Properties

Label 891.2.f.f.487.5
Level $891$
Weight $2$
Character 891.487
Analytic conductor $7.115$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(82,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(9\) over \(\Q(\zeta_{5})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 487.5
Character \(\chi\) \(=\) 891.487
Dual form 891.2.f.f.730.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.396818 - 0.288305i) q^{2} +(-0.543689 + 1.67330i) q^{4} +(-1.38194 - 1.00404i) q^{5} +(1.05391 - 3.24360i) q^{7} +(0.569818 + 1.75372i) q^{8} -0.837851 q^{10} +(-1.07799 + 3.13655i) q^{11} +(3.23439 - 2.34992i) q^{13} +(-0.516936 - 1.59097i) q^{14} +(-2.11507 - 1.53669i) q^{16} +(2.67346 + 1.94238i) q^{17} +(-1.36513 - 4.20144i) q^{19} +(2.43141 - 1.76653i) q^{20} +(0.476515 + 1.55543i) q^{22} +7.49201 q^{23} +(-0.643414 - 1.98022i) q^{25} +(0.605969 - 1.86498i) q^{26} +(4.85453 + 3.52702i) q^{28} +(0.522637 - 1.60851i) q^{29} +(3.15397 - 2.29149i) q^{31} -4.97028 q^{32} +1.62087 q^{34} +(-4.71315 + 3.42431i) q^{35} +(0.947300 - 2.91549i) q^{37} +(-1.75300 - 1.27363i) q^{38} +(0.973351 - 2.99566i) q^{40} +(0.120787 + 0.371744i) q^{41} +9.61268 q^{43} +(-4.66230 - 3.50912i) q^{44} +(2.97296 - 2.15999i) q^{46} +(-0.333818 - 1.02739i) q^{47} +(-3.74710 - 2.72242i) q^{49} +(-0.826227 - 0.600289i) q^{50} +(2.17363 + 6.68974i) q^{52} +(10.1643 - 7.38480i) q^{53} +(4.63895 - 3.25218i) q^{55} +6.28890 q^{56} +(-0.256350 - 0.788965i) q^{58} +(-1.12993 + 3.47758i) q^{59} +(3.11728 + 2.26484i) q^{61} +(0.590902 - 1.81861i) q^{62} +(2.25785 - 1.64043i) q^{64} -6.82916 q^{65} +3.10120 q^{67} +(-4.70372 + 3.41746i) q^{68} +(-0.883019 + 2.71765i) q^{70} +(-5.67699 - 4.12458i) q^{71} +(-4.64842 + 14.3064i) q^{73} +(-0.464645 - 1.43003i) q^{74} +7.77248 q^{76} +(9.03760 + 6.80222i) q^{77} +(3.23536 - 2.35063i) q^{79} +(1.38001 + 4.24724i) q^{80} +(0.155106 + 0.112691i) q^{82} +(0.101100 + 0.0734531i) q^{83} +(-1.74434 - 5.36852i) q^{85} +(3.81449 - 2.77139i) q^{86} +(-6.11489 - 0.103238i) q^{88} -7.93327 q^{89} +(-4.21345 - 12.9677i) q^{91} +(-4.07333 + 12.5364i) q^{92} +(-0.428666 - 0.311444i) q^{94} +(-2.33188 + 7.17680i) q^{95} +(-0.277622 + 0.201704i) q^{97} -2.27180 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + q^{2} - 11 q^{4} + 8 q^{5} + 2 q^{7} + 3 q^{8} - 4 q^{10} + 2 q^{11} + 11 q^{13} + 10 q^{14} + 9 q^{16} - 10 q^{17} + 4 q^{19} + 45 q^{20} + 16 q^{22} - 20 q^{23} - 11 q^{25} - 6 q^{26} - 27 q^{28}+ \cdots - 164 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.396818 0.288305i 0.280593 0.203863i −0.438583 0.898691i \(-0.644520\pi\)
0.719176 + 0.694828i \(0.244520\pi\)
\(3\) 0 0
\(4\) −0.543689 + 1.67330i −0.271845 + 0.836652i
\(5\) −1.38194 1.00404i −0.618024 0.449021i 0.234207 0.972187i \(-0.424751\pi\)
−0.852231 + 0.523166i \(0.824751\pi\)
\(6\) 0 0
\(7\) 1.05391 3.24360i 0.398340 1.22597i −0.527989 0.849251i \(-0.677054\pi\)
0.926329 0.376714i \(-0.122946\pi\)
\(8\) 0.569818 + 1.75372i 0.201461 + 0.620034i
\(9\) 0 0
\(10\) −0.837851 −0.264952
\(11\) −1.07799 + 3.13655i −0.325027 + 0.945705i
\(12\) 0 0
\(13\) 3.23439 2.34992i 0.897058 0.651751i −0.0406508 0.999173i \(-0.512943\pi\)
0.937709 + 0.347423i \(0.112943\pi\)
\(14\) −0.516936 1.59097i −0.138157 0.425204i
\(15\) 0 0
\(16\) −2.11507 1.53669i −0.528768 0.384173i
\(17\) 2.67346 + 1.94238i 0.648409 + 0.471097i 0.862729 0.505667i \(-0.168754\pi\)
−0.214320 + 0.976763i \(0.568754\pi\)
\(18\) 0 0
\(19\) −1.36513 4.20144i −0.313182 0.963875i −0.976496 0.215534i \(-0.930851\pi\)
0.663314 0.748341i \(-0.269149\pi\)
\(20\) 2.43141 1.76653i 0.543681 0.395007i
\(21\) 0 0
\(22\) 0.476515 + 1.55543i 0.101593 + 0.331619i
\(23\) 7.49201 1.56219 0.781096 0.624411i \(-0.214661\pi\)
0.781096 + 0.624411i \(0.214661\pi\)
\(24\) 0 0
\(25\) −0.643414 1.98022i −0.128683 0.396045i
\(26\) 0.605969 1.86498i 0.118840 0.365753i
\(27\) 0 0
\(28\) 4.85453 + 3.52702i 0.917420 + 0.666544i
\(29\) 0.522637 1.60851i 0.0970512 0.298693i −0.890732 0.454530i \(-0.849807\pi\)
0.987783 + 0.155837i \(0.0498074\pi\)
\(30\) 0 0
\(31\) 3.15397 2.29149i 0.566469 0.411564i −0.267352 0.963599i \(-0.586149\pi\)
0.833821 + 0.552035i \(0.186149\pi\)
\(32\) −4.97028 −0.878629
\(33\) 0 0
\(34\) 1.62087 0.277978
\(35\) −4.71315 + 3.42431i −0.796668 + 0.578813i
\(36\) 0 0
\(37\) 0.947300 2.91549i 0.155735 0.479304i −0.842499 0.538697i \(-0.818917\pi\)
0.998235 + 0.0593935i \(0.0189167\pi\)
\(38\) −1.75300 1.27363i −0.284375 0.206610i
\(39\) 0 0
\(40\) 0.973351 2.99566i 0.153900 0.473656i
\(41\) 0.120787 + 0.371744i 0.0188637 + 0.0580566i 0.960045 0.279845i \(-0.0902830\pi\)
−0.941182 + 0.337901i \(0.890283\pi\)
\(42\) 0 0
\(43\) 9.61268 1.46592 0.732960 0.680272i \(-0.238138\pi\)
0.732960 + 0.680272i \(0.238138\pi\)
\(44\) −4.66230 3.50912i −0.702869 0.529020i
\(45\) 0 0
\(46\) 2.97296 2.15999i 0.438340 0.318472i
\(47\) −0.333818 1.02739i −0.0486924 0.149860i 0.923754 0.382986i \(-0.125104\pi\)
−0.972446 + 0.233127i \(0.925104\pi\)
\(48\) 0 0
\(49\) −3.74710 2.72242i −0.535299 0.388918i
\(50\) −0.826227 0.600289i −0.116846 0.0848937i
\(51\) 0 0
\(52\) 2.17363 + 6.68974i 0.301428 + 0.927700i
\(53\) 10.1643 7.38480i 1.39618 1.01438i 0.401020 0.916069i \(-0.368656\pi\)
0.995156 0.0983117i \(-0.0313442\pi\)
\(54\) 0 0
\(55\) 4.63895 3.25218i 0.625516 0.438524i
\(56\) 6.28890 0.840390
\(57\) 0 0
\(58\) −0.256350 0.788965i −0.0336604 0.103596i
\(59\) −1.12993 + 3.47758i −0.147105 + 0.452742i −0.997276 0.0737648i \(-0.976499\pi\)
0.850171 + 0.526507i \(0.176499\pi\)
\(60\) 0 0
\(61\) 3.11728 + 2.26484i 0.399127 + 0.289983i 0.769185 0.639026i \(-0.220662\pi\)
−0.370058 + 0.929009i \(0.620662\pi\)
\(62\) 0.590902 1.81861i 0.0750446 0.230964i
\(63\) 0 0
\(64\) 2.25785 1.64043i 0.282232 0.205053i
\(65\) −6.82916 −0.847053
\(66\) 0 0
\(67\) 3.10120 0.378872 0.189436 0.981893i \(-0.439334\pi\)
0.189436 + 0.981893i \(0.439334\pi\)
\(68\) −4.70372 + 3.41746i −0.570410 + 0.414427i
\(69\) 0 0
\(70\) −0.883019 + 2.71765i −0.105541 + 0.324822i
\(71\) −5.67699 4.12458i −0.673735 0.489497i 0.197538 0.980295i \(-0.436705\pi\)
−0.871273 + 0.490798i \(0.836705\pi\)
\(72\) 0 0
\(73\) −4.64842 + 14.3064i −0.544057 + 1.67443i 0.179165 + 0.983819i \(0.442660\pi\)
