
\(393\) 0 0
\(394\) 0.775593 + 2.38703i 0.0390738 + 0.120257i
\(395\) 1.07216 0.0539461
\(396\) 0 0
\(397\) −24.7599 −1.24267 −0.621333 0.783547i \(-0.713409\pi\)
−0.621333 + 0.783547i \(0.713409\pi\)
\(398\) 11.8252 + 36.3942i 0.592744 + 1.82428i
\(399\) 0 0
\(400\) 3.47620 2.52561i 0.173810 0.126280i
\(401\) 6.75274 20.7828i 0.337216 1.03784i −0.628404 0.777887i \(-0.716292\pi\)
0.965620 0.259957i \(-0.0837084\pi\)
\(402\) 0 0
\(403\) 32.3988 23.5391i 1.61390 1.17257i
\(404\) 26.4000 + 19.1807i 1.31345 + 0.954278i
\(405\) 0 0
\(406\) −9.67462 −0.480143
\(407\) 1.88083 2.08883i 0.0932292 0.103539i
\(408\) 0 0
\(409\) 2.48288 + 7.64152i 0.122771 + 0.377849i 0.993488 0.113934i \(-0.0363453\pi\)
−0.870718 + 0.491783i \(0.836345\pi\)
\(410\) −2.31143 1.67935i −0.114154 0.0829374i
\(411\) 0 0
\(412\) 10.0901 31.0543i 0.497106 1.52993i
\(413\) 5.29283 16.2897i 0.260443 0.801562i
\(414\) 0 0
\(415\) −3.45919 2.51325i −0.169805 0.123371i
\(416\) −5.95517 18.3281i −0.291976 0.898610i
\(417\) 0 0
\(418\) −2.50152 + 23.7980i −0.122354 + 1.16400i
\(419\) −5.59681 −0.273422 −0.136711 0.990611i \(-0.543653\pi\)
−0.136711 + 0.990611i \(0.543653\pi\)
\(420\) 0 0
\(421\) −30.6248 22.2502i −1.49256 1.08441i −0.973228 0.229840i \(-0.926180\pi\)
−0.519335 0.854571i \(-0.673820\pi\)
\(422\) 28.1684 20.4656i 1.37122 0.996248i
\(423\) 0 0
\(424\) 6.85035 21.0832i 0.332682 1.02389i
\(425\) −24.7507 + 17.9824i −1.20058 + 0.872276i
\(426\) 0 0
\(427\) −2.02526 6.23312i −0.0980093 0.301642i
\(428\) 17.7123 0.856155
\(429\) 0 0
\(430\) −2.62333 −0.126508
\(431\) −9.20389 28.3267i −0.443336 1.36445i −0.884299 0.466922i \(-0.845363\pi\)
0.440963 0.897525i \(-0.354637\pi\)
\(432\) 0 0
\(433\) 0.225935 0.164152i 0.0108578 0.00788862i −0.582343 0.812943i \(-0.697864\pi\)
0.593201 + 0.805054i \(0.297864\pi\)
\(434\) 9.74110 29.9800i 0.467588 1.43909i
\(435\) 0 0
\(436\) −40.1044 + 29.1375i −1.92065 + 1.39543i
\(437\) 11.3294 + 8.23126i 0.541957 + 0.393754i
\(438\) 0 0
\(439\) 14.9965 0.715746 0.357873 0.933770i \(-0.383502\pi\)
0.357873 + 0.933770i \(0.383502\pi\)
\(440\) −2.33375 + 2.59184i −0.111257 + 0.123561i
\(441\) 0 0
\(442\) −18.8614 58.0493i −0.897143 2.76112i
\(443\) −11.7306 8.52278i −0.557337 0.404929i 0.273146 0.961973i \(-0.411936\pi\)
−0.830483 + 0.557043i \(0.811936\pi\)
\(444\) 0 0
\(445\) −0.264255 + 0.813293i −0.0125269 + 0.0385538i
\(446\) 1.38634 4.26673i 0.0656453 0.202036i
\(447\) 0 0
\(448\) −14.2851 10.3787i −0.674906 0.490348i
\(449\) −6.55787 20.1830i −0.309485 0.952497i −0.977965 0.208767i \(-0.933055\pi\)
0.668481 0.743730i \(-0.266945\pi\)
\(450\) 0 0
\(451\) −11.7244 5.22020i −0.552082 0.245809i
\(452\) −25.4477 −1.19696
\(453\) 0 0
\(454\) 30.1681 + 21.9184i 1.41586 + 1.02868i
\(455\) −1.52691 + 1.10937i −0.0715827 + 0.0520079i
\(456\) 0 0
\(457\) −0.991791 + 3.05242i −0.0463940 + 0.142786i −0.971570 0.236752i \(-0.923917\pi\)
0.925176 + 0.379538i \(0.123917\pi\)
\(458\) 0.985297 0.715860i 0.0460399 0.0334499i
\(459\) 0 0
\(460\) 1.51642 + 4.66707i 0.0707037 + 0.217603i
\(461\) 26.3256 1.22610 0.613052 0.790042i \(-0.289942\pi\)
0.613052 + 0.790042i \(0.289942\pi\)
\(462\) 0 0
\(463\) 3.62824 0.168619 0.0843093 0.996440i \(-0.473132\pi\)
0.0843093 + 0.996440i \(0.473132\pi\)
\(464\) 0.793624 + 2.44252i 0.0368431 + 0.113391i
\(465\) 0 0
\(466\) 19.3178 14.0352i 0.894881 0.650169i
\(467\) −5.71532 + 17.5899i −0.264473 + 0.813965i 0.727341 + 0.686276i \(0.240756\pi\)
−0.991814 + 0.127689i \(0.959244\pi\)
\(468\) 0 0
\(469\) 11.4388 8.31077i 0.528194 0.383756i
