Properties

Label 891.2.f.f.730.5
Level $891$
Weight $2$
Character 891.730
Analytic conductor $7.115$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(82,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(9\) over \(\Q(\zeta_{5})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 730.5
Character \(\chi\) \(=\) 891.730
Dual form 891.2.f.f.487.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.396818 + 0.288305i) q^{2} +(-0.543689 - 1.67330i) q^{4} +(-1.38194 + 1.00404i) q^{5} +(1.05391 + 3.24360i) q^{7} +(0.569818 - 1.75372i) q^{8} -0.837851 q^{10} +(-1.07799 - 3.13655i) q^{11} +(3.23439 + 2.34992i) q^{13} +(-0.516936 + 1.59097i) q^{14} +(-2.11507 + 1.53669i) q^{16} +(2.67346 - 1.94238i) q^{17} +(-1.36513 + 4.20144i) q^{19} +(2.43141 + 1.76653i) q^{20} +(0.476515 - 1.55543i) q^{22} +7.49201 q^{23} +(-0.643414 + 1.98022i) q^{25} +(0.605969 + 1.86498i) q^{26} +(4.85453 - 3.52702i) q^{28} +(0.522637 + 1.60851i) q^{29} +(3.15397 + 2.29149i) q^{31} -4.97028 q^{32} +1.62087 q^{34} +(-4.71315 - 3.42431i) q^{35} +(0.947300 + 2.91549i) q^{37} +(-1.75300 + 1.27363i) q^{38} +(0.973351 + 2.99566i) q^{40} +(0.120787 - 0.371744i) q^{41} +9.61268 q^{43} +(-4.66230 + 3.50912i) q^{44} +(2.97296 + 2.15999i) q^{46} +(-0.333818 + 1.02739i) q^{47} +(-3.74710 + 2.72242i) q^{49} +(-0.826227 + 0.600289i) q^{50} +(2.17363 - 6.68974i) q^{52} +(10.1643 + 7.38480i) q^{53} +(4.63895 + 3.25218i) q^{55} +6.28890 q^{56} +(-0.256350 + 0.788965i) q^{58} +(-1.12993 - 3.47758i) q^{59} +(3.11728 - 2.26484i) q^{61} +(0.590902 + 1.81861i) q^{62} +(2.25785 + 1.64043i) q^{64} -6.82916 q^{65} +3.10120 q^{67} +(-4.70372 - 3.41746i) q^{68} +(-0.883019 - 2.71765i) q^{70} +(-5.67699 + 4.12458i) q^{71} +(-4.64842 - 14.3064i) q^{73} +(-0.464645 + 1.43003i) q^{74} +7.77248 q^{76} +(9.03760 - 6.80222i) q^{77} +(3.23536 + 2.35063i) q^{79} +(1.38001 - 4.24724i) q^{80} +(0.155106 - 0.112691i) q^{82} +(0.101100 - 0.0734531i) q^{83} +(-1.74434 + 5.36852i) q^{85} +(3.81449 + 2.77139i) q^{86} +(-6.11489 + 0.103238i) q^{88} -7.93327 q^{89} +(-4.21345 + 12.9677i) q^{91} +(-4.07333 - 12.5364i) q^{92} +(-0.428666 + 0.311444i) q^{94} +(-2.33188 - 7.17680i) q^{95} +(-0.277622 - 0.201704i) q^{97} -2.27180 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + q^{2} - 11 q^{4} + 8 q^{5} + 2 q^{7} + 3 q^{8} - 4 q^{10} + 2 q^{11} + 11 q^{13} + 10 q^{14} + 9 q^{16} - 10 q^{17} + 4 q^{19} + 45 q^{20} + 16 q^{22} - 20 q^{23} - 11 q^{25} - 6 q^{26} - 27 q^{28}+ \cdots - 164 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.396818 + 0.288305i 0.280593 + 0.203863i 0.719176 0.694828i \(-0.244520\pi\)
−0.438583 + 0.898691i \(0.644520\pi\)
\(3\) 0 0
\(4\) −0.543689 1.67330i −0.271845 0.836652i
\(5\) −1.38194 + 1.00404i −0.618024 + 0.449021i −0.852231 0.523166i \(-0.824751\pi\)
0.234207 + 0.972187i \(0.424751\pi\)
\(6\) 0 0
\(7\) 1.05391 + 3.24360i 0.398340 + 1.22597i 0.926329 + 0.376714i \(0.122946\pi\)
−0.527989 + 0.849251i \(0.677054\pi\)
\(8\) 0.569818 1.75372i 0.201461 0.620034i
\(9\) 0 0
\(10\) −0.837851 −0.264952
\(11\) −1.07799 3.13655i −0.325027 0.945705i
\(12\) 0 0
\(13\) 3.23439 + 2.34992i 0.897058 + 0.651751i 0.937709 0.347423i \(-0.112943\pi\)
−0.0406508 + 0.999173i \(0.512943\pi\)
\(14\) −0.516936 + 1.59097i −0.138157 + 0.425204i
\(15\) 0 0
\(16\) −2.11507 + 1.53669i −0.528768 + 0.384173i
\(17\) 2.67346 1.94238i 0.648409 0.471097i −0.214320 0.976763i \(-0.568754\pi\)
0.862729 + 0.505667i \(0.168754\pi\)
\(18\) 0 0
\(19\) −1.36513 + 4.20144i −0.313182 + 0.963875i 0.663314 + 0.748341i \(0.269149\pi\)
−0.976496 + 0.215534i \(0.930851\pi\)
\(20\) 2.43141 + 1.76653i 0.543681 + 0.395007i
\(21\) 0 0
\(22\) 0.476515 1.55543i 0.101593 0.331619i
\(23\) 7.49201 1.56219 0.781096 0.624411i \(-0.214661\pi\)
0.781096 + 0.624411i \(0.214661\pi\)
\(24\) 0 0
\(25\) −0.643414 + 1.98022i −0.128683 + 0.396045i
\(26\) 0.605969 + 1.86498i 0.118840 + 0.365753i
\(27\) 0 0
\(28\) 4.85453 3.52702i 0.917420 0.666544i
\(29\) 0.522637 + 1.60851i 0.0970512 + 0.298693i 0.987783 0.155837i \(-0.0498074\pi\)
−0.890732 + 0.454530i \(0.849807\pi\)
\(30\) 0 0
\(31\) 3.15397 + 2.29149i 0.566469 + 0.411564i 0.833821 0.552035i \(-0.186149\pi\)
−0.267352 + 0.963599i \(0.586149\pi\)
\(32\) −4.97028 −0.878629
\(33\) 0 0
\(34\) 1.62087 0.277978
\(35\) −4.71315 3.42431i −0.796668 0.578813i
\(36\) 0 0
\(37\) 0.947300 + 2.91549i 0.155735 + 0.479304i 0.998235 0.0593935i \(-0.0189167\pi\)
−0.842499 + 0.538697i \(0.818917\pi\)
\(38\) −1.75300 + 1.27363i −0.284375 + 0.206610i
\(39\) 0 0
\(40\) 0.973351 + 2.99566i 0.153900 + 0.473656i
\(41\) 0.120787 0.371744i 0.0188637 0.0580566i −0.941182 0.337901i \(-0.890283\pi\)
0.960045 + 0.279845i \(0.0902830\pi\)
\(42\) 0 0
\(43\) 9.61268 1.46592 0.732960 0.680272i \(-0.238138\pi\)
0.732960 + 0.680272i \(0.238138\pi\)
\(44\) −4.66230 + 3.50912i −0.702869 + 0.529020i
\(45\) 0 0
\(46\) 2.97296 + 2.15999i 0.438340 + 0.318472i
\(47\) −0.333818 + 1.02739i −0.0486924 + 0.149860i −0.972446 0.233127i \(-0.925104\pi\)
0.923754 + 0.382986i \(0.125104\pi\)
\(48\) 0 0
\(49\) −3.74710 + 2.72242i −0.535299 + 0.388918i
\(50\) −0.826227 + 0.600289i −0.116846 + 0.0848937i
\(51\) 0 0
\(52\) 2.17363 6.68974i 0.301428 0.927700i
\(53\) 10.1643 + 7.38480i 1.39618 + 1.01438i 0.995156 + 0.0983117i \(0.0313442\pi\)
0.401020 + 0.916069i \(0.368656\pi\)
\(54\) 0 0
\(55\) 4.63895 + 3.25218i 0.625516 + 0.438524i
\(56\) 6.28890 0.840390
\(57\) 0 0
\(58\) −0.256350 + 0.788965i −0.0336604 + 0.103596i
\(59\) −1.12993 3.47758i −0.147105 0.452742i 0.850171 0.526507i \(-0.176499\pi\)
−0.997276 + 0.0737648i \(0.976499\pi\)
\(60\) 0 0
\(61\) 3.11728 2.26484i 0.399127 0.289983i −0.370058 0.929009i \(-0.620662\pi\)
0.769185 + 0.639026i \(0.220662\pi\)
\(62\) 0.590902 + 1.81861i 0.0750446 + 0.230964i
\(63\) 0 0
\(64\) 2.25785 + 1.64043i 0.282232 + 0.205053i
\(65\) −6.82916 −0.847053
\(66\) 0 0
\(67\) 3.10120 0.378872 0.189436 0.981893i \(-0.439334\pi\)
0.189436 + 0.981893i \(0.439334\pi\)
\(68\) −4.70372 3.41746i −0.570410 0.414427i
\(69\) 0 0
\(70\) −0.883019 2.71765i −0.105541 0.324822i
\(71\) −5.67699 + 4.12458i −0.673735 + 0.489497i −0.871273 0.490798i \(-0.836705\pi\)
0.197538 + 0.980295i \(0.436705\pi\)
\(72\) 0 0