−0.723222 + 0.690615i \(0.757340\pi\)
\(74\) −0.464645 1.43003i −0.0540139 0.166238i
\(75\) 0 0
\(76\) 7.77248 0.891565
\(77\) 9.03760 + 6.80222i 1.02993 + 0.775185i
\(78\) 0 0
\(79\) 3.23536 2.35063i 0.364007 0.264467i −0.390714 0.920512i \(-0.627772\pi\)
0.754721 + 0.656045i \(0.227772\pi\)
\(80\) 1.38001 + 4.24724i 0.154290 + 0.474856i
\(81\) 0 0
\(82\) 0.155106 + 0.112691i 0.0171286 + 0.0124447i
\(83\) 0.101100 + 0.0734531i 0.0110971 + 0.00806252i 0.593320 0.804967i \(-0.297817\pi\)
−0.582223 + 0.813029i \(0.697817\pi\)
\(84\) 0 0
\(85\) −1.74434 5.36852i −0.189200 0.582298i
\(86\) 3.81449 2.77139i 0.411327 0.298846i
\(87\) 0 0
\(88\) −6.11489 0.103238i −0.651849 0.0110052i
\(89\) −7.93327 −0.840925 −0.420462 0.907310i \(-0.638132\pi\)
−0.420462 + 0.907310i \(0.638132\pi\)
\(90\) 0 0
\(91\) −4.21345 12.9677i −0.441690 1.35938i
\(92\) −4.07333 + 12.5364i −0.424674 + 1.30701i
\(93\) 0 0
\(94\) −0.428666 0.311444i −0.0442135 0.0321230i
\(95\) −2.33188 + 7.17680i −0.239246 + 0.736324i
\(96\) 0 0
\(97\) −0.277622 + 0.201704i −0.0281882 + 0.0204800i −0.601790 0.798654i \(-0.705546\pi\)
0.573602 + 0.819134i \(0.305546\pi\)
\(98\) −2.27180 −0.229487
\(99\) 0 0
\(100\) 3.66333 0.366333
\(101\) −5.75663 + 4.18244i −0.572806 + 0.416168i −0.836123 0.548541i \(-0.815183\pi\)
0.263318 + 0.964709i \(0.415183\pi\)
\(102\) 0 0
\(103\) −0.511203 + 1.57332i −0.0503703 + 0.155024i −0.973078 0.230477i \(-0.925971\pi\)
0.922707 + 0.385501i \(0.125971\pi\)
\(104\) 5.96412 + 4.33318i 0.584830 + 0.424904i
\(105\) 0 0
\(106\) 1.90430 5.86085i 0.184962 0.569256i
\(107\) 1.02187 + 3.14498i 0.0987876 + 0.304037i 0.988222 0.153025i \(-0.0489016\pi\)
−0.889435 + 0.457062i \(0.848902\pi\)
\(108\) 0 0
\(109\) −5.50709 −0.527484 −0.263742 0.964593i \(-0.584957\pi\)
−0.263742 + 0.964593i \(0.584957\pi\)
\(110\) 0.903198 2.62796i 0.0861165 0.250566i
\(111\) 0 0
\(112\) −7.21351 + 5.24092i −0.681612 + 0.495220i
\(113\) −5.07073 15.6061i −0.477014 1.46810i −0.843222 0.537565i \(-0.819344\pi\)
0.366208 0.930533i \(-0.380656\pi\)
\(114\) 0 0
\(115\) −10.3535 7.52229i −0.965473 0.701457i
\(116\) 2.40738 + 1.74906i 0.223519 + 0.162396i
\(117\) 0 0
\(118\) 0.554226 + 1.70573i 0.0510206 + 0.157025i
\(119\) 9.11789 6.62453i 0.835835 0.607270i
\(120\) 0 0
\(121\) −8.67586 6.76236i −0.788714 0.614760i
\(122\) 1.88996 0.171109
\(123\) 0 0
\(124\) 2.11958 + 6.52340i 0.190344 + 0.585819i
\(125\) −3.73834 + 11.5054i −0.334368 + 1.02908i
\(126\) 0 0
\(127\) −8.73327 6.34509i −0.774952 0.563036i 0.128508 0.991709i \(-0.458981\pi\)
−0.903460 + 0.428673i \(0.858981\pi\)
\(128\) 3.49481 10.7559i 0.308901 0.950699i
\(129\) 0 0
\(130\) −2.70993 + 1.96888i −0.237677 + 0.172682i
\(131\) −21.1557 −1.84838 −0.924189 0.381935i \(-0.875258\pi\)
−0.924189 + 0.381935i \(0.875258\pi\)
\(132\) 0 0
\(133\) −15.0665 −1.30643
\(134\) 1.23061 0.894092i 0.106309 0.0772378i
\(135\) 0 0
\(136\) −1.88301 + 5.79530i −0.161467 + 0.496943i
\(137\) −2.58928 1.88122i −0.221217 0.160724i 0.471657 0.881782i \(-0.343656\pi\)
−0.692874 + 0.721058i \(0.743656\pi\)
\(138\) 0 0
\(139\) −4.63329 + 14.2598i −0.392991 + 1.20950i 0.537525 + 0.843248i \(0.319360\pi\)
−0.930515 + 0.366253i \(0.880640\pi\)
\(140\) −3.16741 9.74829i −0.267695 0.823881i
\(141\) 0 0
\(142\) −3.44187 −0.288835
\(143\) 3.88399 + 12.6780i 0.324795 + 1.06019i
\(144\) 0 0
\(145\) −2.33727 + 1.69812i −0.194099 + 0.141021i
\(146\) 2.28002 + 7.01719i 0.188696 + 0.580747i
\(147\) 0 0
\(148\) 4.36346 + 3.17024i 0.358675 + 0.260592i
\(149\) −3.27743 2.38119i −0.268497 0.195075i 0.445387 0.895338i \(-0.353066\pi\)
−0.713885 + 0.700263i \(0.753066\pi\)
\(150\) 0 0
\(151\) −2.40847 7.41252i −0.195999 0.603222i −0.999963 0.00854528i \(-0.997280\pi\)
0.803965 0.594677i \(-0.202720\pi\)
\(152\) 6.59027 4.78811i 0.534541 0.388367i
\(153\) 0 0
\(154\) 5.54740 + 0.0936570i 0.447022 + 0.00754709i
\(155\) −6.65936 −0.534892
\(156\) 0 0
\(157\) 0.0955332 + 0.294021i 0.00762438 + 0.0234654i 0.954796 0.297261i \(-0.0960731\pi\)
−0.947172 + 0.320726i \(0.896073\pi\)
\(158\) 0.606152 1.86554i 0.0482229 0.148415i
\(159\) 0 0
\(160\) 6.86865 + 4.99036i 0.543014 + 0.394523i
\(161\) 7.89590 24.3011i 0.622284 1.91519i
\(162\) 0 0
\(163\) −8.89442 + 6.46217i −0.696665 + 0.506157i −0.878844 0.477109i \(-0.841685\pi\)
0.182179 + 0.983265i \(0.441685\pi\)
\(164\) −0.687711 −0.0537012
\(165\) 0 0
\(166\) 0.0612950 0.00475741
\(167\) 14.2176 10.3297i 1.10019 0.799333i 0.119097 0.992883i \(-0.462000\pi\)
0.981090 + 0.193550i \(0.0620001\pi\)
\(168\) 0 0
\(169\) 0.921919 2.83737i 0.0709168 0.218260i
\(170\) −2.23996 1.62742i −0.171797 0.124818i
\(171\) 0 0
\(172\) −5.22631 + 16.0849i −0.398503 + 1.22646i
\(173\) 3.82122 + 11.7605i 0.290522 + 0.894135i 0.984689 + 0.174321i \(0.0557731\pi\)
−0.694167 + 0.719814i \(0.744227\pi\)
\(174\) 0 0
\(175\) −7.10116 −0.536797
\(176\) 7.09994 4.97748i 0.535178 0.375192i
\(177\) 0 0
\(178\) −3.14806 + 2.28720i −0.235957 + 0.171433i
\(179\) 6.76200 + 20.8113i 0.505416 + 1.55551i 0.800071 + 0.599906i \(0.204795\pi\)
−0.294655 + 0.955604i \(0.595205\pi\)
\(180\) 0 0
\(181\) 3.54364 + 2.57460i 0.263396 + 0.191369i 0.711643 0.702541i \(-0.247951\pi\)
−0.448247 + 0.893910i \(0.647951\pi\)
\(182\) −5.41062 3.93104i −0.401062 0.291388i
\(183\) 0 0
\(184\) 4.26908 + 13.1389i 0.314721 + 0.968612i
\(185\) −4.23639 + 3.07792i −0.311466 + 0.226293i
\(186\) 0 0
\(187\) −8.97434 + 6.29155i −0.656269 + 0.460084i
\(188\) 1.90062 0.138617
\(189\) 0 0
\(190\) 1.14377 + 3.52018i 0.0829781 + 0.255380i
\(191\) 3.86727 11.9022i 0.279826 0.861214i −0.708077 0.706136i \(-0.750437\pi\)
0.987902 0.155079i \(-0.0495631\pi\)
\(192\) 0 0
\(193\) 10.1659 + 7.38594i 0.731756 + 0.531652i 0.890118 0.455729i \(-0.150622\pi\)
−0.158363 + 0.987381i \(0.550622\pi\)
\(194\) −0.0520130 + 0.160080i −0.00373432 + 0.0114930i
\(195\) 0 0
\(196\) 6.59270 4.78988i 0.470907 0.342134i
\(197\) −10.3453 −0.737075 −0.368538 0.929613i \(-0.620141\pi\)
−0.368538 + 0.929613i \(0.620141\pi\)
\(198\) 0 0
\(199\) 26.4773 1.87693 0.938464 0.345376i \(-0.112249\pi\)
0.938464 + 0.345376i \(0.112249\pi\)
\(200\) 3.10613 2.25674i 0.219637 0.159575i
\(201\) 0 0
