Properties

Label 891.2.f.f.487.4
Level $891$
Weight $2$
Character 891.487
Analytic conductor $7.115$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(82,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(9\) over \(\Q(\zeta_{5})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 487.4
Character \(\chi\) \(=\) 891.487
Dual form 891.2.f.f.730.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.467460 + 0.339629i) q^{2} +(-0.514863 + 1.58459i) q^{4} +(-2.43063 - 1.76596i) q^{5} +(-0.359795 + 1.10733i) q^{7} +(-0.654602 - 2.01466i) q^{8} +1.73599 q^{10} +(3.11301 - 1.14420i) q^{11} +(3.19252 - 2.31950i) q^{13} +(-0.207894 - 0.639831i) q^{14} +(-1.70562 - 1.23921i) q^{16} +(0.254185 + 0.184677i) q^{17} +(1.96794 + 6.05670i) q^{19} +(4.04976 - 2.94232i) q^{20} +(-1.06660 + 1.59213i) q^{22} -0.0855002 q^{23} +(1.24428 + 3.82951i) q^{25} +(-0.704604 + 2.16855i) q^{26} +(-1.56942 - 1.14025i) q^{28} +(-2.37938 + 7.32296i) q^{29} +(-5.28194 + 3.83755i) q^{31} +5.45485 q^{32} -0.181543 q^{34} +(2.83004 - 2.05614i) q^{35} +(-1.92922 + 5.93753i) q^{37} +(-2.97697 - 2.16289i) q^{38} +(-1.96670 + 6.05289i) q^{40} +(1.79510 + 5.52475i) q^{41} -6.78458 q^{43} +(0.210303 + 5.52194i) q^{44} +(0.0399679 - 0.0290384i) q^{46} +(-0.101276 - 0.311695i) q^{47} +(4.56638 + 3.31767i) q^{49} +(-1.88227 - 1.36755i) q^{50} +(2.03174 + 6.25305i) q^{52} +(1.96000 - 1.42402i) q^{53} +(-9.58718 - 2.71632i) q^{55} +2.46642 q^{56} +(-1.37483 - 4.23130i) q^{58} +(-0.709513 + 2.18366i) q^{59} +(11.0732 + 8.04513i) q^{61} +(1.16575 - 3.58780i) q^{62} +(0.861321 - 0.625787i) q^{64} -11.8560 q^{65} +11.6798 q^{67} +(-0.423507 + 0.307696i) q^{68} +(-0.624602 + 1.92233i) q^{70} +(-7.05272 - 5.12410i) q^{71} +(0.910538 - 2.80235i) q^{73} +(-1.11473 - 3.43078i) q^{74} -10.6106 q^{76} +(0.146963 + 3.85882i) q^{77} +(7.18989 - 5.22376i) q^{79} +(1.95735 + 6.02412i) q^{80} +(-2.71551 - 1.97293i) q^{82} +(-4.01093 - 2.91411i) q^{83} +(-0.291701 - 0.897762i) q^{85} +(3.17152 - 2.30424i) q^{86} +(-4.34294 - 5.52265i) q^{88} +2.12862 q^{89} +(1.41981 + 4.36973i) q^{91} +(0.0440209 - 0.135482i) q^{92} +(0.153203 + 0.111309i) q^{94} +(5.91254 - 18.1969i) q^{95} +(0.0718724 - 0.0522184i) q^{97} -3.26138 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + q^{2} - 11 q^{4} + 8 q^{5} + 2 q^{7} + 3 q^{8} - 4 q^{10} + 2 q^{11} + 11 q^{13} + 10 q^{14} + 9 q^{16} - 10 q^{17} + 4 q^{19} + 45 q^{20} + 16 q^{22} - 20 q^{23} - 11 q^{25} - 6 q^{26} - 27 q^{28}+ \cdots - 164 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.467460 + 0.339629i −0.330544 + 0.240154i −0.740661 0.671878i \(-0.765488\pi\)
0.410117 + 0.912033i \(0.365488\pi\)
\(3\) 0 0
\(4\) −0.514863 + 1.58459i −0.257432 + 0.792293i
\(5\) −2.43063 1.76596i −1.08701 0.789761i −0.108120 0.994138i \(-0.534483\pi\)
−0.978892 + 0.204377i \(0.934483\pi\)
\(6\) 0 0
\(7\) −0.359795 + 1.10733i −0.135990 + 0.418533i −0.995743 0.0921770i \(-0.970617\pi\)
0.859753 + 0.510710i \(0.170617\pi\)
\(8\) −0.654602 2.01466i −0.231437 0.712289i
\(9\) 0 0
\(10\) 1.73599 0.548970
\(11\) 3.11301 1.14420i 0.938607 0.344988i
\(12\) 0 0
\(13\) 3.19252 2.31950i 0.885446 0.643314i −0.0492409 0.998787i \(-0.515680\pi\)
0.934687 + 0.355473i \(0.115680\pi\)
\(14\) −0.207894 0.639831i −0.0555619 0.171002i
\(15\) 0 0
\(16\) −1.70562 1.23921i −0.426406 0.309802i
\(17\) 0.254185 + 0.184677i 0.0616490 + 0.0447906i 0.618183 0.786034i \(-0.287869\pi\)
−0.556534 + 0.830825i \(0.687869\pi\)
\(18\) 0 0
\(19\) 1.96794 + 6.05670i 0.451477 + 1.38950i 0.875222 + 0.483721i \(0.160715\pi\)
−0.423746 + 0.905781i \(0.639285\pi\)
\(20\) 4.04976 2.94232i 0.905554 0.657923i
\(21\) 0 0
\(22\) −1.06660 + 1.59213i −0.227401 + 0.339444i
\(23\) −0.0855002 −0.0178280 −0.00891401 0.999960i \(-0.502837\pi\)
−0.00891401 + 0.999960i \(0.502837\pi\)
\(24\) 0 0
\(25\) 1.24428 + 3.82951i 0.248857 + 0.765902i
\(26\) −0.704604 + 2.16855i −0.138184 + 0.425287i
\(27\) 0 0
\(28\) −1.56942 1.14025i −0.296593 0.215487i
\(29\) −2.37938 + 7.32296i −0.441839 + 1.35984i 0.444075 + 0.895990i \(0.353532\pi\)
−0.885914 + 0.463850i \(0.846468\pi\)
\(30\) 0 0
\(31\) −5.28194 + 3.83755i −0.948664 + 0.689245i −0.950491 0.310753i \(-0.899419\pi\)
0.00182628 + 0.999998i \(0.499419\pi\)
\(32\) 5.45485 0.964291
\(33\) 0 0
\(34\) −0.181543 −0.0311344
\(35\) 2.83004 2.05614i 0.478363 0.347551i
\(36\) 0 0
\(37\) −1.92922 + 5.93753i −0.317162 + 0.976124i 0.657694 + 0.753286i \(0.271532\pi\)
−0.974855 + 0.222838i \(0.928468\pi\)
\(38\) −2.97697 2.16289i −0.482928 0.350868i
\(39\) 0 0
\(40\) −1.96670 + 6.05289i −0.310963 + 0.957046i
\(41\) 1.79510 + 5.52475i 0.280348 + 0.862822i 0.987755 + 0.156015i \(0.0498649\pi\)
−0.707407 + 0.706807i \(0.750135\pi\)
\(42\) 0 0
\(43\) −6.78458 −1.03464 −0.517320 0.855792i \(-0.673070\pi\)
−0.517320 + 0.855792i \(0.673070\pi\)
\(44\) 0.210303 + 5.52194i 0.0317043 + 0.832463i
\(45\) 0 0
\(46\) 0.0399679 0.0290384i 0.00589294 0.00428147i
\(47\) −0.101276 0.311695i −0.0147726 0.0454654i 0.943398 0.331661i \(-0.107609\pi\)
−0.958171 + 0.286196i \(0.907609\pi\)
\(48\) 0 0
\(49\) 4.56638 + 3.31767i 0.652340 + 0.473953i
\(50\) −1.88227 1.36755i −0.266193 0.193400i
\(51\) 0 0
\(52\) 2.03174 + 6.25305i 0.281752 + 0.867142i
\(53\) 1.96000 1.42402i 0.269227 0.195605i −0.444978 0.895541i \(-0.646789\pi\)
0.714205 + 0.699937i \(0.246789\pi\)
\(54\) 0 0
\(55\) −9.58718 2.71632i −1.29274 0.366269i
\(56\) 2.46642 0.329589
\(57\) 0 0
\(58\) −1.37483 4.23130i −0.180524 0.555596i
\(59\) −0.709513 + 2.18366i −0.0923707 + 0.284288i −0.986560 0.163402i \(-0.947753\pi\)
0.894189 + 0.447690i \(0.147753\pi\)
\(60\) 0 0
\(61\) 11.0732 + 8.04513i 1.41778 + 1.03007i 0.992134 + 0.125182i \(0.0399515\pi\)
0.425641 + 0.904892i \(0.360049\pi\)
\(62\) 1.16575 3.58780i 0.148050 0.455652i
\(63\) 0 0
\(64\) 0.861321 0.625787i 0.107665 0.0782233i
\(65\) −11.8560 −1.47055
\(66\) 0 0
\(67\) 11.6798 1.42691 0.713456 0.700700i \(-0.247129\pi\)
0.713456 + 0.700700i \(0.247129\pi\)
\(68\) −0.423507 + 0.307696i −0.0513578 + 0.0373136i
\(69\) 0 0
\(70\) −0.624602 + 1.92233i −0.0746542 + 0.229762i
\(71\) −7.05272 5.12410i −0.837004 0.608119i 0.0845279 0.996421i \(-0.473062\pi\)
−0.921532 + 0.388302i \(0.873062\pi\)
\(72\) 0 0
