Properties

Label 891.2.f.f.487.6
Level $891$
Weight $2$
Character 891.487
Analytic conductor $7.115$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(82,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(9\) over \(\Q(\zeta_{5})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 487.6
Character \(\chi\) \(=\) 891.487
Dual form 891.2.f.f.730.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.537447 - 0.390478i) q^{2} +(-0.481658 + 1.48239i) q^{4} +(-0.903367 - 0.656335i) q^{5} +(-1.20657 + 3.71344i) q^{7} +(0.730548 + 2.24840i) q^{8} -0.741796 q^{10} +(-1.17816 - 3.10031i) q^{11} +(-2.16655 + 1.57409i) q^{13} +(0.801549 + 2.46691i) q^{14} +(-1.25142 - 0.909207i) q^{16} +(-4.48727 - 3.26019i) q^{17} +(-1.58598 - 4.88115i) q^{19} +(1.40806 - 1.02301i) q^{20} +(-1.84380 - 1.20620i) q^{22} +2.11438 q^{23} +(-1.15979 - 3.56946i) q^{25} +(-0.549758 + 1.69198i) q^{26} +(-4.92362 - 3.57722i) q^{28} +(0.334678 - 1.03003i) q^{29} +(0.348009 - 0.252843i) q^{31} -5.75580 q^{32} -3.68470 q^{34} +(3.52724 - 2.56269i) q^{35} +(-2.69024 + 8.27970i) q^{37} +(-2.75836 - 2.00407i) q^{38} +(0.815747 - 2.51061i) q^{40} +(-0.902044 - 2.77621i) q^{41} -2.23257 q^{43} +(5.16335 - 0.253209i) q^{44} +(1.13637 - 0.825618i) q^{46} +(3.96638 + 12.2073i) q^{47} +(-6.67071 - 4.84655i) q^{49} +(-2.01712 - 1.46552i) q^{50} +(-1.28988 - 3.96985i) q^{52} +(-4.56381 + 3.31581i) q^{53} +(-0.970527 + 3.57399i) q^{55} -9.23074 q^{56} +(-0.222333 - 0.684272i) q^{58} +(-0.734030 + 2.25911i) q^{59} +(3.30439 + 2.40078i) q^{61} +(0.0883065 - 0.271779i) q^{62} +(-0.590604 + 0.429099i) q^{64} +2.99032 q^{65} -9.75169 q^{67} +(6.99421 - 5.08159i) q^{68} +(0.895028 - 2.75461i) q^{70} +(-5.11062 - 3.71308i) q^{71} +(-3.60705 + 11.1014i) q^{73} +(1.78718 + 5.50038i) q^{74} +7.99967 q^{76} +(12.9344 - 0.634298i) q^{77} +(-3.65248 + 2.65368i) q^{79} +(0.533744 + 1.64269i) q^{80} +(-1.56885 - 1.13983i) q^{82} +(-0.389949 - 0.283315i) q^{83} +(1.91387 + 5.89030i) q^{85} +(-1.19989 + 0.871768i) q^{86} +(6.11002 - 4.91390i) q^{88} +16.0830 q^{89} +(-3.23120 - 9.94461i) q^{91} +(-1.01841 + 3.13433i) q^{92} +(6.89838 + 5.01197i) q^{94} +(-1.77094 + 5.45040i) q^{95} +(-6.48480 + 4.71148i) q^{97} -5.47762 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + q^{2} - 11 q^{4} + 8 q^{5} + 2 q^{7} + 3 q^{8} - 4 q^{10} + 2 q^{11} + 11 q^{13} + 10 q^{14} + 9 q^{16} - 10 q^{17} + 4 q^{19} + 45 q^{20} + 16 q^{22} - 20 q^{23} - 11 q^{25} - 6 q^{26} - 27 q^{28}+ \cdots - 164 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.537447 0.390478i 0.380032 0.276109i −0.381327 0.924440i \(-0.624533\pi\)
0.761359 + 0.648331i \(0.224533\pi\)
\(3\) 0 0
\(4\) −0.481658 + 1.48239i −0.240829 + 0.741196i
\(5\) −0.903367 0.656335i −0.403998 0.293522i 0.367169 0.930154i \(-0.380327\pi\)
−0.771168 + 0.636632i \(0.780327\pi\)
\(6\) 0 0
\(7\) −1.20657 + 3.71344i −0.456041 + 1.40355i 0.413869 + 0.910337i \(0.364177\pi\)
−0.869909 + 0.493212i \(0.835823\pi\)
\(8\) 0.730548 + 2.24840i 0.258288 + 0.794928i
\(9\) 0 0
\(10\) −0.741796 −0.234576
\(11\) −1.17816 3.10031i −0.355230 0.934779i
\(12\) 0 0
\(13\) −2.16655 + 1.57409i −0.600893 + 0.436574i −0.846196 0.532872i \(-0.821113\pi\)
0.245303 + 0.969447i \(0.421113\pi\)
\(14\) 0.801549 + 2.46691i 0.214223 + 0.659311i
\(15\) 0 0
\(16\) −1.25142 0.909207i −0.312854 0.227302i
\(17\) −4.48727 3.26019i −1.08832 0.790713i −0.109207 0.994019i \(-0.534831\pi\)
−0.979115 + 0.203306i \(0.934831\pi\)
\(18\) 0 0
\(19\) −1.58598 4.88115i −0.363849 1.11981i −0.950699 0.310116i \(-0.899632\pi\)
0.586850 0.809696i \(-0.300368\pi\)
\(20\) 1.40806 1.02301i 0.314852 0.228753i
\(21\) 0 0
\(22\) −1.84380 1.20620i −0.393100 0.257164i
\(23\) 2.11438 0.440878 0.220439 0.975401i \(-0.429251\pi\)
0.220439 + 0.975401i \(0.429251\pi\)
\(24\) 0 0
\(25\) −1.15979 3.56946i −0.231958 0.713892i
\(26\) −0.549758 + 1.69198i −0.107816 + 0.331825i
\(27\) 0 0
\(28\) −4.92362 3.57722i −0.930476 0.676030i
\(29\) 0.334678 1.03003i 0.0621481 0.191272i −0.915162 0.403087i \(-0.867937\pi\)
0.977310 + 0.211814i \(0.0679373\pi\)
\(30\) 0 0
\(31\) 0.348009 0.252843i 0.0625042 0.0454120i −0.556094 0.831119i \(-0.687701\pi\)
0.618599 + 0.785707i \(0.287701\pi\)
\(32\) −5.75580 −1.01749
\(33\) 0 0
\(34\) −3.68470 −0.631921
\(35\) 3.52724 2.56269i 0.596212 0.433173i
\(36\) 0 0
\(37\) −2.69024 + 8.27970i −0.442273 + 1.36118i 0.443175 + 0.896435i \(0.353852\pi\)
−0.885447 + 0.464740i \(0.846148\pi\)
\(38\) −2.75836 2.00407i −0.447465 0.325102i
\(39\) 0 0
\(40\) 0.815747 2.51061i 0.128981 0.396962i
\(41\) −0.902044 2.77621i −0.140876 0.433571i 0.855582 0.517667i \(-0.173200\pi\)
−0.996458 + 0.0840968i \(0.973200\pi\)
\(42\) 0 0
\(43\) −2.23257 −0.340463 −0.170232 0.985404i \(-0.554452\pi\)
−0.170232 + 0.985404i \(0.554452\pi\)
\(44\) 5.16335 0.253209i 0.778404 0.0381728i
\(45\) 0 0
\(46\) 1.13637 0.825618i 0.167548 0.121731i
\(47\) 3.96638 + 12.2073i 0.578556 + 1.78061i 0.623739 + 0.781633i \(0.285613\pi\)
−0.0451833 + 0.998979i \(0.514387\pi\)
\(48\) 0 0
\(49\) −6.67071 4.84655i −0.952958 0.692365i
\(50\) −2.01712 1.46552i −0.285264 0.207256i
\(51\) 0 0
\(52\) −1.28988 3.96985i −0.178875 0.550519i
\(53\) −4.56381 + 3.31581i −0.626888 + 0.455461i −0.855321 0.518099i \(-0.826640\pi\)
0.228433 + 0.973560i \(0.426640\pi\)
\(54\) 0 0
\(55\) −0.970527 + 3.57399i −0.130866 + 0.481917i
\(56\) −9.23074 −1.23351
\(57\) 0 0
\(58\) −0.222333 0.684272i −0.0291938 0.0898493i
\(59\) −0.734030 + 2.25911i −0.0955625 + 0.294111i −0.987400 0.158245i \(-0.949416\pi\)
0.891837 + 0.452356i \(0.149416\pi\)
\(60\) 0 0
\(61\) 3.30439 + 2.40078i 0.423084 + 0.307389i 0.778878 0.627176i \(-0.215789\pi\)
−0.355793 + 0.934565i \(0.615789\pi\)
\(62\) 0.0883065 0.271779i 0.0112149 0.0345160i
\(63\) 0 0
\(64\) −0.590604 + 0.429099i −0.0738255 + 0.0536374i
\(65\) 2.99032 0.370904
\(66\) 0 0
\(67\) −9.75169 −1.19136 −0.595679 0.803223i \(-0.703117\pi\)
−0.595679 + 0.803223i \(0.703117\pi\)
\(68\) 6.99421 5.08159i 0.848172 0.616233i
\(69\) 0 0
\(70\) 0.895028 2.75461i 0.106976 0.329239i
\(71\) −5.11062 3.71308i −0.606519 0.440662i 0.241668 0.970359i \(-0.422306\pi\)
−0.848187 + 0.529697i \(0.822306\pi\)
\(72\) 0 0