\(202\) −1.07852 + 3.31933i −0.0758841 + 0.233547i
\(203\) −4.66655 3.39045i −0.327528 0.237963i
\(204\) 0 0
\(205\) 0.206325 0.635004i 0.0144104 0.0443506i
\(206\) 0.250742 + 0.771705i 0.0174700 + 0.0537672i
\(207\) 0 0
\(208\) −10.4521 −0.724721
\(209\) 14.6496 + 0.247330i 1.01333 + 0.0171082i
\(210\) 0 0
\(211\) 5.89280 4.28137i 0.405677 0.294742i −0.366172 0.930547i \(-0.619332\pi\)
0.771849 + 0.635805i \(0.219332\pi\)
\(212\) 6.83079 + 21.0230i 0.469141 + 1.44387i
\(213\) 0 0
\(214\) 1.31221 + 0.953376i 0.0897008 + 0.0651715i
\(215\) −13.2842 9.65153i −0.905974 0.658229i
\(216\) 0 0
\(217\) −4.10868 12.6452i −0.278916 0.858414i
\(218\) −2.18531 + 1.58772i −0.148008 + 0.107534i
\(219\) 0 0
\(220\) 2.91974 + 9.53055i 0.196849 + 0.642550i
\(221\) 13.2114 0.888698
\(222\) 0 0
\(223\) 7.26501 + 22.3594i 0.486501 + 1.49730i 0.829795 + 0.558068i \(0.188457\pi\)
−0.343294 + 0.939228i \(0.611543\pi\)
\(224\) −5.23822 + 16.1216i −0.349993 + 1.07717i
\(225\) 0 0
\(226\) −6.51148 4.73086i −0.433137 0.314692i
\(227\) −3.68416 + 11.3387i −0.244526 + 0.752574i 0.751188 + 0.660089i \(0.229481\pi\)
−0.995714 + 0.0924858i \(0.970519\pi\)
\(228\) 0 0
\(229\) −2.47363 + 1.79719i −0.163462 + 0.118762i −0.666509 0.745497i \(-0.732212\pi\)
0.503047 + 0.864259i \(0.332212\pi\)
\(230\) −6.27719 −0.413905
\(231\) 0 0
\(232\) 3.11869 0.204752
\(233\) 19.8463 14.4192i 1.30017 0.944632i 0.300217 0.953871i \(-0.402941\pi\)
0.999957 + 0.00923938i \(0.00294103\pi\)
\(234\) 0 0
\(235\) −0.570221 + 1.75496i −0.0371971 + 0.114481i
\(236\) −5.20471 3.78145i −0.338798 0.246151i
\(237\) 0 0
\(238\) 1.70825 5.25747i 0.110730 0.340791i
\(239\) −2.14786 6.61044i −0.138934 0.427594i 0.857247 0.514905i \(-0.172173\pi\)
−0.996181 + 0.0873108i \(0.972173\pi\)
\(240\) 0 0
\(241\) −7.77059 −0.500547 −0.250274 0.968175i \(-0.580521\pi\)
−0.250274 + 0.968175i \(0.580521\pi\)
\(242\) −5.39236 0.182131i −0.346634 0.0117078i
\(243\) 0 0
\(244\) −5.48460 + 3.98480i −0.351116 + 0.255100i
\(245\) 2.44485 + 7.52448i 0.156196 + 0.480721i
\(246\) 0 0
\(247\) −14.2884 10.3811i −0.909149 0.660535i
\(248\) 5.81582 + 4.22544i 0.369305 + 0.268316i
\(249\) 0 0
\(250\) 1.83364 + 5.64335i 0.115969 + 0.356917i
\(251\) −0.264684 + 0.192304i −0.0167067 + 0.0121381i −0.596107 0.802905i \(-0.703287\pi\)
0.579401 + 0.815043i \(0.303287\pi\)
\(252\) 0 0
\(253\) −8.07634 + 23.4990i −0.507755 + 1.47737i
\(254\) −5.29484 −0.332228
\(255\) 0 0
\(256\) 0.0106606 + 0.0328101i 0.000666290 + 0.00205063i
\(257\) −4.24255 + 13.0572i −0.264643 + 0.814487i 0.727133 + 0.686497i \(0.240852\pi\)
−0.991775 + 0.127990i \(0.959148\pi\)
\(258\) 0 0
\(259\) −8.45832 6.14533i −0.525574 0.381852i
\(260\) 3.71294 11.4273i 0.230267 0.708689i
\(261\) 0 0
\(262\) −8.39495 + 6.09928i −0.518641 + 0.376815i
\(263\) −16.8542 −1.03927 −0.519637 0.854387i \(-0.673933\pi\)
−0.519637 + 0.854387i \(0.673933\pi\)
\(264\) 0 0
\(265\) −21.4612 −1.31835
\(266\) −5.97866 + 4.34375i −0.366575 + 0.266332i
\(267\) 0 0
\(268\) −1.68609 + 5.18925i −0.102994 + 0.316984i
\(269\) −10.0297 7.28700i −0.611522 0.444296i 0.238428 0.971160i \(-0.423368\pi\)
−0.849950 + 0.526864i \(0.823368\pi\)
\(270\) 0 0
\(271\) 5.95460 18.3264i 0.361716 1.11325i −0.590296 0.807187i \(-0.700989\pi\)
0.952012 0.306061i \(-0.0990112\pi\)
\(272\) −2.66972 8.21656i −0.161876 0.498202i
\(273\) 0 0
\(274\) −1.56984 −0.0948374
\(275\) 6.90466 + 0.116572i 0.416367 + 0.00702954i
\(276\) 0 0
\(277\) −8.37420 + 6.08421i −0.503157 + 0.365565i −0.810222 0.586124i \(-0.800653\pi\)
0.307065 + 0.951689i \(0.400653\pi\)
\(278\) 2.27260 + 6.99435i 0.136302 + 0.419493i
\(279\) 0 0
\(280\) −8.69092 6.31432i −0.519382 0.377353i
\(281\) 13.2968 + 9.66072i 0.793223 + 0.576310i 0.908918 0.416974i \(-0.136910\pi\)
−0.115695 + 0.993285i \(0.536910\pi\)
\(282\) 0 0
\(283\) −0.390892 1.20304i −0.0232361 0.0715135i 0.938766 0.344555i \(-0.111970\pi\)
−0.962002 + 0.273042i \(0.911970\pi\)
\(284\) 9.98819 7.25685i 0.592690 0.430615i
\(285\) 0 0
\(286\) 5.19637 + 3.91109i 0.307268 + 0.231268i
\(287\) 1.33309 0.0786896
\(288\) 0 0
\(289\) −1.87876 5.78222i −0.110515 0.340130i
\(290\) −0.437892 + 1.34769i −0.0257139 + 0.0791392i
\(291\) 0 0
\(292\) −21.4116 15.5564i −1.25302 0.910372i
\(293\) −7.44342 + 22.9085i −0.434849 + 1.33833i 0.458392 + 0.888750i \(0.348426\pi\)
−0.893241 + 0.449578i \(0.851574\pi\)
\(294\) 0 0
\(295\) 5.05314 3.67132i 0.294205 0.213753i
\(296\) 5.65274 0.328559
\(297\) 0 0
\(298\) −1.98705 −0.115107
\(299\) 24.2321 17.6056i 1.40138 1.01816i
\(300\) 0 0
\(301\) 10.1309 31.1797i 0.583935 1.79717i
\(302\) −3.09279 2.24705i −0.177970 0.129303i
\(303\) 0 0
\(304\) −3.56896 + 10.9841i −0.204694 + 0.629983i
\(305\) −2.03392 6.25977i −0.116462 0.358433i
\(306\) 0 0
\(307\) 16.2949 0.930001 0.465001 0.885310i \(-0.346054\pi\)
0.465001 + 0.885310i \(0.346054\pi\)
\(308\) −16.2958 + 11.4244i −0.928541 + 0.650963i
\(309\) 0 0
\(310\) −2.64255 + 1.91993i −0.150087 + 0.109044i
\(311\) 6.60408 + 20.3253i 0.374483 + 1.15254i 0.943827 + 0.330441i \(0.107197\pi\)
−0.569344 + 0.822100i \(0.692803\pi\)
\(312\) 0 0
\(313\) −2.52100 1.83161i −0.142495 0.103529i 0.514254 0.857638i \(-0.328069\pi\)
−0.656749 + 0.754109i \(0.728069\pi\)
\(314\) 0.122677 + 0.0891301i 0.00692307 + 0.00502990i
\(315\) 0 0
\(316\) 2.17428 + 6.69176i 0.122313 + 0.376441i
\(317\) 14.7766 10.7358i 0.829935 0.602983i −0.0896059 0.995977i \(-0.528561\pi\)
0.919541 + 0.392994i \(0.128561\pi\)
\(318\) 0 0
\(319\) 4.48177 + 3.37324i 0.250931 + 0.188865i
\(320\) −4.76728 −0.266499
\(321\) 0 0
\(322\) −3.87289 11.9195i −0.215828 0.664250i
\(323\) 4.51117 13.8840i 0.251008 0.772524i
\(324\) 0 0
\(325\) −6.73442 4.89284i −0.373558 0.271406i
\(326\) −1.66639 + 5.12861i −0.0922927 + 0.284048i
\(327\) 0 0
\(328\) −0.583108 + 0.423653i −0.0321968 + 0.0233923i
\(329\) −3.68425 −0.203119
\(330\) 0 0
\(331\) 3.76616 0.207007 0.103503 0.994629i \(-0.466995\pi\)
0.103503 + 0.994629i \(0.466995\pi\)
\(332\) −0.177876 + 0.129235i −0.00976222 + 0.00709267i
\(333\) 0 0
\(334\) 2.66369 8.19799i 0.145751 0.448574i
\(335\) −4.28569 3.11373i −0.234152 0.170121i
\(336\) 0 0
\(337\) 1.84365 5.67417i 0.100430 0.309092i −0.888201 0.459456i \(-0.848045\pi\)