\(73\) 0.910538 2.80235i 0.106570 0.327990i −0.883525 0.468383i \(-0.844837\pi\)
0.990096 + 0.140393i \(0.0448367\pi\)
\(74\) −1.11473 3.43078i −0.129584 0.398820i
\(75\) 0 0
\(76\) −10.6106 −1.21712
\(77\) 0.146963 + 3.85882i 0.0167480 + 0.439753i
\(78\) 0 0
\(79\) 7.18989 5.22376i 0.808926 0.587719i −0.104593 0.994515i \(-0.533354\pi\)
0.913519 + 0.406796i \(0.133354\pi\)
\(80\) 1.95735 + 6.02412i 0.218839 + 0.673517i
\(81\) 0 0
\(82\) −2.71551 1.97293i −0.299878 0.217874i
\(83\) −4.01093 2.91411i −0.440257 0.319865i 0.345480 0.938426i \(-0.387716\pi\)
−0.785737 + 0.618561i \(0.787716\pi\)
\(84\) 0 0
\(85\) −0.291701 0.897762i −0.0316394 0.0973760i
\(86\) 3.17152 2.30424i 0.341994 0.248473i
\(87\) 0 0
\(88\) −4.34294 5.52265i −0.462959 0.588717i
\(89\) 2.12862 0.225634 0.112817 0.993616i \(-0.464013\pi\)
0.112817 + 0.993616i \(0.464013\pi\)
\(90\) 0 0
\(91\) 1.41981 + 4.36973i 0.148837 + 0.458072i
\(92\) 0.0440209 0.135482i 0.00458950 0.0141250i
\(93\) 0 0
\(94\) 0.153203 + 0.111309i 0.0158017 + 0.0114806i
\(95\) 5.91254 18.1969i 0.606613 1.86696i
\(96\) 0 0
\(97\) 0.0718724 0.0522184i 0.00729754 0.00530197i −0.584131 0.811660i \(-0.698564\pi\)
0.591428 + 0.806358i \(0.298564\pi\)
\(98\) −3.26138 −0.329449
\(99\) 0 0
\(100\) −6.70883 −0.670883
\(101\) 1.66373 1.20877i 0.165547 0.120277i −0.501927 0.864910i \(-0.667375\pi\)
0.667474 + 0.744633i \(0.267375\pi\)
\(102\) 0 0
\(103\) −0.932216 + 2.86907i −0.0918540 + 0.282698i −0.986421 0.164236i \(-0.947484\pi\)
0.894567 + 0.446934i \(0.147484\pi\)
\(104\) −6.76283 4.91348i −0.663150 0.481807i
\(105\) 0 0
\(106\) −0.432581 + 1.33135i −0.0420160 + 0.129312i
\(107\) 3.70600 + 11.4059i 0.358272 + 1.10265i 0.954088 + 0.299527i \(0.0968290\pi\)
−0.595815 + 0.803121i \(0.703171\pi\)
\(108\) 0 0
\(109\) 5.20013 0.498082 0.249041 0.968493i \(-0.419885\pi\)
0.249041 + 0.968493i \(0.419885\pi\)
\(110\) 5.40417 1.98632i 0.515267 0.189388i
\(111\) 0 0
\(112\) 1.98589 1.44283i 0.187649 0.136335i
\(113\) 5.94164 + 18.2865i 0.558943 + 1.72025i 0.685298 + 0.728263i \(0.259672\pi\)
−0.126355 + 0.991985i \(0.540328\pi\)
\(114\) 0 0
\(115\) 0.207820 + 0.150990i 0.0193793 + 0.0140799i
\(116\) −10.3788 7.54065i −0.963649 0.700132i
\(117\) 0 0
\(118\) −0.409965 1.26174i −0.0377403 0.116153i
\(119\) −0.295953 + 0.215023i −0.0271300 + 0.0197111i
\(120\) 0 0
\(121\) 8.38163 7.12378i 0.761967 0.647616i
\(122\) −7.90863 −0.716014
\(123\) 0 0
\(124\) −3.36146 10.3455i −0.301868 0.929054i
\(125\) −0.903736 + 2.78141i −0.0808326 + 0.248777i
\(126\) 0 0
\(127\) 10.6652 + 7.74873i 0.946384 + 0.687588i 0.949949 0.312405i \(-0.101135\pi\)
−0.00356461 + 0.999994i \(0.501135\pi\)
\(128\) −3.56138 + 10.9608i −0.314785 + 0.968808i
\(129\) 0 0
\(130\) 5.54220 4.02664i 0.486083 0.353160i
\(131\) −17.9718 −1.57020 −0.785100 0.619369i \(-0.787389\pi\)
−0.785100 + 0.619369i \(0.787389\pi\)
\(132\) 0 0
\(133\) −7.41484 −0.642949
\(134\) −5.45983 + 3.96680i −0.471657 + 0.342679i
\(135\) 0 0
\(136\) 0.205670 0.632986i 0.0176360 0.0542781i
\(137\) 13.2693 + 9.64070i 1.13367 + 0.823661i 0.986225 0.165409i \(-0.0528945\pi\)
0.147447 + 0.989070i \(0.452895\pi\)
\(138\) 0 0
\(139\) −3.67780 + 11.3191i −0.311947 + 0.960073i 0.665046 + 0.746802i \(0.268412\pi\)
−0.976993 + 0.213271i \(0.931588\pi\)
\(140\) 1.80105 + 5.54307i 0.152217 + 0.468475i
\(141\) 0 0
\(142\) 5.03716 0.422709
\(143\) 7.28438 10.8735i 0.609150 0.909287i
\(144\) 0 0
\(145\) 18.7154 13.5976i 1.55423 1.12922i
\(146\) 0.526120 + 1.61923i 0.0435420 + 0.134008i
\(147\) 0 0
\(148\) −8.41525 6.11403i −0.691729 0.502571i
\(149\) 3.66623 + 2.66368i 0.300350 + 0.218217i 0.727745 0.685848i \(-0.240569\pi\)
−0.427395 + 0.904065i \(0.640569\pi\)
\(150\) 0 0
\(151\) −0.905687 2.78742i −0.0737037 0.226837i 0.907418 0.420230i \(-0.138051\pi\)
−0.981121 + 0.193393i \(0.938051\pi\)
\(152\) 10.9140 7.92945i 0.885239 0.643164i
\(153\) 0 0
\(154\) −1.37927 1.75393i −0.111144 0.141336i
\(155\) 19.6154 1.57555
\(156\) 0 0
\(157\) −5.57888 17.1700i −0.445243 1.37032i −0.882217 0.470843i \(-0.843950\pi\)
0.436974 0.899474i \(-0.356050\pi\)
\(158\) −1.58684 + 4.88380i −0.126242 + 0.388534i
\(159\) 0 0
\(160\) −13.2587 9.63304i −1.04820 0.761559i
\(161\) 0.0307625 0.0946773i 0.00242443 0.00746161i
\(162\) 0 0
\(163\) 4.71129 3.42295i 0.369017 0.268106i −0.387786 0.921749i \(-0.626760\pi\)
0.756803 + 0.653643i \(0.226760\pi\)
\(164\) −9.67868 −0.755778
\(165\) 0 0
\(166\) 2.86467 0.222341
\(167\) 4.06266 2.95170i 0.314378 0.228409i −0.419395 0.907804i \(-0.637758\pi\)
0.733773 + 0.679395i \(0.237758\pi\)
\(168\) 0 0
\(169\) 0.794875 2.44637i 0.0611442 0.188182i
\(170\) 0.441265 + 0.320598i 0.0338435 + 0.0245887i
\(171\) 0 0
\(172\) 3.49313 10.7508i 0.266349 0.819738i
\(173\) −4.81753 14.8268i −0.366270 1.12726i −0.949182 0.314728i \(-0.898087\pi\)
0.582912 0.812536i \(-0.301913\pi\)
\(174\) 0 0
\(175\) −4.68824 −0.354397
\(176\) −6.72751 1.90610i −0.507105 0.143677i
\(177\) 0 0
\(178\) −0.995046 + 0.722943i −0.0745818 + 0.0541869i
\(179\) 2.17822 + 6.70387i 0.162808 + 0.501071i 0.998868 0.0475668i \(-0.0151467\pi\)
−0.836060 + 0.548638i \(0.815147\pi\)
\(180\) 0 0
\(181\) −2.02068 1.46811i −0.150196 0.109124i 0.510149 0.860086i \(-0.329590\pi\)
−0.660345 + 0.750962i \(0.729590\pi\)
\(182\) −2.14779 1.56046i −0.159205 0.115669i
\(183\) 0 0
\(184\) 0.0559686 + 0.172254i 0.00412606 + 0.0126987i
\(185\) 15.1747 11.0250i 1.11566 0.810577i
\(186\) 0 0
\(187\) 1.00259 + 0.284062i 0.0733165 + 0.0207727i
\(188\) 0.546051 0.0398249
\(189\) 0 0
\(190\) 3.41633 + 10.5144i 0.247847 + 0.762795i
\(191\) −3.65350 + 11.2443i −0.264358 + 0.813611i 0.727483 + 0.686126i \(0.240690\pi\)
−0.991841 + 0.127484i \(0.959310\pi\)
\(192\) 0 0
\(193\) −5.45816 3.96559i −0.392887 0.285449i 0.373751 0.927529i \(-0.378072\pi\)
−0.766637 + 0.642080i \(0.778072\pi\)
\(194\) −0.0158626 + 0.0488200i −0.00113887 + 0.00350507i
\(195\) 0 0
\(196\) −7.60820 + 5.52768i −0.543443 + 0.394834i
\(197\) −20.6474 −1.47107 −0.735534 0.677488i \(-0.763069\pi\)
−0.735534 + 0.677488i \(0.763069\pi\)
\(198\) 0 0
\(199\) −13.2862 −0.941832 −0.470916 0.882178i \(-0.656077\pi\)
−0.470916 + 0.882178i \(0.656077\pi\)
\(200\) 6.90064 5.01361i 0.487949 0.354516i