\(470\) −4.45070 3.23362i −0.205296 0.149156i
\(471\) 0 0
\(472\) −40.0530 −1.84359
\(473\) −11.5265 + 2.44992i −0.529991 + 0.112647i
\(474\) 0 0
\(475\) −4.69024 14.4351i −0.215203 0.662327i
\(476\) −24.5374 17.8275i −1.12467 0.817120i
\(477\) 0 0
\(478\) −6.93867 + 21.3550i −0.317367 + 0.976756i
\(479\) −0.0485151 + 0.149314i −0.00221671 + 0.00682234i −0.952159 0.305604i \(-0.901142\pi\)
0.949942 + 0.312426i \(0.101142\pi\)
\(480\) 0 0
\(481\) −2.87765 2.09073i −0.131209 0.0953292i
\(482\) −0.200603 0.617393i −0.00913722 0.0281215i
\(483\) 0 0
\(484\) −18.8341 + 32.6200i −0.856093 + 1.48273i
\(485\) 1.66671 0.0756816
\(486\) 0 0
\(487\) −14.5028 10.5369i −0.657187 0.477474i 0.208525 0.978017i \(-0.433134\pi\)
−0.865712 + 0.500543i \(0.833134\pi\)
\(488\) −12.3990 + 9.00839i −0.561275 + 0.407790i
\(489\) 0 0
\(490\) 1.13803 3.50250i 0.0514111 0.158227i
\(491\) 5.37832 3.90758i 0.242720 0.176347i −0.459774 0.888036i \(-0.652070\pi\)
0.702494 + 0.711689i \(0.252070\pi\)
\(492\) 0 0
\(493\) −5.65064 17.3909i −0.254492 0.783246i
\(494\) 30.2813 1.36242
\(495\) 0 0
\(496\) −8.36804 −0.375736
\(497\) −1.28463 3.95368i −0.0576235 0.177347i
\(498\) 0 0
\(499\) −27.4640 + 19.9537i −1.22946 + 0.893252i −0.996849 0.0793185i \(-0.974726\pi\)
−0.232607 + 0.972571i \(0.574726\pi\)
\(500\) 3.32084 10.2205i 0.148512 0.457074i
\(501\) 0 0
\(502\) −8.33837 + 6.05818i −0.372159 + 0.270390i
\(503\) −2.53812 1.84405i −0.113169 0.0822222i 0.529761 0.848147i \(-0.322282\pi\)
−0.642930 + 0.765925i \(0.722282\pi\)
\(504\) 0 0
\(505\) 3.02112 0.134438
\(506\) 17.4588 + 30.2403i 0.776139 + 1.34434i
\(507\) 0 0
\(508\) −13.9723 43.0023i −0.619921 1.90792i
\(509\) −18.4484 13.4036i −0.817712 0.594102i 0.0983444 0.995152i \(-0.468645\pi\)
−0.916056 + 0.401050i \(0.868645\pi\)
\(510\) 0 0
\(511\) −1.85929 + 5.72230i −0.0822500 + 0.253139i
\(512\) −3.04225 + 9.36310i −0.134450 + 0.413794i
\(513\) 0 0
\(514\) −6.88586 5.00287i −0.303722 0.220667i
\(515\) −0.934154 2.87503i −0.0411637 0.126689i
\(516\) 0 0
\(517\) −22.5756 10.0516i −0.992873 0.442068i
\(518\) −2.79984 −0.123018
\(519\) 0 0
\(520\) 3.57062 + 2.59421i 0.156582 + 0.113763i
\(521\) −4.26200 + 3.09653i −0.186722 + 0.135661i −0.677219 0.735781i \(-0.736815\pi\)
0.490497 + 0.871443i \(0.336815\pi\)
\(522\) 0 0
\(523\) 3.67595 11.3134i 0.160738 0.494701i −0.837959 0.545733i \(-0.816251\pi\)
0.998697 + 0.0510325i \(0.0162512\pi\)
\(524\) 20.2242 14.6937i 0.883499 0.641899i
\(525\) 0 0
\(526\) −10.4014 32.0123i −0.453524 1.39580i
\(527\) 59.5808 2.59538
\(528\) 0 0
\(529\) −2.56510 −0.111526
\(530\) −1.52480 4.69285i −0.0662331 0.203845i
\(531\) 0 0
\(532\) 12.1734 8.84448i 0.527783 0.383457i
\(533\) −5.01871 + 15.4460i −0.217385 + 0.669041i
\(534\) 0 0
\(535\) 1.32664 0.963860i 0.0573557 0.0416713i
\(536\) −26.7491 19.4344i −1.15539 0.839437i
\(537\) 0 0
\(538\) 2.13744 0.0921515
\(539\) 1.72938 16.4523i 0.0744895 0.708650i
\(540\) 0 0
\(541\) 12.5401 + 38.5945i 0.539142 + 1.65931i 0.734525 + 0.678581i \(0.237405\pi\)
−0.195383 + 0.980727i \(0.562595\pi\)
\(542\) 4.98222 + 3.61979i 0.214005 + 0.155483i
\(543\) 0 0
\(544\) 8.85991 27.2680i 0.379865 1.16911i
\(545\) −1.41820 + 4.36477i −0.0607490 + 0.186966i
\(546\) 0 0
\(547\) −19.0397 13.8331i −0.814077 0.591461i 0.100933 0.994893i \(-0.467817\pi\)
−0.915010 + 0.403432i \(0.867817\pi\)
\(548\) 10.3776 + 31.9391i 0.443311 + 1.36437i
\(549\) 0 0
\(550\) 3.95635 37.6384i 0.168699 1.60491i
\(551\) 9.07190 0.386476
\(552\) 0 0