\(73\) −3.60705 + 11.1014i −0.422174 + 1.29932i 0.483501 + 0.875344i \(0.339365\pi\)
−0.905675 + 0.423973i \(0.860635\pi\)
\(74\) 1.78718 + 5.50038i 0.207756 + 0.639406i
\(75\) 0 0
\(76\) 7.99967 0.917625
\(77\) 12.9344 0.634298i 1.47401 0.0722850i
\(78\) 0 0
\(79\) −3.65248 + 2.65368i −0.410936 + 0.298562i −0.773980 0.633209i \(-0.781737\pi\)
0.363045 + 0.931772i \(0.381737\pi\)
\(80\) 0.533744 + 1.64269i 0.0596744 + 0.183659i
\(81\) 0 0
\(82\) −1.56885 1.13983i −0.173250 0.125874i
\(83\) −0.389949 0.283315i −0.0428025 0.0310978i 0.566178 0.824283i \(-0.308421\pi\)
−0.608981 + 0.793185i \(0.708421\pi\)
\(84\) 0 0
\(85\) 1.91387 + 5.89030i 0.207589 + 0.638893i
\(86\) −1.19989 + 0.871768i −0.129387 + 0.0940052i
\(87\) 0 0
\(88\) 6.11002 4.91390i 0.651330 0.523824i
\(89\) 16.0830 1.70480 0.852399 0.522891i \(-0.175147\pi\)
0.852399 + 0.522891i \(0.175147\pi\)
\(90\) 0 0
\(91\) −3.23120 9.94461i −0.338722 1.04248i
\(92\) −1.01841 + 3.13433i −0.106176 + 0.326777i
\(93\) 0 0
\(94\) 6.89838 + 5.01197i 0.711513 + 0.516945i
\(95\) −1.77094 + 5.45040i −0.181695 + 0.559199i
\(96\) 0 0
\(97\) −6.48480 + 4.71148i −0.658432 + 0.478379i −0.866133 0.499814i \(-0.833402\pi\)
0.207701 + 0.978192i \(0.433402\pi\)
\(98\) −5.47762 −0.553323
\(99\) 0 0
\(100\) 5.84996 0.584996
\(101\) −1.42493 + 1.03527i −0.141786 + 0.103014i −0.656417 0.754398i \(-0.727929\pi\)
0.514631 + 0.857412i \(0.327929\pi\)
\(102\) 0 0
\(103\) 0.830534 2.55612i 0.0818350 0.251862i −0.901765 0.432227i \(-0.857728\pi\)
0.983600 + 0.180365i \(0.0577279\pi\)
\(104\) −5.12195 3.72131i −0.502248 0.364905i
\(105\) 0 0
\(106\) −1.15806 + 3.56414i −0.112481 + 0.346179i
\(107\) −3.17558 9.77342i −0.306995 0.944833i −0.978925 0.204219i \(-0.934535\pi\)
0.671931 0.740614i \(-0.265465\pi\)
\(108\) 0 0
\(109\) 2.36284 0.226319 0.113160 0.993577i \(-0.463903\pi\)
0.113160 + 0.993577i \(0.463903\pi\)
\(110\) 0.873957 + 2.29980i 0.0833285 + 0.219277i
\(111\) 0 0
\(112\) 4.88620 3.55004i 0.461703 0.335447i
\(113\) 0.473548 + 1.45743i 0.0445476 + 0.137103i 0.970857 0.239661i \(-0.0770365\pi\)
−0.926309 + 0.376765i \(0.877036\pi\)
\(114\) 0 0
\(115\) −1.91006 1.38774i −0.178114 0.129407i
\(116\) 1.36571 + 0.992247i 0.126803 + 0.0921279i
\(117\) 0 0
\(118\) 0.487631 + 1.50077i 0.0448901 + 0.138157i
\(119\) 17.5207 12.7296i 1.60612 1.16692i
\(120\) 0 0
\(121\) −8.22386 + 7.30535i −0.747624 + 0.664123i
\(122\) 2.71339 0.245658
\(123\) 0 0
\(124\) 0.207191 + 0.637669i 0.0186063 + 0.0572644i
\(125\) −3.02032 + 9.29560i −0.270146 + 0.831424i
\(126\) 0 0
\(127\) 6.19006 + 4.49734i 0.549279 + 0.399074i 0.827519 0.561437i \(-0.189751\pi\)
−0.278241 + 0.960511i \(0.589751\pi\)
\(128\) 3.40742 10.4869i 0.301176 0.926924i
\(129\) 0 0
\(130\) 1.60714 1.16765i 0.140955 0.102410i
\(131\) −5.35912 −0.468229 −0.234114 0.972209i \(-0.575219\pi\)
−0.234114 + 0.972209i \(0.575219\pi\)
\(132\) 0 0
\(133\) 20.0394 1.73764
\(134\) −5.24101 + 3.80782i −0.452754 + 0.328945i
\(135\) 0 0
\(136\) 4.05203 12.4709i 0.347459 1.06937i
\(137\) −13.5358 9.83435i −1.15644 0.840205i −0.167119 0.985937i \(-0.553446\pi\)
−0.989324 + 0.145731i \(0.953446\pi\)
\(138\) 0 0
\(139\) 4.24593 13.0676i 0.360135 1.10838i −0.592837 0.805323i \(-0.701992\pi\)
0.952972 0.303059i \(-0.0980079\pi\)
\(140\) 2.09998 + 6.46308i 0.177481 + 0.546230i
\(141\) 0 0
\(142\) −4.19656 −0.352168
\(143\) 7.43273 + 4.86244i 0.621556 + 0.406618i
\(144\) 0 0
\(145\) −0.978384 + 0.710837i −0.0812503 + 0.0590318i
\(146\) 2.39624 + 7.37487i 0.198314 + 0.610348i
\(147\) 0 0
\(148\) −10.9780 7.97597i −0.902385 0.655621i
\(149\) −4.49786 3.26788i −0.368479 0.267716i 0.388101 0.921617i \(-0.373131\pi\)
−0.756580 + 0.653901i \(0.773131\pi\)
\(150\) 0 0
\(151\) −0.0506502 0.155885i −0.00412186 0.0126858i 0.948974 0.315353i \(-0.102123\pi\)
−0.953096 + 0.302667i \(0.902123\pi\)
\(152\) 9.81611 7.13182i 0.796192 0.578467i
\(153\) 0 0
\(154\) 6.70385 5.39148i 0.540211 0.434458i
\(155\) −0.480329 −0.0385810
\(156\) 0 0
\(157\) 7.37099 + 22.6856i 0.588269 + 1.81051i 0.585727 + 0.810509i \(0.300809\pi\)
0.00254199 + 0.999997i \(0.499191\pi\)
\(158\) −0.926808 + 2.85242i −0.0737329 + 0.226926i
\(159\) 0 0
\(160\) 5.19960 + 3.77773i 0.411065 + 0.298656i
\(161\) −2.55114 + 7.85161i −0.201058 + 0.618794i
\(162\) 0 0
\(163\) 3.39466 2.46636i 0.265890 0.193180i −0.446850 0.894609i \(-0.647454\pi\)
0.712740 + 0.701429i \(0.247454\pi\)
\(164\) 4.54990 0.355288
\(165\) 0 0
\(166\) −0.320205 −0.0248527
\(167\) −12.8151 + 9.31075i −0.991666 + 0.720488i −0.960285 0.279020i \(-0.909990\pi\)
−0.0313807 + 0.999508i \(0.509990\pi\)
\(168\) 0 0
\(169\) −1.80104 + 5.54304i −0.138542 + 0.426387i
\(170\) 3.32864 + 2.41840i 0.255295 + 0.185482i
\(171\) 0 0
\(172\) 1.07533 3.30954i 0.0819935 0.252350i
\(173\) −0.804337 2.47549i −0.0611526 0.188208i 0.915813 0.401605i \(-0.131547\pi\)
−0.976966 + 0.213396i \(0.931547\pi\)
\(174\) 0 0
\(175\) 14.6543 1.10776
\(176\) −1.34445 + 4.95097i −0.101342 + 0.373194i
\(177\) 0 0
\(178\) 8.64378 6.28007i 0.647878 0.470711i
\(179\) 2.34483 + 7.21663i 0.175261 + 0.539396i 0.999645 0.0266334i \(-0.00847867\pi\)
−0.824385 + 0.566030i \(0.808479\pi\)
\(180\) 0 0
\(181\) 1.94179 + 1.41080i 0.144332 + 0.104864i 0.657608 0.753360i \(-0.271568\pi\)
−0.513276 + 0.858224i \(0.671568\pi\)
\(182\) −5.61975 4.08298i −0.416563 0.302651i
\(183\) 0 0
\(184\) 1.54465 + 4.75396i 0.113873 + 0.350466i
\(185\) 7.86453 5.71392i 0.578212 0.420095i
\(186\) 0 0
\(187\) −4.82087 + 17.7530i −0.352537 + 1.29823i
\(188\) −20.0064 −1.45911
\(189\) 0 0
\(190\) 1.17647 + 3.62081i 0.0853504 + 0.262681i
\(191\) −5.10442 + 15.7098i −0.369343 + 1.13672i 0.577874 + 0.816126i \(0.303882\pi\)
−0.947217 + 0.320594i \(0.896118\pi\)
\(192\) 0 0
\(193\) 6.58132 + 4.78161i 0.473734 + 0.344188i 0.798895 0.601471i \(-0.205418\pi\)
−0.325161 + 0.945659i \(0.605418\pi\)
\(194\) −1.64550 + 5.06434i −0.118140 + 0.363598i
\(195\) 0 0
\(196\) 10.3975 7.55422i 0.742678 0.539587i
\(197\) −22.9072 −1.63207 −0.816035 0.578003i \(-0.803832\pi\)
−0.816035 + 0.578003i \(0.803832\pi\)
\(198\) 0 0
\(199\) 9.27177 0.657259 0.328629 0.944459i \(-0.393413\pi\)
0.328629 + 0.944459i \(0.393413\pi\)
\(200\) 7.17828 5.21532i 0.507581 0.368779i