\(201\) 0 0
\(202\) −0.367193 + 1.13010i −0.0258356 + 0.0795138i
\(203\) −7.25288 5.26953i −0.509053 0.369848i
\(204\) 0 0
\(205\) 5.39325 16.5987i 0.376681 1.15931i
\(206\) −0.538646 1.65778i −0.0375292 0.115503i
\(207\) 0 0
\(208\) −8.31958 −0.576859
\(209\) 13.0563 + 16.6028i 0.903120 + 1.14844i
\(210\) 0 0
\(211\) 6.75126 4.90508i 0.464776 0.337680i −0.330626 0.943762i \(-0.607260\pi\)
0.795402 + 0.606082i \(0.207260\pi\)
\(212\) 1.24736 + 3.83897i 0.0856688 + 0.263661i
\(213\) 0 0
\(214\) −5.60618 4.07313i −0.383231 0.278433i
\(215\) 16.4908 + 11.9813i 1.12467 + 0.817117i
\(216\) 0 0
\(217\) −2.34904 7.22960i −0.159463 0.490778i
\(218\) −2.43085 + 1.76612i −0.164638 + 0.119616i
\(219\) 0 0
\(220\) 9.24034 13.7932i 0.622984 0.929936i
\(221\) 1.23985 0.0834013
\(222\) 0 0
\(223\) −0.118556 0.364878i −0.00793910 0.0244340i 0.947008 0.321209i \(-0.104089\pi\)
−0.954948 + 0.296774i \(0.904089\pi\)
\(224\) −1.96263 + 6.04035i −0.131134 + 0.403588i
\(225\) 0 0
\(226\) −8.98811 6.53024i −0.597880 0.434385i
\(227\) 5.56664 17.1324i 0.369471 1.13711i −0.577663 0.816276i \(-0.696035\pi\)
0.947134 0.320839i \(-0.103965\pi\)
\(228\) 0 0
\(229\) −10.8634 + 7.89270i −0.717872 + 0.521565i −0.885704 0.464251i \(-0.846324\pi\)
0.167832 + 0.985816i \(0.446324\pi\)
\(230\) −0.148428 −0.00978704
\(231\) 0 0
\(232\) 16.3108 1.07086
\(233\) 2.72611 1.98063i 0.178593 0.129756i −0.494897 0.868952i \(-0.664794\pi\)
0.673490 + 0.739196i \(0.264794\pi\)
\(234\) 0 0
\(235\) −0.304276 + 0.936466i −0.0198488 + 0.0610883i
\(236\) −3.09489 2.24857i −0.201460 0.146369i
\(237\) 0 0
\(238\) 0.0653183 0.201029i 0.00423395 0.0130308i
\(239\) −7.16820 22.0615i −0.463673 1.42704i −0.860644 0.509207i \(-0.829939\pi\)
0.396972 0.917831i \(-0.370061\pi\)
\(240\) 0 0
\(241\) 15.1641 0.976807 0.488404 0.872618i \(-0.337579\pi\)
0.488404 + 0.872618i \(0.337579\pi\)
\(242\) −1.49863 + 6.17673i −0.0963358 + 0.397055i
\(243\) 0 0
\(244\) −18.4494 + 13.4043i −1.18110 + 0.858120i
\(245\) −5.24033 16.1281i −0.334792 1.03039i
\(246\) 0 0
\(247\) 20.3312 + 14.7715i 1.29364 + 0.939887i
\(248\) 11.1889 + 8.12923i 0.710497 + 0.516207i
\(249\) 0 0
\(250\) −0.522189 1.60713i −0.0330262 0.101644i
\(251\) 0.471095 0.342271i 0.0297353 0.0216039i −0.572818 0.819682i \(-0.694150\pi\)
0.602554 + 0.798078i \(0.294150\pi\)
\(252\) 0 0
\(253\) −0.266163 + 0.0978289i −0.0167335 + 0.00615045i
\(254\) −7.61725 −0.477949
\(255\) 0 0
\(256\) −1.39982 4.30820i −0.0874887 0.269263i
\(257\) −3.39036 + 10.4344i −0.211485 + 0.650883i 0.787900 + 0.615803i \(0.211168\pi\)
−0.999385 + 0.0350793i \(0.988832\pi\)
\(258\) 0 0
\(259\) −5.88071 4.27258i −0.365409 0.265485i
\(260\) 6.10421 18.7868i 0.378567 1.16511i
\(261\) 0 0
\(262\) 8.40108 6.10374i 0.519020 0.377090i
\(263\) −14.3954 −0.887656 −0.443828 0.896112i \(-0.646380\pi\)
−0.443828 + 0.896112i \(0.646380\pi\)
\(264\) 0 0
\(265\) −7.27881 −0.447134
\(266\) 3.46614 2.51830i 0.212523 0.154407i
\(267\) 0 0
\(268\) −6.01349 + 18.5076i −0.367333 + 1.13053i
\(269\) −0.395590 0.287413i −0.0241195 0.0175239i 0.575660 0.817689i \(-0.304745\pi\)
−0.599780 + 0.800165i \(0.704745\pi\)
\(270\) 0 0
\(271\) 6.77950 20.8652i 0.411825 1.26747i −0.503234 0.864150i \(-0.667857\pi\)
0.915060 0.403318i \(-0.132143\pi\)
\(272\) −0.204692 0.629977i −0.0124113 0.0381980i
\(273\) 0 0
\(274\) −9.47712 −0.572534
\(275\) 8.25517 + 10.4976i 0.497806 + 0.633029i
\(276\) 0 0
\(277\) −2.32149 + 1.68666i −0.139485 + 0.101342i −0.655340 0.755334i \(-0.727474\pi\)
0.515855 + 0.856676i \(0.327474\pi\)
\(278\) −2.12508 6.54031i −0.127454 0.392262i
\(279\) 0 0
\(280\) −5.99497 4.35560i −0.358268 0.260297i
\(281\) −14.7064 10.6848i −0.877308 0.637402i 0.0552299 0.998474i \(-0.482411\pi\)
−0.932538 + 0.361072i \(0.882411\pi\)
\(282\) 0 0
\(283\) −6.34632 19.5320i −0.377249 1.16105i −0.941949 0.335757i \(-0.891008\pi\)
0.564699 0.825297i \(-0.308992\pi\)
\(284\) 11.7508 8.53744i 0.697280 0.506604i
\(285\) 0 0
\(286\) 0.287805 + 7.55691i 0.0170183 + 0.446849i
\(287\) −6.76362 −0.399244
\(288\) 0 0
\(289\) −5.22278 16.0741i −0.307223 0.945534i
\(290\) −4.13058 + 12.7126i −0.242556 + 0.746511i
\(291\) 0 0
\(292\) 3.97176 + 2.88565i 0.232430 + 0.168870i
\(293\) 0.265775 0.817972i 0.0155268 0.0477864i −0.942993 0.332813i \(-0.892002\pi\)
0.958520 + 0.285026i \(0.0920023\pi\)
\(294\) 0 0
\(295\) 5.58081 4.05470i 0.324927 0.236074i
\(296\) 13.2250 0.768685
\(297\) 0 0
\(298\) −2.61848 −0.151684
\(299\) −0.272961 + 0.198318i −0.0157857 + 0.0114690i
\(300\) 0 0
\(301\) 2.44106 7.51280i 0.140700 0.433031i
\(302\) 1.37006 + 0.995408i 0.0788382 + 0.0572793i
\(303\) 0 0
\(304\) 4.14894 12.7691i 0.237958 0.732360i
\(305\) −12.7075 39.1095i −0.727627 2.23941i
\(306\) 0 0
\(307\) 3.48920 0.199139 0.0995696 0.995031i \(-0.468253\pi\)
0.0995696 + 0.995031i \(0.468253\pi\)
\(308\) −6.19029 1.75389i −0.352725 0.0999370i
\(309\) 0 0
\(310\) −9.16942 + 6.66197i −0.520788 + 0.378375i
\(311\) 3.35138 + 10.3145i 0.190039 + 0.584881i 0.999999 0.00160485i \(-0.000510839\pi\)
−0.809959 + 0.586486i \(0.800511\pi\)
\(312\) 0 0
\(313\) 22.8799 + 16.6232i 1.29325 + 0.939598i 0.999866 0.0163974i \(-0.00521967\pi\)
0.293381 + 0.955996i \(0.405220\pi\)
\(314\) 8.43935 + 6.13155i 0.476260 + 0.346023i
\(315\) 0 0
\(316\) 4.57569 + 14.0825i 0.257403 + 0.792204i
\(317\) 0.900053 0.653927i 0.0505520 0.0367282i −0.562222 0.826986i \(-0.690053\pi\)
0.612774 + 0.790258i \(0.290053\pi\)
\(318\) 0 0
\(319\) 0.971887 + 25.5189i 0.0544152 + 1.42878i
\(320\) −3.19867 −0.178811
\(321\) 0 0
\(322\) 0.0177750 + 0.0547057i 0.000990559 + 0.00304863i
\(323\) −0.618308 + 1.90296i −0.0344036 + 0.105883i
\(324\) 0 0
\(325\) 12.8550 + 9.33967i 0.713065 + 0.518072i
\(326\) −1.03980 + 3.20018i −0.0575894 + 0.177242i
\(327\) 0 0
\(328\) 9.95541 7.23303i 0.549696 0.399377i
\(329\) 0.381589 0.0210377
\(330\) 0 0
\(331\) −12.3783 −0.680373 −0.340187 0.940358i \(-0.610490\pi\)
−0.340187 + 0.940358i \(0.610490\pi\)
\(332\) 6.68275 4.85530i 0.366763 0.266469i
\(333\) 0 0
\(334\) −0.896648 + 2.75960i −0.0490624 + 0.150999i
\(335\) −28.3893 20.6260i −1.55107 1.12692i
\(336\) 0 0
\(337\) 4.16358 12.8142i 0.226804 0.698032i −0.771299 0.636473i \(-0.780393\pi\)