\(553\) −3.88112 2.81980i −0.165042 0.119910i
\(554\) −54.4619 + 39.5689i −2.31386 + 1.68112i
\(555\) 0 0
\(556\) −10.0280 + 30.8630i −0.425282 + 1.30888i
\(557\) 5.08590 3.69513i 0.215497 0.156568i −0.474800 0.880093i \(-0.657480\pi\)
0.690297 + 0.723526i \(0.257480\pi\)
\(558\) 0 0
\(559\) 4.60811 + 14.1823i 0.194902 + 0.599847i
\(560\) 0.394374 0.0166654
\(561\) 0 0
\(562\) 20.3615 0.858896
\(563\) −5.24291 16.1360i −0.220962 0.680052i −0.998676 0.0514336i \(-0.983621\pi\)
0.777714 0.628618i \(-0.216379\pi\)
\(564\) 0 0
\(565\) −1.90602 + 1.38480i −0.0801868 + 0.0582591i
\(566\) −16.7095 + 51.4265i −0.702352 + 2.16162i
\(567\) 0 0
\(568\) −7.86471 + 5.71404i −0.329996 + 0.239756i
\(569\) −18.0010 13.0785i −0.754643 0.548280i 0.142620 0.989778i \(-0.454447\pi\)
−0.897262 + 0.441498i \(0.854447\pi\)
\(570\) 0 0
\(571\) 35.3152 1.47789 0.738947 0.673763i \(-0.235323\pi\)
0.738947 + 0.673763i \(0.235323\pi\)
\(572\) 43.5445 + 19.3878i 1.82068 + 0.810644i
\(573\) 0 0
\(574\) 3.95045 + 12.1582i 0.164889 + 0.507475i
\(575\) −17.9182 13.0184i −0.747243 0.542904i
\(576\) 0 0
\(577\) −11.8156 + 36.3646i −0.491889 + 1.51388i 0.329859 + 0.944030i \(0.392999\pi\)
−0.821749 + 0.569850i \(0.807001\pi\)
\(578\) 15.8264 48.7087i 0.658292 2.02601i
\(579\) 0 0
\(580\) 2.57186 + 1.86856i 0.106791 + 0.0775879i
\(581\) 5.91208 + 18.1955i 0.245274 + 0.754877i
\(582\) 0 0
\(583\) −11.0824 19.1957i −0.458985 0.795004i
\(584\) 14.0700 0.582219
\(585\) 0 0
\(586\) 39.5219 + 28.7143i 1.63263 + 1.18618i
\(587\) 10.0234 7.28245i 0.413711 0.300579i −0.361391 0.932414i \(-0.617698\pi\)
0.775103 + 0.631835i \(0.217698\pi\)
\(588\) 0 0
\(589\) −9.13423 + 28.1123i −0.376370 + 1.15835i
\(590\) −7.21262 + 5.24027i −0.296939 + 0.215739i
\(591\) 0 0
\(592\) 0.229675 + 0.706868i 0.00943960 + 0.0290521i
\(593\) 4.18039 0.171668 0.0858340 0.996309i \(-0.472645\pi\)
0.0858340 + 0.996309i \(0.472645\pi\)
\(594\) 0 0
\(595\) −2.80796 −0.115115
\(596\) −4.36747 13.4417i −0.178898 0.550593i
\(597\) 0 0
\(598\) 35.7484 25.9727i 1.46186 1.06210i
\(599\) −13.6211 + 41.9214i −0.556542 + 1.71286i 0.135292 + 0.990806i \(0.456803\pi\)
−0.691835 + 0.722056i \(0.743197\pi\)
\(600\) 0 0
\(601\) 1.41684 1.02940i 0.0577943 0.0419900i −0.558513 0.829496i \(-0.688628\pi\)
0.616307 + 0.787506i \(0.288628\pi\)
\(602\) 9.49624 + 6.89943i 0.387038 + 0.281200i
\(603\) 0 0
\(604\) −60.8670 −2.47664
\(605\) 0.364442 + 3.46812i 0.0148167 + 0.140999i
\(606\) 0 0
\(607\) −3.35875 10.3372i −0.136327 0.419573i 0.859467 0.511192i \(-0.170796\pi\)
−0.995794 + 0.0916189i \(0.970796\pi\)
\(608\) 11.5077 + 8.36082i 0.466698 + 0.339076i
\(609\) 0 0
\(610\) −1.05417 + 3.24440i −0.0426821 + 0.131362i
\(611\) −9.66362 + 29.7416i −0.390948 + 1.20321i
\(612\) 0 0
\(613\) −14.3951 10.4586i −0.581412 0.422421i 0.257821 0.966193i \(-0.416996\pi\)
−0.839233 + 0.543772i \(0.816996\pi\)
\(614\) 16.6484 + 51.2385i 0.671875 + 2.06782i
\(615\) 0 0
\(616\) 15.2646 3.24442i 0.615028 0.130722i
\(617\) 3.99611 0.160877 0.0804386 0.996760i \(-0.474368\pi\)
0.0804386 + 0.996760i \(0.474368\pi\)
\(618\) 0 0
\(619\) 8.87927 + 6.45117i 0.356888 + 0.259294i 0.751753 0.659445i \(-0.229209\pi\)
−0.394865 + 0.918739i \(0.629209\pi\)
\(620\) −8.37989 + 6.08835i −0.336544 + 0.244514i
\(621\) 0 0
\(622\) 14.6926 45.2191i 0.589118 1.81312i
\(623\) 3.09556 2.24905i 0.124021 0.0901064i
\(624\) 0 0
\(625\) 7.26270 + 22.3523i 0.290508 + 0.894091i
\(626\) −79.2777 −3.16857
\(627\) 0 0
\(628\) −6.90760 −0.275643
\(629\) −1.63530 5.03293i −0.0652037 0.200676i
\(630\) 0 0