\(73\) −4.64842 14.3064i −0.544057 1.67443i −0.723222 0.690615i \(-0.757340\pi\)
0.179165 0.983819i \(-0.442660\pi\)
\(74\) −0.464645 + 1.43003i −0.0540139 + 0.166238i
\(75\) 0 0
\(76\) 7.77248 0.891565
\(77\) 9.03760 6.80222i 1.02993 0.775185i
\(78\) 0 0
\(79\) 3.23536 + 2.35063i 0.364007 + 0.264467i 0.754721 0.656045i \(-0.227772\pi\)
−0.390714 + 0.920512i \(0.627772\pi\)
\(80\) 1.38001 4.24724i 0.154290 0.474856i
\(81\) 0 0
\(82\) 0.155106 0.112691i 0.0171286 0.0124447i
\(83\) 0.101100 0.0734531i 0.0110971 0.00806252i −0.582223 0.813029i \(-0.697817\pi\)
0.593320 + 0.804967i \(0.297817\pi\)
\(84\) 0 0
\(85\) −1.74434 + 5.36852i −0.189200 + 0.582298i
\(86\) 3.81449 + 2.77139i 0.411327 + 0.298846i
\(87\) 0 0
\(88\) −6.11489 + 0.103238i −0.651849 + 0.0110052i
\(89\) −7.93327 −0.840925 −0.420462 0.907310i \(-0.638132\pi\)
−0.420462 + 0.907310i \(0.638132\pi\)
\(90\) 0 0
\(91\) −4.21345 + 12.9677i −0.441690 + 1.35938i
\(92\) −4.07333 12.5364i −0.424674 1.30701i
\(93\) 0 0
\(94\) −0.428666 + 0.311444i −0.0442135 + 0.0321230i
\(95\) −2.33188 7.17680i −0.239246 0.736324i
\(96\) 0 0
\(97\) −0.277622 0.201704i −0.0281882 0.0204800i 0.573602 0.819134i \(-0.305546\pi\)
−0.601790 + 0.798654i \(0.705546\pi\)
\(98\) −2.27180 −0.229487
\(99\) 0 0
\(100\) 3.66333 0.366333
\(101\) −5.75663 4.18244i −0.572806 0.416168i 0.263318 0.964709i \(-0.415183\pi\)
−0.836123 + 0.548541i \(0.815183\pi\)
\(102\) 0 0
\(103\) −0.511203 1.57332i −0.0503703 0.155024i 0.922707 0.385501i \(-0.125971\pi\)
−0.973078 + 0.230477i \(0.925971\pi\)
\(104\) 5.96412 4.33318i 0.584830 0.424904i
\(105\) 0 0
\(106\) 1.90430 + 5.86085i 0.184962 + 0.569256i
\(107\) 1.02187 3.14498i 0.0987876 0.304037i −0.889435 0.457062i \(-0.848902\pi\)
0.988222 + 0.153025i \(0.0489016\pi\)
\(108\) 0 0
\(109\) −5.50709 −0.527484 −0.263742 0.964593i \(-0.584957\pi\)
−0.263742 + 0.964593i \(0.584957\pi\)
\(110\) 0.903198 + 2.62796i 0.0861165 + 0.250566i
\(111\) 0 0
\(112\) −7.21351 5.24092i −0.681612 0.495220i
\(113\) −5.07073 + 15.6061i −0.477014 + 1.46810i 0.366208 + 0.930533i \(0.380656\pi\)
−0.843222 + 0.537565i \(0.819344\pi\)
\(114\) 0 0
\(115\) −10.3535 + 7.52229i −0.965473 + 0.701457i
\(116\) 2.40738 1.74906i 0.223519 0.162396i
\(117\) 0 0
\(118\) 0.554226 1.70573i 0.0510206 0.157025i
\(119\) 9.11789 + 6.62453i 0.835835 + 0.607270i
\(120\) 0 0
\(121\) −8.67586 + 6.76236i −0.788714 + 0.614760i
\(122\) 1.88996 0.171109
\(123\) 0 0
\(124\) 2.11958 6.52340i 0.190344 0.585819i
\(125\) −3.73834 11.5054i −0.334368 1.02908i
\(126\) 0 0
\(127\) −8.73327 + 6.34509i −0.774952 + 0.563036i −0.903460 0.428673i \(-0.858981\pi\)
0.128508 + 0.991709i \(0.458981\pi\)
\(128\) 3.49481 + 10.7559i 0.308901 + 0.950699i
\(129\) 0 0
\(130\) −2.70993 1.96888i −0.237677 0.172682i
\(131\) −21.1557 −1.84838 −0.924189 0.381935i \(-0.875258\pi\)
−0.924189 + 0.381935i \(0.875258\pi\)
\(132\) 0 0
\(133\) −15.0665 −1.30643
\(134\) 1.23061 + 0.894092i 0.106309 + 0.0772378i
\(135\) 0 0
\(136\) −1.88301 5.79530i −0.161467 0.496943i
\(137\) −2.58928 + 1.88122i −0.221217 + 0.160724i −0.692874 0.721058i \(-0.743656\pi\)
0.471657 + 0.881782i \(0.343656\pi\)
\(138\) 0 0
\(139\) −4.63329 14.2598i −0.392991 1.20950i −0.930515 0.366253i \(-0.880640\pi\)
0.537525 0.843248i \(-0.319360\pi\)
\(140\) −3.16741 + 9.74829i −0.267695 + 0.823881i
\(141\) 0 0
\(142\) −3.44187 −0.288835
\(143\) 3.88399 12.6780i 0.324795 1.06019i
\(144\) 0 0
\(145\) −2.33727 1.69812i −0.194099 0.141021i
\(146\) 2.28002 7.01719i 0.188696 0.580747i
\(147\) 0 0
\(148\) 4.36346 3.17024i 0.358675 0.260592i
\(149\) −3.27743 + 2.38119i −0.268497 + 0.195075i −0.713885 0.700263i \(-0.753066\pi\)
0.445387 + 0.895338i \(0.353066\pi\)
\(150\) 0 0
\(151\) −2.40847 + 7.41252i −0.195999 + 0.603222i 0.803965 + 0.594677i \(0.202720\pi\)
−0.999963 + 0.00854528i \(0.997280\pi\)
\(152\) 6.59027 + 4.78811i 0.534541 + 0.388367i
\(153\) 0 0
\(154\) 5.54740 0.0936570i 0.447022 0.00754709i
\(155\) −6.65936 −0.534892
\(156\) 0 0
\(157\) 0.0955332 0.294021i 0.00762438 0.0234654i −0.947172 0.320726i \(-0.896073\pi\)
0.954796 + 0.297261i \(0.0960731\pi\)
\(158\) 0.606152 + 1.86554i 0.0482229 + 0.148415i
\(159\) 0 0
\(160\) 6.86865 4.99036i 0.543014 0.394523i
\(161\) 7.89590 + 24.3011i 0.622284 + 1.91519i
\(162\) 0 0
\(163\) −8.89442 6.46217i −0.696665 0.506157i 0.182179 0.983265i \(-0.441685\pi\)
−0.878844 + 0.477109i \(0.841685\pi\)
\(164\) −0.687711 −0.0537012
\(165\) 0 0
\(166\) 0.0612950 0.00475741
\(167\) 14.2176 + 10.3297i 1.10019 + 0.799333i 0.981090 0.193550i \(-0.0620001\pi\)
0.119097 + 0.992883i \(0.462000\pi\)
\(168\) 0 0
\(169\) 0.921919 + 2.83737i 0.0709168 + 0.218260i
\(170\) −2.23996 + 1.62742i −0.171797 + 0.124818i
\(171\) 0 0
\(172\) −5.22631 16.0849i −0.398503 1.22646i
\(173\) 3.82122 11.7605i 0.290522 0.894135i −0.694167 0.719814i \(-0.744227\pi\)
0.984689 0.174321i \(-0.0557731\pi\)
\(174\) 0 0
\(175\) −7.10116 −0.536797
\(176\) 7.09994 + 4.97748i 0.535178 + 0.375192i
\(177\) 0 0
\(178\) −3.14806 2.28720i −0.235957 0.171433i
\(179\) 6.76200 20.8113i 0.505416 1.55551i −0.294655 0.955604i \(-0.595205\pi\)
0.800071 0.599906i \(-0.204795\pi\)
\(180\) 0 0
\(181\) 3.54364 2.57460i 0.263396 0.191369i −0.448247 0.893910i \(-0.647951\pi\)
0.711643 + 0.702541i \(0.247951\pi\)
\(182\) −5.41062 + 3.93104i −0.401062 + 0.291388i
\(183\) 0 0
\(184\) 4.26908 13.1389i 0.314721 0.968612i
\(185\) −4.23639 3.07792i −0.311466 0.226293i
\(186\) 0 0
\(187\) −8.97434 6.29155i −0.656269 0.460084i
\(188\) 1.90062 0.138617
\(189\) 0 0
\(190\) 1.14377 3.52018i 0.0829781 0.255380i
\(191\) 3.86727 + 11.9022i 0.279826 + 0.861214i 0.987902 + 0.155079i \(0.0495631\pi\)
−0.708077 + 0.706136i \(0.750437\pi\)
\(192\) 0 0
\(193\) 10.1659 7.38594i 0.731756 0.531652i −0.158363 0.987381i \(-0.550622\pi\)
0.890118 + 0.455729i \(0.150622\pi\)
\(194\) −0.0520130 0.160080i −0.00373432 0.0114930i
\(195\) 0 0
\(196\) 6.59270 + 4.78988i 0.470907 + 0.342134i
\(197\) −10.3453 −0.737075 −0.368538 0.929613i \(-0.620141\pi\)
−0.368538 + 0.929613i \(0.620141\pi\)
\(198\) 0 0
\(199\) 26.4773 1.87693 0.938464 0.345376i \(-0.112249\pi\)
0.938464 + 0.345376i \(0.112249\pi\)
\(200\) 3.10613 + 2.25674i 0.219637 + 0.159575i