\(201\) 0 0
\(202\) −0.361574 + 1.11281i −0.0254402 + 0.0782970i
\(203\) 3.42115 + 2.48561i 0.240118 + 0.174456i
\(204\) 0 0
\(205\) −1.00724 + 3.09998i −0.0703489 + 0.216512i
\(206\) −0.551741 1.69808i −0.0384416 0.118311i
\(207\) 0 0
\(208\) 4.14243 0.287226
\(209\) −13.2645 + 10.6678i −0.917527 + 0.737909i
\(210\) 0 0
\(211\) −3.40643 + 2.47491i −0.234508 + 0.170380i −0.698833 0.715285i \(-0.746297\pi\)
0.464325 + 0.885665i \(0.346297\pi\)
\(212\) −2.71712 8.36244i −0.186613 0.574335i
\(213\) 0 0
\(214\) −5.52301 4.01270i −0.377545 0.274303i
\(215\) 2.01683 + 1.46531i 0.137547 + 0.0999334i
\(216\) 0 0
\(217\) 0.519021 + 1.59738i 0.0352335 + 0.108437i
\(218\) 1.26990 0.922637i 0.0860086 0.0624889i
\(219\) 0 0
\(220\) −4.83059 3.16014i −0.325678 0.213057i
\(221\) 14.8537 0.999170
\(222\) 0 0
\(223\) −2.11957 6.52335i −0.141937 0.436836i 0.854668 0.519175i \(-0.173761\pi\)
−0.996604 + 0.0823393i \(0.973761\pi\)
\(224\) 6.94477 21.3738i 0.464017 1.42810i
\(225\) 0 0
\(226\) 0.823601 + 0.598381i 0.0547851 + 0.0398037i
\(227\) 8.69262 26.7531i 0.576950 1.77567i −0.0524933 0.998621i \(-0.516717\pi\)
0.629443 0.777047i \(-0.283283\pi\)
\(228\) 0 0
\(229\) 11.3543 8.24939i 0.750314 0.545135i −0.145610 0.989342i \(-0.546515\pi\)
0.895924 + 0.444207i \(0.146515\pi\)
\(230\) −1.56844 −0.103420
\(231\) 0 0
\(232\) 2.56042 0.168100
\(233\) 11.7385 8.52854i 0.769017 0.558723i −0.132646 0.991163i \(-0.542347\pi\)
0.901663 + 0.432440i \(0.142347\pi\)
\(234\) 0 0
\(235\) 4.42895 13.6309i 0.288913 0.889182i
\(236\) −2.99534 2.17624i −0.194980 0.141661i
\(237\) 0 0
\(238\) 4.44585 13.6829i 0.288181 0.886931i
\(239\) −7.77120 23.9173i −0.502677 1.54708i −0.804641 0.593762i \(-0.797642\pi\)
0.301964 0.953319i \(-0.402358\pi\)
\(240\) 0 0
\(241\) 17.7422 1.14288 0.571438 0.820645i \(-0.306386\pi\)
0.571438 + 0.820645i \(0.306386\pi\)
\(242\) −1.56731 + 7.13747i −0.100750 + 0.458814i
\(243\) 0 0
\(244\) −5.15048 + 3.74205i −0.329726 + 0.239560i
\(245\) 2.84514 + 8.75643i 0.181769 + 0.559428i
\(246\) 0 0
\(247\) 11.1195 + 8.07877i 0.707515 + 0.514040i
\(248\) 0.822729 + 0.597747i 0.0522433 + 0.0379570i
\(249\) 0 0
\(250\) 2.00646 + 6.17526i 0.126900 + 0.390558i
\(251\) 17.6993 12.8593i 1.11717 0.811670i 0.133390 0.991064i \(-0.457414\pi\)
0.983777 + 0.179394i \(0.0574136\pi\)
\(252\) 0 0
\(253\) −2.49108 6.55523i −0.156613 0.412124i
\(254\) 5.08294 0.318932
\(255\) 0 0
\(256\) −2.71480 8.35529i −0.169675 0.522205i
\(257\) 1.59568 4.91099i 0.0995356 0.306339i −0.888874 0.458153i \(-0.848511\pi\)
0.988409 + 0.151814i \(0.0485113\pi\)
\(258\) 0 0
\(259\) −27.5002 19.9801i −1.70878 1.24150i
\(260\) −1.44031 + 4.43283i −0.0893244 + 0.274912i
\(261\) 0 0
\(262\) −2.88024 + 2.09262i −0.177942 + 0.129282i
\(263\) −27.8981 −1.72027 −0.860135 0.510066i \(-0.829621\pi\)
−0.860135 + 0.510066i \(0.829621\pi\)
\(264\) 0 0
\(265\) 6.29908 0.386949
\(266\) 10.7701 7.82496i 0.660359 0.479779i
\(267\) 0 0
\(268\) 4.69698 14.4558i 0.286914 0.883029i
\(269\) −2.44290 1.77487i −0.148946 0.108216i 0.510816 0.859690i \(-0.329343\pi\)
−0.659763 + 0.751474i \(0.729343\pi\)
\(270\) 0 0
\(271\) −7.84125 + 24.1329i −0.476322 + 1.46597i 0.367845 + 0.929887i \(0.380096\pi\)
−0.844167 + 0.536081i \(0.819904\pi\)
\(272\) 2.65125 + 8.15971i 0.160756 + 0.494755i
\(273\) 0 0
\(274\) −11.1149 −0.671474
\(275\) −9.70002 + 7.80111i −0.584933 + 0.470425i
\(276\) 0 0
\(277\) 8.54677 6.20959i 0.513525 0.373098i −0.300634 0.953740i \(-0.597198\pi\)
0.814159 + 0.580642i \(0.197198\pi\)
\(278\) −2.82066 8.68109i −0.169172 0.520657i
\(279\) 0 0
\(280\) 8.33875 + 6.05845i 0.498335 + 0.362062i
\(281\) 18.2599 + 13.2666i 1.08930 + 0.791420i 0.979280 0.202510i \(-0.0649098\pi\)
0.110016 + 0.993930i \(0.464910\pi\)
\(282\) 0 0
\(283\) −1.81616 5.58958i −0.107960 0.332266i 0.882454 0.470399i \(-0.155890\pi\)
−0.990414 + 0.138133i \(0.955890\pi\)
\(284\) 7.96581 5.78750i 0.472684 0.343425i
\(285\) 0 0
\(286\) 5.89337 0.289010i 0.348482 0.0170895i
\(287\) 11.3977 0.672782
\(288\) 0 0
\(289\) 4.25344 + 13.0907i 0.250202 + 0.770044i
\(290\) −0.248263 + 0.764074i −0.0145785 + 0.0448680i
\(291\) 0 0
\(292\) −14.7192 10.6941i −0.861376 0.625827i
\(293\) 2.19220 6.74690i 0.128070 0.394158i −0.866378 0.499389i \(-0.833558\pi\)
0.994448 + 0.105230i \(0.0335580\pi\)
\(294\) 0 0
\(295\) 2.14583 1.55904i 0.124935 0.0907707i
\(296\) −20.5814 −1.19627
\(297\) 0 0
\(298\) −3.69339 −0.213953
\(299\) −4.58091 + 3.32822i −0.264921 + 0.192476i
\(300\) 0 0
\(301\) 2.69375 8.29051i 0.155265 0.477857i
\(302\) −0.0880915 0.0640022i −0.00506910 0.00368292i
\(303\) 0 0
\(304\) −2.45325 + 7.55033i −0.140704 + 0.433041i
\(305\) −1.40936 4.33757i −0.0806999 0.248369i
\(306\) 0 0
\(307\) −18.5370 −1.05796 −0.528981 0.848633i \(-0.677426\pi\)
−0.528981 + 0.848633i \(0.677426\pi\)
\(308\) −5.28966 + 19.4793i −0.301406 + 1.10994i
\(309\) 0 0
\(310\) −0.258151 + 0.187558i −0.0146620 + 0.0106526i
\(311\) 2.12487 + 6.53969i 0.120491 + 0.370832i 0.993053 0.117672i \(-0.0375430\pi\)
−0.872562 + 0.488503i \(0.837543\pi\)
\(312\) 0 0
\(313\) 20.4890 + 14.8861i 1.15811 + 0.841414i 0.989537 0.144276i \(-0.0460853\pi\)
0.168569 + 0.985690i \(0.446085\pi\)
\(314\) 12.8197 + 9.31407i 0.723459 + 0.525624i
\(315\) 0 0
\(316\) −2.17455 6.69256i −0.122328 0.376486i
\(317\) −8.88241 + 6.45345i −0.498886 + 0.362462i −0.808591 0.588371i \(-0.799770\pi\)
0.309705 + 0.950833i \(0.399770\pi\)
\(318\) 0 0
\(319\) −3.58773 + 0.175942i −0.200874 + 0.00985083i
\(320\) 0.815165 0.0455691
\(321\) 0 0
\(322\) 1.69478 + 5.21599i 0.0944463 + 0.290676i
\(323\) −8.79675 + 27.0736i −0.489464 + 1.50642i
\(324\) 0 0
\(325\) 8.13140 + 5.90780i 0.451049 + 0.327706i
\(326\) 0.861386 2.65107i 0.0477078 0.146829i
\(327\) 0 0
\(328\) 5.58302 4.05630i 0.308271 0.223972i
\(329\) −50.1166 −2.76302
\(330\) 0 0
\(331\) −3.71025 −0.203934 −0.101967 0.994788i \(-0.532514\pi\)
−0.101967 + 0.994788i \(0.532514\pi\)
\(332\) 0.607805 0.441596i 0.0333576 0.0242357i
\(333\) 0 0
\(334\) −3.25182 + 10.0081i −0.177931 + 0.547617i
\(335\) 8.80935 + 6.40037i 0.481306 + 0.349690i
\(336\) 0 0
\(337\) −9.94885 + 30.6194i −0.541948 + 1.66795i 0.186189 + 0.982514i \(0.440386\pi\)