\(631\) −6.99735 + 5.08388i −0.278560 + 0.202386i −0.718289 0.695745i \(-0.755075\pi\)
0.439729 + 0.898131i \(0.355075\pi\)
\(632\) −3.46666 + 10.6693i −0.137896 + 0.424401i
\(633\) 0 0
\(634\) 51.6656 37.5373i 2.05190 1.49079i
\(635\) −3.38660 2.46051i −0.134393 0.0976424i
\(636\) 0 0
\(637\) −20.9343 −0.829448
\(638\) 20.6648 + 9.20082i 0.818128 + 0.364264i
\(639\) 0 0
\(640\) 1.94048 + 5.97219i 0.0767042 + 0.236071i
\(641\) −30.0045 21.7995i −1.18511 0.861030i −0.192368 0.981323i \(-0.561617\pi\)
−0.992738 + 0.120292i \(0.961617\pi\)
\(642\) 0 0
\(643\) −12.5871 + 38.7390i −0.496385 + 1.52772i 0.318402 + 0.947956i \(0.396854\pi\)
−0.814787 + 0.579761i \(0.803146\pi\)
\(644\) 6.78518 20.8826i 0.267373 0.822891i
\(645\) 0 0
\(646\) 36.4474 + 26.4806i 1.43400 + 1.04187i
\(647\) −0.175813 0.541098i −0.00691193 0.0212727i 0.947541 0.319634i \(-0.103560\pi\)
−0.954453 + 0.298361i \(0.903560\pi\)
\(648\) 0 0
\(649\) −26.7973 + 29.7608i −1.05189 + 1.16821i
\(650\) −47.8921 −1.87848
\(651\) 0 0
\(652\) 4.37820 + 3.18095i 0.171464 + 0.124576i
\(653\) 29.5514 21.4704i 1.15644 0.840201i 0.167114 0.985938i \(-0.446555\pi\)
0.989323 + 0.145737i \(0.0465552\pi\)
\(654\) 0 0
\(655\) 0.715183 2.20111i 0.0279445 0.0860044i
\(656\) 2.74549 1.99472i 0.107193 0.0778806i
\(657\) 0 0
\(658\) 7.60666 + 23.4109i 0.296538 + 0.912651i
\(659\) −24.0070 −0.935179 −0.467590 0.883946i \(-0.654877\pi\)
−0.467590 + 0.883946i \(0.654877\pi\)
\(660\) 0 0
\(661\) 12.9833 0.504992 0.252496 0.967598i \(-0.418749\pi\)
0.252496 + 0.967598i \(0.418749\pi\)
\(662\) −12.9348 39.8092i −0.502725 1.54723i
\(663\) 0 0
\(664\) 36.1947 26.2970i 1.40463 1.02052i
\(665\) 0.430484 1.32489i 0.0166935 0.0513772i
\(666\) 0 0
\(667\) 10.7098 7.78112i 0.414685 0.301286i
\(668\) −42.4452 30.8382i −1.64225 1.19317i
\(669\) 0 0
\(670\) −7.35956 −0.284325
\(671\) −1.60194 + 15.2399i −0.0618421 + 0.588330i
\(672\) 0 0
\(673\) 5.26122 + 16.1924i 0.202805 + 0.624170i 0.999796 + 0.0201790i \(0.00642360\pi\)
−0.796991 + 0.603991i \(0.793576\pi\)
\(674\) −20.6737 15.0204i −0.796323 0.578562i
\(675\) 0 0
\(676\) 4.88349 15.0298i 0.187827 0.578071i
\(677\) −10.9490 + 33.6975i −0.420803 + 1.29510i 0.486153 + 0.873874i \(0.338400\pi\)
−0.906956 + 0.421226i \(0.861600\pi\)
\(678\) 0 0
\(679\) −6.03336 4.38349i −0.231539 0.168223i
\(680\) 2.02910 + 6.24492i 0.0778124 + 0.239482i
\(681\) 0 0
\(682\) −49.3186 + 54.7727i −1.88851 + 2.09736i
\(683\) 23.8967 0.914381 0.457191 0.889369i \(-0.348856\pi\)
0.457191 + 0.889369i \(0.348856\pi\)
\(684\) 0 0
\(685\) 2.51533 + 1.82749i 0.0961058 + 0.0698250i
\(686\) −32.0403 + 23.2787i −1.22331 + 0.888783i
\(687\) 0 0
\(688\) 0.962886 2.96346i 0.0367097 0.112981i
\(689\) −22.6921 + 16.4868i −0.864500 + 0.628096i
\(690\) 0 0
\(691\) −0.183128 0.563610i −0.00696652 0.0214407i 0.947513 0.319718i \(-0.103588\pi\)
−0.954479 + 0.298277i \(0.903588\pi\)
\(692\) −3.37645 −0.128353
\(693\) 0 0
\(694\) 51.4682 1.95371
\(695\) 0.928400 + 2.85732i 0.0352162 + 0.108384i
\(696\) 0 0
\(697\) −19.5480 + 14.2025i −0.740434 + 0.537957i
\(698\) −13.2452 + 40.7645i −0.501338 + 1.54296i
\(699\) 0 0
\(700\) −19.2532 + 13.9882i −0.727701 + 0.528706i
\(701\) 20.5701 + 14.9451i 0.776922 + 0.564467i 0.904054 0.427419i \(-0.140577\pi\)
−0.127131 + 0.991886i \(0.540577\pi\)
\(702\) 0 0
\(703\) 2.62542 0.0990194
\(704\) 20.6422 + 35.7542i 0.777983 + 1.34754i
\(705\) 0 0
\(706\) 23.8011 + 73.2521i 0.895765 + 2.75688i
\(707\) −10.9362 7.94561i −0.411298 0.298825i
\(708\) 0 0