0.988631 + 0.150364i \(0.0480445\pi\)
\(338\) −0.452196 1.39171i −0.0245962 0.0756993i
\(339\) 0 0
\(340\) 9.93155 0.538614
\(341\) 3.78741 + 12.3628i 0.205100 + 0.669482i
\(342\) 0 0
\(343\) 6.53464 4.74769i 0.352837 0.256351i
\(344\) 5.47748 + 16.8580i 0.295326 + 0.908920i
\(345\) 0 0
\(346\) 4.90695 + 3.56511i 0.263799 + 0.191661i
\(347\) −19.6990 14.3122i −1.05750 0.768318i −0.0838748 0.996476i \(-0.526730\pi\)
−0.973624 + 0.228158i \(0.926730\pi\)
\(348\) 0 0
\(349\) 5.17349 + 15.9224i 0.276931 + 0.852305i 0.988702 + 0.149894i \(0.0478932\pi\)
−0.711771 + 0.702411i \(0.752107\pi\)
\(350\) −2.81787 + 2.04730i −0.150621 + 0.109433i
\(351\) 0 0
\(352\) 5.35793 15.5895i 0.285579 0.830924i
\(353\) −8.03132 −0.427464 −0.213732 0.976892i \(-0.568562\pi\)
−0.213732 + 0.976892i \(0.568562\pi\)
\(354\) 0 0
\(355\) 3.70404 + 11.3999i 0.196590 + 0.605042i
\(356\) 4.31323 13.2748i 0.228601 0.703561i
\(357\) 0 0
\(358\) 8.68329 + 6.30878i 0.458926 + 0.333429i
\(359\) −8.90742 + 27.4142i −0.470116 + 1.44687i 0.382317 + 0.924031i \(0.375126\pi\)
−0.852433 + 0.522836i \(0.824874\pi\)
\(360\) 0 0
\(361\) −0.417162 + 0.303086i −0.0219559 + 0.0159519i
\(362\) 2.14845 0.112920
\(363\) 0 0
\(364\) 23.9896 1.25740
\(365\) 20.7881 15.1034i 1.08810 0.790548i
\(366\) 0 0
\(367\) 6.90449 21.2498i 0.360411 1.10923i −0.592394 0.805649i \(-0.701817\pi\)
0.952805 0.303583i \(-0.0981831\pi\)
\(368\) −15.8462 11.5129i −0.826038 0.600152i
\(369\) 0 0
\(370\) −0.793696 + 2.44275i −0.0412623 + 0.126992i
\(371\) −13.2411 40.7519i −0.687443 2.11573i
\(372\) 0 0
\(373\) 7.07872 0.366522 0.183261 0.983064i \(-0.441335\pi\)
0.183261 + 0.983064i \(0.441335\pi\)
\(374\) −1.74729 + 5.08395i −0.0903504 + 0.262885i
\(375\) 0 0
\(376\) 1.61153 1.17085i 0.0831085 0.0603819i
\(377\) −2.08946 6.43070i −0.107613 0.331198i
\(378\) 0 0
\(379\) 19.6964 + 14.3103i 1.01174 + 0.735070i 0.964573 0.263818i \(-0.0849817\pi\)
0.0471638 + 0.998887i \(0.484982\pi\)
\(380\) −10.7411 7.80390i −0.551009 0.400331i
\(381\) 0 0
\(382\) −1.89687 5.83797i −0.0970523 0.298696i
\(383\) 14.2694 10.3673i 0.729130 0.529744i −0.160158 0.987091i \(-0.551200\pi\)
0.889288 + 0.457348i \(0.151200\pi\)
\(384\) 0 0
\(385\) −5.65975 18.4744i −0.288447 0.941543i
\(386\) 6.16341 0.313709
\(387\) 0 0
\(388\) −0.186572 0.574210i −0.00947177 0.0291511i
\(389\) −5.52615 + 17.0077i −0.280187 + 0.862326i 0.707613 + 0.706600i \(0.249772\pi\)
−0.987800 + 0.155727i \(0.950228\pi\)
\(390\) 0 0
\(391\) 20.0296 + 14.5523i 1.01294 + 0.735943i
\(392\) 2.63921 8.12265i 0.133300 0.410256i
\(393\) 0 0
\(394\) −4.10522 + 2.98262i −0.206818 + 0.150262i
\(395\) −6.83122 −0.343716
\(396\) 0 0
\(397\) −21.9395 −1.10111 −0.550556 0.834798i \(-0.685584\pi\)
−0.550556 + 0.834798i \(0.685584\pi\)
\(398\) 10.5067 7.63355i 0.526652 0.382635i
\(399\) 0 0
\(400\) −1.68213 + 5.17705i −0.0841063 + 0.258852i
\(401\) −4.37481 3.17848i −0.218467 0.158726i 0.473169 0.880972i \(-0.343110\pi\)
−0.691636 + 0.722246i \(0.743110\pi\)
\(402\) 0 0
\(403\) 4.81633 14.8231i 0.239918 0.738393i
\(404\) −3.86867 11.9065i −0.192473 0.592372i
\(405\) 0 0
\(406\) −2.82926 −0.140414
\(407\) 8.12339 + 6.11413i 0.402662 + 0.303066i
\(408\) 0 0
\(409\) −19.1091 + 13.8836i −0.944884 + 0.686498i −0.949591 0.313491i \(-0.898502\pi\)
0.00470736 + 0.999989i \(0.498502\pi\)
\(410\) −0.101201 0.311466i −0.00499798 0.0153822i
\(411\) 0 0
\(412\) −2.35471 1.71080i −0.116008 0.0842849i
\(413\) 10.0890 + 7.33011i 0.496449 + 0.360691i
\(414\) 0 0
\(415\) −0.0659639 0.203016i −0.00323804 0.00996567i
\(416\) −16.0758 + 11.6798i −0.788181 + 0.572647i
\(417\) 0 0
\(418\) 5.88453 4.12541i 0.287822 0.201780i
\(419\) −18.1313 −0.885773 −0.442886 0.896578i \(-0.646045\pi\)
−0.442886 + 0.896578i \(0.646045\pi\)
\(420\) 0 0
\(421\) −3.95919 12.1851i −0.192959 0.593867i −0.999994 0.00336355i \(-0.998929\pi\)
0.807035 0.590503i \(-0.201071\pi\)
\(422\) 1.10403 3.39785i 0.0537432 0.165405i
\(423\) 0 0
\(424\) 18.7427 + 13.6174i 0.910226 + 0.661318i
\(425\) 2.12621 6.54380i 0.103136 0.317421i
\(426\) 0 0
\(427\) 10.6316 7.72429i 0.514498 0.373805i
\(428\) −5.81809 −0.281228
\(429\) 0 0
\(430\) −8.05399 −0.388398
\(431\) 5.32265 3.86713i 0.256383 0.186273i −0.452168 0.891933i \(-0.649349\pi\)
0.708551 + 0.705660i \(0.249349\pi\)
\(432\) 0 0
\(433\) 4.32555 13.3127i 0.207873 0.639767i −0.791710 0.610897i \(-0.790809\pi\)
0.999583 0.0288700i \(-0.00919089\pi\)
\(434\) −5.27608 3.83330i −0.253260 0.184004i
\(435\) 0 0
\(436\) 2.99415 9.21504i 0.143394 0.441320i
\(437\) −10.2276 31.4772i −0.489251 1.50576i
\(438\) 0 0
\(439\) 25.1782 1.20169 0.600846 0.799365i \(-0.294831\pi\)
0.600846 + 0.799365i \(0.294831\pi\)
\(440\) 8.34678 + 6.28227i 0.397917 + 0.299495i
\(441\) 0 0
\(442\) 5.24254 3.80893i 0.249362 0.181172i
\(443\) 8.28860 + 25.5097i 0.393803 + 1.21200i 0.929890 + 0.367839i \(0.119902\pi\)
−0.536086 + 0.844163i \(0.680098\pi\)
\(444\) 0 0
\(445\) 10.9633 + 7.96533i 0.519712 + 0.377593i
\(446\) 9.32921 + 6.77807i 0.441751 + 0.320951i
\(447\) 0 0
\(448\) −2.94131 9.05243i −0.138964 0.427687i
\(449\) −11.4685 + 8.33234i −0.541231 + 0.393228i −0.824542 0.565801i \(-0.808567\pi\)
0.283311 + 0.959028i \(0.408567\pi\)
\(450\) 0 0
\(451\) −1.29620 0.0218838i −0.0610357 0.00103047i
\(452\) 28.8706 1.35796
\(453\) 0 0
\(454\) 1.80706 + 5.56155i 0.0848094 + 0.261017i
\(455\) −7.19732 + 22.1511i −0.337415 + 1.03846i
\(456\) 0 0
\(457\) −19.9352 14.4838i −0.932530 0.677523i 0.0140807 0.999901i \(-0.495518\pi\)
−0.946611 + 0.322378i \(0.895518\pi\)
\(458\) −0.463439 + 1.42632i −0.0216551 + 0.0666475i
\(459\) 0 0
\(460\) 18.2162 13.2348i 0.849334 0.617077i
\(461\) −26.2454 −1.22237 −0.611185 0.791488i \(-0.709307\pi\)
−0.611185 + 0.791488i \(0.709307\pi\)
\(462\) 0 0
\(463\) 12.6922 0.589855 0.294928 0.955520i \(-0.404704\pi\)
0.294928 + 0.955520i \(0.404704\pi\)
\(464\) −3.57720 + 2.59899i −0.166067 + 0.120655i
\(465\) 0 0
\(466\) 3.71824 11.4436i 0.172244 0.530113i
\(467\) 22.4130 + 16.2840i 1.03715 + 0.753534i 0.969727 0.244190i \(-0.0785221\pi\)
0.0674235 + 0.997724i \(0.478522\pi\)
\(468\) 0 0
\(469\) 3.26838 10.0591i 0.150920 0.464484i
\(470\) 0.279690 + 0.860797i 0.0129011 + 0.0397056i