\(201\) 0 0
\(202\) −1.07852 3.31933i −0.0758841 0.233547i
\(203\) −4.66655 + 3.39045i −0.327528 + 0.237963i
\(204\) 0 0
\(205\) 0.206325 + 0.635004i 0.0144104 + 0.0443506i
\(206\) 0.250742 0.771705i 0.0174700 0.0537672i
\(207\) 0 0
\(208\) −10.4521 −0.724721
\(209\) 14.6496 0.247330i 1.01333 0.0171082i
\(210\) 0 0
\(211\) 5.89280 + 4.28137i 0.405677 + 0.294742i 0.771849 0.635805i \(-0.219332\pi\)
−0.366172 + 0.930547i \(0.619332\pi\)
\(212\) 6.83079 21.0230i 0.469141 1.44387i
\(213\) 0 0
\(214\) 1.31221 0.953376i 0.0897008 0.0651715i
\(215\) −13.2842 + 9.65153i −0.905974 + 0.658229i
\(216\) 0 0
\(217\) −4.10868 + 12.6452i −0.278916 + 0.858414i
\(218\) −2.18531 1.58772i −0.148008 0.107534i
\(219\) 0 0
\(220\) 2.91974 9.53055i 0.196849 0.642550i
\(221\) 13.2114 0.888698
\(222\) 0 0
\(223\) 7.26501 22.3594i 0.486501 1.49730i −0.343294 0.939228i \(-0.611543\pi\)
0.829795 0.558068i \(-0.188457\pi\)
\(224\) −5.23822 16.1216i −0.349993 1.07717i
\(225\) 0 0
\(226\) −6.51148 + 4.73086i −0.433137 + 0.314692i
\(227\) −3.68416 11.3387i −0.244526 0.752574i −0.995714 0.0924858i \(-0.970519\pi\)
0.751188 0.660089i \(-0.229481\pi\)
\(228\) 0 0
\(229\) −2.47363 1.79719i −0.163462 0.118762i 0.503047 0.864259i \(-0.332212\pi\)
−0.666509 + 0.745497i \(0.732212\pi\)
\(230\) −6.27719 −0.413905
\(231\) 0 0
\(232\) 3.11869 0.204752
\(233\) 19.8463 + 14.4192i 1.30017 + 0.944632i 0.999957 0.00923938i \(-0.00294103\pi\)
0.300217 + 0.953871i \(0.402941\pi\)
\(234\) 0 0
\(235\) −0.570221 1.75496i −0.0371971 0.114481i
\(236\) −5.20471 + 3.78145i −0.338798 + 0.246151i
\(237\) 0 0
\(238\) 1.70825 + 5.25747i 0.110730 + 0.340791i
\(239\) −2.14786 + 6.61044i −0.138934 + 0.427594i −0.996181 0.0873108i \(-0.972173\pi\)
0.857247 + 0.514905i \(0.172173\pi\)
\(240\) 0 0
\(241\) −7.77059 −0.500547 −0.250274 0.968175i \(-0.580521\pi\)
−0.250274 + 0.968175i \(0.580521\pi\)
\(242\) −5.39236 + 0.182131i −0.346634 + 0.0117078i
\(243\) 0 0
\(244\) −5.48460 3.98480i −0.351116 0.255100i
\(245\) 2.44485 7.52448i 0.156196 0.480721i
\(246\) 0 0
\(247\) −14.2884 + 10.3811i −0.909149 + 0.660535i
\(248\) 5.81582 4.22544i 0.369305 0.268316i
\(249\) 0 0
\(250\) 1.83364 5.64335i 0.115969 0.356917i
\(251\) −0.264684 0.192304i −0.0167067 0.0121381i 0.579401 0.815043i \(-0.303287\pi\)
−0.596107 + 0.802905i \(0.703287\pi\)
\(252\) 0 0
\(253\) −8.07634 23.4990i −0.507755 1.47737i
\(254\) −5.29484 −0.332228
\(255\) 0 0
\(256\) 0.0106606 0.0328101i 0.000666290 0.00205063i
\(257\) −4.24255 13.0572i −0.264643 0.814487i −0.991775 0.127990i \(-0.959148\pi\)
0.727133 0.686497i \(-0.240852\pi\)
\(258\) 0 0
\(259\) −8.45832 + 6.14533i −0.525574 + 0.381852i
\(260\) 3.71294 + 11.4273i 0.230267 + 0.708689i
\(261\) 0 0
\(262\) −8.39495 6.09928i −0.518641 0.376815i
\(263\) −16.8542 −1.03927 −0.519637 0.854387i \(-0.673933\pi\)
−0.519637 + 0.854387i \(0.673933\pi\)
\(264\) 0 0
\(265\) −21.4612 −1.31835
\(266\) −5.97866 4.34375i −0.366575 0.266332i
\(267\) 0 0
\(268\) −1.68609 5.18925i −0.102994 0.316984i
\(269\) −10.0297 + 7.28700i −0.611522 + 0.444296i −0.849950 0.526864i \(-0.823368\pi\)
0.238428 + 0.971160i \(0.423368\pi\)
\(270\) 0 0
\(271\) 5.95460 + 18.3264i 0.361716 + 1.11325i 0.952012 + 0.306061i \(0.0990112\pi\)
−0.590296 + 0.807187i \(0.700989\pi\)
\(272\) −2.66972 + 8.21656i −0.161876 + 0.498202i
\(273\) 0 0
\(274\) −1.56984 −0.0948374
\(275\) 6.90466 0.116572i 0.416367 0.00702954i
\(276\) 0 0
\(277\) −8.37420 6.08421i −0.503157 0.365565i 0.307065 0.951689i \(-0.400653\pi\)
−0.810222 + 0.586124i \(0.800653\pi\)
\(278\) 2.27260 6.99435i 0.136302 0.419493i
\(279\) 0 0
\(280\) −8.69092 + 6.31432i −0.519382 + 0.377353i
\(281\) 13.2968 9.66072i 0.793223 0.576310i −0.115695 0.993285i \(-0.536910\pi\)
0.908918 + 0.416974i \(0.136910\pi\)
\(282\) 0 0
\(283\) −0.390892 + 1.20304i −0.0232361 + 0.0715135i −0.962002 0.273042i \(-0.911970\pi\)
0.938766 + 0.344555i \(0.111970\pi\)
\(284\) 9.98819 + 7.25685i 0.592690 + 0.430615i
\(285\) 0 0
\(286\) 5.19637 3.91109i 0.307268 0.231268i
\(287\) 1.33309 0.0786896
\(288\) 0 0
\(289\) −1.87876 + 5.78222i −0.110515 + 0.340130i
\(290\) −0.437892 1.34769i −0.0257139 0.0791392i
\(291\) 0 0
\(292\) −21.4116 + 15.5564i −1.25302 + 0.910372i
\(293\) −7.44342 22.9085i −0.434849 1.33833i −0.893241 0.449578i \(-0.851574\pi\)
0.458392 0.888750i \(-0.348426\pi\)
\(294\) 0 0
\(295\) 5.05314 + 3.67132i 0.294205 + 0.213753i
\(296\) 5.65274 0.328559
\(297\) 0 0
\(298\) −1.98705 −0.115107
\(299\) 24.2321 + 17.6056i 1.40138 + 1.01816i
\(300\) 0 0
\(301\) 10.1309 + 31.1797i 0.583935 + 1.79717i
\(302\) −3.09279 + 2.24705i −0.177970 + 0.129303i
\(303\) 0 0
\(304\) −3.56896 10.9841i −0.204694 0.629983i
\(305\) −2.03392 + 6.25977i −0.116462 + 0.358433i
\(306\) 0 0
\(307\) 16.2949 0.930001 0.465001 0.885310i \(-0.346054\pi\)
0.465001 + 0.885310i \(0.346054\pi\)
\(308\) −16.2958 11.4244i −0.928541 0.650963i
\(309\) 0 0
\(310\) −2.64255 1.91993i −0.150087 0.109044i
\(311\) 6.60408 20.3253i 0.374483 1.15254i −0.569344 0.822100i \(-0.692803\pi\)
0.943827 0.330441i \(-0.107197\pi\)
\(312\) 0 0
\(313\) −2.52100 + 1.83161i −0.142495 + 0.103529i −0.656749 0.754109i \(-0.728069\pi\)
0.514254 + 0.857638i \(0.328069\pi\)
\(314\) 0.122677 0.0891301i 0.00692307 0.00502990i
\(315\) 0 0
\(316\) 2.17428 6.69176i 0.122313 0.376441i
\(317\) 14.7766 + 10.7358i 0.829935 + 0.602983i 0.919541 0.392994i \(-0.128561\pi\)
−0.0896059 + 0.995977i \(0.528561\pi\)
\(318\) 0 0
\(319\) 4.48177 3.37324i 0.250931 0.188865i
\(320\) −4.76728 −0.266499
\(321\) 0 0
\(322\) −3.87289 + 11.9195i −0.215828 + 0.664250i
\(323\) 4.51117 + 13.8840i 0.251008 + 0.772524i
\(324\) 0 0
\(325\) −6.73442 + 4.89284i −0.373558 + 0.271406i
\(326\) −1.66639 5.12861i −0.0922927 0.284048i
\(327\) 0 0
\(328\) −0.583108 0.423653i −0.0321968 0.0233923i
\(329\) −3.68425 −0.203119
\(330\) 0 0
\(331\) 3.76616 0.207007 0.103503 0.994629i \(-0.466995\pi\)
0.103503 + 0.994629i \(0.466995\pi\)
\(332\) −0.177876 0.129235i −0.00976222 0.00709267i
\(333\) 0 0
\(334\) 2.66369 + 8.19799i 0.145751 + 0.448574i
\(335\) −4.28569 + 3.11373i −0.234152 + 0.170121i
\(336\) 0 0
\(337\) 1.84365 + 5.67417i 0.100430 + 0.309092i 0.988631 0.150364i \(-0.0480445\pi\)