\(709\) 4.66760 14.3654i 0.175295 0.539503i −0.824352 0.566078i \(-0.808460\pi\)
0.999647 + 0.0265748i \(0.00846000\pi\)
\(710\) −0.668663 + 2.05793i −0.0250945 + 0.0772329i
\(711\) 0 0
\(712\) −7.23882 5.25931i −0.271286 0.197101i
\(713\) 13.3290 + 41.0224i 0.499175 + 1.53630i
\(714\) 0 0
\(715\) 4.31649 0.917452i 0.161428 0.0343108i
\(716\) −38.4399 −1.43657
\(717\) 0 0
\(718\) −5.65004 4.10500i −0.210858 0.153197i
\(719\) −9.74281 + 7.07857i −0.363345 + 0.263986i −0.754446 0.656362i \(-0.772094\pi\)
0.391101 + 0.920348i \(0.372094\pi\)
\(720\) 0 0
\(721\) −4.17983 + 12.8642i −0.155665 + 0.479088i
\(722\) 17.7177 12.8727i 0.659384 0.479071i
\(723\) 0 0
\(724\) 18.9680 + 58.3776i 0.704941 + 2.16959i
\(725\) −14.3479 −0.532868
\(726\) 0 0
\(727\) 49.5932 1.83931 0.919654 0.392729i \(-0.128469\pi\)
0.919654 + 0.392729i \(0.128469\pi\)
\(728\) −6.10251 18.7816i −0.226174 0.696092i
\(729\) 0 0
\(730\) 2.53368 1.84082i 0.0937755 0.0681319i
\(731\) −6.85579 + 21.1000i −0.253571 + 0.780410i
\(732\) 0 0
\(733\) 26.1032 18.9651i 0.964145 0.700493i 0.0100355 0.999950i \(-0.496806\pi\)
0.954110 + 0.299457i \(0.0968055\pi\)
\(734\) −3.13241 2.27583i −0.115619 0.0840024i
\(735\) 0 0
\(736\) 20.7566 0.765097
\(737\) −32.3368 + 6.87305i −1.19114 + 0.253172i
\(738\) 0 0
\(739\) −0.968005 2.97921i −0.0356086 0.109592i 0.931672 0.363300i \(-0.118350\pi\)
−0.967281 + 0.253708i \(0.918350\pi\)
\(740\) 0.744298 + 0.540764i 0.0273609 + 0.0198789i
\(741\) 0 0
\(742\) −6.82266 + 20.9980i −0.250468 + 0.770860i
\(743\) 2.40686 7.40756i 0.0882992 0.271757i −0.897150 0.441725i \(-0.854367\pi\)
0.985450 + 0.169968i \(0.0543666\pi\)
\(744\) 0 0
\(745\) −1.05859 0.769107i −0.0387836 0.0281779i
\(746\) −15.4798 47.6420i −0.566756 1.74430i
\(747\) 0 0
\(748\) 35.4570 + 61.4148i 1.29644 + 2.24555i
\(749\) −7.33730 −0.268099
\(750\) 0 0
\(751\) −40.1993 29.2065i −1.46689 1.06576i −0.981500 0.191463i \(-0.938677\pi\)
−0.485392 0.874297i \(-0.661323\pi\)
\(752\) 5.28649 3.84086i 0.192778 0.140062i
\(753\) 0 0
\(754\) 8.84570 27.2243i 0.322141 0.991449i
\(755\) −4.55890 + 3.31224i −0.165915 + 0.120545i
\(756\) 0 0
\(757\) −8.35296 25.7078i −0.303594 0.934365i −0.980198 0.198018i \(-0.936549\pi\)
0.676605 0.736346i \(-0.263451\pi\)
\(758\) 28.9247 1.05059
\(759\) 0 0
\(760\) −3.25765 −0.118167
\(761\) 13.7545 + 42.3320i 0.498601 + 1.53454i 0.811269 + 0.584673i \(0.198777\pi\)
−0.312668 + 0.949862i \(0.601223\pi\)
\(762\) 0 0
\(763\) 16.6132 12.0702i 0.601438 0.436970i
\(764\) 13.6374 41.9716i 0.493384 1.51848i
\(765\) 0 0
\(766\) −1.50675 + 1.09472i −0.0544412 + 0.0395538i
\(767\) 40.9996 + 29.7879i 1.48041 + 1.07558i
\(768\) 0 0
\(769\) −3.31905 −0.119688 −0.0598440 0.998208i \(-0.519060\pi\)
−0.0598440 + 0.998208i \(0.519060\pi\)
\(770\) 2.32432 2.58136i 0.0837626 0.0930259i
\(771\) 0 0
\(772\) −24.4973 75.3949i −0.881677 2.71352i
\(773\) −23.0471 16.7447i −0.828946 0.602264i 0.0903152 0.995913i \(-0.471213\pi\)
−0.919261 + 0.393649i \(0.871213\pi\)
\(774\) 0 0
\(775\) 14.4465 44.4617i 0.518934 1.59711i
\(776\) −5.38906 + 16.5858i −0.193456 + 0.595397i
\(777\) 0 0
\(778\) 3.27227 + 2.37744i 0.117316 + 0.0852354i
\(779\) −3.70434 11.4008i −0.132722 0.408475i
\(780\) 0 0
\(781\) −1.01611 + 9.66671i −0.0363594 + 0.345902i
\(782\) 65.7407 2.35088
\(783\) 0 0
\(784\) 3.53890 + 2.57116i 0.126389 + 0.0918273i
\(785\) −0.517375 + 0.375895i −0.0184659 + 0.0134163i
\(786\) 0 0
\(787\) 4.03227 12.4101i 0.143735 0.442371i −0.853111 0.521729i \(-0.825287\pi\)
0.996846 + 0.0793585i \(0.0252872\pi\)
