Properties

Label 891.2.f.f.487.2
Level $891$
Weight $2$
Character 891.487
Analytic conductor $7.115$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(82,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(9\) over \(\Q(\zeta_{5})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 487.2
Character \(\chi\) \(=\) 891.487
Dual form 891.2.f.f.730.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.25085 + 0.908796i) q^{2} +(0.120683 - 0.371424i) q^{4} +(-0.478964 - 0.347988i) q^{5} +(0.223095 - 0.686616i) q^{7} +(-0.768973 - 2.36665i) q^{8} +0.915362 q^{10} +(-0.539627 + 3.27243i) q^{11} +(1.27417 - 0.925741i) q^{13} +(0.344935 + 1.06160i) q^{14} +(3.74458 + 2.72060i) q^{16} +(-3.71501 - 2.69911i) q^{17} +(0.775200 + 2.38582i) q^{19} +(-0.187054 + 0.135902i) q^{20} +(-2.29898 - 4.58373i) q^{22} -4.45200 q^{23} +(-1.43677 - 4.42194i) q^{25} +(-0.752490 + 2.31593i) q^{26} +(-0.228102 - 0.165726i) q^{28} +(2.15651 - 6.63706i) q^{29} +(7.38490 - 5.36545i) q^{31} -2.17948 q^{32} +7.09986 q^{34} +(-0.345788 + 0.251230i) q^{35} +(0.893583 - 2.75017i) q^{37} +(-3.13788 - 2.27981i) q^{38} +(-0.455256 + 1.40114i) q^{40} +(-0.356643 - 1.09763i) q^{41} -4.21448 q^{43} +(1.15033 + 0.595357i) q^{44} +(5.56879 - 4.04596i) q^{46} +(-0.0703185 - 0.216418i) q^{47} +(5.24145 + 3.80814i) q^{49} +(5.81583 + 4.22545i) q^{50} +(-0.190071 - 0.584979i) q^{52} +(4.61430 - 3.35249i) q^{53} +(1.39723 - 1.37959i) q^{55} -1.79654 q^{56} +(3.33426 + 10.2618i) q^{58} +(2.20439 - 6.78441i) q^{59} +(-3.68827 - 2.67969i) q^{61} +(-4.36131 + 13.4227i) q^{62} +(-4.76295 + 3.46049i) q^{64} -0.932429 q^{65} -8.09142 q^{67} +(-1.45085 + 1.05411i) q^{68} +(0.204213 - 0.628502i) q^{70} +(9.95852 + 7.23528i) q^{71} +(4.78461 - 14.7255i) q^{73} +(1.38160 + 4.25213i) q^{74} +0.979704 q^{76} +(2.12651 + 1.10058i) q^{77} +(11.8275 - 8.59316i) q^{79} +(-0.846785 - 2.60614i) q^{80} +(1.44363 + 1.04886i) q^{82} +(5.62510 + 4.08687i) q^{83} +(0.840097 + 2.58555i) q^{85} +(5.27169 - 3.83010i) q^{86} +(8.15967 - 1.23930i) q^{88} +12.4803 q^{89} +(-0.351367 - 1.08140i) q^{91} +(-0.537280 + 1.65358i) q^{92} +(0.284638 + 0.206802i) q^{94} +(0.458943 - 1.41248i) q^{95} +(-11.4722 + 8.33507i) q^{97} -10.0171 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + q^{2} - 11 q^{4} + 8 q^{5} + 2 q^{7} + 3 q^{8} - 4 q^{10} + 2 q^{11} + 11 q^{13} + 10 q^{14} + 9 q^{16} - 10 q^{17} + 4 q^{19} + 45 q^{20} + 16 q^{22} - 20 q^{23} - 11 q^{25} - 6 q^{26} - 27 q^{28}+ \cdots - 164 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.25085 + 0.908796i −0.884485 + 0.642616i −0.934434 0.356136i \(-0.884094\pi\)
0.0499492 + 0.998752i \(0.484094\pi\)
\(3\) 0 0
\(4\) 0.120683 0.371424i 0.0603415 0.185712i
\(5\) −0.478964 0.347988i −0.214199 0.155625i 0.475512 0.879709i \(-0.342263\pi\)
−0.689712 + 0.724084i \(0.742263\pi\)
\(6\) 0 0
\(7\) 0.223095 0.686616i 0.0843220 0.259516i −0.900002 0.435886i \(-0.856435\pi\)