−0.888201 + 0.459456i \(0.848045\pi\)
\(338\) −0.452196 + 1.39171i −0.0245962 + 0.0756993i
\(339\) 0 0
\(340\) 9.93155 0.538614
\(341\) 3.78741 12.3628i 0.205100 0.669482i
\(342\) 0 0
\(343\) 6.53464 + 4.74769i 0.352837 + 0.256351i
\(344\) 5.47748 16.8580i 0.295326 0.908920i
\(345\) 0 0
\(346\) 4.90695 3.56511i 0.263799 0.191661i
\(347\) −19.6990 + 14.3122i −1.05750 + 0.768318i −0.973624 0.228158i \(-0.926730\pi\)
−0.0838748 + 0.996476i \(0.526730\pi\)
\(348\) 0 0
\(349\) 5.17349 15.9224i 0.276931 0.852305i −0.711771 0.702411i \(-0.752107\pi\)
0.988702 0.149894i \(-0.0478932\pi\)
\(350\) −2.81787 2.04730i −0.150621 0.109433i
\(351\) 0 0
\(352\) 5.35793 + 15.5895i 0.285579 + 0.830924i
\(353\) −8.03132 −0.427464 −0.213732 0.976892i \(-0.568562\pi\)
−0.213732 + 0.976892i \(0.568562\pi\)
\(354\) 0 0
\(355\) 3.70404 11.3999i 0.196590 0.605042i
\(356\) 4.31323 + 13.2748i 0.228601 + 0.703561i
\(357\) 0 0
\(358\) 8.68329 6.30878i 0.458926 0.333429i
\(359\) −8.90742 27.4142i −0.470116 1.44687i −0.852433 0.522836i \(-0.824874\pi\)
0.382317 0.924031i \(-0.375126\pi\)
\(360\) 0 0
\(361\) −0.417162 0.303086i −0.0219559 0.0159519i
\(362\) 2.14845 0.112920
\(363\) 0 0
\(364\) 23.9896 1.25740
\(365\) 20.7881 + 15.1034i 1.08810 + 0.790548i
\(366\) 0 0
\(367\) 6.90449 + 21.2498i 0.360411 + 1.10923i 0.952805 + 0.303583i \(0.0981831\pi\)
−0.592394 + 0.805649i \(0.701817\pi\)
\(368\) −15.8462 + 11.5129i −0.826038 + 0.600152i
\(369\) 0 0
\(370\) −0.793696 2.44275i −0.0412623 0.126992i
\(371\) −13.2411 + 40.7519i −0.687443 + 2.11573i
\(372\) 0 0
\(373\) 7.07872 0.366522 0.183261 0.983064i \(-0.441335\pi\)
0.183261 + 0.983064i \(0.441335\pi\)
\(374\) −1.74729 5.08395i −0.0903504 0.262885i
\(375\) 0 0
\(376\) 1.61153 + 1.17085i 0.0831085 + 0.0603819i
\(377\) −2.08946 + 6.43070i −0.107613 + 0.331198i
\(378\) 0 0
\(379\) 19.6964 14.3103i 1.01174 0.735070i 0.0471638 0.998887i \(-0.484982\pi\)
0.964573 + 0.263818i \(0.0849817\pi\)
\(380\) −10.7411 + 7.80390i −0.551009 + 0.400331i
\(381\) 0 0
\(382\) −1.89687 + 5.83797i −0.0970523 + 0.298696i
\(383\) 14.2694 + 10.3673i 0.729130 + 0.529744i 0.889288 0.457348i \(-0.151200\pi\)
−0.160158 + 0.987091i \(0.551200\pi\)
\(384\) 0 0
\(385\) −5.65975 + 18.4744i −0.288447 + 0.941543i
\(386\) 6.16341 0.313709
\(387\) 0 0
\(388\) −0.186572 + 0.574210i −0.00947177 + 0.0291511i
\(389\) −5.52615 17.0077i −0.280187 0.862326i −0.987800 0.155727i \(-0.950228\pi\)
0.707613 0.706600i \(-0.249772\pi\)
\(390\) 0 0
\(391\) 20.0296 14.5523i 1.01294 0.735943i
\(392\) 2.63921 + 8.12265i 0.133300 + 0.410256i
\(393\) 0 0
\(394\) −4.10522 2.98262i −0.206818 0.150262i
\(395\) −6.83122 −0.343716
\(396\) 0 0
\(397\) −21.9395 −1.10111 −0.550556 0.834798i \(-0.685584\pi\)
−0.550556 + 0.834798i \(0.685584\pi\)
\(398\) 10.5067 + 7.63355i 0.526652 + 0.382635i
\(399\) 0 0
\(400\) −1.68213 5.17705i −0.0841063 0.258852i
\(401\) −4.37481 + 3.17848i −0.218467 + 0.158726i −0.691636 0.722246i \(-0.743110\pi\)
0.473169 + 0.880972i \(0.343110\pi\)
\(402\) 0 0
\(403\) 4.81633 + 14.8231i 0.239918 + 0.738393i
\(404\) −3.86867 + 11.9065i −0.192473 + 0.592372i
\(405\) 0 0
\(406\) −2.82926 −0.140414
\(407\) 8.12339 6.11413i 0.402662 0.303066i
\(408\) 0 0
\(409\) −19.1091 13.8836i −0.944884 0.686498i 0.00470736 0.999989i \(-0.498502\pi\)
−0.949591 + 0.313491i \(0.898502\pi\)
\(410\) −0.101201 + 0.311466i −0.00499798 + 0.0153822i
\(411\) 0 0
\(412\) −2.35471 + 1.71080i −0.116008 + 0.0842849i
\(413\) 10.0890 7.33011i 0.496449 0.360691i
\(414\) 0 0
\(415\) −0.0659639 + 0.203016i −0.00323804 + 0.00996567i
\(416\) −16.0758 11.6798i −0.788181 0.572647i
\(417\) 0 0
\(418\) 5.88453 + 4.12541i 0.287822 + 0.201780i
\(419\) −18.1313 −0.885773 −0.442886 0.896578i \(-0.646045\pi\)
−0.442886 + 0.896578i \(0.646045\pi\)
\(420\) 0 0
\(421\) −3.95919 + 12.1851i −0.192959 + 0.593867i 0.807035 + 0.590503i \(0.201071\pi\)
−0.999994 + 0.00336355i \(0.998929\pi\)
\(422\) 1.10403 + 3.39785i 0.0537432 + 0.165405i
\(423\) 0 0
\(424\) 18.7427 13.6174i 0.910226 0.661318i
\(425\) 2.12621 + 6.54380i 0.103136 + 0.317421i
\(426\) 0 0
\(427\) 10.6316 + 7.72429i 0.514498 + 0.373805i
\(428\) −5.81809 −0.281228
\(429\) 0 0
\(430\) −8.05399 −0.388398
\(431\) 5.32265 + 3.86713i 0.256383 + 0.186273i 0.708551 0.705660i \(-0.249349\pi\)
−0.452168 + 0.891933i \(0.649349\pi\)
\(432\) 0 0
\(433\) 4.32555 + 13.3127i 0.207873 + 0.639767i 0.999583 + 0.0288700i \(0.00919089\pi\)
−0.791710 + 0.610897i \(0.790809\pi\)
\(434\) −5.27608 + 3.83330i −0.253260 + 0.184004i
\(435\) 0 0
\(436\) 2.99415 + 9.21504i 0.143394 + 0.441320i
\(437\) −10.2276 + 31.4772i −0.489251 + 1.50576i
\(438\) 0 0
\(439\) 25.1782 1.20169 0.600846 0.799365i \(-0.294831\pi\)
0.600846 + 0.799365i \(0.294831\pi\)
\(440\) 8.34678 6.28227i 0.397917 0.299495i
\(441\) 0 0
\(442\) 5.24254 + 3.80893i 0.249362 + 0.181172i
\(443\) 8.28860 25.5097i 0.393803 1.21200i −0.536086 0.844163i \(-0.680098\pi\)
0.929890 0.367839i \(-0.119902\pi\)
\(444\) 0 0
\(445\) 10.9633 7.96533i 0.519712 0.377593i
\(446\) 9.32921 6.77807i 0.441751 0.320951i
\(447\) 0 0
\(448\) −2.94131 + 9.05243i −0.138964 + 0.427687i
\(449\) −11.4685 8.33234i −0.541231 0.393228i 0.283311 0.959028i \(-0.408567\pi\)
−0.824542 + 0.565801i \(0.808567\pi\)
\(450\) 0 0
\(451\) −1.29620 + 0.0218838i −0.0610357 + 0.00103047i
\(452\) 28.8706 1.35796
\(453\) 0 0
\(454\) 1.80706 5.56155i 0.0848094 0.261017i
\(455\) −7.19732 22.1511i −0.337415 1.03846i
\(456\) 0 0
\(457\) −19.9352 + 14.4838i −0.932530 + 0.677523i −0.946611 0.322378i \(-0.895518\pi\)
0.0140807 + 0.999901i \(0.495518\pi\)
\(458\) −0.463439 1.42632i −0.0216551 0.0666475i
\(459\) 0 0
\(460\) 18.2162 + 13.2348i 0.849334 + 0.617077i
\(461\) −26.2454 −1.22237 −0.611185 0.791488i \(-0.709307\pi\)
−0.611185 + 0.791488i \(0.709307\pi\)
\(462\) 0 0
\(463\) 12.6922 0.589855 0.294928 0.955520i \(-0.404704\pi\)
0.294928 + 0.955520i \(0.404704\pi\)
\(464\) −3.57720 2.59899i −0.166067 0.120655i
\(465\) 0 0
\(466\) 3.71824 + 11.4436i 0.172244 + 0.530113i
\(467\) 22.4130 16.2840i 1.03715 0.753534i 0.0674235 0.997724i \(-0.478522\pi\)
0.969727 + 0.244190i \(0.0785221\pi\)
\(468\) 0 0
\(469\) 3.26838 + 10.0591i 0.150920 + 0.464484i