\(788\) −2.98542 + 2.16903i −0.106351 + 0.0772685i
\(789\) 0 0
\(790\) 0.771633 + 2.37484i 0.0274535 + 0.0844931i
\(791\) 10.5417 0.374819
\(792\) 0 0
\(793\) 19.3917 0.688618
\(794\) −17.8198 54.8436i −0.632400 1.94633i
\(795\) 0 0
\(796\) −45.5176 + 33.0705i −1.61333 + 1.17215i
\(797\) 15.5044 47.7177i 0.549195 1.69025i −0.161607 0.986855i \(-0.551668\pi\)
0.710802 0.703392i \(-0.248332\pi\)
\(798\) 0 0
\(799\) −37.6400 + 27.3471i −1.33161 + 0.967471i
\(800\) −18.2003 13.2233i −0.643477 0.467514i
\(801\) 0 0
\(802\) 50.8941 1.79713
\(803\) 9.41346 10.4545i 0.332194 0.368931i
\(804\) 0 0
\(805\) −0.628177 1.93333i −0.0221403 0.0681410i
\(806\) 75.4569 + 54.8226i 2.65786 + 1.93104i
\(807\) 0 0
\(808\) −9.76832 + 30.0638i −0.343648 + 1.05764i
\(809\) −10.8621 + 33.4301i −0.381892 + 1.17534i 0.556819 + 0.830634i \(0.312022\pi\)
−0.938710 + 0.344707i \(0.887978\pi\)
\(810\) 0 0
\(811\) −17.8837 12.9933i −0.627981 0.456255i 0.227719 0.973727i \(-0.426873\pi\)
−0.855700 + 0.517472i \(0.826873\pi\)
\(812\) −4.39554 13.5281i −0.154253 0.474742i
\(813\) 0 0
\(814\) 5.98041 + 2.66273i 0.209613 + 0.0933285i
\(815\) 0.501025 0.0175501
\(816\) 0 0
\(817\) −8.90464 6.46960i −0.311534 0.226343i
\(818\) −15.1391 + 10.9992i −0.529327 + 0.384579i
\(819\) 0 0
\(820\) 1.29808 3.99508i 0.0453309 0.139514i
\(821\) −2.05264 + 1.49133i −0.0716375 + 0.0520477i −0.623028 0.782200i \(-0.714098\pi\)
0.551390 + 0.834248i \(0.314098\pi\)
\(822\) 0 0
\(823\) −3.20534 9.86502i −0.111731 0.343873i 0.879520 0.475862i \(-0.157864\pi\)
−0.991251 + 0.131989i \(0.957864\pi\)
\(824\) 31.6305 1.10190
\(825\) 0 0
\(826\) 39.8911 1.38799
\(827\) 16.2925 + 50.1431i 0.566546 + 1.74365i 0.663314 + 0.748341i \(0.269149\pi\)
−0.0967683 + 0.995307i \(0.530851\pi\)
\(828\) 0 0
\(829\) −30.6163 + 22.2440i −1.06335 + 0.772566i −0.974705 0.223497i \(-0.928253\pi\)
−0.0886419 + 0.996064i \(0.528253\pi\)
\(830\) 3.07730 9.47095i 0.106815 0.328741i
\(831\) 0 0
\(832\) 42.2667 30.7085i 1.46533 1.06463i
\(833\) −25.1972 18.3068i −0.873030 0.634293i
\(834\) 0 0
\(835\) −4.85726 −0.168092
\(836\) −34.4135 + 7.31444i −1.19021 + 0.252975i
\(837\) 0 0
\(838\) −4.02803 12.3970i −0.139146 0.428247i
\(839\) 16.2738 + 11.8236i 0.561835 + 0.408197i 0.832130 0.554581i \(-0.187121\pi\)
−0.270295 + 0.962778i \(0.587121\pi\)
\(840\) 0 0
\(841\) −6.31143 + 19.4246i −0.217635 + 0.669813i
\(842\) 27.2438 83.8479i 0.938885 2.88959i
\(843\) 0 0
\(844\) 41.4150 + 30.0898i 1.42556 + 1.03573i
\(845\) −0.452118 1.39148i −0.0155533 0.0478682i
\(846\) 0 0
\(847\) 7.80199 13.5128i 0.268079 0.464305i
\(848\) 5.86097 0.201266
\(849\) 0 0
\(850\) −57.6444 41.8811i −1.97719 1.43651i
\(851\) 3.09942 2.25186i 0.106247 0.0771929i
\(852\) 0 0
\(853\) 2.81829 8.67382i 0.0964966 0.296986i −0.891144 0.453720i \(-0.850097\pi\)
0.987641 + 0.156734i \(0.0500966\pi\)
\(854\) 12.3489 8.97197i 0.422569 0.307014i
\(855\) 0 0
\(856\) 5.30210 + 16.3182i 0.181222 + 0.557744i
\(857\) −1.84536 −0.0630362 −0.0315181 0.999503i \(-0.510034\pi\)
−0.0315181 + 0.999503i \(0.510034\pi\)
\(858\) 0 0
\(859\) 28.5111 0.972785 0.486392 0.873741i \(-0.338313\pi\)
0.486392 + 0.873741i \(0.338313\pi\)
\(860\) −1.19188 3.66822i −0.0406427 0.125085i
\(861\) 0 0
\(862\) 56.1199 40.7735i 1.91145 1.38875i
\(863\) −3.30628 + 10.1757i −0.112547 + 0.346385i −0.991428 0.130658i \(-0.958291\pi\)
0.878880 + 0.477042i \(0.158291\pi\)
\(864\) 0 0
\(865\) −0.252894 + 0.183738i −0.00859865 + 0.00624729i
\(866\) 0.526204 + 0.382309i 0.0178811 + 0.0129914i
\(867\) 0 0