−0.728137 + 0.685432i \(0.759614\pi\)
\(338\) 1.19647 + 3.68235i 0.0650793 + 0.200294i
\(339\) 0 0
\(340\) −9.65356 −0.523538
\(341\) −1.19390 0.781045i −0.0646535 0.0422960i
\(342\) 0 0
\(343\) 3.93417 2.85834i 0.212425 0.154336i
\(344\) −1.63100 5.01970i −0.0879375 0.270644i
\(345\) 0 0
\(346\) −1.39891 1.01637i −0.0752061 0.0546404i
\(347\) 17.4121 + 12.6506i 0.934728 + 0.679120i 0.947146 0.320803i \(-0.103953\pi\)
−0.0124177 + 0.999923i \(0.503953\pi\)
\(348\) 0 0
\(349\) −5.19765 15.9967i −0.278224 0.856285i −0.988348 0.152209i \(-0.951361\pi\)
0.710124 0.704076i \(-0.248639\pi\)
\(350\) 7.87593 5.72219i 0.420986 0.305864i
\(351\) 0 0
\(352\) 6.78127 + 17.8448i 0.361443 + 0.951129i
\(353\) 3.13085 0.166639 0.0833193 0.996523i \(-0.473448\pi\)
0.0833193 + 0.996523i \(0.473448\pi\)
\(354\) 0 0
\(355\) 2.17974 + 6.70855i 0.115689 + 0.356053i
\(356\) −7.74653 + 23.8414i −0.410565 + 1.26359i
\(357\) 0 0
\(358\) 4.07815 + 2.96295i 0.215537 + 0.156597i
\(359\) 2.62315 8.07323i 0.138445 0.426089i −0.857665 0.514208i \(-0.828086\pi\)
0.996110 + 0.0881197i \(0.0280858\pi\)
\(360\) 0 0
\(361\) −5.93893 + 4.31489i −0.312575 + 0.227099i
\(362\) 1.59449 0.0838048
\(363\) 0 0
\(364\) 16.2981 0.854254
\(365\) 10.5447 7.66118i 0.551935 0.401004i
\(366\) 0 0
\(367\) −3.40258 + 10.4720i −0.177613 + 0.546637i −0.999743 0.0226630i \(-0.992786\pi\)
0.822130 + 0.569300i \(0.192786\pi\)
\(368\) −2.64596 1.92241i −0.137930 0.100212i
\(369\) 0 0
\(370\) 1.99561 6.14185i 0.103747 0.319300i
\(371\) −6.80648 20.9482i −0.353375 1.08758i
\(372\) 0 0
\(373\) 11.0068 0.569912 0.284956 0.958541i \(-0.408021\pi\)
0.284956 + 0.958541i \(0.408021\pi\)
\(374\) 4.34118 + 11.4237i 0.224477 + 0.590706i
\(375\) 0 0
\(376\) −24.5491 + 17.8360i −1.26602 + 0.919820i
\(377\) 0.896269 + 2.75843i 0.0461602 + 0.142067i
\(378\) 0 0
\(379\) −20.5384 14.9220i −1.05499 0.766492i −0.0818315 0.996646i \(-0.526077\pi\)
−0.973154 + 0.230154i \(0.926077\pi\)
\(380\) −7.22664 5.25046i −0.370719 0.269343i
\(381\) 0 0
\(382\) 3.39097 + 10.4363i 0.173497 + 0.533969i
\(383\) 9.80103 7.12086i 0.500809 0.363859i −0.308517 0.951219i \(-0.599833\pi\)
0.809326 + 0.587360i \(0.199833\pi\)
\(384\) 0 0
\(385\) −12.1008 7.91626i −0.616713 0.403450i
\(386\) 5.40422 0.275068
\(387\) 0 0
\(388\) −3.86080 11.8823i −0.196003 0.603234i
\(389\) 4.43473 13.6487i 0.224850 0.692016i −0.773457 0.633849i \(-0.781474\pi\)
0.998307 0.0581676i \(-0.0185258\pi\)
\(390\) 0 0
\(391\) −9.48778 6.89328i −0.479818 0.348608i
\(392\) 6.02370 18.5390i 0.304243 0.936362i
\(393\) 0 0
\(394\) −12.3114 + 8.94475i −0.620239 + 0.450630i
\(395\) 5.04123 0.253652
\(396\) 0 0
\(397\) −5.03882 −0.252891 −0.126446 0.991974i \(-0.540357\pi\)
−0.126446 + 0.991974i \(0.540357\pi\)
\(398\) 4.98308 3.62042i 0.249779 0.181475i
\(399\) 0 0
\(400\) −1.79400 + 5.52136i −0.0897000 + 0.276068i
\(401\) 14.7243 + 10.6978i 0.735294 + 0.534223i 0.891234 0.453544i \(-0.149841\pi\)
−0.155940 + 0.987767i \(0.549841\pi\)
\(402\) 0 0
\(403\) −0.355980 + 1.09560i −0.0177327 + 0.0545755i
\(404\) −0.848352 2.61096i −0.0422071 0.129900i
\(405\) 0 0
\(406\) 2.80926 0.139421
\(407\) 28.8392 1.41427i 1.42951 0.0701027i
\(408\) 0 0
\(409\) −13.2925 + 9.65758i −0.657273 + 0.477537i −0.865741 0.500493i \(-0.833152\pi\)
0.208468 + 0.978029i \(0.433152\pi\)
\(410\) 0.669133 + 2.05938i 0.0330461 + 0.101705i
\(411\) 0 0
\(412\) 3.38914 + 2.46235i 0.166971 + 0.121311i
\(413\) −7.50342 5.45155i −0.369219 0.268253i
\(414\) 0 0
\(415\) 0.166318 + 0.511874i 0.00816423 + 0.0251269i
\(416\) 12.4702 9.06015i 0.611403 0.444211i
\(417\) 0 0
\(418\) −2.96343 + 10.9129i −0.144946 + 0.533767i
\(419\) −17.4065 −0.850362 −0.425181 0.905108i \(-0.639790\pi\)
−0.425181 + 0.905108i \(0.639790\pi\)
\(420\) 0 0
\(421\) 1.40561 + 4.32602i 0.0685052 + 0.210837i 0.979449 0.201694i \(-0.0646447\pi\)
−0.910943 + 0.412531i \(0.864645\pi\)
\(422\) −0.864374 + 2.66027i −0.0420771 + 0.129500i
\(423\) 0 0
\(424\) −10.7893 7.83890i −0.523976 0.380691i
\(425\) −6.43284 + 19.7983i −0.312039 + 0.960356i
\(426\) 0 0
\(427\) −12.9021 + 9.37395i −0.624378 + 0.453637i
\(428\) 16.0176 0.774239
\(429\) 0 0
\(430\) 1.65611 0.0798647
\(431\) −10.1004 + 7.33838i −0.486520 + 0.353477i −0.803844 0.594840i \(-0.797216\pi\)
0.317325 + 0.948317i \(0.397216\pi\)
\(432\) 0 0
\(433\) 8.86451 27.2822i 0.426001 1.31110i −0.476031 0.879428i \(-0.657925\pi\)
0.902032 0.431668i \(-0.142075\pi\)
\(434\) 0.902689 + 0.655842i 0.0433304 + 0.0314814i
\(435\) 0 0
\(436\) −1.13808 + 3.50266i −0.0545042 + 0.167747i
\(437\) −3.35336 10.3206i −0.160413 0.493701i
\(438\) 0 0
\(439\) −4.10807 −0.196068 −0.0980338 0.995183i \(-0.531255\pi\)
−0.0980338 + 0.995183i \(0.531255\pi\)
\(440\) −8.74476 + 0.428841i −0.416890 + 0.0204442i
\(441\) 0 0
\(442\) 7.98309 5.80005i 0.379717 0.275880i
\(443\) −6.56034 20.1906i −0.311691 0.959287i −0.977095 0.212803i \(-0.931741\pi\)
0.665404 0.746483i \(-0.268259\pi\)
\(444\) 0 0
\(445\) −14.5289 10.5559i −0.688736 0.500396i
\(446\) −3.68638 2.67831i −0.174555 0.126822i
\(447\) 0 0
\(448\) −0.880828 2.71091i −0.0416152 0.128078i
\(449\) −20.9494 + 15.2206i −0.988663 + 0.718306i −0.959628 0.281273i \(-0.909243\pi\)
−0.0290350 + 0.999578i \(0.509243\pi\)
\(450\) 0 0
\(451\) −7.54435 + 6.06744i −0.355249 + 0.285705i
\(452\) −2.38857 −0.112349
\(453\) 0 0
\(454\) −5.77469 17.7727i −0.271019 0.834112i
\(455\) −3.60803 + 11.1044i −0.169147 + 0.520581i
\(456\) 0 0
\(457\) 8.33600 + 6.05645i 0.389941 + 0.283309i 0.765431 0.643517i \(-0.222526\pi\)
−0.375490 + 0.926826i \(0.622526\pi\)
\(458\) 2.88113 8.86721i 0.134626 0.414338i
\(459\) 0 0
\(460\) 2.97717 2.16304i 0.138811 0.100852i
\(461\) −25.4532 −1.18548 −0.592738 0.805395i \(-0.701953\pi\)
−0.592738 + 0.805395i \(0.701953\pi\)
\(462\) 0 0
\(463\) −39.8554 −1.85224 −0.926119 0.377231i \(-0.876876\pi\)
−0.926119 + 0.377231i \(0.876876\pi\)
\(464\) −1.35533 + 0.984708i −0.0629198 + 0.0457139i
\(465\) 0 0
\(466\) 2.97863 9.16727i 0.137982 0.424666i
\(467\) 14.0582 + 10.2139i 0.650537 + 0.472643i 0.863454 0.504427i \(-0.168296\pi\)
−0.212917 + 0.977070i \(0.568296\pi\)
\(468\) 0 0
\(469\) 11.7661 36.2123i 0.543308 1.67213i
\(470\) −2.94224 9.05529i −0.135716 0.417689i