\(471\) 0 0
\(472\) −6.74256 −0.310351
\(473\) −10.3624 + 30.1506i −0.476464 + 1.38633i
\(474\) 0 0
\(475\) −7.44144 + 5.40652i −0.341437 + 0.248068i
\(476\) 6.12756 + 18.8587i 0.280856 + 0.864386i
\(477\) 0 0
\(478\) −2.75813 2.00390i −0.126154 0.0916563i
\(479\) 12.6386 + 9.18250i 0.577474 + 0.419559i 0.837812 0.545958i \(-0.183834\pi\)
−0.260339 + 0.965517i \(0.583834\pi\)
\(480\) 0 0
\(481\) −3.78723 11.6559i −0.172683 0.531464i
\(482\) −3.08351 + 2.24030i −0.140450 + 0.102043i
\(483\) 0 0
\(484\) 16.0325 10.8407i 0.728748 0.492760i
\(485\) 0.586177 0.0266169
\(486\) 0 0
\(487\) 8.32090 + 25.6091i 0.377056 + 1.16046i 0.942081 + 0.335386i \(0.108867\pi\)
−0.565025 + 0.825074i \(0.691133\pi\)
\(488\) −2.19561 + 6.75739i −0.0993906 + 0.305893i
\(489\) 0 0
\(490\) 3.13951 + 2.28098i 0.141828 + 0.103044i
\(491\) 12.0516 37.0910i 0.543880 1.67389i −0.179757 0.983711i \(-0.557531\pi\)
0.723637 0.690181i \(-0.242469\pi\)
\(492\) 0 0
\(493\) 4.52159 3.28513i 0.203642 0.147955i
\(494\) −8.66283 −0.389759
\(495\) 0 0
\(496\) −10.1922 −0.457642
\(497\) −19.3615 + 14.0670i −0.868483 + 0.630990i
\(498\) 0 0
\(499\) −7.42726 + 22.8588i −0.332490 + 1.02330i 0.635455 + 0.772138i \(0.280812\pi\)
−0.967945 + 0.251161i \(0.919188\pi\)
\(500\) −17.2196 12.5108i −0.770084 0.559499i
\(501\) 0 0
\(502\) −0.0495891 + 0.152620i −0.00221327 + 0.00681174i
\(503\) −7.41223 22.8125i −0.330495 1.01716i −0.968899 0.247457i \(-0.920405\pi\)
0.638404 0.769701i \(-0.279595\pi\)
\(504\) 0 0
\(505\) 12.1547 0.540876
\(506\) 3.57006 + 11.6533i 0.158708 + 0.518052i
\(507\) 0 0
\(508\) 15.3655 11.1637i 0.681732 0.495307i
\(509\) 1.14301 + 3.51783i 0.0506631 + 0.155925i 0.973187 0.230014i \(-0.0738774\pi\)
−0.922524 + 0.385939i \(0.873877\pi\)
\(510\) 0 0
\(511\) 41.5051 + 30.1552i 1.83608 + 1.33399i
\(512\) 18.3128 + 13.3050i 0.809318 + 0.588004i
\(513\) 0 0
\(514\) 2.08094 + 6.40449i 0.0917865 + 0.282490i
\(515\) 2.28613 1.66097i 0.100739 0.0731912i
\(516\) 0 0
\(517\) 3.58230 + 0.0604802i 0.157549 + 0.00265992i
\(518\) −5.12814 −0.225318
\(519\) 0 0
\(520\) −3.89138 11.9764i −0.170648 0.525202i
\(521\) −1.98178 + 6.09929i −0.0868234 + 0.267215i −0.985037 0.172345i \(-0.944866\pi\)
0.898213 + 0.439560i \(0.144866\pi\)
\(522\) 0 0
\(523\) 2.21554 + 1.60969i 0.0968790 + 0.0703867i 0.635170 0.772372i \(-0.280930\pi\)
−0.538291 + 0.842759i \(0.680930\pi\)
\(524\) 11.5021 35.3998i 0.502472 1.54645i
\(525\) 0 0
\(526\) −6.68804 + 4.85915i −0.291613 + 0.211869i
\(527\) 12.8829 0.561190
\(528\) 0 0
\(529\) 33.1302 1.44044
\(530\) −8.51617 + 6.18736i −0.369919 + 0.268762i
\(531\) 0 0
\(532\) 8.19149 25.2108i 0.355146 1.09303i
\(533\) 1.26424 + 0.918524i 0.0547603 + 0.0397857i
\(534\) 0 0
\(535\) 1.74553 5.37219i 0.0754658 0.232260i
\(536\) 1.76712 + 5.43864i 0.0763280 + 0.234913i
\(537\) 0 0
\(538\) −6.08085 −0.262164
\(539\) 12.5784 8.81819i 0.541788 0.379826i
\(540\) 0 0
\(541\) −16.9114 + 12.2869i −0.727079 + 0.528254i −0.888638 0.458609i \(-0.848348\pi\)
0.161559 + 0.986863i \(0.448348\pi\)
\(542\) −2.92070 8.98898i −0.125455 0.386110i
\(543\) 0 0
\(544\) −13.2878 9.65417i −0.569711 0.413919i
\(545\) 7.61050 + 5.52935i 0.325998 + 0.236851i
\(546\) 0 0
\(547\) −12.9405 39.8268i −0.553296 1.70287i −0.700401 0.713749i \(-0.746996\pi\)
0.147105 0.989121i \(-0.453004\pi\)
\(548\) 4.55562 3.30985i 0.194606 0.141390i
\(549\) 0 0
\(550\) 2.77350 1.94439i 0.118263 0.0829092i
\(551\) −7.47152 −0.318298
\(552\) 0 0
\(553\) −4.21472 12.9716i −0.179228 0.551608i
\(554\) −1.56892 + 4.82865i −0.0666572 + 0.205150i
\(555\) 0 0
\(556\) −21.3419 15.5058i −0.905099 0.657593i
\(557\) −3.87025 + 11.9114i −0.163988 + 0.504702i −0.998960 0.0455895i \(-0.985483\pi\)
0.834973 + 0.550291i \(0.185483\pi\)
\(558\) 0 0
\(559\) 31.0911 22.5890i 1.31502 0.955415i
\(560\) 15.2308 0.643617
\(561\) 0 0
\(562\) 8.06166 0.340061
\(563\) 11.7378 8.52802i 0.494690 0.359413i −0.312295 0.949985i \(-0.601098\pi\)
0.806985 + 0.590572i \(0.201098\pi\)
\(564\) 0 0
\(565\) −8.66170 + 26.6580i −0.364401 + 1.12151i
\(566\) −0.501956 0.364693i −0.0210988 0.0153292i
\(567\) 0 0
\(568\) 3.99850 12.3061i 0.167773 0.516353i
\(569\) −8.64395 26.6034i −0.362373 1.11527i −0.951610 0.307310i \(-0.900571\pi\)
0.589236 0.807961i \(-0.299429\pi\)
\(570\) 0 0
\(571\) 9.04886 0.378683 0.189341 0.981911i \(-0.439365\pi\)
0.189341 + 0.981911i \(0.439365\pi\)
\(572\) −23.3258 0.393811i −0.975303 0.0164661i
\(573\) 0 0
\(574\) 0.528993 0.384336i 0.0220797 0.0160419i
\(575\) −4.82046 14.8359i −0.201027 0.618698i
\(576\) 0 0
\(577\) −31.0234 22.5398i −1.29152 0.938346i −0.291687 0.956514i \(-0.594217\pi\)
−0.999835 + 0.0181683i \(0.994217\pi\)
\(578\) −2.41257 1.75283i −0.100350 0.0729082i
\(579\) 0 0
\(580\) −1.57073 4.83421i −0.0652210 0.200730i
\(581\) 0.344802 0.250513i 0.0143048 0.0103930i
\(582\) 0 0
\(583\) 12.2057 + 39.8416i 0.505509 + 1.65007i
\(584\) −27.7381 −1.14781
\(585\) 0 0
\(586\) 3.65095 + 11.2365i 0.150819 + 0.464175i
\(587\) −0.223301 + 0.687250i −0.00921662 + 0.0283658i −0.955559 0.294800i \(-0.904747\pi\)
0.946342 + 0.323166i \(0.104747\pi\)
\(588\) 0 0
\(589\) −13.9331 10.1230i −0.574104 0.417111i
\(590\) 0.946716 2.91369i 0.0389757 0.119955i
\(591\) 0 0
\(592\) −6.48382 + 4.71077i −0.266483 + 0.193611i
\(593\) −39.6596 −1.62863 −0.814313 0.580426i \(-0.802886\pi\)
−0.814313 + 0.580426i \(0.802886\pi\)
\(594\) 0 0
\(595\) −19.2517 −0.789244
\(596\) 5.76636 4.18950i 0.236199 0.171609i
\(597\) 0 0
\(598\) 4.53993 13.9725i 0.185651 0.571376i
\(599\) 16.4852 + 11.9772i 0.673566 + 0.489374i 0.871217 0.490898i \(-0.163331\pi\)
−0.197651 + 0.980272i \(0.563331\pi\)
\(600\) 0 0
\(601\) −14.9477 + 46.0042i −0.609729 + 1.87655i −0.149472 + 0.988766i \(0.547757\pi\)
−0.460257 + 0.887786i \(0.652243\pi\)
\(602\) −4.96914 15.2935i −0.202527 0.623315i
\(603\) 0 0
\(604\) 13.7129 0.557968
\(605\) 5.19987 + 18.0561i 0.211405 + 0.734086i
\(606\) 0 0
\(607\) 15.9395 11.5807i 0.646964 0.470047i −0.215272 0.976554i \(-0.569064\pi\)
0.862236 + 0.506508i \(0.169064\pi\)
\(608\) 6.78507 + 20.8823i 0.275171 + 0.846889i
\(609\) 0 0
\(610\) −2.61182 1.89760i −0.105749 0.0768315i
\(611\) −3.49397 2.53852i −0.141351 0.102698i