\(470\) 0.279690 0.860797i 0.0129011 0.0397056i
\(471\) 0 0
\(472\) −6.74256 −0.310351
\(473\) −10.3624 30.1506i −0.476464 1.38633i
\(474\) 0 0
\(475\) −7.44144 5.40652i −0.341437 0.248068i
\(476\) 6.12756 18.8587i 0.280856 0.864386i
\(477\) 0 0
\(478\) −2.75813 + 2.00390i −0.126154 + 0.0916563i
\(479\) 12.6386 9.18250i 0.577474 0.419559i −0.260339 0.965517i \(-0.583834\pi\)
0.837812 + 0.545958i \(0.183834\pi\)
\(480\) 0 0
\(481\) −3.78723 + 11.6559i −0.172683 + 0.531464i
\(482\) −3.08351 2.24030i −0.140450 0.102043i
\(483\) 0 0
\(484\) 16.0325 + 10.8407i 0.728748 + 0.492760i
\(485\) 0.586177 0.0266169
\(486\) 0 0
\(487\) 8.32090 25.6091i 0.377056 1.16046i −0.565025 0.825074i \(-0.691133\pi\)
0.942081 0.335386i \(-0.108867\pi\)
\(488\) −2.19561 6.75739i −0.0993906 0.305893i
\(489\) 0 0
\(490\) 3.13951 2.28098i 0.141828 0.103044i
\(491\) 12.0516 + 37.0910i 0.543880 + 1.67389i 0.723637 + 0.690181i \(0.242469\pi\)
−0.179757 + 0.983711i \(0.557531\pi\)
\(492\) 0 0
\(493\) 4.52159 + 3.28513i 0.203642 + 0.147955i
\(494\) −8.66283 −0.389759
\(495\) 0 0
\(496\) −10.1922 −0.457642
\(497\) −19.3615 14.0670i −0.868483 0.630990i
\(498\) 0 0
\(499\) −7.42726 22.8588i −0.332490 1.02330i −0.967945 0.251161i \(-0.919188\pi\)
0.635455 0.772138i \(-0.280812\pi\)
\(500\) −17.2196 + 12.5108i −0.770084 + 0.559499i
\(501\) 0 0
\(502\) −0.0495891 0.152620i −0.00221327 0.00681174i
\(503\) −7.41223 + 22.8125i −0.330495 + 1.01716i 0.638404 + 0.769701i \(0.279595\pi\)
−0.968899 + 0.247457i \(0.920405\pi\)
\(504\) 0 0
\(505\) 12.1547 0.540876
\(506\) 3.57006 11.6533i 0.158708 0.518052i
\(507\) 0 0
\(508\) 15.3655 + 11.1637i 0.681732 + 0.495307i
\(509\) 1.14301 3.51783i 0.0506631 0.155925i −0.922524 0.385939i \(-0.873877\pi\)
0.973187 + 0.230014i \(0.0738774\pi\)
\(510\) 0 0
\(511\) 41.5051 30.1552i 1.83608 1.33399i
\(512\) 18.3128 13.3050i 0.809318 0.588004i
\(513\) 0 0
\(514\) 2.08094 6.40449i 0.0917865 0.282490i
\(515\) 2.28613 + 1.66097i 0.100739 + 0.0731912i
\(516\) 0 0
\(517\) 3.58230 0.0604802i 0.157549 0.00265992i
\(518\) −5.12814 −0.225318
\(519\) 0 0
\(520\) −3.89138 + 11.9764i −0.170648 + 0.525202i
\(521\) −1.98178 6.09929i −0.0868234 0.267215i 0.898213 0.439560i \(-0.144866\pi\)
−0.985037 + 0.172345i \(0.944866\pi\)
\(522\) 0 0
\(523\) 2.21554 1.60969i 0.0968790 0.0703867i −0.538291 0.842759i \(-0.680930\pi\)
0.635170 + 0.772372i \(0.280930\pi\)
\(524\) 11.5021 + 35.3998i 0.502472 + 1.54645i
\(525\) 0 0
\(526\) −6.68804 4.85915i −0.291613 0.211869i
\(527\) 12.8829 0.561190
\(528\) 0 0
\(529\) 33.1302 1.44044
\(530\) −8.51617 6.18736i −0.369919 0.268762i
\(531\) 0 0
\(532\) 8.19149 + 25.2108i 0.355146 + 1.09303i
\(533\) 1.26424 0.918524i 0.0547603 0.0397857i
\(534\) 0 0
\(535\) 1.74553 + 5.37219i 0.0754658 + 0.232260i
\(536\) 1.76712 5.43864i 0.0763280 0.234913i
\(537\) 0 0
\(538\) −6.08085 −0.262164
\(539\) 12.5784 + 8.81819i 0.541788 + 0.379826i
\(540\) 0 0
\(541\) −16.9114 12.2869i −0.727079 0.528254i 0.161559 0.986863i \(-0.448348\pi\)
−0.888638 + 0.458609i \(0.848348\pi\)
\(542\) −2.92070 + 8.98898i −0.125455 + 0.386110i
\(543\) 0 0
\(544\) −13.2878 + 9.65417i −0.569711 + 0.413919i
\(545\) 7.61050 5.52935i 0.325998 0.236851i
\(546\) 0 0
\(547\) −12.9405 + 39.8268i −0.553296 + 1.70287i 0.147105 + 0.989121i \(0.453004\pi\)
−0.700401 + 0.713749i \(0.746996\pi\)
\(548\) 4.55562 + 3.30985i 0.194606 + 0.141390i
\(549\) 0 0
\(550\) 2.77350 + 1.94439i 0.118263 + 0.0829092i
\(551\) −7.47152 −0.318298
\(552\) 0 0
\(553\) −4.21472 + 12.9716i −0.179228 + 0.551608i
\(554\) −1.56892 4.82865i −0.0666572 0.205150i
\(555\) 0 0
\(556\) −21.3419 + 15.5058i −0.905099 + 0.657593i
\(557\) −3.87025 11.9114i −0.163988 0.504702i 0.834973 0.550291i \(-0.185483\pi\)
−0.998960 + 0.0455895i \(0.985483\pi\)
\(558\) 0 0
\(559\) 31.0911 + 22.5890i 1.31502 + 0.955415i
\(560\) 15.2308 0.643617
\(561\) 0 0
\(562\) 8.06166 0.340061
\(563\) 11.7378 + 8.52802i 0.494690 + 0.359413i 0.806985 0.590572i \(-0.201098\pi\)
−0.312295 + 0.949985i \(0.601098\pi\)
\(564\) 0 0
\(565\) −8.66170 26.6580i −0.364401 1.12151i
\(566\) −0.501956 + 0.364693i −0.0210988 + 0.0153292i
\(567\) 0 0
\(568\) 3.99850 + 12.3061i 0.167773 + 0.516353i
\(569\) −8.64395 + 26.6034i −0.362373 + 1.11527i 0.589236 + 0.807961i \(0.299429\pi\)
−0.951610 + 0.307310i \(0.900571\pi\)
\(570\) 0 0
\(571\) 9.04886 0.378683 0.189341 0.981911i \(-0.439365\pi\)
0.189341 + 0.981911i \(0.439365\pi\)
\(572\) −23.3258 + 0.393811i −0.975303 + 0.0164661i
\(573\) 0 0
\(574\) 0.528993 + 0.384336i 0.0220797 + 0.0160419i
\(575\) −4.82046 + 14.8359i −0.201027 + 0.618698i
\(576\) 0 0
\(577\) −31.0234 + 22.5398i −1.29152 + 0.938346i −0.999835 0.0181683i \(-0.994217\pi\)
−0.291687 + 0.956514i \(0.594217\pi\)
\(578\) −2.41257 + 1.75283i −0.100350 + 0.0729082i
\(579\) 0 0
\(580\) −1.57073 + 4.83421i −0.0652210 + 0.200730i
\(581\) 0.344802 + 0.250513i 0.0143048 + 0.0103930i
\(582\) 0 0
\(583\) 12.2057 39.8416i 0.505509 1.65007i
\(584\) −27.7381 −1.14781
\(585\) 0 0
\(586\) 3.65095 11.2365i 0.150819 0.464175i
\(587\) −0.223301 0.687250i −0.00921662 0.0283658i 0.946342 0.323166i \(-0.104747\pi\)
−0.955559 + 0.294800i \(0.904747\pi\)
\(588\) 0 0
\(589\) −13.9331 + 10.1230i −0.574104 + 0.417111i
\(590\) 0.946716 + 2.91369i 0.0389757 + 0.119955i
\(591\) 0 0
\(592\) −6.48382 4.71077i −0.266483 0.193611i
\(593\) −39.6596 −1.62863 −0.814313 0.580426i \(-0.802886\pi\)
−0.814313 + 0.580426i \(0.802886\pi\)
\(594\) 0 0
\(595\) −19.2517 −0.789244
\(596\) 5.76636 + 4.18950i 0.236199 + 0.171609i
\(597\) 0 0
\(598\) 4.53993 + 13.9725i 0.185651 + 0.571376i
\(599\) 16.4852 11.9772i 0.673566 0.489374i −0.197651 0.980272i \(-0.563331\pi\)
0.871217 + 0.490898i \(0.163331\pi\)
\(600\) 0 0
\(601\) −14.9477 46.0042i −0.609729 1.87655i −0.460257 0.887786i \(-0.652243\pi\)
−0.149472 0.988766i \(-0.547757\pi\)
\(602\) −4.96914 + 15.2935i −0.202527 + 0.623315i
\(603\) 0 0
\(604\) 13.7129 0.557968
\(605\) 5.19987 18.0561i 0.211405 0.734086i
\(606\) 0 0
\(607\) 15.9395 + 11.5807i 0.646964 + 0.470047i 0.862236 0.506508i \(-0.169064\pi\)
−0.215272 + 0.976554i \(0.569064\pi\)
\(608\) 6.78507 20.8823i 0.275171 0.846889i
\(609\) 0 0
\(610\) −2.61182 + 1.89760i −0.105749 + 0.0768315i