\(471\) 0 0
\(472\) −5.61562 −0.258480
\(473\) 2.63033 + 6.92165i 0.120943 + 0.318258i
\(474\) 0 0
\(475\) −15.5837 + 11.3222i −0.715027 + 0.519498i
\(476\) 10.4312 + 32.1039i 0.478112 + 1.47148i
\(477\) 0 0
\(478\) −13.5158 9.81979i −0.618197 0.449147i
\(479\) 17.7142 + 12.8701i 0.809383 + 0.588051i 0.913652 0.406498i \(-0.133250\pi\)
−0.104269 + 0.994549i \(0.533250\pi\)
\(480\) 0 0
\(481\) −7.20447 22.1731i −0.328496 1.01101i
\(482\) 9.53548 6.92794i 0.434329 0.315559i
\(483\) 0 0
\(484\) −6.86830 15.7097i −0.312195 0.714075i
\(485\) 8.95046 0.406420
\(486\) 0 0
\(487\) 1.01084 + 3.11106i 0.0458057 + 0.140975i 0.971344 0.237679i \(-0.0763867\pi\)
−0.925538 + 0.378655i \(0.876387\pi\)
\(488\) −2.98389 + 9.18347i −0.135074 + 0.415716i
\(489\) 0 0
\(490\) 4.94830 + 3.59515i 0.223542 + 0.162412i
\(491\) −2.23231 + 6.87034i −0.100743 + 0.310054i −0.988708 0.149857i \(-0.952119\pi\)
0.887965 + 0.459911i \(0.152119\pi\)
\(492\) 0 0
\(493\) −4.85989 + 3.53092i −0.218879 + 0.159025i
\(494\) 9.13071 0.410810
\(495\) 0 0
\(496\) −0.665390 −0.0298769
\(497\) 19.9546 14.4979i 0.895087 0.650319i
\(498\) 0 0
\(499\) 4.58412 14.1085i 0.205213 0.631581i −0.794491 0.607275i \(-0.792262\pi\)
0.999705 0.0243059i \(-0.00773756\pi\)
\(500\) −12.3250 8.95460i −0.551189 0.400462i
\(501\) 0 0
\(502\) 4.49115 13.8223i 0.200450 0.616921i
\(503\) −10.1918 31.3671i −0.454430 1.39859i −0.871803 0.489856i \(-0.837049\pi\)
0.417374 0.908735i \(-0.362951\pi\)
\(504\) 0 0
\(505\) 1.96673 0.0875181
\(506\) −3.89850 2.55037i −0.173309 0.113378i
\(507\) 0 0
\(508\) −9.64831 + 7.00990i −0.428074 + 0.311014i
\(509\) 11.9495 + 36.7768i 0.529652 + 1.63010i 0.754929 + 0.655807i \(0.227671\pi\)
−0.225277 + 0.974295i \(0.572329\pi\)
\(510\) 0 0
\(511\) −36.8721 26.7892i −1.63113 1.18508i
\(512\) 13.1198 + 9.53213i 0.579821 + 0.421264i
\(513\) 0 0
\(514\) −1.06004 3.26247i −0.0467564 0.143901i
\(515\) −2.42795 + 1.76401i −0.106988 + 0.0777315i
\(516\) 0 0
\(517\) 33.1733 26.6792i 1.45896 1.17335i
\(518\) −22.5817 −0.992182
\(519\) 0 0
\(520\) 2.18457 + 6.72343i 0.0957999 + 0.294842i
\(521\) −5.40297 + 16.6286i −0.236708 + 0.728514i 0.760182 + 0.649710i \(0.225110\pi\)
−0.996890 + 0.0788032i \(0.974890\pi\)
\(522\) 0 0
\(523\) −11.7211 8.51591i −0.512530 0.372375i 0.301253 0.953544i \(-0.402595\pi\)
−0.813782 + 0.581170i \(0.802595\pi\)
\(524\) 2.58126 7.94431i 0.112763 0.347049i
\(525\) 0 0
\(526\) −14.9937 + 10.8936i −0.653758 + 0.474983i
\(527\) −2.38593 −0.103933
\(528\) 0 0
\(529\) −18.5294 −0.805626
\(530\) 3.38542 2.45965i 0.147053 0.106840i
\(531\) 0 0
\(532\) −9.65216 + 29.7063i −0.418474 + 1.28793i
\(533\) 6.32433 + 4.59489i 0.273937 + 0.199027i
\(534\) 0 0
\(535\) −3.54592 + 10.9132i −0.153304 + 0.471820i
\(536\) −7.12408 21.9256i −0.307713 0.947044i
\(537\) 0 0
\(538\) −2.00597 −0.0864837
\(539\) −7.16664 + 26.3913i −0.308689 + 1.13675i
\(540\) 0 0
\(541\) −26.7771 + 19.4547i −1.15124 + 0.836422i −0.988645 0.150272i \(-0.951985\pi\)
−0.162591 + 0.986694i \(0.551985\pi\)
\(542\) 5.20910 + 16.0320i 0.223750 + 0.688632i
\(543\) 0 0
\(544\) 25.8278 + 18.7650i 1.10736 + 0.804543i
\(545\) −2.13451 1.55082i −0.0914325 0.0664296i
\(546\) 0 0
\(547\) 2.84732 + 8.76316i 0.121743 + 0.374686i 0.993294 0.115619i \(-0.0368853\pi\)
−0.871551 + 0.490305i \(0.836885\pi\)
\(548\) 21.0980 15.3286i 0.901262 0.654805i
\(549\) 0 0
\(550\) −2.16708 + 7.98032i −0.0924046 + 0.340282i
\(551\) −5.55853 −0.236802
\(552\) 0 0
\(553\) −5.44731 16.7651i −0.231643 0.712925i
\(554\) 2.16872 6.67464i 0.0921402 0.283578i
\(555\) 0 0
\(556\) 17.3262 + 12.5883i 0.734796 + 0.533861i
\(557\) 11.4496 35.2384i 0.485137 1.49310i −0.346645 0.937996i \(-0.612679\pi\)
0.831782 0.555102i \(-0.187321\pi\)
\(558\) 0 0
\(559\) 4.83697 3.51427i 0.204582 0.148638i
\(560\) −6.74405 −0.284988
\(561\) 0 0
\(562\) 14.9941 0.632486
\(563\) 21.8387 15.8667i 0.920390 0.668702i −0.0232313 0.999730i \(-0.507395\pi\)
0.943621 + 0.331028i \(0.107395\pi\)
\(564\) 0 0
\(565\) 0.528774 1.62740i 0.0222457 0.0684652i
\(566\) −3.15870 2.29493i −0.132770 0.0964630i
\(567\) 0 0
\(568\) 4.61492 14.2033i 0.193638 0.595956i
\(569\) −8.49046 26.1310i −0.355939 1.09547i −0.955463 0.295110i \(-0.904644\pi\)
0.599524 0.800356i \(-0.295356\pi\)
\(570\) 0 0
\(571\) −39.0103 −1.63253 −0.816266 0.577676i \(-0.803960\pi\)
−0.816266 + 0.577676i \(0.803960\pi\)
\(572\) −10.7881 + 8.67617i −0.451072 + 0.362769i
\(573\) 0 0
\(574\) 6.12563 4.45053i 0.255679 0.185762i
\(575\) −2.45223 7.54719i −0.102265 0.314739i
\(576\) 0 0
\(577\) 23.5957 + 17.1433i 0.982302 + 0.713684i 0.958222 0.286026i \(-0.0923344\pi\)
0.0240800 + 0.999710i \(0.492334\pi\)
\(578\) 7.39764 + 5.37470i 0.307701 + 0.223558i
\(579\) 0 0
\(580\) −0.582493 1.79273i −0.0241867 0.0744390i
\(581\) 1.52257 1.10621i 0.0631670 0.0458935i
\(582\) 0 0
\(583\) 15.6569 + 10.2427i 0.648445 + 0.424209i
\(584\) −27.5954 −1.14191
\(585\) 0 0
\(586\) −1.45632 4.48210i −0.0601602 0.185154i
\(587\) −1.57226 + 4.83891i −0.0648940 + 0.199723i −0.978246 0.207447i \(-0.933484\pi\)
0.913352 + 0.407170i \(0.133484\pi\)
\(588\) 0 0
\(589\) −1.78610 1.29768i −0.0735950 0.0534699i
\(590\) 0.544500 1.67580i 0.0224167 0.0689916i
\(591\) 0 0
\(592\) 10.8946 7.91537i 0.447764 0.325320i
\(593\) 3.46422 0.142258 0.0711292 0.997467i \(-0.477340\pi\)
0.0711292 + 0.997467i \(0.477340\pi\)
\(594\) 0 0
\(595\) −24.1825 −0.991386
\(596\) 7.01071 5.09358i 0.287170 0.208641i
\(597\) 0 0
\(598\) −1.16240 + 3.57748i −0.0475339 + 0.146294i
\(599\) −20.1242 14.6211i −0.822251 0.597400i 0.0951054 0.995467i \(-0.469681\pi\)
−0.917356 + 0.398067i \(0.869681\pi\)
\(600\) 0 0
\(601\) 3.42024 10.5264i 0.139514 0.429381i −0.856750 0.515731i \(-0.827520\pi\)
0.996265 + 0.0863500i \(0.0275203\pi\)
\(602\) −1.78951 5.50755i −0.0729351 0.224471i
\(603\) 0 0
\(604\) 0.255479 0.0103953
\(605\) 12.2239 1.20181i 0.496973 0.0488604i
\(606\) 0 0
\(607\) 22.6209 16.4351i 0.918155 0.667079i −0.0249090 0.999690i \(-0.507930\pi\)
0.943064 + 0.332611i \(0.107930\pi\)
\(608\) 9.12859 + 28.0949i 0.370213 + 1.13940i
\(609\) 0 0
\(610\) −2.45118 1.78089i −0.0992455 0.0721061i
\(611\) −27.8087 20.2042i −1.12502 0.817375i
\(612\) 0 0