\(612\) 0 0
\(613\) 1.76690 + 5.43796i 0.0713644 + 0.219637i 0.980377 0.197131i \(-0.0631626\pi\)
−0.909013 + 0.416768i \(0.863163\pi\)
\(614\) 6.46613 4.69791i 0.260952 0.189592i
\(615\) 0 0
\(616\) −6.77940 + 19.7254i −0.273150 + 0.794761i
\(617\) 6.10692 0.245855 0.122928 0.992416i \(-0.460772\pi\)
0.122928 + 0.992416i \(0.460772\pi\)
\(618\) 0 0
\(619\) −0.549968 1.69263i −0.0221051 0.0680324i 0.939395 0.342835i \(-0.111387\pi\)
−0.961501 + 0.274803i \(0.911387\pi\)
\(620\) 3.62062 11.1431i 0.145408 0.447519i
\(621\) 0 0
\(622\) 8.48050 + 6.16144i 0.340037 + 0.247051i
\(623\) −8.36094 + 25.7323i −0.334974 + 1.03094i
\(624\) 0 0
\(625\) 8.29572 6.02719i 0.331829 0.241088i
\(626\) −1.52844 −0.0610888
\(627\) 0 0
\(628\) −0.543927 −0.0217050
\(629\) 8.19556 5.95442i 0.326778 0.237418i
\(630\) 0 0
\(631\) −13.8566 + 42.6461i −0.551621 + 1.69771i 0.153084 + 0.988213i \(0.451079\pi\)
−0.704705 + 0.709501i \(0.748921\pi\)
\(632\) 5.96592 + 4.33449i 0.237311 + 0.172417i
\(633\) 0 0
\(634\) 2.76842 8.52032i 0.109948 0.338385i
\(635\) 5.69816 + 17.5371i 0.226124 + 0.695940i
\(636\) 0 0
\(637\) −18.5170 −0.733672
\(638\) 2.75097 + 0.0464448i 0.108912 + 0.00183877i
\(639\) 0 0
\(640\) −15.6290 + 11.3552i −0.617792 + 0.448852i
\(641\) −8.34641 25.6876i −0.329663 1.01460i −0.969291 0.245915i \(-0.920912\pi\)
0.639628 0.768685i \(-0.279088\pi\)
\(642\) 0 0
\(643\) 26.3395 + 19.1368i 1.03873 + 0.754680i 0.970037 0.242958i \(-0.0781178\pi\)
0.0686909 + 0.997638i \(0.478118\pi\)
\(644\) 36.3702 + 26.4245i 1.43319 + 1.04127i
\(645\) 0 0
\(646\) −2.21270 6.81000i −0.0870576 0.267936i
\(647\) 25.4705 18.5054i 1.00135 0.727523i 0.0389724 0.999240i \(-0.487592\pi\)
0.962377 + 0.271717i \(0.0875916\pi\)
\(648\) 0 0
\(649\) −9.68953 7.29290i −0.380347 0.286271i
\(650\) −4.08297 −0.160147
\(651\) 0 0
\(652\) −5.97738 18.3965i −0.234092 0.720462i
\(653\) −1.43995 + 4.43171i −0.0563495 + 0.173426i −0.975270 0.221017i \(-0.929062\pi\)
0.918920 + 0.394443i \(0.129062\pi\)
\(654\) 0 0
\(655\) 29.2359 + 21.2412i 1.14234 + 0.829961i
\(656\) 0.315782 0.971878i 0.0123292 0.0379455i
\(657\) 0 0
\(658\) −1.46197 + 1.06219i −0.0569937 + 0.0414084i
\(659\) −32.0418 −1.24817 −0.624086 0.781355i \(-0.714529\pi\)
−0.624086 + 0.781355i \(0.714529\pi\)
\(660\) 0 0
\(661\) −40.7054 −1.58325 −0.791627 0.611004i \(-0.790766\pi\)
−0.791627 + 0.611004i \(0.790766\pi\)
\(662\) 1.49448 1.08580i 0.0580846 0.0422009i
\(663\) 0 0
\(664\) −0.0712078 + 0.219155i −0.00276340 + 0.00850487i
\(665\) 20.8211 + 15.1274i 0.807406 + 0.586615i
\(666\) 0 0
\(667\) 3.91560 12.0510i 0.151613 0.466616i
\(668\) 9.55472 + 29.4064i 0.369683 + 1.13777i
\(669\) 0 0
\(670\) −2.59834 −0.100383
\(671\) −10.4642 + 7.33603i −0.403966 + 0.283204i
\(672\) 0 0
\(673\) 30.5513 22.1968i 1.17767 0.855625i 0.185761 0.982595i \(-0.440525\pi\)
0.991907 + 0.126970i \(0.0405251\pi\)
\(674\) −0.904299 2.78315i −0.0348323 0.107203i
\(675\) 0 0
\(676\) 4.24655 + 3.08530i 0.163329 + 0.118665i
\(677\) −15.2910 11.1095i −0.587679 0.426974i 0.253805 0.967255i \(-0.418318\pi\)
−0.841484 + 0.540281i \(0.818318\pi\)
\(678\) 0 0
\(679\) 0.361659 + 1.11307i 0.0138792 + 0.0427158i
\(680\) 8.42093 6.11817i 0.322928 0.234621i
\(681\) 0 0
\(682\) 5.06716 + 3.81384i 0.194032 + 0.146040i
\(683\) 31.1053 1.19021 0.595105 0.803648i \(-0.297110\pi\)
0.595105 + 0.803648i \(0.297110\pi\)
\(684\) 0 0
\(685\) 1.68941 + 5.19948i 0.0645492 + 0.198662i
\(686\) 1.22428 3.76794i 0.0467432 0.143861i
\(687\) 0 0
\(688\) −20.3315 14.7717i −0.775132 0.563167i
\(689\) 15.5216 47.7706i 0.591327 1.81992i
\(690\) 0 0
\(691\) −17.9694 + 13.0555i −0.683588 + 0.496656i −0.874546 0.484942i \(-0.838841\pi\)
0.190958 + 0.981598i \(0.438841\pi\)
\(692\) −21.7565 −0.827057
\(693\) 0 0
\(694\) −11.9432 −0.453358
\(695\) 20.7204 15.0542i 0.785969 0.571040i
\(696\) 0 0
\(697\) −0.399149 + 1.22846i −0.0151189 + 0.0465311i
\(698\) 6.64344 + 4.82674i 0.251458 + 0.182695i
\(699\) 0 0
\(700\) 3.86082 11.8824i 0.145925 0.449112i
\(701\) −9.25374 28.4801i −0.349509 1.07568i −0.959125 0.282981i \(-0.908677\pi\)
0.609616 0.792697i \(-0.291323\pi\)
\(702\) 0 0
\(703\) −13.5424 −0.510763
\(704\) 2.71132 + 8.85023i 0.102187 + 0.333556i
\(705\) 0 0
\(706\) −3.18697 + 2.31547i −0.119943 + 0.0871439i
\(707\) 7.49918 + 23.0801i 0.282036 + 0.868017i
\(708\) 0 0
\(709\) −13.9197 10.1133i −0.522766 0.379812i 0.294879 0.955535i \(-0.404721\pi\)
−0.817645 + 0.575723i \(0.804721\pi\)
\(710\) 4.75647 + 3.45578i 0.178507 + 0.129693i
\(711\) 0 0
\(712\) −4.52052 13.9127i −0.169414 0.521402i
\(713\) 23.6295 17.1679i 0.884933 0.642942i
\(714\) 0 0
\(715\) 7.36179 21.4200i 0.275315 0.801062i
\(716\) −38.5001 −1.43881
\(717\) 0 0
\(718\) 4.36904 + 13.4465i 0.163051 + 0.501819i
\(719\) 1.46013 4.49382i 0.0544537 0.167591i −0.920131 0.391611i \(-0.871918\pi\)
0.974585 + 0.224020i \(0.0719180\pi\)
\(720\) 0 0
\(721\) 4.56446 + 3.31628i 0.169989 + 0.123505i
\(722\) −0.0781561 + 0.240540i −0.00290867 + 0.00895196i
\(723\) 0 0
\(724\) −6.23473 + 4.52980i −0.231712 + 0.168349i
\(725\) −3.52148 −0.130785
\(726\) 0 0
\(727\) 5.20088 0.192890 0.0964450 0.995338i \(-0.469253\pi\)
0.0964450 + 0.995338i \(0.469253\pi\)
\(728\) 20.3408 14.7784i 0.753879 0.547725i
\(729\) 0 0
\(730\) 3.89468 11.9866i 0.144149 0.443644i
\(731\) 25.6991 + 18.6715i 0.950516 + 0.690590i
\(732\) 0 0
\(733\) −15.1614 + 46.6618i −0.559997 + 1.72349i 0.122369 + 0.992485i \(0.460951\pi\)
−0.682367 + 0.731010i \(0.739049\pi\)
\(734\) −3.38661 10.4229i −0.125002 0.384717i
\(735\) 0 0
\(736\) −37.2374 −1.37259
\(737\) −3.34308 + 9.72706i −0.123144 + 0.358301i
\(738\) 0 0
\(739\) 12.6160 9.16603i 0.464086 0.337178i −0.331046 0.943615i \(-0.607402\pi\)
0.795132 + 0.606437i \(0.207402\pi\)
\(740\) −2.84701 8.76220i −0.104658 0.322105i
\(741\) 0 0
\(742\) −17.0033 12.3536i −0.624210 0.453515i
\(743\) −9.00796 6.54466i −0.330470 0.240100i 0.410160 0.912014i \(-0.365473\pi\)
−0.740630 + 0.671913i \(0.765473\pi\)
\(744\) 0 0
\(745\) 2.13841 + 6.58134i 0.0783452 + 0.241122i
\(746\) 2.80897 2.04083i 0.102844 0.0747202i
\(747\) 0 0
\(748\) −5.64842 18.4374i −0.206527 0.674140i
\(749\) 11.2780 0.412090
\(750\) 0 0