\(611\) −3.49397 + 2.53852i −0.141351 + 0.102698i
\(612\) 0 0
\(613\) 1.76690 5.43796i 0.0713644 0.219637i −0.909013 0.416768i \(-0.863163\pi\)
0.980377 + 0.197131i \(0.0631626\pi\)
\(614\) 6.46613 + 4.69791i 0.260952 + 0.189592i
\(615\) 0 0
\(616\) −6.77940 19.7254i −0.273150 0.794761i
\(617\) 6.10692 0.245855 0.122928 0.992416i \(-0.460772\pi\)
0.122928 + 0.992416i \(0.460772\pi\)
\(618\) 0 0
\(619\) −0.549968 + 1.69263i −0.0221051 + 0.0680324i −0.961501 0.274803i \(-0.911387\pi\)
0.939395 + 0.342835i \(0.111387\pi\)
\(620\) 3.62062 + 11.1431i 0.145408 + 0.447519i
\(621\) 0 0
\(622\) 8.48050 6.16144i 0.340037 0.247051i
\(623\) −8.36094 25.7323i −0.334974 1.03094i
\(624\) 0 0
\(625\) 8.29572 + 6.02719i 0.331829 + 0.241088i
\(626\) −1.52844 −0.0610888
\(627\) 0 0
\(628\) −0.543927 −0.0217050
\(629\) 8.19556 + 5.95442i 0.326778 + 0.237418i
\(630\) 0 0
\(631\) −13.8566 42.6461i −0.551621 1.69771i −0.704705 0.709501i \(-0.748921\pi\)
0.153084 0.988213i \(-0.451079\pi\)
\(632\) 5.96592 4.33449i 0.237311 0.172417i
\(633\) 0 0
\(634\) 2.76842 + 8.52032i 0.109948 + 0.338385i
\(635\) 5.69816 17.5371i 0.226124 0.695940i
\(636\) 0 0
\(637\) −18.5170 −0.733672
\(638\) 2.75097 0.0464448i 0.108912 0.00183877i
\(639\) 0 0
\(640\) −15.6290 11.3552i −0.617792 0.448852i
\(641\) −8.34641 + 25.6876i −0.329663 + 1.01460i 0.639628 + 0.768685i \(0.279088\pi\)
−0.969291 + 0.245915i \(0.920912\pi\)
\(642\) 0 0
\(643\) 26.3395 19.1368i 1.03873 0.754680i 0.0686909 0.997638i \(-0.478118\pi\)
0.970037 + 0.242958i \(0.0781178\pi\)
\(644\) 36.3702 26.4245i 1.43319 1.04127i
\(645\) 0 0
\(646\) −2.21270 + 6.81000i −0.0870576 + 0.267936i
\(647\) 25.4705 + 18.5054i 1.00135 + 0.727523i 0.962377 0.271717i \(-0.0875916\pi\)
0.0389724 + 0.999240i \(0.487592\pi\)
\(648\) 0 0
\(649\) −9.68953 + 7.29290i −0.380347 + 0.286271i
\(650\) −4.08297 −0.160147
\(651\) 0 0
\(652\) −5.97738 + 18.3965i −0.234092 + 0.720462i
\(653\) −1.43995 4.43171i −0.0563495 0.173426i 0.918920 0.394443i \(-0.129062\pi\)
−0.975270 + 0.221017i \(0.929062\pi\)
\(654\) 0 0
\(655\) 29.2359 21.2412i 1.14234 0.829961i
\(656\) 0.315782 + 0.971878i 0.0123292 + 0.0379455i
\(657\) 0 0
\(658\) −1.46197 1.06219i −0.0569937 0.0414084i
\(659\) −32.0418 −1.24817 −0.624086 0.781355i \(-0.714529\pi\)
−0.624086 + 0.781355i \(0.714529\pi\)
\(660\) 0 0
\(661\) −40.7054 −1.58325 −0.791627 0.611004i \(-0.790766\pi\)
−0.791627 + 0.611004i \(0.790766\pi\)
\(662\) 1.49448 + 1.08580i 0.0580846 + 0.0422009i
\(663\) 0 0
\(664\) −0.0712078 0.219155i −0.00276340 0.00850487i
\(665\) 20.8211 15.1274i 0.807406 0.586615i
\(666\) 0 0
\(667\) 3.91560 + 12.0510i 0.151613 + 0.466616i
\(668\) 9.55472 29.4064i 0.369683 1.13777i
\(669\) 0 0
\(670\) −2.59834 −0.100383
\(671\) −10.4642 7.33603i −0.403966 0.283204i
\(672\) 0 0
\(673\) 30.5513 + 22.1968i 1.17767 + 0.855625i 0.991907 0.126970i \(-0.0405251\pi\)
0.185761 + 0.982595i \(0.440525\pi\)
\(674\) −0.904299 + 2.78315i −0.0348323 + 0.107203i
\(675\) 0 0
\(676\) 4.24655 3.08530i 0.163329 0.118665i
\(677\) −15.2910 + 11.1095i −0.587679 + 0.426974i −0.841484 0.540281i \(-0.818318\pi\)
0.253805 + 0.967255i \(0.418318\pi\)
\(678\) 0 0
\(679\) 0.361659 1.11307i 0.0138792 0.0427158i
\(680\) 8.42093 + 6.11817i 0.322928 + 0.234621i
\(681\) 0 0
\(682\) 5.06716 3.81384i 0.194032 0.146040i
\(683\) 31.1053 1.19021 0.595105 0.803648i \(-0.297110\pi\)
0.595105 + 0.803648i \(0.297110\pi\)
\(684\) 0 0
\(685\) 1.68941 5.19948i 0.0645492 0.198662i
\(686\) 1.22428 + 3.76794i 0.0467432 + 0.143861i
\(687\) 0 0
\(688\) −20.3315 + 14.7717i −0.775132 + 0.563167i
\(689\) 15.5216 + 47.7706i 0.591327 + 1.81992i
\(690\) 0 0
\(691\) −17.9694 13.0555i −0.683588 0.496656i 0.190958 0.981598i \(-0.438841\pi\)
−0.874546 + 0.484942i \(0.838841\pi\)
\(692\) −21.7565 −0.827057
\(693\) 0 0
\(694\) −11.9432 −0.453358
\(695\) 20.7204 + 15.0542i 0.785969 + 0.571040i
\(696\) 0 0
\(697\) −0.399149 1.22846i −0.0151189 0.0465311i
\(698\) 6.64344 4.82674i 0.251458 0.182695i
\(699\) 0 0
\(700\) 3.86082 + 11.8824i 0.145925 + 0.449112i
\(701\) −9.25374 + 28.4801i −0.349509 + 1.07568i 0.609616 + 0.792697i \(0.291323\pi\)
−0.959125 + 0.282981i \(0.908677\pi\)
\(702\) 0 0
\(703\) −13.5424 −0.510763
\(704\) 2.71132 8.85023i 0.102187 0.333556i
\(705\) 0 0
\(706\) −3.18697 2.31547i −0.119943 0.0871439i
\(707\) 7.49918 23.0801i 0.282036 0.868017i
\(708\) 0 0
\(709\) −13.9197 + 10.1133i −0.522766 + 0.379812i −0.817645 0.575723i \(-0.804721\pi\)
0.294879 + 0.955535i \(0.404721\pi\)
\(710\) 4.75647 3.45578i 0.178507 0.129693i
\(711\) 0 0
\(712\) −4.52052 + 13.9127i −0.169414 + 0.521402i
\(713\) 23.6295 + 17.1679i 0.884933 + 0.642942i
\(714\) 0 0
\(715\) 7.36179 + 21.4200i 0.275315 + 0.801062i
\(716\) −38.5001 −1.43881
\(717\) 0 0
\(718\) 4.36904 13.4465i 0.163051 0.501819i
\(719\) 1.46013 + 4.49382i 0.0544537 + 0.167591i 0.974585 0.224020i \(-0.0719180\pi\)
−0.920131 + 0.391611i \(0.871918\pi\)
\(720\) 0 0
\(721\) 4.56446 3.31628i 0.169989 0.123505i
\(722\) −0.0781561 0.240540i −0.00290867 0.00895196i
\(723\) 0 0
\(724\) −6.23473 4.52980i −0.231712 0.168349i
\(725\) −3.52148 −0.130785
\(726\) 0 0
\(727\) 5.20088 0.192890 0.0964450 0.995338i \(-0.469253\pi\)
0.0964450 + 0.995338i \(0.469253\pi\)
\(728\) 20.3408 + 14.7784i 0.753879 + 0.547725i
\(729\) 0 0
\(730\) 3.89468 + 11.9866i 0.144149 + 0.443644i
\(731\) 25.6991 18.6715i 0.950516 0.690590i
\(732\) 0 0
\(733\) −15.1614 46.6618i −0.559997 1.72349i −0.682367 0.731010i \(-0.739049\pi\)
0.122369 0.992485i \(-0.460951\pi\)
\(734\) −3.38661 + 10.4229i −0.125002 + 0.384717i
\(735\) 0 0
\(736\) −37.2374 −1.37259
\(737\) −3.34308 9.72706i −0.123144 0.358301i
\(738\) 0 0
\(739\) 12.6160 + 9.16603i 0.464086 + 0.337178i 0.795132 0.606437i \(-0.207402\pi\)
−0.331046 + 0.943615i \(0.607402\pi\)
\(740\) −2.84701 + 8.76220i −0.104658 + 0.322105i
\(741\) 0 0
\(742\) −17.0033 + 12.3536i −0.624210 + 0.453515i
\(743\) −9.00796 + 6.54466i −0.330470 + 0.240100i −0.740630 0.671913i \(-0.765473\pi\)
0.410160 + 0.912014i \(0.365473\pi\)
\(744\) 0 0
\(745\) 2.13841 6.58134i 0.0783452 0.241122i
\(746\) 2.80897 + 2.04083i 0.102844 + 0.0747202i
\(747\) 0 0
\(748\) −5.64842 + 18.4374i −0.206527 + 0.674140i
\(749\) 11.2780 0.412090