\(613\) 3.39680 + 10.4543i 0.137196 + 0.422245i 0.995925 0.0901845i \(-0.0287457\pi\)
−0.858729 + 0.512429i \(0.828746\pi\)
\(614\) −9.96265 + 7.23829i −0.402060 + 0.292114i
\(615\) 0 0
\(616\) 10.8753 + 28.6182i 0.438179 + 1.15306i
\(617\) 18.6262 0.749864 0.374932 0.927052i \(-0.377666\pi\)
0.374932 + 0.927052i \(0.377666\pi\)
\(618\) 0 0
\(619\) 0.830787 + 2.55690i 0.0333921 + 0.102770i 0.966363 0.257180i \(-0.0827935\pi\)
−0.932971 + 0.359951i \(0.882793\pi\)
\(620\) 0.231355 0.712036i 0.00929142 0.0285961i
\(621\) 0 0
\(622\) 3.69561 + 2.68502i 0.148180 + 0.107659i
\(623\) −19.4053 + 59.7234i −0.777457 + 2.39277i
\(624\) 0 0
\(625\) −6.35233 + 4.61524i −0.254093 + 0.184610i
\(626\) 16.8244 0.672440
\(627\) 0 0
\(628\) −37.1792 −1.48361
\(629\) 39.0652 28.3826i 1.55763 1.13169i
\(630\) 0 0
\(631\) −12.1224 + 37.3089i −0.482585 + 1.48524i 0.352863 + 0.935675i \(0.385208\pi\)
−0.835448 + 0.549569i \(0.814792\pi\)
\(632\) −8.63483 6.27357i −0.343475 0.249549i
\(633\) 0 0
\(634\) −2.25389 + 6.93677i −0.0895135 + 0.275494i
\(635\) −2.64013 8.12550i −0.104771 0.322451i
\(636\) 0 0
\(637\) 22.0813 0.874895
\(638\) −1.85951 + 1.49549i −0.0736187 + 0.0592069i
\(639\) 0 0
\(640\) −9.96109 + 7.23716i −0.393747 + 0.286074i
\(641\) 7.95687 + 24.4887i 0.314277 + 0.967246i 0.976051 + 0.217542i \(0.0698041\pi\)
−0.661773 + 0.749704i \(0.730196\pi\)
\(642\) 0 0
\(643\) 10.7859 + 7.83639i 0.425353 + 0.309037i 0.779788 0.626044i \(-0.215327\pi\)
−0.354435 + 0.935081i \(0.615327\pi\)
\(644\) −10.4104 7.56359i −0.410227 0.298047i
\(645\) 0 0
\(646\) 5.84386 + 17.9856i 0.229924 + 0.707632i
\(647\) −19.2955 + 14.0190i −0.758585 + 0.551145i −0.898476 0.439022i \(-0.855325\pi\)
0.139891 + 0.990167i \(0.455325\pi\)
\(648\) 0 0
\(649\) 7.86876 0.385882i 0.308876 0.0151472i
\(650\) 6.67706 0.261896
\(651\) 0 0
\(652\) 2.02105 + 6.22015i 0.0791504 + 0.243600i
\(653\) 3.93222 12.1021i 0.153880 0.473593i −0.844166 0.536082i \(-0.819904\pi\)
0.998046 + 0.0624889i \(0.0199038\pi\)
\(654\) 0 0
\(655\) 4.84125 + 3.51738i 0.189163 + 0.137435i
\(656\) −1.39531 + 4.29433i −0.0544778 + 0.167666i
\(657\) 0 0
\(658\) −26.9350 + 19.5694i −1.05004 + 0.762896i
\(659\) −27.2527 −1.06161 −0.530806 0.847493i \(-0.678111\pi\)
−0.530806 + 0.847493i \(0.678111\pi\)
\(660\) 0 0
\(661\) 43.6440 1.69755 0.848777 0.528751i \(-0.177339\pi\)
0.848777 + 0.528751i \(0.177339\pi\)
\(662\) −1.99406 + 1.44877i −0.0775014 + 0.0563081i
\(663\) 0 0
\(664\) 0.352127 1.08373i 0.0136652 0.0420571i
\(665\) −18.1030 13.1526i −0.702003 0.510035i
\(666\) 0 0
\(667\) 0.707636 2.17788i 0.0273998 0.0843278i
\(668\) −7.62965 23.4817i −0.295200 0.908533i
\(669\) 0 0
\(670\) 7.23376 0.279465
\(671\) 3.55005 13.0732i 0.137048 0.504684i
\(672\) 0 0
\(673\) 21.5900 15.6860i 0.832233 0.604652i −0.0879575 0.996124i \(-0.528034\pi\)
0.920190 + 0.391472i \(0.128034\pi\)
\(674\) 6.60922 + 20.3411i 0.254578 + 0.783510i
\(675\) 0 0
\(676\) −7.34946 5.33970i −0.282672 0.205373i
\(677\) −21.9107 15.9190i −0.842095 0.611818i 0.0808602 0.996725i \(-0.474233\pi\)
−0.922955 + 0.384908i \(0.874233\pi\)
\(678\) 0 0
\(679\) −9.67144 29.7656i −0.371156 1.14230i
\(680\) −11.8455 + 8.60629i −0.454256 + 0.330036i
\(681\) 0 0
\(682\) −0.946640 + 0.0464231i −0.0362487 + 0.00177763i
\(683\) −16.7343 −0.640322 −0.320161 0.947363i \(-0.603737\pi\)
−0.320161 + 0.947363i \(0.603737\pi\)
\(684\) 0 0
\(685\) 5.77319 + 17.7681i 0.220582 + 0.678883i
\(686\) 0.998288 3.07242i 0.0381148 0.117305i
\(687\) 0 0
\(688\) 2.79387 + 2.02987i 0.106515 + 0.0773879i
\(689\) 4.66836 14.3677i 0.177850 0.547367i
\(690\) 0 0
\(691\) 30.3540 22.0534i 1.15472 0.838953i 0.165618 0.986190i \(-0.447038\pi\)
0.989101 + 0.147237i \(0.0470381\pi\)
\(692\) 4.05707 0.154226
\(693\) 0 0
\(694\) 14.2978 0.542738
\(695\) −12.4124 + 9.01811i −0.470828 + 0.342077i
\(696\) 0 0
\(697\) −5.00325 + 15.3984i −0.189512 + 0.583257i
\(698\) −9.03983 6.56782i −0.342163 0.248596i
\(699\) 0 0
\(700\) −7.05838 + 21.7235i −0.266782 + 0.821070i
\(701\) 3.15219 + 9.70143i 0.119056 + 0.366418i 0.992771 0.120020i \(-0.0382959\pi\)
−0.873715 + 0.486438i \(0.838296\pi\)
\(702\) 0 0
\(703\) 44.6811 1.68518
\(704\) 2.02617 + 1.32551i 0.0763641 + 0.0499569i
\(705\) 0 0
\(706\) 1.68267 1.22253i 0.0633280 0.0460105i
\(707\) −2.12515 6.54054i −0.0799245 0.245982i
\(708\) 0 0
\(709\) 11.7289 + 8.52152i 0.440487 + 0.320032i 0.785828 0.618445i \(-0.212237\pi\)
−0.345342 + 0.938477i \(0.612237\pi\)
\(710\) 3.79104 + 2.75435i 0.142275 + 0.103369i
\(711\) 0 0
\(712\) 11.7494 + 36.1610i 0.440329 + 1.35519i
\(713\) 0.735822 0.534606i 0.0275568 0.0200212i
\(714\) 0 0
\(715\) −3.52309 9.27093i −0.131756 0.346713i
\(716\) −11.8273 −0.442006
\(717\) 0 0
\(718\) −1.74261 5.36321i −0.0650337 0.200153i
\(719\) 5.94135 18.2856i 0.221575 0.681938i −0.777046 0.629444i \(-0.783283\pi\)
0.998621 0.0524943i \(-0.0167171\pi\)
\(720\) 0 0
\(721\) 8.48991 + 6.16828i 0.316181 + 0.229719i
\(722\) −1.50699 + 4.63804i −0.0560844 + 0.172610i
\(723\) 0 0
\(724\) −3.02663 + 2.19898i −0.112484 + 0.0817243i
\(725\) −4.06482 −0.150964
\(726\) 0 0
\(727\) 0.726827 0.0269565 0.0134783 0.999909i \(-0.495710\pi\)
0.0134783 + 0.999909i \(0.495710\pi\)
\(728\) 19.9989 14.5300i 0.741207 0.538519i
\(729\) 0 0
\(730\) 2.67570 8.23495i 0.0990320 0.304789i
\(731\) 10.0181 + 7.27860i 0.370534 + 0.269209i
\(732\) 0 0
\(733\) −0.579681 + 1.78408i −0.0214110 + 0.0658964i −0.961191 0.275883i \(-0.911030\pi\)
0.939780 + 0.341780i \(0.111030\pi\)
\(734\) 2.26040 + 6.95680i 0.0834329 + 0.256780i
\(735\) 0 0
\(736\) −12.1699 −0.448590
\(737\) 11.4891 + 30.2333i 0.423206 + 1.11366i
\(738\) 0 0
\(739\) 42.5402 30.9073i 1.56487 1.13694i 0.632993 0.774157i \(-0.281826\pi\)
0.931873 0.362784i \(-0.118174\pi\)
\(740\) 4.68224 + 14.4105i 0.172123 + 0.529739i
\(741\) 0 0
\(742\) −11.8379 8.60076i −0.434584 0.315744i
\(743\) 26.9668 + 19.5925i 0.989316 + 0.718780i 0.959771 0.280783i \(-0.0905942\pi\)
0.0295450 + 0.999563i \(0.490594\pi\)
\(744\) 0 0
\(745\) 1.91839 + 5.90420i 0.0702844 + 0.216313i
\(746\) 5.91558 4.29792i 0.216585 0.157358i
\(747\) 0 0
\(748\) −23.9948 15.6973i −0.877338 0.573949i
\(749\) 40.1246 1.46612
\(750\) 0 0