\(751\) −2.49846 7.68948i −0.0911703 0.280593i 0.895066 0.445933i \(-0.147128\pi\)
−0.986237 + 0.165340i \(0.947128\pi\)
\(752\) −0.872726 + 2.68597i −0.0318250 + 0.0979474i
\(753\) 0 0
\(754\) −2.68314 1.94942i −0.0977142 0.0709935i
\(755\) −4.11410 + 12.6619i −0.149727 + 0.460814i
\(756\) 0 0
\(757\) −24.1585 + 17.5522i −0.878056 + 0.637945i −0.932737 0.360559i \(-0.882586\pi\)
0.0546803 + 0.998504i \(0.482586\pi\)
\(758\) 11.9416 0.433739
\(759\) 0 0
\(760\) −13.9148 −0.504744
\(761\) −28.2287 + 20.5093i −1.02329 + 0.743463i −0.966955 0.254949i \(-0.917941\pi\)
−0.0563348 + 0.998412i \(0.517941\pi\)
\(762\) 0 0
\(763\) −5.80398 + 17.8628i −0.210118 + 0.646677i
\(764\) 17.8134 + 12.9422i 0.644468 + 0.468233i
\(765\) 0 0
\(766\) 2.67339 8.22786i 0.0965936 0.297284i
\(767\) 4.51739 + 13.9031i 0.163113 + 0.502012i
\(768\) 0 0
\(769\) −5.60723 −0.202202 −0.101101 0.994876i \(-0.532237\pi\)
−0.101101 + 0.994876i \(0.532237\pi\)
\(770\) −7.57216 5.69924i −0.272882 0.205386i
\(771\) 0 0
\(772\) −17.8860 + 12.9949i −0.643731 + 0.467698i
\(773\) −3.34979 10.3096i −0.120483 0.370810i 0.872568 0.488493i \(-0.162453\pi\)
−0.993051 + 0.117683i \(0.962453\pi\)
\(774\) 0 0
\(775\) −6.56697 4.77118i −0.235893 0.171386i
\(776\) −0.511927 0.371937i −0.0183771 0.0133517i
\(777\) 0 0
\(778\) 2.71054 + 8.34219i 0.0971776 + 0.299082i
\(779\) 1.39697 1.01496i 0.0500516 0.0363646i
\(780\) 0 0
\(781\) 19.0567 13.3599i 0.681902 0.478054i
\(782\) 12.1436 0.434255
\(783\) 0 0
\(784\) 3.74186 + 11.5163i 0.133638 + 0.411295i
\(785\) 0.163188 0.502240i 0.00582442 0.0179257i
\(786\) 0 0
\(787\) 2.00347 + 1.45561i 0.0714162 + 0.0518869i 0.622921 0.782285i \(-0.285946\pi\)
−0.551504 + 0.834172i \(0.685946\pi\)
\(788\) 5.62465 17.3109i 0.200370 0.616676i
\(789\) 0 0
\(790\) −2.71075 + 1.96948i −0.0964442 + 0.0700708i
\(791\) −55.9640 −1.98985
\(792\) 0 0
\(793\) 15.4047 0.547037
\(794\) −8.70599 + 6.32527i −0.308964 + 0.224475i
\(795\) 0 0
\(796\) −14.3954 + 44.3046i −0.510233 + 1.57034i
\(797\) 7.83103 + 5.68958i 0.277389 + 0.201535i 0.717778 0.696272i \(-0.245159\pi\)
−0.440389 + 0.897807i \(0.645159\pi\)
\(798\) 0 0
\(799\) 1.10313 3.39508i 0.0390258 0.120109i
\(800\) 3.19795 + 9.84226i 0.113064 + 0.347977i
\(801\) 0 0
\(802\) −2.65237 −0.0936586
\(803\) −39.8616 30.0022i −1.40669 1.05875i
\(804\) 0 0
\(805\) −35.3110 + 25.6549i −1.24455 + 0.904218i
\(806\) −2.36238 7.27066i −0.0832113 0.256098i
\(807\) 0 0
\(808\) −10.6151 7.71229i −0.373436 0.271317i
\(809\) 6.36318 + 4.62312i 0.223717 + 0.162540i 0.693998 0.719976i \(-0.255847\pi\)
−0.470281 + 0.882517i \(0.655847\pi\)
\(810\) 0 0
\(811\) 12.2076 + 37.5712i 0.428668 + 1.31930i 0.899438 + 0.437048i \(0.143976\pi\)
−0.470770 + 0.882256i \(0.656024\pi\)
\(812\) 8.21041 5.96521i 0.288129 0.209338i
\(813\) 0 0
\(814\) 4.98624 + 0.0841830i 0.174768 + 0.00295061i
\(815\) 18.7799 0.657831
\(816\) 0 0
\(817\) −13.1226 40.3871i −0.459100 1.41296i
\(818\) −3.58013 + 11.0185i −0.125176 + 0.385253i
\(819\) 0 0
\(820\) 0.950378 + 0.690490i 0.0331886 + 0.0241130i
\(821\) −1.03633 + 3.18948i −0.0361680 + 0.111314i −0.967511 0.252831i \(-0.918638\pi\)
0.931343 + 0.364144i \(0.118638\pi\)
\(822\) 0 0
\(823\) −13.0266 + 9.46441i −0.454080 + 0.329909i −0.791205 0.611552i \(-0.790546\pi\)
0.337124 + 0.941460i \(0.390546\pi\)
\(824\) −3.05046 −0.106268
\(825\) 0 0
\(826\) 6.11681 0.212831
\(827\) −12.3703 + 8.98751i −0.430156 + 0.312526i −0.781711 0.623641i \(-0.785653\pi\)
0.351555 + 0.936167i \(0.385653\pi\)
\(828\) 0 0
\(829\) −13.0239 + 40.0835i −0.452340 + 1.39216i 0.421890 + 0.906647i \(0.361367\pi\)
−0.874230 + 0.485512i \(0.838633\pi\)
\(830\) −0.0847063 0.0615427i −0.00294020 0.00213618i
\(831\) 0 0
\(832\) 3.44790 10.6115i 0.119534 0.367889i
\(833\) −4.72972 14.5566i −0.163875 0.504355i
\(834\) 0 0
\(835\) −30.0193 −1.03886
\(836\) −8.37869 + 24.3788i −0.289783 + 0.843157i
\(837\) 0 0
\(838\) −7.19483 + 5.22735i −0.248541 + 0.180576i
\(839\) 0.818089 + 2.51782i 0.0282436 + 0.0869247i 0.964185 0.265232i \(-0.0854485\pi\)
−0.935941 + 0.352157i \(0.885448\pi\)
\(840\) 0 0
\(841\) 21.1473 + 15.3644i 0.729218 + 0.529808i
\(842\) −5.08411 3.69382i −0.175210 0.127298i
\(843\) 0 0
\(844\) 3.96018 + 12.1882i 0.136315 + 0.419534i
\(845\) −4.12288 + 2.99545i −0.141831 + 0.103047i
\(846\) 0 0
\(847\) −31.0780 + 21.0141i −1.06785 + 0.722053i
\(848\) −32.8464 −1.12795
\(849\) 0 0
\(850\) −1.04289 3.20970i −0.0357709 0.110092i
\(851\) 7.09718 21.8429i 0.243288 0.748765i
\(852\) 0 0
\(853\) −7.49989 5.44899i −0.256791 0.186570i 0.451940 0.892048i \(-0.350732\pi\)
−0.708731 + 0.705479i \(0.750732\pi\)
\(854\) 1.99185 6.13027i 0.0681596 0.209774i
\(855\) 0 0
\(856\) −4.93314 + 3.58414i −0.168611 + 0.122503i
\(857\) −20.5356 −0.701483 −0.350742 0.936472i \(-0.614070\pi\)
−0.350742 + 0.936472i \(0.614070\pi\)
\(858\) 0 0
\(859\) 36.0278 1.22925 0.614626 0.788819i \(-0.289307\pi\)
0.614626 + 0.788819i \(0.289307\pi\)
\(860\) 23.3724 16.9811i 0.796993 0.579049i
\(861\) 0 0
\(862\) 0.997209 3.06909i 0.0339651 0.104534i
\(863\) −3.49209 2.53715i −0.118872 0.0863656i 0.526761 0.850014i \(-0.323406\pi\)
−0.645633 + 0.763648i \(0.723406\pi\)
\(864\) 0 0
\(865\) 6.52733 20.0890i 0.221936 0.683048i
\(866\) −2.12166 6.52979i −0.0720969 0.221891i
\(867\) 0 0
\(868\) 23.3932 0.794015
\(869\) 3.88516 + 12.6818i 0.131795 + 0.430202i
\(870\) 0 0
\(871\) 10.0305 7.28757i 0.339870 0.246930i
\(872\) −3.13804 9.65790i −0.106268 0.327058i
\(873\) 0 0
\(874\) −13.1335 9.54206i −0.444248 0.322765i
\(875\) 33.3792 + 24.2514i 1.12842 + 0.819846i
\(876\) 0 0
\(877\) 9.61537 + 29.5931i 0.324688 + 0.999287i 0.971581 + 0.236707i \(0.0760680\pi\)
−0.646893 + 0.762581i \(0.723932\pi\)
\(878\) 9.99117 7.25901i 0.337186 0.244980i
\(879\) 0 0
\(880\) −14.8093 0.250027i −0.499222 0.00842839i
\(881\) 43.9267 1.47993 0.739964 0.672647i \(-0.234843\pi\)
0.739964 + 0.672647i \(0.234843\pi\)
\(882\) 0 0
\(883\) −1.81685 5.59170i −0.0611420 0.188176i 0.915820 0.401589i \(-0.131542\pi\)
−0.976962 + 0.213413i \(0.931542\pi\)
\(884\) −7.18292 + 22.1068i −0.241588 + 0.743530i
\(885\) 0 0
\(886\) 10.6436 + 7.73306i 0.357580 + 0.259797i
\(887\) −2.37792 + 7.31848i −0.0798427 + 0.245730i −0.983008 0.183562i \(-0.941237\pi\)