\(750\) 0 0
\(751\) −2.49846 + 7.68948i −0.0911703 + 0.280593i −0.986237 0.165340i \(-0.947128\pi\)
0.895066 + 0.445933i \(0.147128\pi\)
\(752\) −0.872726 2.68597i −0.0318250 0.0979474i
\(753\) 0 0
\(754\) −2.68314 + 1.94942i −0.0977142 + 0.0709935i
\(755\) −4.11410 12.6619i −0.149727 0.460814i
\(756\) 0 0
\(757\) −24.1585 17.5522i −0.878056 0.637945i 0.0546803 0.998504i \(-0.482586\pi\)
−0.932737 + 0.360559i \(0.882586\pi\)
\(758\) 11.9416 0.433739
\(759\) 0 0
\(760\) −13.9148 −0.504744
\(761\) −28.2287 20.5093i −1.02329 0.743463i −0.0563348 0.998412i \(-0.517941\pi\)
−0.966955 + 0.254949i \(0.917941\pi\)
\(762\) 0 0
\(763\) −5.80398 17.8628i −0.210118 0.646677i
\(764\) 17.8134 12.9422i 0.644468 0.468233i
\(765\) 0 0
\(766\) 2.67339 + 8.22786i 0.0965936 + 0.297284i
\(767\) 4.51739 13.9031i 0.163113 0.502012i
\(768\) 0 0
\(769\) −5.60723 −0.202202 −0.101101 0.994876i \(-0.532237\pi\)
−0.101101 + 0.994876i \(0.532237\pi\)
\(770\) −7.57216 + 5.69924i −0.272882 + 0.205386i
\(771\) 0 0
\(772\) −17.8860 12.9949i −0.643731 0.467698i
\(773\) −3.34979 + 10.3096i −0.120483 + 0.370810i −0.993051 0.117683i \(-0.962453\pi\)
0.872568 + 0.488493i \(0.162453\pi\)
\(774\) 0 0
\(775\) −6.56697 + 4.77118i −0.235893 + 0.171386i
\(776\) −0.511927 + 0.371937i −0.0183771 + 0.0133517i
\(777\) 0 0
\(778\) 2.71054 8.34219i 0.0971776 0.299082i
\(779\) 1.39697 + 1.01496i 0.0500516 + 0.0363646i
\(780\) 0 0
\(781\) 19.0567 + 13.3599i 0.681902 + 0.478054i
\(782\) 12.1436 0.434255
\(783\) 0 0
\(784\) 3.74186 11.5163i 0.133638 0.411295i
\(785\) 0.163188 + 0.502240i 0.00582442 + 0.0179257i
\(786\) 0 0
\(787\) 2.00347 1.45561i 0.0714162 0.0518869i −0.551504 0.834172i \(-0.685946\pi\)
0.622921 + 0.782285i \(0.285946\pi\)
\(788\) 5.62465 + 17.3109i 0.200370 + 0.616676i
\(789\) 0 0
\(790\) −2.71075 1.96948i −0.0964442 0.0700708i
\(791\) −55.9640 −1.98985
\(792\) 0 0
\(793\) 15.4047 0.547037
\(794\) −8.70599 6.32527i −0.308964 0.224475i
\(795\) 0 0
\(796\) −14.3954 44.3046i −0.510233 1.57034i
\(797\) 7.83103 5.68958i 0.277389 0.201535i −0.440389 0.897807i \(-0.645159\pi\)
0.717778 + 0.696272i \(0.245159\pi\)
\(798\) 0 0
\(799\) 1.10313 + 3.39508i 0.0390258 + 0.120109i
\(800\) 3.19795 9.84226i 0.113064 0.347977i
\(801\) 0 0
\(802\) −2.65237 −0.0936586
\(803\) −39.8616 + 30.0022i −1.40669 + 1.05875i
\(804\) 0 0
\(805\) −35.3110 25.6549i −1.24455 0.904218i
\(806\) −2.36238 + 7.27066i −0.0832113 + 0.256098i
\(807\) 0 0
\(808\) −10.6151 + 7.71229i −0.373436 + 0.271317i
\(809\) 6.36318 4.62312i 0.223717 0.162540i −0.470281 0.882517i \(-0.655847\pi\)
0.693998 + 0.719976i \(0.255847\pi\)
\(810\) 0 0
\(811\) 12.2076 37.5712i 0.428668 1.31930i −0.470770 0.882256i \(-0.656024\pi\)
0.899438 0.437048i \(-0.143976\pi\)
\(812\) 8.21041 + 5.96521i 0.288129 + 0.209338i
\(813\) 0 0
\(814\) 4.98624 0.0841830i 0.174768 0.00295061i
\(815\) 18.7799 0.657831
\(816\) 0 0
\(817\) −13.1226 + 40.3871i −0.459100 + 1.41296i
\(818\) −3.58013 11.0185i −0.125176 0.385253i
\(819\) 0 0
\(820\) 0.950378 0.690490i 0.0331886 0.0241130i
\(821\) −1.03633 3.18948i −0.0361680 0.111314i 0.931343 0.364144i \(-0.118638\pi\)
−0.967511 + 0.252831i \(0.918638\pi\)
\(822\) 0 0
\(823\) −13.0266 9.46441i −0.454080 0.329909i 0.337124 0.941460i \(-0.390546\pi\)
−0.791205 + 0.611552i \(0.790546\pi\)
\(824\) −3.05046 −0.106268
\(825\) 0 0
\(826\) 6.11681 0.212831
\(827\) −12.3703 8.98751i −0.430156 0.312526i 0.351555 0.936167i \(-0.385653\pi\)
−0.781711 + 0.623641i \(0.785653\pi\)
\(828\) 0 0
\(829\) −13.0239 40.0835i −0.452340 1.39216i −0.874230 0.485512i \(-0.838633\pi\)
0.421890 0.906647i \(-0.361367\pi\)
\(830\) −0.0847063 + 0.0615427i −0.00294020 + 0.00213618i
\(831\) 0 0
\(832\) 3.44790 + 10.6115i 0.119534 + 0.367889i
\(833\) −4.72972 + 14.5566i −0.163875 + 0.504355i
\(834\) 0 0
\(835\) −30.0193 −1.03886
\(836\) −8.37869 24.3788i −0.289783 0.843157i
\(837\) 0 0
\(838\) −7.19483 5.22735i −0.248541 0.180576i
\(839\) 0.818089 2.51782i 0.0282436 0.0869247i −0.935941 0.352157i \(-0.885448\pi\)
0.964185 + 0.265232i \(0.0854485\pi\)
\(840\) 0 0
\(841\) 21.1473 15.3644i 0.729218 0.529808i
\(842\) −5.08411 + 3.69382i −0.175210 + 0.127298i
\(843\) 0 0
\(844\) 3.96018 12.1882i 0.136315 0.419534i
\(845\) −4.12288 2.99545i −0.141831 0.103047i
\(846\) 0 0
\(847\) −31.0780 21.0141i −1.06785 0.722053i
\(848\) −32.8464 −1.12795
\(849\) 0 0
\(850\) −1.04289 + 3.20970i −0.0357709 + 0.110092i
\(851\) 7.09718 + 21.8429i 0.243288 + 0.748765i
\(852\) 0 0
\(853\) −7.49989 + 5.44899i −0.256791 + 0.186570i −0.708731 0.705479i \(-0.750732\pi\)
0.451940 + 0.892048i \(0.350732\pi\)
\(854\) 1.99185 + 6.13027i 0.0681596 + 0.209774i
\(855\) 0 0
\(856\) −4.93314 3.58414i −0.168611 0.122503i
\(857\) −20.5356 −0.701483 −0.350742 0.936472i \(-0.614070\pi\)
−0.350742 + 0.936472i \(0.614070\pi\)
\(858\) 0 0
\(859\) 36.0278 1.22925 0.614626 0.788819i \(-0.289307\pi\)
0.614626 + 0.788819i \(0.289307\pi\)
\(860\) 23.3724 + 16.9811i 0.796993 + 0.579049i
\(861\) 0 0
\(862\) 0.997209 + 3.06909i 0.0339651 + 0.104534i
\(863\) −3.49209 + 2.53715i −0.118872 + 0.0863656i −0.645633 0.763648i \(-0.723406\pi\)
0.526761 + 0.850014i \(0.323406\pi\)
\(864\) 0 0
\(865\) 6.52733 + 20.0890i 0.221936 + 0.683048i
\(866\) −2.12166 + 6.52979i −0.0720969 + 0.221891i
\(867\) 0 0
\(868\) 23.3932 0.794015
\(869\) 3.88516 12.6818i 0.131795 0.430202i
\(870\) 0 0
\(871\) 10.0305 + 7.28757i 0.339870 + 0.246930i
\(872\) −3.13804 + 9.65790i −0.106268 + 0.327058i
\(873\) 0 0
\(874\) −13.1335 + 9.54206i −0.444248 + 0.322765i
\(875\) 33.3792 24.2514i 1.12842 0.819846i
\(876\) 0 0
\(877\) 9.61537 29.5931i 0.324688 0.999287i −0.646893 0.762581i \(-0.723932\pi\)
0.971581 0.236707i \(-0.0760680\pi\)
\(878\) 9.99117 + 7.25901i 0.337186 + 0.244980i
\(879\) 0 0
\(880\) −14.8093 + 0.250027i −0.499222 + 0.00842839i
\(881\) 43.9267 1.47993 0.739964 0.672647i \(-0.234843\pi\)
0.739964 + 0.672647i \(0.234843\pi\)
\(882\) 0 0
\(883\) −1.81685 + 5.59170i −0.0611420 + 0.188176i −0.976962 0.213413i \(-0.931542\pi\)
0.915820 + 0.401589i \(0.131542\pi\)
\(884\) −7.18292 22.1068i −0.241588 0.743530i
\(885\) 0 0
\(886\) 10.6436 7.73306i 0.357580 0.259797i