\(751\) −7.21990 22.2206i −0.263458 0.810840i −0.992045 0.125886i \(-0.959823\pi\)
0.728587 0.684953i \(-0.240177\pi\)
\(752\) 6.13533 18.8826i 0.223732 0.688578i
\(753\) 0 0
\(754\) 1.55880 + 1.13254i 0.0567683 + 0.0412446i
\(755\) −0.0565572 + 0.174065i −0.00205833 + 0.00633488i
\(756\) 0 0
\(757\) 27.3472 19.8689i 0.993952 0.722148i 0.0331687 0.999450i \(-0.489440\pi\)
0.960783 + 0.277302i \(0.0894401\pi\)
\(758\) −16.8650 −0.612564
\(759\) 0 0
\(760\) −13.5484 −0.491453
\(761\) −16.2709 + 11.8215i −0.589819 + 0.428528i −0.842251 0.539086i \(-0.818770\pi\)
0.252432 + 0.967615i \(0.418770\pi\)
\(762\) 0 0
\(763\) −2.85093 + 8.77427i −0.103211 + 0.317650i
\(764\) −20.8294 15.1335i −0.753583 0.547510i
\(765\) 0 0
\(766\) 2.48699 7.65417i 0.0898586 0.276556i
\(767\) −1.96573 6.04991i −0.0709786 0.218450i
\(768\) 0 0
\(769\) 0.626999 0.0226102 0.0113051 0.999936i \(-0.496401\pi\)
0.0113051 + 0.999936i \(0.496401\pi\)
\(770\) −9.59465 + 0.470520i −0.345767 + 0.0169564i
\(771\) 0 0
\(772\) −10.2582 + 7.45299i −0.369199 + 0.268239i
\(773\) 8.88046 + 27.3313i 0.319408 + 0.983037i 0.973902 + 0.226970i \(0.0728818\pi\)
−0.654494 + 0.756067i \(0.727118\pi\)
\(774\) 0 0
\(775\) −1.30613 0.948959i −0.0469176 0.0340876i
\(776\) −15.3307 11.1384i −0.550341 0.399846i
\(777\) 0 0
\(778\) −2.94608 9.06711i −0.105622 0.325072i
\(779\) −12.1204 + 8.80602i −0.434260 + 0.315508i
\(780\) 0 0
\(781\) −5.49056 + 20.2191i −0.196468 + 0.723497i
\(782\) −7.79085 −0.278600
\(783\) 0 0
\(784\) 3.94131 + 12.1301i 0.140761 + 0.433218i
\(785\) 8.23062 25.3312i 0.293763 0.904110i
\(786\) 0 0
\(787\) 11.4095 + 8.28950i 0.406705 + 0.295489i 0.772267 0.635298i \(-0.219123\pi\)
−0.365561 + 0.930787i \(0.619123\pi\)
\(788\) 11.0334 33.9574i 0.393050 1.20968i
\(789\) 0 0
\(790\) 2.70939 1.96849i 0.0963958 0.0700357i
\(791\) −5.98345 −0.212747
\(792\) 0 0
\(793\) −10.9382 −0.388426
\(794\) −2.70810 + 1.96755i −0.0961068 + 0.0698257i
\(795\) 0 0
\(796\) −4.46582 + 13.7444i −0.158287 + 0.487157i
\(797\) −21.1596 15.3733i −0.749511 0.544552i 0.146164 0.989260i \(-0.453307\pi\)
−0.895675 + 0.444709i \(0.853307\pi\)
\(798\) 0 0
\(799\) 21.9998 67.7084i 0.778297 2.39535i
\(800\) 6.67551 + 20.5451i 0.236015 + 0.726379i
\(801\) 0 0
\(802\) 12.0908 0.426939
\(803\) 38.6674 1.89624i 1.36454 0.0669169i
\(804\) 0 0
\(805\) 7.45791 5.41849i 0.262857 0.190977i
\(806\) 0.236485 + 0.727826i 0.00832983 + 0.0256366i
\(807\) 0 0
\(808\) −3.36869 2.44750i −0.118510 0.0861026i
\(809\) −12.8256 9.31836i −0.450925 0.327616i 0.339036 0.940773i \(-0.389899\pi\)
−0.789961 + 0.613157i \(0.789899\pi\)
\(810\) 0 0
\(811\) −11.2255 34.5484i −0.394179 1.21316i −0.929599 0.368573i \(-0.879846\pi\)
0.535420 0.844586i \(-0.320154\pi\)
\(812\) −5.33248 + 3.87427i −0.187133 + 0.135960i
\(813\) 0 0
\(814\) 14.9473 12.0212i 0.523902 0.421342i
\(815\) −4.68538 −0.164122
\(816\) 0 0
\(817\) 3.54081 + 10.8975i 0.123877 + 0.381255i
\(818\) −3.37295 + 10.3809i −0.117932 + 0.362958i
\(819\) 0 0
\(820\) −4.11023 2.98626i −0.143535 0.104285i
\(821\) −5.05451 + 15.5562i −0.176404 + 0.542914i −0.999695 0.0247048i \(-0.992135\pi\)
0.823291 + 0.567619i \(0.192135\pi\)
\(822\) 0 0
\(823\) 21.1756 15.3850i 0.738136 0.536287i −0.153991 0.988072i \(-0.549213\pi\)
0.892127 + 0.451785i \(0.149213\pi\)
\(824\) 6.35392 0.221349
\(825\) 0 0
\(826\) −6.16139 −0.214382
\(827\) −4.48139 + 3.25592i −0.155833 + 0.113219i −0.662969 0.748647i \(-0.730704\pi\)
0.507136 + 0.861866i \(0.330704\pi\)
\(828\) 0 0
\(829\) 5.71784 17.5977i 0.198589 0.611194i −0.801327 0.598227i \(-0.795872\pi\)
0.999916 0.0129672i \(-0.00412771\pi\)
\(830\) 0.289263 + 0.210162i 0.0100405 + 0.00729481i
\(831\) 0 0
\(832\) 0.604133 1.85933i 0.0209445 0.0644606i
\(833\) 14.1326 + 43.4956i 0.489664 + 1.50703i
\(834\) 0 0
\(835\) 17.6878 0.612110
\(836\) −9.42492 24.8015i −0.325968 0.857776i
\(837\) 0 0
\(838\) −9.35505 + 6.79684i −0.323165 + 0.234793i
\(839\) −5.55158 17.0860i −0.191662 0.589875i −0.999999 0.00115518i \(-0.999632\pi\)
0.808337 0.588719i \(-0.200368\pi\)
\(840\) 0 0
\(841\) 22.5125 + 16.3563i 0.776294 + 0.564011i
\(842\) 2.44465 + 1.77614i 0.0842483 + 0.0612100i
\(843\) 0 0
\(844\) −2.02806 6.24172i −0.0698086 0.214849i
\(845\) 5.26509 3.82531i 0.181125 0.131595i
\(846\) 0 0
\(847\) −17.2053 39.3532i −0.591182 1.35219i
\(848\) 8.72598 0.299651
\(849\) 0 0
\(850\) 4.27347 + 13.1524i 0.146579 + 0.451123i
\(851\) −5.68818 + 17.5064i −0.194988 + 0.600112i
\(852\) 0 0
\(853\) −22.5822 16.4069i −0.773199 0.561762i 0.129732 0.991549i \(-0.458588\pi\)
−0.902930 + 0.429788i \(0.858588\pi\)
\(854\) −3.27389 + 10.0760i −0.112030 + 0.344794i
\(855\) 0 0
\(856\) 19.6546 14.2799i 0.671781 0.488077i
\(857\) −8.49967 −0.290343 −0.145172 0.989406i \(-0.546373\pi\)
−0.145172 + 0.989406i \(0.546373\pi\)
\(858\) 0 0
\(859\) 27.8517 0.950289 0.475145 0.879908i \(-0.342396\pi\)
0.475145 + 0.879908i \(0.342396\pi\)
\(860\) −3.14359 + 2.28395i −0.107195 + 0.0778820i
\(861\) 0 0
\(862\) −2.56296 + 7.88797i −0.0872947 + 0.268665i
\(863\) −10.9978 7.99035i −0.374368 0.271995i 0.384652 0.923062i \(-0.374322\pi\)
−0.759020 + 0.651067i \(0.774322\pi\)
\(864\) 0 0
\(865\) −0.898141 + 2.76419i −0.0305377 + 0.0939854i
\(866\) −5.88887 18.1241i −0.200112 0.615882i
\(867\) 0 0
\(868\) −2.61794 −0.0888586
\(869\) 12.5304 + 8.19734i 0.425066 + 0.278076i
\(870\) 0 0
\(871\) 21.1275 15.3500i 0.715879 0.520117i
\(872\) 1.72617 + 5.31260i 0.0584555 + 0.179907i
\(873\) 0 0
\(874\) −5.83221 4.23735i −0.197278 0.143331i
\(875\) −30.8744 22.4316i −1.04375 0.758326i
\(876\) 0 0
\(877\) 11.1796 + 34.4073i 0.377509 + 1.16185i 0.941771 + 0.336256i \(0.109161\pi\)
−0.564262 + 0.825596i \(0.690839\pi\)
\(878\) −2.20787 + 1.60411i −0.0745120 + 0.0541361i
\(879\) 0 0
\(880\) 4.46403 3.59014i 0.150482 0.121023i
\(881\) 26.6423 0.897601 0.448800 0.893632i \(-0.351851\pi\)
0.448800 + 0.893632i \(0.351851\pi\)
\(882\) 0 0
\(883\) −6.32757 19.4743i −0.212940 0.655361i −0.999293 0.0375844i \(-0.988034\pi\)
0.786354 0.617776i \(-0.211966\pi\)
\(884\) −7.15442 + 22.0190i −0.240629 + 0.740581i
\(885\) 0 0
\(886\) −11.4098 8.28973i −0.383321 0.278499i
\(887\) −9.88890 + 30.4349i −0.332037 + 1.02190i 0.636126 + 0.771585i \(0.280536\pi\)