0.998103 0.0615594i \(-0.0196074\pi\)
\(338\) 0.459288 + 1.41354i 0.0249820 + 0.0768866i
\(339\) 0 0
\(340\) 1.57277 0.0852953
\(341\) −12.0518 + 17.9899i −0.652642 + 0.974208i
\(342\) 0 0
\(343\) −11.9104 + 8.65342i −0.643102 + 0.467241i
\(344\) 4.44120 + 13.6686i 0.239453 + 0.736962i
\(345\) 0 0
\(346\) 7.28763 + 5.29478i 0.391786 + 0.284649i
\(347\) −7.87915 5.72454i −0.422975 0.307309i 0.355859 0.934540i \(-0.384188\pi\)
−0.778834 + 0.627230i \(0.784188\pi\)
\(348\) 0 0
\(349\) −1.37210 4.22288i −0.0734466 0.226045i 0.907594 0.419850i \(-0.137917\pi\)
−0.981040 + 0.193804i \(0.937917\pi\)
\(350\) 2.19156 1.59226i 0.117144 0.0851100i
\(351\) 0 0
\(352\) 16.9810 6.24142i 0.905090 0.332669i
\(353\) 32.5235 1.73105 0.865527 0.500863i \(-0.166984\pi\)
0.865527 + 0.500863i \(0.166984\pi\)
\(354\) 0 0
\(355\) 8.09363 + 24.9096i 0.429565 + 1.32207i
\(356\) −1.09595 + 3.37299i −0.0580852 + 0.178768i
\(357\) 0 0
\(358\) −3.29506 2.39400i −0.174149 0.126527i
\(359\) −8.58143 + 26.4109i −0.452911 + 1.39392i 0.420660 + 0.907218i \(0.361799\pi\)
−0.873571 + 0.486697i \(0.838201\pi\)
\(360\) 0 0
\(361\) −17.4395 + 12.6705i −0.917868 + 0.666870i
\(362\) 1.44320 0.0758529
\(363\) 0 0
\(364\) −7.65523 −0.401243
\(365\) −7.16201 + 5.20351i −0.374877 + 0.272364i
\(366\) 0 0
\(367\) 0.362229 1.11483i 0.0189082 0.0581934i −0.941157 0.337969i \(-0.890260\pi\)
0.960065 + 0.279776i \(0.0902601\pi\)
\(368\) 0.145831 + 0.105952i 0.00760197 + 0.00552315i
\(369\) 0 0
\(370\) −3.34912 + 10.3075i −0.174112 + 0.535862i
\(371\) 0.871672 + 2.68273i 0.0452550 + 0.139280i
\(372\) 0 0
\(373\) 21.7668 1.12704 0.563520 0.826102i \(-0.309447\pi\)
0.563520 + 0.826102i \(0.309447\pi\)
\(374\) −0.565145 + 0.207721i −0.0292230 + 0.0107410i
\(375\) 0 0
\(376\) −0.561664 + 0.408072i −0.0289656 + 0.0210447i
\(377\) 9.38942 + 28.8977i 0.483580 + 1.48831i
\(378\) 0 0
\(379\) 13.1440 + 9.54967i 0.675161 + 0.490533i 0.871749 0.489953i \(-0.162986\pi\)
−0.196588 + 0.980486i \(0.562986\pi\)
\(380\) 25.7904 + 18.7379i 1.32302 + 0.961232i
\(381\) 0 0
\(382\) −2.11104 6.49710i −0.108010 0.332421i
\(383\) −5.01052 + 3.64036i −0.256026 + 0.186014i −0.708393 0.705818i \(-0.750580\pi\)
0.452367 + 0.891832i \(0.350580\pi\)
\(384\) 0 0
\(385\) 6.45730 9.63890i 0.329094 0.491244i
\(386\) 3.89830 0.198418
\(387\) 0 0
\(388\) 0.0457401 + 0.140773i 0.00232210 + 0.00714669i
\(389\) −0.223485 + 0.687817i −0.0113312 + 0.0348737i −0.956562 0.291528i \(-0.905836\pi\)
0.945231 + 0.326402i \(0.105836\pi\)
\(390\) 0 0
\(391\) −0.0217329 0.0157899i −0.00109908 0.000798528i
\(392\) 3.69481 11.3714i 0.186616 0.574345i
\(393\) 0 0
\(394\) 9.65184 7.01247i 0.486253 0.353283i
\(395\) −26.7009 −1.34347
\(396\) 0 0
\(397\) 4.08994 0.205268 0.102634 0.994719i \(-0.467273\pi\)
0.102634 + 0.994719i \(0.467273\pi\)
\(398\) 6.21075 4.51238i 0.311317 0.226185i
\(399\) 0 0
\(400\) 2.62328 8.07363i 0.131164 0.403681i
\(401\) 4.56793 + 3.31879i 0.228111 + 0.165733i 0.695970 0.718071i \(-0.254974\pi\)
−0.467859 + 0.883803i \(0.654974\pi\)
\(402\) 0 0
\(403\) −7.96148 + 24.5029i −0.396590 + 1.22058i
\(404\) 1.05881 + 3.25868i 0.0526777 + 0.162125i
\(405\) 0 0
\(406\) 5.18012 0.257085
\(407\) 0.788016 + 20.6910i 0.0390605 + 1.02561i
\(408\) 0 0
\(409\) −7.64422 + 5.55385i −0.377982 + 0.274620i −0.760513 0.649323i \(-0.775053\pi\)
0.382531 + 0.923943i \(0.375053\pi\)
\(410\) 3.11629 + 9.59094i 0.153902 + 0.473663i
\(411\) 0 0
\(412\) −4.06632 2.95436i −0.200333 0.145551i
\(413\) −2.16276 1.57134i −0.106422 0.0773204i
\(414\) 0 0
\(415\) 4.60290 + 14.1663i 0.225948 + 0.695395i
\(416\) 17.4147 12.6525i 0.853827 0.620342i
\(417\) 0 0
\(418\) −11.7421 3.32687i −0.574324 0.162723i
\(419\) 0.151564 0.00740438 0.00370219 0.999993i \(-0.498822\pi\)
0.00370219 + 0.999993i \(0.498822\pi\)
\(420\) 0 0
\(421\) 5.24605 + 16.1457i 0.255677 + 0.786892i 0.993696 + 0.112112i \(0.0357615\pi\)
−0.738019 + 0.674780i \(0.764239\pi\)
\(422\) −1.49003 + 4.58585i −0.0725337 + 0.223236i
\(423\) 0 0
\(424\) −4.15194 3.01656i −0.201636 0.146497i
\(425\) −0.390942 + 1.20320i −0.0189635 + 0.0583636i
\(426\) 0 0
\(427\) −12.8927 + 9.36711i −0.623923 + 0.453306i
\(428\) −19.9817 −0.965852
\(429\) 0 0
\(430\) −11.7780 −0.567986
\(431\) 20.5242 14.9117i 0.988618 0.718273i 0.0289998 0.999579i \(-0.490768\pi\)
0.959618 + 0.281307i \(0.0907678\pi\)
\(432\) 0 0
\(433\) 5.10950 15.7254i 0.245547 0.755716i −0.749999 0.661439i \(-0.769946\pi\)
0.995546 0.0942769i \(-0.0300539\pi\)
\(434\) 3.55347 + 2.58175i 0.170572 + 0.123928i
\(435\) 0 0
\(436\) −2.67736 + 8.24005i −0.128222 + 0.394627i
\(437\) −0.168259 0.517849i −0.00804893 0.0247721i
\(438\) 0 0
\(439\) −39.2413 −1.87289 −0.936443 0.350819i \(-0.885903\pi\)
−0.936443 + 0.350819i \(0.885903\pi\)
\(440\) 0.803326 + 21.0930i 0.0382971 + 1.00557i
\(441\) 0 0
\(442\) −0.579580 + 0.421089i −0.0275678 + 0.0200292i
\(443\) 9.94706 + 30.6139i 0.472599 + 1.45451i 0.849169 + 0.528122i \(0.177104\pi\)
−0.376570 + 0.926388i \(0.622896\pi\)
\(444\) 0 0
\(445\) −5.17390 3.75906i −0.245266 0.178197i
\(446\) 0.179344 + 0.130301i 0.00849216 + 0.00616992i
\(447\) 0 0
\(448\) 0.383056 + 1.17893i 0.0180977 + 0.0556990i
\(449\) 20.9085 15.1909i 0.986731 0.716902i 0.0275281 0.999621i \(-0.491236\pi\)
0.959203 + 0.282719i \(0.0912364\pi\)
\(450\) 0 0
\(451\) 11.9096 + 15.1447i 0.560799 + 0.713134i
\(452\) −32.0357 −1.50683
\(453\) 0 0
\(454\) 3.21647 + 9.89928i 0.150957 + 0.464596i
\(455\) 4.26572 13.1285i 0.199980 0.615476i
\(456\) 0 0
\(457\) 10.2877 + 7.47444i 0.481238 + 0.349640i 0.801805 0.597586i \(-0.203873\pi\)
−0.320567 + 0.947226i \(0.603873\pi\)
\(458\) 2.39760 7.37904i 0.112032 0.344800i
\(459\) 0 0
\(460\) −0.346255 + 0.251569i −0.0161442 + 0.0117295i
\(461\) −19.0217 −0.885931 −0.442965 0.896539i \(-0.646073\pi\)
−0.442965 + 0.896539i \(0.646073\pi\)
\(462\) 0 0
\(463\) −22.8667 −1.06271 −0.531353 0.847150i \(-0.678316\pi\)
−0.531353 + 0.847150i \(0.678316\pi\)
\(464\) 13.1330 9.54168i 0.609684 0.442961i
\(465\) 0 0
\(466\) −0.601664 + 1.85173i −0.0278716 + 0.0857798i
\(467\) −12.8819 9.35921i −0.596101 0.433093i 0.248392 0.968660i \(-0.420098\pi\)
−0.844493 + 0.535567i \(0.820098\pi\)
\(468\) 0 0
\(469\) −4.20232 + 12.9334i −0.194045 + 0.597210i