0.903165 + 0.429293i \(0.141237\pi\)
\(888\) 0 0
\(889\) −29.7850 + 21.6401i −0.998957 + 0.725785i
\(890\) 6.64689 0.222804
\(891\) 0 0
\(892\) −41.3640 −1.38497
\(893\) −3.86079 + 2.80503i −0.129197 + 0.0938668i
\(894\) 0 0
\(895\) 11.5507 35.5494i 0.386097 1.18829i
\(896\) −31.2047 22.6716i −1.04248 0.757403i
\(897\) 0 0
\(898\) −2.14864 + 6.61285i −0.0717012 + 0.220674i
\(899\) −2.03751 6.27081i −0.0679547 0.209143i
\(900\) 0 0
\(901\) 41.5180 1.38316
\(902\) −0.520665 + 0.365017i −0.0173362 + 0.0121537i
\(903\) 0 0
\(904\) 24.4793 17.7853i 0.814171 0.591530i
\(905\) −2.31210 7.11591i −0.0768568 0.236541i
\(906\) 0 0
\(907\) 15.3637 + 11.1624i 0.510143 + 0.370640i 0.812878 0.582434i \(-0.197900\pi\)
−0.302735 + 0.953075i \(0.597900\pi\)
\(908\) −16.9700 12.3294i −0.563170 0.409167i
\(909\) 0 0
\(910\) 3.53024 + 10.8650i 0.117026 + 0.360170i
\(911\) −40.4794 + 29.4100i −1.34114 + 0.974397i −0.341741 + 0.939794i \(0.611017\pi\)
−0.999401 + 0.0346024i \(0.988983\pi\)
\(912\) 0 0
\(913\) −0.339374 + 0.237921i −0.0112316 + 0.00787405i
\(914\) −12.0864 −0.399783
\(915\) 0 0
\(916\) −1.66237 5.11624i −0.0549262 0.169045i
\(917\) −22.2961 + 68.6205i −0.736284 + 2.26605i
\(918\) 0 0
\(919\) −2.48708 1.80697i −0.0820411 0.0596063i 0.546009 0.837780i \(-0.316147\pi\)
−0.628050 + 0.778173i \(0.716147\pi\)
\(920\) 7.29235 22.4436i 0.240422 0.739942i
\(921\) 0 0
\(922\) −10.4146 + 7.56668i −0.342988 + 0.249195i
\(923\) −28.0540 −0.923410
\(924\) 0 0
\(925\) −6.38283 −0.209866
\(926\) 5.03648 3.65922i 0.165509 0.120249i
\(927\) 0 0
\(928\) −2.59765 + 7.99474i −0.0852720 + 0.262440i
\(929\) 0.732625 + 0.532283i 0.0240366 + 0.0174636i 0.599739 0.800196i \(-0.295271\pi\)
−0.575702 + 0.817660i \(0.695271\pi\)
\(930\) 0 0
\(931\) −6.32282 + 19.4596i −0.207222 + 0.637764i
\(932\) 13.3374 + 41.0484i 0.436882 + 1.34459i
\(933\) 0 0
\(934\) 13.5887 0.444634
\(935\) 18.7190 + 0.316034i 0.612177 + 0.0103354i
\(936\) 0 0
\(937\) 17.8423 12.9632i 0.582881 0.423488i −0.256881 0.966443i \(-0.582695\pi\)
0.839762 + 0.542955i \(0.182695\pi\)
\(938\) −1.60312 4.93390i −0.0523438 0.161098i
\(939\) 0 0
\(940\) −2.62656 1.90830i −0.0856688 0.0622420i
\(941\) −4.41798 3.20985i −0.144022 0.104638i 0.513441 0.858125i \(-0.328370\pi\)
−0.657463 + 0.753487i \(0.728370\pi\)
\(942\) 0 0
\(943\) 0.904937 + 2.78511i 0.0294688 + 0.0906956i
\(944\) 7.73386 5.61898i 0.251716 0.182882i
\(945\) 0 0
\(946\) 4.58059 + 14.9519i 0.148928 + 0.486127i
\(947\) 32.4406 1.05418 0.527089 0.849810i \(-0.323283\pi\)
0.527089 + 0.849810i \(0.323283\pi\)
\(948\) 0 0
\(949\) 18.5840 + 57.1958i 0.603263 + 1.85665i
\(950\) −1.39417 + 4.29081i −0.0452328 + 0.139212i
\(951\) 0 0
\(952\) 16.8131 + 12.2154i 0.544916 + 0.395905i
\(953\) −16.6278 + 51.1752i −0.538628 + 1.65773i 0.197049 + 0.980394i \(0.436864\pi\)
−0.735677 + 0.677333i \(0.763136\pi\)
\(954\) 0 0
\(955\) −17.2947 + 12.5653i −0.559642 + 0.406604i
\(956\) 12.2290 0.395516
\(957\) 0 0
\(958\) 7.66260 0.247567
\(959\) −8.83079 + 6.41595i −0.285161 + 0.207182i
\(960\) 0 0
\(961\) −4.88295 + 15.0282i −0.157515 + 0.484780i
\(962\) −4.86330 3.53339i −0.156799 0.113921i
\(963\) 0 0
\(964\) 4.22478 13.0025i 0.136071 0.418784i
\(965\) −6.63288 20.4139i −0.213520 0.657147i
\(966\) 0 0
\(967\) −28.8151 −0.926630 −0.463315 0.886194i \(-0.653340\pi\)
−0.463315 + 0.886194i \(0.653340\pi\)
\(968\) 6.91562 19.0683i 0.222277 0.612880i
\(969\) 0 0
\(970\) 0.232606 0.168998i 0.00746852 0.00542620i
\(971\) 1.66685 + 5.13005i 0.0534919 + 0.164631i 0.974233 0.225542i \(-0.0724152\pi\)
−0.920742 + 0.390173i \(0.872415\pi\)
\(972\) 0 0
\(973\) 41.3700 + 30.0571i 1.32626 + 0.963586i
\(974\) 10.6851 + 7.76320i 0.342373 + 0.248749i
\(975\) 0 0
\(976\) −3.11293 9.58061i −0.0996424 0.306668i
\(977\) 2.67975 1.94695i 0.0857329 0.0622886i −0.544093 0.839025i \(-0.683126\pi\)
0.629826 + 0.776736i \(0.283126\pi\)
\(978\) 0 0
\(979\) 8.55201 24.8831i 0.273324 0.795266i
\(980\) −13.9200 −0.444657
\(981\) 0 0
\(982\) −5.91123 18.1929i −0.188635 0.580559i
\(983\) 10.4671 32.2143i 0.333847 1.02748i −0.633440 0.773792i \(-0.718357\pi\)
0.967287 0.253685i \(-0.0816425\pi\)
\(984\) 0 0
\(985\) 14.2967 + 10.3872i 0.455530 + 0.330962i
\(986\) 0.847129 2.60719i 0.0269781 0.0830300i
\(987\) 0 0
\(988\) 25.1392 18.2647i 0.799785 0.581078i
\(989\) 72.0183 2.29005
\(990\) 0 0
\(991\) 8.66640 0.275297 0.137649 0.990481i \(-0.456046\pi\)
0.137649 + 0.990481i \(0.456046\pi\)
\(992\) −15.6761 + 11.3893i −0.497716 + 0.361612i
\(993\) 0 0
\(994\) −3.62742 + 11.1640i −0.115055 + 0.354102i
\(995\) −36.5902 26.5843i −1.15999 0.842780i
\(996\) 0 0
\(997\) −9.35253 + 28.7841i −0.296197 + 0.911602i 0.686619 + 0.727017i \(0.259094\pi\)
−0.982817 + 0.184585i \(0.940906\pi\)
\(998\) 3.64303 + 11.2121i 0.115318 + 0.354912i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.f.f.487.5 36
3.2 odd 2 891.2.f.e.487.5 36
9.2 odd 6 297.2.n.b.91.5 72
9.4 even 3 99.2.m.b.25.5 yes 72
9.5 odd 6 297.2.n.b.289.5 72
9.7 even 3 99.2.m.b.58.5 yes 72
11.2 odd 10 9801.2.a.co.1.10 18
11.4 even 5 inner 891.2.f.f.730.5 36
11.9 even 5 9801.2.a.cm.1.9 18
33.2 even 10 9801.2.a.cn.1.9 18
33.20 odd 10 9801.2.a.cp.1.10 18
33.26 odd 10 891.2.f.e.730.5 36
99.4 even 15 99.2.m.b.70.5 yes 72
99.13 odd 30 1089.2.e.o.727.9 36
99.31 even 15 1089.2.e.p.727.10 36
99.59 odd 30 297.2.n.b.235.5 72
99.70 even 15 99.2.m.b.4.5 72
99.79 odd 30 1089.2.e.o.364.9 36
99.92 odd 30 297.2.n.b.37.5 72
99.97 even 15 1089.2.e.p.364.10 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.4.5 72 99.70 even 15
99.2.m.b.25.5 yes 72 9.4 even 3
99.2.m.b.58.5 yes 72 9.7 even 3
99.2.m.b.70.5 yes 72 99.4 even 15
297.2.n.b.37.5 72 99.92 odd 30
297.2.n.b.91.5 72 9.2 odd 6
297.2.n.b.235.5 72 99.59 odd 30
297.2.n.b.289.5 72 9.5 odd 6
891.2.f.e.487.5 36 3.2 odd 2
891.2.f.e.730.5 36 33.26 odd 10
891.2.f.f.487.5 36 1.1 even 1 trivial
891.2.f.f.730.5 36 11.4 even 5 inner
1089.2.e.o.364.9 36 99.79 odd 30
1089.2.e.o.727.9 36 99.13 odd 30
1089.2.e.p.364.10 36 99.97 even 15
1089.2.e.p.727.10 36 99.31 even 15
9801.2.a.cm.1.9 18 11.9 even 5
9801.2.a.cn.1.9 18 33.2 even 10
9801.2.a.co.1.10 18 11.2 odd 10
9801.2.a.cp.1.10 18 33.20 odd 10