\(868\) 46.3470 1.57312
\(869\) 5.60829 + 9.71408i 0.190248 + 0.329528i
\(870\) 0 0
\(871\) 12.9277 + 39.7873i 0.438038 + 1.34814i
\(872\) −38.8492 28.2256i −1.31560 0.955840i
\(873\) 0 0
\(874\) −10.0786 + 31.0187i −0.340913 + 1.04922i
\(875\) −1.37565 + 4.23383i −0.0465056 + 0.143129i
\(876\) 0 0
\(877\) −33.0340 24.0006i −1.11548 0.810442i −0.131961 0.991255i \(-0.542127\pi\)
−0.983518 + 0.180812i \(0.942127\pi\)
\(878\) 10.7930 + 33.2175i 0.364247 + 1.12104i
\(879\) 0 0
\(880\) −0.842377 0.375061i −0.0283965 0.0126433i
\(881\) 21.0458 0.709050 0.354525 0.935047i \(-0.384643\pi\)
0.354525 + 0.935047i \(0.384643\pi\)
\(882\) 0 0
\(883\) −10.2973 7.48145i −0.346533 0.251771i 0.400880 0.916130i \(-0.368704\pi\)
−0.747413 + 0.664360i \(0.768704\pi\)
\(884\) 72.6012 52.7479i 2.44184 1.77410i
\(885\) 0 0
\(886\) 10.4355 32.1173i 0.350589 1.07900i
\(887\) −8.67670 + 6.30399i −0.291335 + 0.211667i −0.723846 0.689961i \(-0.757628\pi\)
0.432511 + 0.901628i \(0.357628\pi\)
\(888\) 0 0
\(889\) 5.78801 + 17.8137i 0.194124 + 0.597452i
\(890\) −1.99164 −0.0667599
\(891\) 0 0
\(892\) 6.59606 0.220852
\(893\) −7.13277 21.9524i −0.238689 0.734609i
\(894\) 0 0
\(895\) −2.87913 + 2.09181i −0.0962387 + 0.0699215i
\(896\) 8.68260 26.7223i 0.290065 0.892729i
\(897\) 0 0
\(898\) 39.9860 29.0515i 1.33435 0.969462i
\(899\) 22.6060 + 16.4242i 0.753952 + 0.547778i
\(900\) 0 0
\(901\) −41.7304 −1.39024
\(902\) 3.12472 29.7267i 0.104042 0.989792i
\(903\) 0 0
\(904\) −7.61766 23.4447i −0.253360 0.779761i
\(905\) 4.59747 + 3.34025i 0.152825 + 0.111034i
\(906\) 0 0
\(907\) −4.09311 + 12.5973i −0.135909 + 0.418286i −0.995730 0.0923094i \(-0.970575\pi\)
0.859821 + 0.510596i \(0.170575\pi\)
\(908\) −16.9422 + 52.1426i −0.562245 + 1.73041i
\(909\) 0 0
\(910\) −3.55618 2.58372i −0.117886 0.0856494i
\(911\) −17.6524 54.3286i −0.584851 1.79999i −0.599867 0.800099i \(-0.704780\pi\)
0.0150163 0.999887i \(-0.495220\pi\)
\(912\) 0 0
\(913\) 4.67632 44.4878i 0.154764 1.47233i
\(914\) −7.47494 −0.247249
\(915\) 0 0
\(916\) 1.44865 + 1.05250i 0.0478647 + 0.0347757i
\(917\) −8.37786 + 6.08687i −0.276661 + 0.201006i
\(918\) 0 0
\(919\) 5.12287 15.7666i 0.168988 0.520091i −0.830320 0.557287i \(-0.811842\pi\)
0.999308 + 0.0371955i \(0.0118424\pi\)
\(920\) −3.84580 + 2.79414i −0.126792 + 0.0921200i
\(921\) 0 0
\(922\) 18.9465 + 58.3115i 0.623971 + 1.92039i
\(923\) 12.3002 0.404865
\(924\) 0 0
\(925\) −4.15230 −0.136527
\(926\) 2.61125 + 8.03660i 0.0858109 + 0.264099i
\(927\) 0 0
\(928\) 10.8784 7.90359i 0.357100 0.259448i
\(929\) −2.27554 + 7.00338i −0.0746580 + 0.229774i −0.981421 0.191867i \(-0.938546\pi\)
0.906763 + 0.421641i \(0.138546\pi\)
\(930\) 0 0
\(931\) 12.5007 9.08230i 0.409694 0.297660i
\(932\) 28.4023 + 20.6355i 0.930349 + 0.675938i
\(933\) 0 0
\(934\) −43.0753 −1.40947
\(935\) 5.99776 + 2.67045i 0.196148 + 0.0873330i
\(936\) 0 0
\(937\) 14.6033 + 44.9444i 0.477069 + 1.46827i 0.843147 + 0.537684i \(0.180701\pi\)
−0.366077 + 0.930584i \(0.619299\pi\)
\(938\) 26.6410 + 19.3558i 0.869858 + 0.631989i
\(939\) 0 0
\(940\) 2.49948 7.69260i 0.0815239 0.250905i
\(941\) −17.3447 + 53.3816i −0.565422 + 1.74019i 0.101273 + 0.994859i \(0.467709\pi\)
−0.666695 + 0.745331i \(0.732291\pi\)
\(942\) 0 0
\(943\) −14.1518 10.2819i −0.460845 0.334824i
\(944\) −3.27233 10.0712i −0.106505 0.327789i
\(945\) 0 0
\(946\) −13.7223 23.7682i −0.446149 0.772772i
\(947\) −12.7865 −0.415504 −0.207752 0.978182i \(-0.566615\pi\)
−0.207752 + 0.978182i \(0.566615\pi\)
\(948\) 0 0
\(949\) −14.4025 10.4640i −0.467524 0.339676i