\(470\) −0.175814 0.541101i −0.00810971 0.0249591i
\(471\) 0 0
\(472\) 4.86377 0.223873
\(473\) −21.1205 + 7.76289i −0.971120 + 0.356938i
\(474\) 0 0
\(475\) −20.7455 + 15.0725i −0.951870 + 0.691574i
\(476\) −0.188347 0.579671i −0.00863285 0.0265692i
\(477\) 0 0
\(478\) 10.8436 + 7.87832i 0.495973 + 0.360346i
\(479\) 13.2598 + 9.63378i 0.605854 + 0.440179i 0.847952 0.530073i \(-0.177836\pi\)
−0.242098 + 0.970252i \(0.577836\pi\)
\(480\) 0 0
\(481\) 7.61303 + 23.4305i 0.347124 + 1.06834i
\(482\) −7.08862 + 5.15018i −0.322878 + 0.234584i
\(483\) 0 0
\(484\) 6.97285 + 16.9492i 0.316948 + 0.770418i
\(485\) −0.266911 −0.0121198
\(486\) 0 0
\(487\) 7.04142 + 21.6713i 0.319077 + 0.982019i 0.974044 + 0.226361i \(0.0726828\pi\)
−0.654966 + 0.755658i \(0.727317\pi\)
\(488\) 8.95967 27.5750i 0.405585 1.24826i
\(489\) 0 0
\(490\) 7.92722 + 5.75946i 0.358115 + 0.260186i
\(491\) −13.4864 + 41.5070i −0.608634 + 1.87318i −0.139076 + 0.990282i \(0.544413\pi\)
−0.469558 + 0.882901i \(0.655587\pi\)
\(492\) 0 0
\(493\) −1.95718 + 1.42198i −0.0881471 + 0.0640426i
\(494\) −14.5209 −0.653324
\(495\) 0 0
\(496\) 13.7645 0.618045
\(497\) 8.21163 5.96610i 0.368342 0.267616i
\(498\) 0 0
\(499\) −6.21233 + 19.1196i −0.278102 + 0.855910i 0.710280 + 0.703919i \(0.248568\pi\)
−0.988382 + 0.151991i \(0.951432\pi\)
\(500\) −3.94209 2.86410i −0.176296 0.128086i
\(501\) 0 0
\(502\) −0.103973 + 0.319996i −0.00464054 + 0.0142821i
\(503\) −3.27815 10.0891i −0.146165 0.449850i 0.850994 0.525176i \(-0.176000\pi\)
−0.997159 + 0.0753254i \(0.976000\pi\)
\(504\) 0 0
\(505\) −6.17856 −0.274942
\(506\) 0.0911948 0.136128i 0.00405410 0.00605162i
\(507\) 0 0
\(508\) −17.7697 + 12.9104i −0.788401 + 0.572807i
\(509\) −13.7415 42.2919i −0.609080 1.87456i −0.465840 0.884869i \(-0.654248\pi\)
−0.143240 0.989688i \(-0.545752\pi\)
\(510\) 0 0
\(511\) 2.77553 + 2.01654i 0.122782 + 0.0892064i
\(512\) −16.5301 12.0098i −0.730534 0.530764i
\(513\) 0 0
\(514\) −1.95899 6.02915i −0.0864073 0.265934i
\(515\) 7.33253 5.32739i 0.323110 0.234753i
\(516\) 0 0
\(517\) −0.671913 0.854430i −0.0295507 0.0375778i
\(518\) 4.20009 0.184541
\(519\) 0 0
\(520\) 7.76095 + 23.8858i 0.340340 + 1.04746i
\(521\) 5.23819 16.1215i 0.229489 0.706296i −0.768315 0.640071i \(-0.778905\pi\)
0.997805 0.0662243i \(-0.0210953\pi\)
\(522\) 0 0
\(523\) −24.4438 17.7595i −1.06885 0.776567i −0.0931472 0.995652i \(-0.529693\pi\)
−0.975706 + 0.219085i \(0.929693\pi\)
\(524\) 9.25301 28.4778i 0.404219 1.24406i
\(525\) 0 0
\(526\) 6.72925 4.88909i 0.293409 0.213174i
\(527\) −2.05130 −0.0893560
\(528\) 0 0
\(529\) −22.9927 −0.999682
\(530\) 3.40255 2.47210i 0.147797 0.107381i
\(531\) 0 0
\(532\) 3.81763 11.7495i 0.165515 0.509404i
\(533\) 18.5456 + 13.4741i 0.803298 + 0.583630i
\(534\) 0 0
\(535\) 11.1344 34.2682i 0.481382 1.48154i
\(536\) −7.64561 23.5308i −0.330240 1.01637i
\(537\) 0 0
\(538\) 0.282536 0.0121810
\(539\) 18.0112 + 5.10310i 0.775799 + 0.219806i
\(540\) 0 0
\(541\) −9.57164 + 6.95421i −0.411517 + 0.298985i −0.774216 0.632922i \(-0.781855\pi\)
0.362699 + 0.931906i \(0.381855\pi\)
\(542\) 3.91728 + 12.0561i 0.168262 + 0.517856i
\(543\) 0 0
\(544\) 1.38654 + 1.00738i 0.0594476 + 0.0431912i
\(545\) −12.6396 9.18321i −0.541421 0.393365i
\(546\) 0 0
\(547\) 0.786698 + 2.42121i 0.0336368 + 0.103523i 0.966465 0.256797i \(-0.0826673\pi\)
−0.932828 + 0.360321i \(0.882667\pi\)
\(548\) −22.1084 + 16.0627i −0.944424 + 0.686164i
\(549\) 0 0
\(550\) −7.42425 2.10350i −0.316571 0.0896937i
\(551\) −49.0355 −2.08898
\(552\) 0 0
\(553\) 3.19757 + 9.84109i 0.135974 + 0.418486i
\(554\) 0.512364 1.57690i 0.0217683 0.0669959i
\(555\) 0 0
\(556\) −16.0425 11.6556i −0.680355 0.494307i
\(557\) 2.98987 9.20189i 0.126685 0.389896i −0.867519 0.497404i \(-0.834287\pi\)
0.994204 + 0.107507i \(0.0342868\pi\)
\(558\) 0 0
\(559\) −21.6599 + 15.7368i −0.916117 + 0.665598i
\(560\) −7.37496 −0.311649
\(561\) 0 0
\(562\) 10.5035 0.443064
\(563\) 19.4061 14.0993i 0.817868 0.594216i −0.0982327 0.995163i \(-0.531319\pi\)
0.916101 + 0.400947i \(0.131319\pi\)
\(564\) 0 0
\(565\) 17.8512 54.9404i 0.751007 2.31136i
\(566\) 9.60027 + 6.97501i 0.403530 + 0.293181i
\(567\) 0 0
\(568\) −5.70659 + 17.5631i −0.239443 + 0.736930i
\(569\) −11.6249 35.7779i −0.487343 1.49989i −0.828558 0.559903i \(-0.810838\pi\)
0.341215 0.939985i \(-0.389162\pi\)
\(570\) 0 0
\(571\) −14.7548 −0.617469 −0.308735 0.951148i \(-0.599905\pi\)
−0.308735 + 0.951148i \(0.599905\pi\)
\(572\) 13.4795 + 17.1411i 0.563608 + 0.716705i
\(573\) 0 0
\(574\) 3.16172 2.29712i 0.131968 0.0958801i
\(575\) −0.106386 0.327424i −0.00443662 0.0136545i
\(576\) 0 0
\(577\) 18.0466 + 13.1116i 0.751289 + 0.545843i 0.896226 0.443598i \(-0.146298\pi\)
−0.144937 + 0.989441i \(0.546298\pi\)
\(578\) 7.90067 + 5.74017i 0.328625 + 0.238760i
\(579\) 0 0
\(580\) 11.9106 + 36.6571i 0.494562 + 1.52210i
\(581\) 4.67001 3.39296i 0.193745 0.140764i
\(582\) 0 0
\(583\) 4.47213 6.67562i 0.185217 0.276476i
\(584\) −6.24181 −0.258288
\(585\) 0 0
\(586\) 0.153568 + 0.472634i 0.00634384 + 0.0195243i
\(587\) −0.772594 + 2.37780i −0.0318884 + 0.0981424i −0.965734 0.259534i \(-0.916431\pi\)
0.933846 + 0.357677i \(0.116431\pi\)
\(588\) 0 0
\(589\) −33.6374 24.4390i −1.38601 1.00699i
\(590\) −1.23171 + 3.79081i −0.0507087 + 0.156065i
\(591\) 0 0
\(592\) 10.6484 7.73648i 0.437645 0.317968i
\(593\) −10.8953 −0.447417 −0.223708 0.974656i \(-0.571816\pi\)
−0.223708 + 0.974656i \(0.571816\pi\)
\(594\) 0 0
\(595\) 1.09907 0.0450577
\(596\) −6.10843 + 4.43804i −0.250211 + 0.181789i
\(597\) 0 0
\(598\) 0.0602437 0.185411i 0.00246355 0.00758203i
\(599\) 29.8026 + 21.6529i 1.21770 + 0.884713i 0.995907 0.0903802i \(-0.0288082\pi\)
0.221796 + 0.975093i \(0.428808\pi\)
\(600\) 0 0
\(601\) −4.77564 + 14.6979i −0.194802 + 0.599540i 0.805177 + 0.593035i \(0.202070\pi\)
−0.999979 + 0.00650456i \(0.997930\pi\)
\(602\) 1.41047 + 4.34099i 0.0574866 + 0.176925i
\(603\) 0 0
\(604\) 4.88321 0.198695
\(605\) −32.9530 + 2.51367i −1.33973 + 0.102195i
\(606\) 0 0
\(607\) 20.6112 14.9749i 0.836585 0.607814i −0.0848299 0.996395i \(-0.527035\pi\)
0.921415 + 0.388581i \(0.127035\pi\)
\(608\) 10.7348 + 33.0384i 0.435355 + 1.33988i
\(609\) 0 0
\(610\) 19.2230 + 13.9663i 0.778316 + 0.565479i