−0.968163 + 0.250320i \(0.919464\pi\)
\(888\) 0 0
\(889\) −24.1693 + 17.5600i −0.810613 + 0.588945i
\(890\) −11.9303 −0.399906
\(891\) 0 0
\(892\) 10.6911 0.357963
\(893\) 53.2948 38.7209i 1.78344 1.29575i
\(894\) 0 0
\(895\) 2.61829 8.05826i 0.0875197 0.269358i
\(896\) 34.8314 + 25.3065i 1.16363 + 0.845430i
\(897\) 0 0
\(898\) −5.31586 + 16.3605i −0.177393 + 0.545958i
\(899\) −0.143966 0.443082i −0.00480153 0.0147776i
\(900\) 0 0
\(901\) 31.2892 1.04239
\(902\) −1.68548 + 6.20683i −0.0561204 + 0.206665i
\(903\) 0 0
\(904\) −2.93093 + 2.12944i −0.0974813 + 0.0708243i
\(905\) −0.828198 2.54893i −0.0275302 0.0847294i
\(906\) 0 0
\(907\) 39.6825 + 28.8310i 1.31764 + 0.957318i 0.999958 + 0.00911935i \(0.00290282\pi\)
0.317677 + 0.948199i \(0.397097\pi\)
\(908\) 35.4717 + 25.7717i 1.17717 + 0.855265i
\(909\) 0 0
\(910\) 2.39689 + 7.37687i 0.0794561 + 0.244541i
\(911\) 18.9159 13.7432i 0.626710 0.455332i −0.228549 0.973532i \(-0.573398\pi\)
0.855259 + 0.518201i \(0.173398\pi\)
\(912\) 0 0
\(913\) −0.418940 + 1.54275i −0.0138649 + 0.0510577i
\(914\) 6.84506 0.226415
\(915\) 0 0
\(916\) 6.75993 + 20.8049i 0.223354 + 0.687414i
\(917\) 6.46615 19.9008i 0.213531 0.657181i
\(918\) 0 0
\(919\) 6.14797 + 4.46676i 0.202803 + 0.147345i 0.684551 0.728965i \(-0.259998\pi\)
−0.481749 + 0.876309i \(0.659998\pi\)
\(920\) 1.72480 5.30838i 0.0568649 0.175012i
\(921\) 0 0
\(922\) −13.6798 + 9.93893i −0.450519 + 0.327321i
\(923\) 16.9171 0.556835
\(924\) 0 0
\(925\) 32.6742 1.07432
\(926\) −21.4202 + 15.5627i −0.703910 + 0.511421i
\(927\) 0 0
\(928\) −1.92634 + 5.92866i −0.0632352 + 0.194618i
\(929\) 12.0355 + 8.74433i 0.394873 + 0.286892i 0.767450 0.641109i \(-0.221525\pi\)
−0.372576 + 0.928002i \(0.621525\pi\)
\(930\) 0 0
\(931\) −13.0771 + 40.2472i −0.428585 + 1.31905i
\(932\) 6.98867 + 21.5089i 0.228922 + 0.704548i
\(933\) 0 0
\(934\) 11.5438 0.377726
\(935\) 16.0069 12.8733i 0.523482 0.421003i
\(936\) 0 0
\(937\) −14.4192 + 10.4762i −0.471056 + 0.342242i −0.797853 0.602853i \(-0.794031\pi\)
0.326797 + 0.945095i \(0.394031\pi\)
\(938\) −7.81646 24.0566i −0.255216 0.785475i
\(939\) 0 0
\(940\) 18.0731 + 13.1309i 0.589479 + 0.428282i
\(941\) −34.5120 25.0744i −1.12506 0.817402i −0.140090 0.990139i \(-0.544739\pi\)
−0.984968 + 0.172737i \(0.944739\pi\)
\(942\) 0 0
\(943\) −1.90726 5.86995i −0.0621090 0.191152i
\(944\) 2.97257 2.15970i 0.0967491 0.0702923i
\(945\) 0 0
\(946\) 4.11641 + 2.69293i 0.133836 + 0.0875548i
\(947\) 6.89340 0.224006 0.112003 0.993708i \(-0.464273\pi\)
0.112003 + 0.993708i \(0.464273\pi\)
\(948\) 0 0
\(949\) −9.65971 29.7295i −0.313567 0.965061i
\(950\) −3.95432 + 12.1701i −0.128295 + 0.394852i
\(951\) 0 0
\(952\) 41.4208 + 30.0940i 1.34246 + 0.975351i
\(953\) −7.31766 + 22.5214i −0.237042 + 0.729541i 0.759802 + 0.650155i \(0.225296\pi\)
−0.996844 + 0.0793863i \(0.974704\pi\)
\(954\) 0 0
\(955\) 14.9220 10.8415i 0.482866 0.350822i
\(956\) 39.1978 1.26775
\(957\) 0 0
\(958\) 14.5459 0.469958
\(959\) 52.8512 38.3986i 1.70665 1.23996i
\(960\) 0 0
\(961\) −9.52235 + 29.3068i −0.307172 + 0.945380i
\(962\) −12.5301 9.10366i −0.403987 0.293514i
\(963\) 0 0
\(964\) −8.54567 + 26.3009i −0.275238 + 0.847094i
\(965\) −2.80701 8.63910i −0.0903610 0.278102i
\(966\) 0 0
\(967\) −31.1399 −1.00139 −0.500696 0.865623i \(-0.666923\pi\)
−0.500696 + 0.865623i \(0.666923\pi\)
\(968\) −22.4332 13.1536i −0.721032 0.422772i
\(969\) 0 0
\(970\) 4.81040 3.49496i 0.154453 0.112216i
\(971\) 4.12687 + 12.7012i 0.132438 + 0.407601i 0.995183 0.0980383i \(-0.0312568\pi\)
−0.862745 + 0.505639i \(0.831257\pi\)
\(972\) 0 0
\(973\) 43.4028 + 31.5340i 1.39143 + 1.01093i
\(974\) 1.75807 + 1.27732i 0.0563323 + 0.0409278i
\(975\) 0 0
\(976\) −1.95236 6.00875i −0.0624936 0.192335i
\(977\) 7.21314 5.24065i 0.230769 0.167663i −0.466392 0.884578i \(-0.654446\pi\)
0.697161 + 0.716915i \(0.254446\pi\)
\(978\) 0 0
\(979\) −18.9485 49.8624i −0.605595 1.59361i
\(980\) −14.3508 −0.458421
\(981\) 0 0
\(982\) 1.48297 + 4.56411i 0.0473234 + 0.145647i
\(983\) −5.20958 + 16.0334i −0.166160 + 0.511387i −0.999120 0.0419459i \(-0.986644\pi\)
0.832960 + 0.553333i \(0.186644\pi\)
\(984\) 0 0
\(985\) 20.6936 + 15.0348i 0.659353 + 0.479048i
\(986\) −1.23319 + 3.79536i −0.0392727 + 0.120869i
\(987\) 0 0
\(988\) −17.3317 + 12.5922i −0.551394 + 0.400612i
\(989\) −4.72049 −0.150103
\(990\) 0 0
\(991\) −33.5356 −1.06529 −0.532647 0.846338i \(-0.678803\pi\)
−0.532647 + 0.846338i \(0.678803\pi\)
\(992\) −2.00307 + 1.45531i −0.0635975 + 0.0462063i
\(993\) 0 0
\(994\) 5.06344 15.5837i 0.160603 0.494284i
\(995\) −8.37582 6.08539i −0.265531 0.192920i
\(996\) 0 0
\(997\) −1.00235 + 3.08492i −0.0317447 + 0.0977003i −0.965673 0.259759i \(-0.916357\pi\)
0.933929 + 0.357459i \(0.116357\pi\)
\(998\) −3.04532 9.37254i −0.0963980 0.296682i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.f.f.487.6 36
3.2 odd 2 891.2.f.e.487.4 36
9.2 odd 6 297.2.n.b.91.6 72
9.4 even 3 99.2.m.b.25.6 yes 72
9.5 odd 6 297.2.n.b.289.4 72
9.7 even 3 99.2.m.b.58.4 yes 72
11.2 odd 10 9801.2.a.co.1.11 18
11.4 even 5 inner 891.2.f.f.730.6 36
11.9 even 5 9801.2.a.cm.1.8 18
33.2 even 10 9801.2.a.cn.1.8 18
33.20 odd 10 9801.2.a.cp.1.11 18
33.26 odd 10 891.2.f.e.730.4 36
99.4 even 15 99.2.m.b.70.4 yes 72
99.13 odd 30 1089.2.e.o.727.8 36
99.31 even 15 1089.2.e.p.727.11 36
99.59 odd 30 297.2.n.b.235.6 72
99.70 even 15 99.2.m.b.4.6 72
99.79 odd 30 1089.2.e.o.364.8 36
99.92 odd 30 297.2.n.b.37.4 72
99.97 even 15 1089.2.e.p.364.11 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.4.6 72 99.70 even 15
99.2.m.b.25.6 yes 72 9.4 even 3
99.2.m.b.58.4 yes 72 9.7 even 3
99.2.m.b.70.4 yes 72 99.4 even 15
297.2.n.b.37.4 72 99.92 odd 30
297.2.n.b.91.6 72 9.2 odd 6
297.2.n.b.235.6 72 99.59 odd 30
297.2.n.b.289.4 72 9.5 odd 6
891.2.f.e.487.4 36 3.2 odd 2
891.2.f.e.730.4 36 33.26 odd 10
891.2.f.f.487.6 36 1.1 even 1 trivial
891.2.f.f.730.6 36 11.4 even 5 inner
1089.2.e.o.364.8 36 99.79 odd 30
1089.2.e.o.727.8 36 99.13 odd 30
1089.2.e.p.364.11 36 99.97 even 15
1089.2.e.p.727.11 36 99.31 even 15
9801.2.a.cm.1.8 18 11.9 even 5
9801.2.a.cn.1.8 18 33.2 even 10
9801.2.a.co.1.11 18 11.2 odd 10
9801.2.a.cp.1.11 18 33.20 odd 10