\(950\) 28.5983 20.7779i 0.927852 0.674124i
\(951\) 0 0
\(952\) 9.07912 27.9427i 0.294256 0.905627i
\(953\) 18.8480 13.6939i 0.610547 0.443588i −0.239060 0.971005i \(-0.576839\pi\)
0.849607 + 0.527417i \(0.176839\pi\)
\(954\) 0 0
\(955\) −1.26256 3.88576i −0.0408555 0.125740i
\(956\) −33.0133 −1.06773
\(957\) 0 0
\(958\) −0.365649 −0.0118136
\(959\) −4.29893 13.2307i −0.138820 0.427243i
\(960\) 0 0
\(961\) −48.5776 + 35.2937i −1.56702 + 1.13851i
\(962\) 2.55995 7.87872i 0.0825362 0.254020i
\(963\) 0 0
\(964\) 0.772163 0.561009i 0.0248697 0.0180689i
\(965\) −5.93765 4.31395i −0.191140 0.138871i
\(966\) 0 0
\(967\) −55.5173 −1.78531 −0.892657 0.450736i \(-0.851162\pi\)
−0.892657 + 0.450736i \(0.851162\pi\)
\(968\) −35.6904 7.58700i −1.14713 0.243855i
\(969\) 0 0
\(970\) 1.19954 + 3.69179i 0.0385148 + 0.118536i
\(971\) 3.65698 + 2.65695i 0.117358 + 0.0852656i 0.644916 0.764253i \(-0.276892\pi\)
−0.527558 + 0.849519i \(0.676892\pi\)
\(972\) 0 0
\(973\) 4.15409 12.7850i 0.133174 0.409867i
\(974\) 12.9017 39.7074i 0.413398 1.27231i
\(975\) 0 0
\(976\) −3.27812 2.38169i −0.104930 0.0762361i
\(977\) −8.35560 25.7159i −0.267319 0.822724i −0.991150 0.132746i \(-0.957620\pi\)
0.723831 0.689977i \(-0.242380\pi\)
\(978\) 0 0
\(979\) −8.75096 + 1.85998i −0.279682 + 0.0594452i
\(980\) 5.41462 0.172964
\(981\) 0 0
\(982\) 12.5261 + 9.10076i 0.399725 + 0.290417i
\(983\) −8.60599 + 6.25262i −0.274489 + 0.199428i −0.716510 0.697577i \(-0.754262\pi\)
0.442021 + 0.897005i \(0.354262\pi\)
\(984\) 0 0
\(985\) −0.105572 + 0.324919i −0.00336382 + 0.0103528i
\(986\) 34.4542 25.0325i 1.09725 0.797196i
\(987\) 0 0
\(988\) 13.7579 + 42.3424i 0.437697 + 1.34709i
\(989\) −16.0614 −0.510723
\(990\) 0 0
\(991\) −18.7938 −0.597005 −0.298502 0.954409i \(-0.596487\pi\)
−0.298502 + 0.954409i \(0.596487\pi\)
\(992\) 13.5388 + 41.6681i 0.429857 + 1.32296i
\(993\) 0 0
\(994\) 7.83291 5.69094i 0.248445 0.180506i
\(995\) −1.60963 + 4.95392i −0.0510286 + 0.157050i
\(996\) 0 0
\(997\) 21.1375 15.3573i 0.669433 0.486371i −0.200403 0.979714i \(-0.564225\pi\)
0.869835 + 0.493342i \(0.164225\pi\)
\(998\) −63.9637 46.4723i −2.02473 1.47106i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.f.f.82.9 36
3.2 odd 2 891.2.f.e.82.1 36
9.2 odd 6 297.2.n.b.280.1 72
9.4 even 3 99.2.m.b.16.1 72
9.5 odd 6 297.2.n.b.181.9 72
9.7 even 3 99.2.m.b.49.9 yes 72
11.3 even 5 9801.2.a.cm.1.18 18
11.8 odd 10 9801.2.a.co.1.1 18
11.9 even 5 inner 891.2.f.f.163.9 36
33.8 even 10 9801.2.a.cn.1.18 18
33.14 odd 10 9801.2.a.cp.1.1 18
33.20 odd 10 891.2.f.e.163.1 36
99.20 odd 30 297.2.n.b.64.9 72
99.25 even 15 1089.2.e.p.364.1 36
99.31 even 15 99.2.m.b.97.9 yes 72
99.52 odd 30 1089.2.e.o.364.18 36
99.58 even 15 1089.2.e.p.727.1 36
99.85 odd 30 1089.2.e.o.727.18 36
99.86 odd 30 297.2.n.b.262.1 72
99.97 even 15 99.2.m.b.31.1 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.16.1 72 9.4 even 3
99.2.m.b.31.1 yes 72 99.97 even 15
99.2.m.b.49.9 yes 72 9.7 even 3
99.2.m.b.97.9 yes 72 99.31 even 15
297.2.n.b.64.9 72 99.20 odd 30
297.2.n.b.181.9 72 9.5 odd 6
297.2.n.b.262.1 72 99.86 odd 30
297.2.n.b.280.1 72 9.2 odd 6
891.2.f.e.82.1 36 3.2 odd 2
891.2.f.e.163.1 36 33.20 odd 10
891.2.f.f.82.9 36 1.1 even 1 trivial
891.2.f.f.163.9 36 11.9 even 5 inner
1089.2.e.o.364.18 36 99.52 odd 30
1089.2.e.o.727.18 36 99.85 odd 30
1089.2.e.p.364.1 36 99.25 even 15
1089.2.e.p.727.1 36 99.58 even 15
9801.2.a.cm.1.18 18 11.3 even 5
9801.2.a.cn.1.18 18 33.8 even 10
9801.2.a.co.1.1 18 11.8 odd 10
9801.2.a.cp.1.1 18 33.14 odd 10