\(611\) −1.04630 0.760183i −0.0423289 0.0307537i
\(612\) 0 0
\(613\) −11.6728 35.9252i −0.471461 1.45101i −0.850672 0.525697i \(-0.823805\pi\)
0.379211 0.925310i \(-0.376195\pi\)
\(614\) −1.63106 + 1.18503i −0.0658243 + 0.0478241i
\(615\) 0 0
\(616\) 7.67799 2.82207i 0.309355 0.113704i
\(617\) 41.8928 1.68654 0.843271 0.537489i \(-0.180627\pi\)
0.843271 + 0.537489i \(0.180627\pi\)
\(618\) 0 0
\(619\) −1.85089 5.69646i −0.0743936 0.228960i 0.906945 0.421250i \(-0.138409\pi\)
−0.981338 + 0.192290i \(0.938409\pi\)
\(620\) −10.0993 + 31.0823i −0.405596 + 1.24830i
\(621\) 0 0
\(622\) −5.06974 3.68338i −0.203278 0.147690i
\(623\) −0.765867 + 2.35710i −0.0306838 + 0.0944351i
\(624\) 0 0
\(625\) 23.3964 16.9985i 0.935856 0.679939i
\(626\) −16.3411 −0.653123
\(627\) 0 0
\(628\) 30.0798 1.20031
\(629\) −1.58690 + 1.15295i −0.0632739 + 0.0459712i
\(630\) 0 0
\(631\) −6.64368 + 20.4471i −0.264481 + 0.813988i 0.727332 + 0.686286i \(0.240760\pi\)
−0.991813 + 0.127702i \(0.959240\pi\)
\(632\) −15.2306 11.0657i −0.605841 0.440169i
\(633\) 0 0
\(634\) −0.198646 + 0.611369i −0.00788923 + 0.0242806i
\(635\) −12.2393 37.6686i −0.485701 1.49483i
\(636\) 0 0
\(637\) 22.2736 0.882512
\(638\) −9.12129 11.5990i −0.361115 0.459208i
\(639\) 0 0
\(640\) 28.0127 20.3525i 1.10730 0.804501i
\(641\) 3.96685 + 12.2087i 0.156681 + 0.482215i 0.998327 0.0578142i \(-0.0184131\pi\)
−0.841646 + 0.540029i \(0.818413\pi\)
\(642\) 0 0
\(643\) −22.9401 16.6670i −0.904671 0.657282i 0.0349907 0.999388i \(-0.488860\pi\)
−0.939661 + 0.342106i \(0.888860\pi\)
\(644\) 0.134186 + 0.0974917i 0.00528766 + 0.00384171i
\(645\) 0 0
\(646\) −0.357266 1.09955i −0.0140564 0.0432613i
\(647\) 14.1536 10.2832i 0.556436 0.404274i −0.273717 0.961810i \(-0.588253\pi\)
0.830153 + 0.557536i \(0.188253\pi\)
\(648\) 0 0
\(649\) 0.289810 + 7.60956i 0.0113760 + 0.298701i
\(650\) −9.18120 −0.360116
\(651\) 0 0
\(652\) 2.99829 + 9.22780i 0.117422 + 0.361389i
\(653\) −9.05488 + 27.8681i −0.354345 + 1.09056i 0.602043 + 0.798463i \(0.294353\pi\)
−0.956388 + 0.292098i \(0.905647\pi\)
\(654\) 0 0
\(655\) 43.6828 + 31.7374i 1.70683 + 1.24008i
\(656\) 3.78455 11.6477i 0.147762 0.454764i
\(657\) 0 0
\(658\) −0.178378 + 0.129599i −0.00695388 + 0.00505229i
\(659\) 27.5870 1.07464 0.537319 0.843379i \(-0.319437\pi\)
0.537319 + 0.843379i \(0.319437\pi\)
\(660\) 0 0
\(661\) 29.7552 1.15734 0.578672 0.815560i \(-0.303571\pi\)
0.578672 + 0.815560i \(0.303571\pi\)
\(662\) 5.78636 4.20404i 0.224893 0.163395i
\(663\) 0 0
\(664\) −3.24537 + 9.98823i −0.125945 + 0.387619i
\(665\) 18.0228 + 13.0943i 0.698893 + 0.507775i
\(666\) 0 0
\(667\) 0.203437 0.626115i 0.00787711 0.0242433i
\(668\) 2.58550 + 7.95736i 0.100036 + 0.307880i
\(669\) 0 0
\(670\) 20.2760 0.783332
\(671\) 43.6761 + 12.3747i 1.68610 + 0.477720i
\(672\) 0 0
\(673\) −7.80999 + 5.67429i −0.301053 + 0.218728i −0.728048 0.685526i \(-0.759572\pi\)
0.426995 + 0.904254i \(0.359572\pi\)
\(674\) 2.40577 + 7.40418i 0.0926666 + 0.285198i
\(675\) 0 0
\(676\) 3.46724 + 2.51910i 0.133355 + 0.0968883i
\(677\) 0.0793768 + 0.0576706i 0.00305070 + 0.00221646i 0.589310 0.807907i \(-0.299400\pi\)
−0.586259 + 0.810124i \(0.699400\pi\)
\(678\) 0 0
\(679\) 0.0319639 + 0.0983747i 0.00122666 + 0.00377528i
\(680\) −1.61774 + 1.17535i −0.0620373 + 0.0450727i
\(681\) 0 0
\(682\) −0.476165 12.5027i −0.0182333 0.478753i
\(683\) 30.5246 1.16799 0.583996 0.811756i \(-0.301488\pi\)
0.583996 + 0.811756i \(0.301488\pi\)
\(684\) 0 0
\(685\) −15.2277 46.8660i −0.581820 1.79066i
\(686\) 2.62868 8.09025i 0.100364 0.308887i
\(687\) 0 0
\(688\) 11.5719 + 8.40751i 0.441176 + 0.320533i
\(689\) 2.95431 9.09244i 0.112550 0.346395i
\(690\) 0 0
\(691\) −26.5371 + 19.2804i −1.00952 + 0.733459i −0.964108 0.265509i \(-0.914460\pi\)
−0.0454115 + 0.998968i \(0.514460\pi\)
\(692\) 25.9748 0.987413
\(693\) 0 0
\(694\) 5.62741 0.213614
\(695\) 28.9284 21.0177i 1.09732 0.797248i
\(696\) 0 0
\(697\) −0.564004 + 1.73583i −0.0213632 + 0.0657491i
\(698\) 2.07561 + 1.50802i 0.0785631 + 0.0570794i
\(699\) 0 0
\(700\) 2.41380 7.42892i 0.0912331 0.280787i
\(701\) −2.70365 8.32098i −0.102115 0.314279i 0.886927 0.461909i \(-0.152835\pi\)
−0.989043 + 0.147630i \(0.952835\pi\)
\(702\) 0 0
\(703\) −39.7584 −1.49952
\(704\) 1.96528 2.93360i 0.0740692 0.110564i
\(705\) 0 0
\(706\) −15.2034 + 11.0460i −0.572189 + 0.415720i
\(707\) 0.739912 + 2.27721i 0.0278273 + 0.0856435i
\(708\) 0 0
\(709\) −21.6621 15.7385i −0.813539 0.591071i 0.101316 0.994854i \(-0.467695\pi\)
−0.914854 + 0.403784i \(0.867695\pi\)
\(710\) −12.2435 8.89542i −0.459490 0.333839i
\(711\) 0 0
\(712\) −1.39340 4.28845i −0.0522199 0.160716i
\(713\) 0.451607 0.328111i 0.0169128 0.0122879i
\(714\) 0 0
\(715\) −36.9078 + 13.5656i −1.38027 + 0.507323i
\(716\) −11.7443 −0.438907
\(717\) 0 0
\(718\) −4.95846 15.2606i −0.185048 0.569519i
\(719\) −4.63672 + 14.2703i −0.172920 + 0.532194i −0.999532 0.0305782i \(-0.990265\pi\)
0.826612 + 0.562772i \(0.190265\pi\)
\(720\) 0 0
\(721\) −2.84161 2.06455i −0.105827 0.0768879i
\(722\) 3.84897 11.8459i 0.143244 0.440860i
\(723\) 0 0
\(724\) 3.36672 2.44607i 0.125123 0.0909073i
\(725\) −31.0040 −1.15146
\(726\) 0 0
\(727\) 27.5325 1.02112 0.510562 0.859841i \(-0.329437\pi\)
0.510562 + 0.859841i \(0.329437\pi\)
\(728\) 7.87410 5.72087i 0.291834 0.212029i
\(729\) 0 0
\(730\) 1.58069 4.86486i 0.0585039 0.180057i
\(731\) −1.72454 1.25295i −0.0637845 0.0463422i
\(732\) 0 0
\(733\) 14.7524 45.4031i 0.544891 1.67700i −0.176357 0.984326i \(-0.556431\pi\)
0.721248 0.692677i \(-0.243569\pi\)
\(734\) 0.209300 + 0.644160i 0.00772541 + 0.0237764i
\(735\) 0 0
\(736\) −0.466391 −0.0171914
\(737\) 36.3593 13.3640i 1.33931 0.492267i
\(738\) 0 0
\(739\) −1.20421 + 0.874910i −0.0442976 + 0.0321841i −0.609714 0.792622i \(-0.708716\pi\)
0.565416 + 0.824806i \(0.308716\pi\)
\(740\) 9.65725 + 29.7220i 0.355007 + 1.09260i
\(741\) 0 0
\(742\) −1.31861 0.958023i −0.0484076 0.0351701i
\(743\) 14.6919 + 10.6743i 0.538993 + 0.391601i 0.823711 0.567010i \(-0.191900\pi\)
−0.284718 + 0.958611i \(0.591900\pi\)
\(744\) 0 0
\(745\) −4.20733 12.9488i −0.154145 0.474409i
\(746\) −10.1751 + 7.39264i −0.372537 + 0.270664i
\(747\) 0 0