\(887\) −2.37792 7.31848i −0.0798427 0.245730i 0.903165 0.429293i \(-0.141237\pi\)
−0.983008 + 0.183562i \(0.941237\pi\)
\(888\) 0 0
\(889\) −29.7850 21.6401i −0.998957 0.725785i
\(890\) 6.64689 0.222804
\(891\) 0 0
\(892\) −41.3640 −1.38497
\(893\) −3.86079 2.80503i −0.129197 0.0938668i
\(894\) 0 0
\(895\) 11.5507 + 35.5494i 0.386097 + 1.18829i
\(896\) −31.2047 + 22.6716i −1.04248 + 0.757403i
\(897\) 0 0
\(898\) −2.14864 6.61285i −0.0717012 0.220674i
\(899\) −2.03751 + 6.27081i −0.0679547 + 0.209143i
\(900\) 0 0
\(901\) 41.5180 1.38316
\(902\) −0.520665 0.365017i −0.0173362 0.0121537i
\(903\) 0 0
\(904\) 24.4793 + 17.7853i 0.814171 + 0.591530i
\(905\) −2.31210 + 7.11591i −0.0768568 + 0.236541i
\(906\) 0 0
\(907\) 15.3637 11.1624i 0.510143 0.370640i −0.302735 0.953075i \(-0.597900\pi\)
0.812878 + 0.582434i \(0.197900\pi\)
\(908\) −16.9700 + 12.3294i −0.563170 + 0.409167i
\(909\) 0 0
\(910\) 3.53024 10.8650i 0.117026 0.360170i
\(911\) −40.4794 29.4100i −1.34114 0.974397i −0.999401 0.0346024i \(-0.988983\pi\)
−0.341741 0.939794i \(-0.611017\pi\)
\(912\) 0 0
\(913\) −0.339374 0.237921i −0.0112316 0.00787405i
\(914\) −12.0864 −0.399783
\(915\) 0 0
\(916\) −1.66237 + 5.11624i −0.0549262 + 0.169045i
\(917\) −22.2961 68.6205i −0.736284 2.26605i
\(918\) 0 0
\(919\) −2.48708 + 1.80697i −0.0820411 + 0.0596063i −0.628050 0.778173i \(-0.716147\pi\)
0.546009 + 0.837780i \(0.316147\pi\)
\(920\) 7.29235 + 22.4436i 0.240422 + 0.739942i
\(921\) 0 0
\(922\) −10.4146 7.56668i −0.342988 0.249195i
\(923\) −28.0540 −0.923410
\(924\) 0 0
\(925\) −6.38283 −0.209866
\(926\) 5.03648 + 3.65922i 0.165509 + 0.120249i
\(927\) 0 0
\(928\) −2.59765 7.99474i −0.0852720 0.262440i
\(929\) 0.732625 0.532283i 0.0240366 0.0174636i −0.575702 0.817660i \(-0.695271\pi\)
0.599739 + 0.800196i \(0.295271\pi\)
\(930\) 0 0
\(931\) −6.32282 19.4596i −0.207222 0.637764i
\(932\) 13.3374 41.0484i 0.436882 1.34459i
\(933\) 0 0
\(934\) 13.5887 0.444634
\(935\) 18.7190 0.316034i 0.612177 0.0103354i
\(936\) 0 0
\(937\) 17.8423 + 12.9632i 0.582881 + 0.423488i 0.839762 0.542955i \(-0.182695\pi\)
−0.256881 + 0.966443i \(0.582695\pi\)
\(938\) −1.60312 + 4.93390i −0.0523438 + 0.161098i
\(939\) 0 0
\(940\) −2.62656 + 1.90830i −0.0856688 + 0.0622420i
\(941\) −4.41798 + 3.20985i −0.144022 + 0.104638i −0.657463 0.753487i \(-0.728370\pi\)
0.513441 + 0.858125i \(0.328370\pi\)
\(942\) 0 0
\(943\) 0.904937 2.78511i 0.0294688 0.0906956i
\(944\) 7.73386 + 5.61898i 0.251716 + 0.182882i
\(945\) 0 0
\(946\) 4.58059 14.9519i 0.148928 0.486127i
\(947\) 32.4406 1.05418 0.527089 0.849810i \(-0.323283\pi\)
0.527089 + 0.849810i \(0.323283\pi\)
\(948\) 0 0
\(949\) 18.5840 57.1958i 0.603263 1.85665i
\(950\) −1.39417 4.29081i −0.0452328 0.139212i
\(951\) 0 0
\(952\) 16.8131 12.2154i 0.544916 0.395905i
\(953\) −16.6278 51.1752i −0.538628 1.65773i −0.735677 0.677333i \(-0.763136\pi\)
0.197049 0.980394i \(-0.436864\pi\)
\(954\) 0 0
\(955\) −17.2947 12.5653i −0.559642 0.406604i
\(956\) 12.2290 0.395516
\(957\) 0 0
\(958\) 7.66260 0.247567
\(959\) −8.83079 6.41595i −0.285161 0.207182i
\(960\) 0 0
\(961\) −4.88295 15.0282i −0.157515 0.484780i
\(962\) −4.86330 + 3.53339i −0.156799 + 0.113921i
\(963\) 0 0
\(964\) 4.22478 + 13.0025i 0.136071 + 0.418784i
\(965\) −6.63288 + 20.4139i −0.213520 + 0.657147i
\(966\) 0 0
\(967\) −28.8151 −0.926630 −0.463315 0.886194i \(-0.653340\pi\)
−0.463315 + 0.886194i \(0.653340\pi\)
\(968\) 6.91562 + 19.0683i 0.222277 + 0.612880i
\(969\) 0 0
\(970\) 0.232606 + 0.168998i 0.00746852 + 0.00542620i
\(971\) 1.66685 5.13005i 0.0534919 0.164631i −0.920742 0.390173i \(-0.872415\pi\)
0.974233 + 0.225542i \(0.0724152\pi\)
\(972\) 0 0
\(973\) 41.3700 30.0571i 1.32626 0.963586i
\(974\) 10.6851 7.76320i 0.342373 0.248749i
\(975\) 0 0
\(976\) −3.11293 + 9.58061i −0.0996424 + 0.306668i
\(977\) 2.67975 + 1.94695i 0.0857329 + 0.0622886i 0.629826 0.776736i \(-0.283126\pi\)
−0.544093 + 0.839025i \(0.683126\pi\)
\(978\) 0 0
\(979\) 8.55201 + 24.8831i 0.273324 + 0.795266i
\(980\) −13.9200 −0.444657
\(981\) 0 0
\(982\) −5.91123 + 18.1929i −0.188635 + 0.580559i
\(983\) 10.4671 + 32.2143i 0.333847 + 1.02748i 0.967287 + 0.253685i \(0.0816425\pi\)
−0.633440 + 0.773792i \(0.718357\pi\)
\(984\) 0 0
\(985\) 14.2967 10.3872i 0.455530 0.330962i
\(986\) 0.847129 + 2.60719i 0.0269781 + 0.0830300i
\(987\) 0 0
\(988\) 25.1392 + 18.2647i 0.799785 + 0.581078i
\(989\) 72.0183 2.29005
\(990\) 0 0
\(991\) 8.66640 0.275297 0.137649 0.990481i \(-0.456046\pi\)
0.137649 + 0.990481i \(0.456046\pi\)
\(992\) −15.6761 11.3893i −0.497716 0.361612i
\(993\) 0 0
\(994\) −3.62742 11.1640i −0.115055 0.354102i
\(995\) −36.5902 + 26.5843i −1.15999 + 0.842780i
\(996\) 0 0
\(997\) −9.35253 28.7841i −0.296197 0.911602i −0.982817 0.184585i \(-0.940906\pi\)
0.686619 0.727017i \(-0.259094\pi\)
\(998\) 3.64303 11.2121i 0.115318 0.354912i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.f.f.730.5 36
3.2 odd 2 891.2.f.e.730.5 36
9.2 odd 6 297.2.n.b.37.5 72
9.4 even 3 99.2.m.b.70.5 yes 72
9.5 odd 6 297.2.n.b.235.5 72
9.7 even 3 99.2.m.b.4.5 72
11.3 even 5 inner 891.2.f.f.487.5 36
11.5 even 5 9801.2.a.cm.1.9 18
11.6 odd 10 9801.2.a.co.1.10 18
33.5 odd 10 9801.2.a.cp.1.10 18
33.14 odd 10 891.2.f.e.487.5 36
33.17 even 10 9801.2.a.cn.1.9 18
99.14 odd 30 297.2.n.b.289.5 72
99.16 even 15 1089.2.e.p.364.10 36
99.25 even 15 99.2.m.b.58.5 yes 72
99.47 odd 30 297.2.n.b.91.5 72
99.49 even 15 1089.2.e.p.727.10 36
99.58 even 15 99.2.m.b.25.5 yes 72
99.61 odd 30 1089.2.e.o.364.9 36
99.94 odd 30 1089.2.e.o.727.9 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.4.5 72 9.7 even 3
99.2.m.b.25.5 yes 72 99.58 even 15
99.2.m.b.58.5 yes 72 99.25 even 15
99.2.m.b.70.5 yes 72 9.4 even 3
297.2.n.b.37.5 72 9.2 odd 6
297.2.n.b.91.5 72 99.47 odd 30
297.2.n.b.235.5 72 9.5 odd 6
297.2.n.b.289.5 72 99.14 odd 30
891.2.f.e.487.5 36 33.14 odd 10
891.2.f.e.730.5 36 3.2 odd 2
891.2.f.f.487.5 36 11.3 even 5 inner
891.2.f.f.730.5 36 1.1 even 1 trivial
1089.2.e.o.364.9 36 99.61 odd 30
1089.2.e.o.727.9 36 99.94 odd 30
1089.2.e.p.364.10 36 99.16 even 15
1089.2.e.p.727.10 36 99.49 even 15
9801.2.a.cm.1.9 18 11.5 even 5
9801.2.a.cn.1.9 18 33.17 even 10
9801.2.a.co.1.10 18 11.6 odd 10
9801.2.a.cp.1.10 18 33.5 odd 10