\(748\) −0.966316 + 1.44243i −0.0353320 + 0.0527406i
\(749\) −13.9635 −0.510216
\(750\) 0 0
\(751\) −1.35802 4.17956i −0.0495550 0.152514i 0.923217 0.384279i \(-0.125550\pi\)
−0.972772 + 0.231765i \(0.925550\pi\)
\(752\) −0.213517 + 0.657136i −0.00778615 + 0.0239633i
\(753\) 0 0
\(754\) −14.2037 10.3196i −0.517267 0.375817i
\(755\) −2.72107 + 8.37459i −0.0990299 + 0.304783i
\(756\) 0 0
\(757\) 11.1369 8.09140i 0.404776 0.294087i −0.366708 0.930336i \(-0.619515\pi\)
0.771483 + 0.636249i \(0.219515\pi\)
\(758\) −9.38763 −0.340974
\(759\) 0 0
\(760\) −40.5309 −1.47021
\(761\) 25.1654 18.2837i 0.912244 0.662784i −0.0293374 0.999570i \(-0.509340\pi\)
0.941581 + 0.336786i \(0.109340\pi\)
\(762\) 0 0
\(763\) −1.87098 + 5.75828i −0.0677340 + 0.208464i
\(764\) −15.9365 11.5786i −0.576564 0.418898i
\(765\) 0 0
\(766\) 1.10585 3.40344i 0.0399558 0.122971i
\(767\) 2.79986 + 8.61708i 0.101097 + 0.311145i
\(768\) 0 0
\(769\) 21.9353 0.791009 0.395504 0.918464i \(-0.370570\pi\)
0.395504 + 0.918464i \(0.370570\pi\)
\(770\) 0.255127 + 6.69888i 0.00919413 + 0.241411i
\(771\) 0 0
\(772\) 9.09402 6.60719i 0.327301 0.237798i
\(773\) −3.92965 12.0942i −0.141340 0.434999i 0.855182 0.518327i \(-0.173445\pi\)
−0.996522 + 0.0833281i \(0.973445\pi\)
\(774\) 0 0
\(775\) −21.2682 15.4522i −0.763976 0.555061i
\(776\) −0.152250 0.110616i −0.00546546 0.00397089i
\(777\) 0 0
\(778\) −0.129132 0.397429i −0.00462962 0.0142485i
\(779\) −29.9291 + 21.7448i −1.07232 + 0.779087i
\(780\) 0 0
\(781\) −27.8182 7.88168i −0.995412 0.282029i
\(782\) 0.0155220 0.000555064
\(783\) 0 0
\(784\) −3.67724 11.3174i −0.131330 0.404193i
\(785\) −16.7613 + 51.5861i −0.598238 + 1.84119i
\(786\) 0 0
\(787\) 13.9650 + 10.1461i 0.497797 + 0.361671i 0.808175 0.588942i \(-0.200455\pi\)
−0.310378 + 0.950613i \(0.600455\pi\)
\(788\) 10.6306 32.7176i 0.378700 1.16552i
\(789\) 0 0
\(790\) 12.4816 9.06842i 0.444076 0.322640i
\(791\) −22.3870 −0.795991
\(792\) 0 0
\(793\) 54.0120 1.91802
\(794\) −1.91188 + 1.38906i −0.0678501 + 0.0492960i
\(795\) 0 0
\(796\) 6.84057 21.0531i 0.242457 0.746207i
\(797\) −28.4786 20.6909i −1.00876 0.732910i −0.0448149 0.998995i \(-0.514270\pi\)
−0.963950 + 0.266085i \(0.914270\pi\)
\(798\) 0 0
\(799\) 0.0318199 0.0979317i 0.00112571 0.00346457i
\(800\) 6.78739 + 20.8894i 0.239970 + 0.738553i
\(801\) 0 0
\(802\) −3.26248 −0.115202
\(803\) −0.371921 9.76556i −0.0131248 0.344619i
\(804\) 0 0
\(805\) −0.241968 + 0.175800i −0.00852827 + 0.00619615i
\(806\) −4.60024 14.1581i −0.162037 0.498697i
\(807\) 0 0
\(808\) −3.52434 2.56058i −0.123986 0.0900810i
\(809\) 15.4367 + 11.2154i 0.542725 + 0.394313i 0.825096 0.564992i \(-0.191121\pi\)
−0.282371 + 0.959305i \(0.591121\pi\)
\(810\) 0 0
\(811\) −9.59769 29.5387i −0.337020 1.03724i −0.965718 0.259593i \(-0.916412\pi\)
0.628698 0.777650i \(-0.283588\pi\)
\(812\) 12.0843 8.77973i 0.424075 0.308108i
\(813\) 0 0
\(814\) −7.39563 9.40457i −0.259217 0.329630i
\(815\) −17.4962 −0.612865
\(816\) 0 0
\(817\) −13.3517 41.0922i −0.467115 1.43763i
\(818\) 1.68711 5.19240i 0.0589885 0.181548i
\(819\) 0 0
\(820\) 23.5253 + 17.0922i 0.821540 + 0.596884i
\(821\) 10.5092 32.3440i 0.366774 1.12881i −0.582089 0.813125i \(-0.697764\pi\)
0.948863 0.315689i \(-0.102236\pi\)
\(822\) 0 0
\(823\) −12.5851 + 9.14359i −0.438688 + 0.318726i −0.785113 0.619352i \(-0.787395\pi\)
0.346425 + 0.938078i \(0.387395\pi\)
\(824\) 6.39042 0.222621
\(825\) 0 0
\(826\) 1.54467 0.0537461
\(827\) −12.9667 + 9.42084i −0.450895 + 0.327595i −0.789949 0.613172i \(-0.789893\pi\)
0.339054 + 0.940767i \(0.389893\pi\)
\(828\) 0 0
\(829\) 5.90205 18.1646i 0.204987 0.630884i −0.794727 0.606967i \(-0.792386\pi\)
0.999714 0.0239173i \(-0.00761382\pi\)
\(830\) −6.96296 5.05888i −0.241688 0.175596i
\(831\) 0 0
\(832\) 1.29827 3.99567i 0.0450095 0.138525i
\(833\) 0.548012 + 1.68661i 0.0189875 + 0.0584375i
\(834\) 0 0
\(835\) −15.0874 −0.522122
\(836\) −33.0308 + 12.1406i −1.14240 + 0.419891i
\(837\) 0 0
\(838\) −0.0708501 + 0.0514756i −0.00244747 + 0.00177819i
\(839\) 0.459793 + 1.41510i 0.0158738 + 0.0488545i 0.958680 0.284488i \(-0.0918235\pi\)
−0.942806 + 0.333342i \(0.891824\pi\)
\(840\) 0 0
\(841\) −24.5029 17.8024i −0.844927 0.613875i
\(842\) −7.93586 5.76574i −0.273488 0.198700i
\(843\) 0 0
\(844\) 4.29654 + 13.2234i 0.147893 + 0.455168i
\(845\) −6.25224 + 4.54252i −0.215084 + 0.156267i
\(846\) 0 0
\(847\) 4.87274 + 11.8444i 0.167429 + 0.406977i
\(848\) −5.10768 −0.175399
\(849\) 0 0
\(850\) −0.225891 0.695221i −0.00774800 0.0238459i
\(851\) 0.164949 0.507660i 0.00565437 0.0174024i
\(852\) 0 0
\(853\) −30.5825 22.2195i −1.04713 0.760781i −0.0754620 0.997149i \(-0.524043\pi\)
−0.971664 + 0.236367i \(0.924043\pi\)
\(854\) 2.84548 8.75750i 0.0973704 0.299675i
\(855\) 0 0
\(856\) 20.5530 14.9326i 0.702487 0.510387i
\(857\) 19.8270 0.677276 0.338638 0.940917i \(-0.390034\pi\)
0.338638 + 0.940917i \(0.390034\pi\)
\(858\) 0 0
\(859\) −15.7153 −0.536199 −0.268099 0.963391i \(-0.586396\pi\)
−0.268099 + 0.963391i \(0.586396\pi\)
\(860\) −27.4759 + 19.9624i −0.936921 + 0.680713i
\(861\) 0 0
\(862\) −4.52979 + 13.9413i −0.154285 + 0.474842i
\(863\) −6.57548 4.77736i −0.223832 0.162623i 0.470218 0.882550i \(-0.344175\pi\)
−0.694050 + 0.719927i \(0.744175\pi\)
\(864\) 0 0
\(865\) −14.4739 + 44.5462i −0.492128 + 1.51462i
\(866\) 2.95233 + 9.08634i 0.100324 + 0.308766i
\(867\) 0 0
\(868\) 12.6654 0.429891
\(869\) 16.4052 24.4882i 0.556508 0.830707i
\(870\) 0 0
\(871\) 37.2879 27.0913i 1.26345 0.917953i
\(872\) −3.40401 10.4765i −0.115274 0.354778i
\(873\) 0 0
\(874\) 0.254531 + 0.184928i 0.00860964 + 0.00625527i
\(875\) −2.75479 2.00148i −0.0931290 0.0676622i
\(876\) 0 0
\(877\) −0.782904 2.40953i −0.0264368 0.0813640i 0.936968 0.349416i \(-0.113620\pi\)
−0.963404 + 0.268052i \(0.913620\pi\)
\(878\) 18.3437 13.3275i 0.619071 0.449782i
\(879\) 0 0
\(880\) 12.9860 + 16.5135i 0.437759 + 0.556671i
\(881\) −47.4109 −1.59731 −0.798657 0.601786i \(-0.794456\pi\)
−0.798657 + 0.601786i \(0.794456\pi\)
\(882\) 0 0
\(883\) 8.19295 + 25.2153i 0.275715 + 0.848563i 0.989029 + 0.147719i \(0.0471930\pi\)
−0.713315 + 0.700844i \(0.752807\pi\)
\(884\) −0.638353 + 1.96465i −0.0214701 + 0.0660783i
\(885\) 0 0
\(886\) −15.0472 10.9325i −0.505522 0.367283i
\(887\) −14.7801 + 45.4884i −0.496266 + 1.52735i 0.318707 + 0.947853i \(0.396751\pi\)
−0.814974 + 0.579498i \(0.803249\pi\)
\(888\) 0 0
\(889\) −12.4177 + 9.02200i −0.416477 + 0.302588i
\(890\) 3.69528 0.123866
\(891\) 0 0
\(892\) 0.639221 0.0214027
\(893\) 1.68854 1.22680i 0.0565048 0.0410531i
\(894\) 0 0
\(895\) 6.54430 20.1413i 0.218752 0.673249i
\(896\) −10.8559 7.88728i −0.362671 0.263496i
\(897\) 0 0
\(898\) −4.61459 + 14.2023i −0.153991 + 0.473935i
\(899\) −15.5345 47.8104i −0.518106 1.59457i
\(900\) 0 0
\(901\) 0.761187 0.0253588
\(902\) −10.7108 3.03468i −0.356631 0.101044i
\(903\) 0 0
\(904\) 32.9516 23.9407i 1.09595 0.796257i
\(905\) 2.31891 + 7.13687i 0.0770832 + 0.237238i
\(906\) 0 0
\(907\) −38.3946 27.8953i −1.27487 0.926249i −0.275487 0.961305i \(-0.588839\pi\)
−0.999385 + 0.0350562i \(0.988839\pi\)
\(908\) 24.2817 + 17.6417i 0.805815 + 0.585459i
\(909\) 0 0
\(910\) 2.46479 + 7.58583i 0.0817068 + 0.251468i
\(911\) 23.0022 16.7120i 0.762095 0.553695i −0.137457 0.990508i \(-0.543893\pi\)
0.899552 + 0.436813i \(0.143893\pi\)
\(912\) 0 0
\(913\) −15.8204 4.48236i −0.523578 0.148345i
\(914\) −7.34762 −0.243038
\(915\) 0 0
\(916\) −6.91352 21.2776i −0.228429 0.703032i
\(917\) 6.46615 19.9008i 0.213531 0.657181i
\(918\) 0 0
\(919\) −31.0442 22.5550i −1.02406 0.744020i −0.0569449 0.998377i \(-0.518136\pi\)
−0.967110 + 0.254358i \(0.918136\pi\)
\(920\) 0.168154 0.517523i 0.00554386 0.0170622i
\(921\) 0 0
\(922\) 8.89190 6.46034i 0.292839 0.212760i
\(923\) −34.4013 −1.13233
\(924\) 0 0
\(925\) −25.1383 −0.826543
\(926\) 10.6893 7.76621i 0.351271 0.255214i
\(927\) 0 0
\(928\) −12.9791 + 39.9457i −0.426061 + 1.31128i
\(929\) −10.8309 7.86907i −0.355349 0.258176i 0.395761 0.918354i \(-0.370481\pi\)
−0.751109 + 0.660178i \(0.770481\pi\)
\(930\) 0 0
\(931\) −11.1078 + 34.1862i −0.364042 + 1.12041i
\(932\) 1.73491 + 5.33951i 0.0568289 + 0.174901i
\(933\) 0 0
\(934\) 9.20041 0.301047
\(935\) −1.93528 2.46098i −0.0632905 0.0804826i
\(936\) 0 0
\(937\) 19.9588 14.5010i 0.652027 0.473725i −0.211934 0.977284i \(-0.567976\pi\)
0.863961 + 0.503559i \(0.167976\pi\)
\(938\) −2.42815 7.47309i −0.0792820 0.244005i
\(939\) 0 0
\(940\) −1.32725 0.964304i −0.0432901 0.0314521i
\(941\) −6.71670 4.87997i −0.218958 0.159082i 0.472899 0.881116i \(-0.343207\pi\)
−0.691858 + 0.722034i \(0.743207\pi\)
\(942\) 0 0
\(943\) −0.153481 0.472367i −0.00499804 0.0153824i
\(944\) 3.91616 2.84526i 0.127460 0.0926053i
\(945\) 0 0
\(946\) 7.23646 10.8020i 0.235278 0.351202i
\(947\) 37.9496 1.23320 0.616598 0.787278i \(-0.288510\pi\)
0.616598 + 0.787278i \(0.288510\pi\)
\(948\) 0 0
\(949\) −3.59314 11.0585i −0.116638 0.358975i
\(950\) 4.57863 14.0916i 0.148550 0.457191i
\(951\) 0 0
\(952\) 0.626929 + 0.455490i 0.0203189 + 0.0147625i
\(953\) −15.0400 + 46.2884i −0.487194 + 1.49943i 0.341583 + 0.939852i \(0.389037\pi\)
−0.828778 + 0.559578i \(0.810963\pi\)
\(954\) 0 0
\(955\) 28.7373 20.8789i 0.929918 0.675625i
\(956\) 38.6490 1.25000
\(957\) 0 0
\(958\) −9.47032 −0.305972
\(959\) −15.4497 + 11.2249i −0.498897 + 0.362470i
\(960\) 0 0
\(961\) 3.59254 11.0567i 0.115888 0.356668i
\(962\) −11.5165 8.36721i −0.371306 0.269770i
\(963\) 0 0
\(964\) −7.80746 + 24.0289i −0.251461 + 0.773918i
\(965\) 6.26373 + 19.2778i 0.201636 + 0.620573i
\(966\) 0 0
\(967\) 10.9780 0.353029 0.176515 0.984298i \(-0.443518\pi\)
0.176515 + 0.984298i \(0.443518\pi\)
\(968\) −19.8386 12.2229i −0.637637 0.392858i
\(969\) 0 0
\(970\) 0.124770 0.0906508i 0.00400613 0.00291062i
\(971\) 4.03687 + 12.4242i 0.129549 + 0.398712i 0.994702 0.102796i \(-0.0327789\pi\)
−0.865153 + 0.501508i \(0.832779\pi\)
\(972\) 0 0
\(973\) −11.2108 8.14510i −0.359401 0.261120i
\(974\) −10.6518 7.73897i −0.341305 0.247973i
\(975\) 0 0
\(976\) −8.91708 27.4439i −0.285429 0.878459i
\(977\) 8.96092 6.51049i 0.286685 0.208289i −0.435143 0.900361i \(-0.643302\pi\)
0.721828 + 0.692072i \(0.243302\pi\)
\(978\) 0 0
\(979\) 6.62642 2.43556i 0.211781 0.0778409i
\(980\) 28.2544 0.902554
\(981\) 0 0
\(982\) −7.79262 23.9832i −0.248673 0.765336i
\(983\) −8.16778 + 25.1378i −0.260512 + 0.801772i 0.732182 + 0.681109i \(0.238502\pi\)
−0.992693 + 0.120663i \(0.961498\pi\)
\(984\) 0 0
\(985\) 50.1863 + 36.4625i 1.59907 + 1.16179i
\(986\) 0.431959 1.32943i 0.0137564 0.0423378i
\(987\) 0 0
\(988\) −33.8745 + 24.6113i −1.07769 + 0.782989i
\(989\) 0.580083 0.0184456
\(990\) 0 0
\(991\) −18.9911 −0.603272 −0.301636 0.953423i \(-0.597533\pi\)
−0.301636 + 0.953423i \(0.597533\pi\)
\(992\) −28.8122 + 20.9333i −0.914788 + 0.664633i
\(993\) 0 0
\(994\) −1.81234 + 5.57782i −0.0574841 + 0.176918i
\(995\) 32.2938 + 23.4628i 1.02378 + 0.743822i
\(996\) 0 0
\(997\) 6.83334 21.0309i 0.216414 0.666054i −0.782636 0.622480i \(-0.786125\pi\)
0.999050 0.0435746i \(-0.0138746\pi\)
\(998\) −3.58956 11.0475i −0.113625 0.349703i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.f.f.487.4 36
3.2 odd 2 891.2.f.e.487.6 36
9.2 odd 6 297.2.n.b.91.4 72
9.4 even 3 99.2.m.b.25.4 yes 72
9.5 odd 6 297.2.n.b.289.6 72
9.7 even 3 99.2.m.b.58.6 yes 72
11.2 odd 10 9801.2.a.co.1.8 18
11.4 even 5 inner 891.2.f.f.730.4 36
11.9 even 5 9801.2.a.cm.1.11 18
33.2 even 10 9801.2.a.cn.1.11 18
33.20 odd 10 9801.2.a.cp.1.8 18
33.26 odd 10 891.2.f.e.730.6 36
99.4 even 15 99.2.m.b.70.6 yes 72
99.13 odd 30 1089.2.e.o.727.11 36
99.31 even 15 1089.2.e.p.727.8 36
99.59 odd 30 297.2.n.b.235.4 72
99.70 even 15 99.2.m.b.4.4 72
99.79 odd 30 1089.2.e.o.364.11 36
99.92 odd 30 297.2.n.b.37.6 72
99.97 even 15 1089.2.e.p.364.8 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.4.4 72 99.70 even 15
99.2.m.b.25.4 yes 72 9.4 even 3
99.2.m.b.58.6 yes 72 9.7 even 3
99.2.m.b.70.6 yes 72 99.4 even 15
297.2.n.b.37.6 72 99.92 odd 30
297.2.n.b.91.4 72 9.2 odd 6
297.2.n.b.235.4 72 99.59 odd 30
297.2.n.b.289.6 72 9.5 odd 6
891.2.f.e.487.6 36 3.2 odd 2
891.2.f.e.730.6 36 33.26 odd 10
891.2.f.f.487.4 36 1.1 even 1 trivial
891.2.f.f.730.4 36 11.4 even 5 inner
1089.2.e.o.364.11 36 99.79 odd 30
1089.2.e.o.727.11 36 99.13 odd 30
1089.2.e.p.364.8 36 99.97 even 15
1089.2.e.p.727.8 36 99.31 even 15
9801.2.a.cm.1.11 18 11.9 even 5
9801.2.a.cn.1.11 18 33.2 even 10
9801.2.a.co.1.8 18 11.2 odd 10
9801.2.a.cp.1.8 18 33.20 odd 10