0.984324 + 0.176369i \(0.0564353\pi\)
\(8\) −0.768973 2.36665i −0.271873 0.836739i
\(9\) 0 0
\(10\) 0.915362 0.289463
\(11\) −0.539627 + 3.27243i −0.162704 + 0.986675i
\(12\) 0 0
\(13\) 1.27417 0.925741i 0.353392 0.256754i −0.396899 0.917862i \(-0.629914\pi\)
0.750291 + 0.661108i \(0.229914\pi\)
\(14\) 0.344935 + 1.06160i 0.0921878 + 0.283725i
\(15\) 0 0
\(16\) 3.74458 + 2.72060i 0.936145 + 0.680149i
\(17\) −3.71501 2.69911i −0.901022 0.654631i 0.0377065 0.999289i \(-0.487995\pi\)
−0.938728 + 0.344658i \(0.887995\pi\)
\(18\) 0 0
\(19\) 0.775200 + 2.38582i 0.177843 + 0.547345i 0.999752 0.0222743i \(-0.00709072\pi\)
−0.821909 + 0.569619i \(0.807091\pi\)
\(20\) −0.187054 + 0.135902i −0.0418265 + 0.0303887i
\(21\) 0 0
\(22\) −2.29898 4.58373i −0.490144 0.977255i
\(23\) −4.45200 −0.928306 −0.464153 0.885755i \(-0.653641\pi\)
−0.464153 + 0.885755i \(0.653641\pi\)
\(24\) 0 0
\(25\) −1.43677 4.42194i −0.287355 0.884387i
\(26\) −0.752490 + 2.31593i −0.147576 + 0.454191i
\(27\) 0 0
\(28\) −0.228102 0.165726i −0.0431072 0.0313192i
\(29\) 2.15651 6.63706i 0.400454 1.23247i −0.524177 0.851609i \(-0.675627\pi\)
0.924632 0.380863i \(-0.124373\pi\)
\(30\) 0 0
\(31\) 7.38490 5.36545i 1.32637 0.963662i 0.326538 0.945184i \(-0.394118\pi\)
0.999829 0.0184785i \(-0.00588222\pi\)
\(32\) −2.17948 −0.385282
\(33\) 0 0
\(34\) 7.09986 1.21762
\(35\) −0.345788 + 0.251230i −0.0584489 + 0.0424656i
\(36\) 0 0
\(37\) 0.893583 2.75017i 0.146904 0.452125i −0.850347 0.526223i \(-0.823608\pi\)
0.997251 + 0.0740981i \(0.0236078\pi\)
\(38\) −3.13788 2.27981i −0.509032 0.369833i
\(39\) 0 0
\(40\) −0.455256 + 1.40114i −0.0719824 + 0.221539i
\(41\) −0.356643 1.09763i −0.0556982 0.171421i 0.919337 0.393470i \(-0.128726\pi\)
−0.975036 + 0.222049i \(0.928726\pi\)
\(42\) 0 0
\(43\) −4.21448 −0.642702 −0.321351 0.946960i \(-0.604137\pi\)
−0.321351 + 0.946960i \(0.604137\pi\)
\(44\) 1.15033 + 0.595357i 0.173419 + 0.0897534i
\(45\) 0 0
\(46\) 5.56879 4.04596i 0.821073 0.596544i
\(47\) −0.0703185 0.216418i −0.0102570 0.0315678i 0.945797 0.324758i \(-0.105283\pi\)
−0.956054 + 0.293191i \(0.905283\pi\)
\(48\) 0 0
\(49\) 5.24145 + 3.80814i 0.748778 + 0.544019i
\(50\) 5.81583 + 4.22545i 0.822482 + 0.597568i
\(51\) 0 0
\(52\) −0.190071 0.584979i −0.0263581 0.0811220i
\(53\) 4.61430 3.35249i 0.633823 0.460500i −0.223899 0.974612i \(-0.571879\pi\)
0.857723 + 0.514113i \(0.171879\pi\)
\(54\) 0 0
\(55\) 1.39723 1.37959i 0.188402 0.186024i
\(56\) −1.79654 −0.240072
\(57\) 0 0
\(58\) 3.33426 + 10.2618i 0.437810 + 1.34744i
\(59\) 2.20439 6.78441i 0.286987 0.883255i −0.698809 0.715308i \(-0.746286\pi\)
0.985796 0.167947i \(-0.0537137\pi\)
\(60\) 0 0
\(61\) −3.68827 2.67969i −0.472235 0.343099i 0.326077 0.945343i \(-0.394273\pi\)
−0.798312 + 0.602244i \(0.794273\pi\)
\(62\) −4.36131 + 13.4227i −0.553887 + 1.70469i
\(63\) 0 0
\(64\) −4.76295 + 3.46049i −0.595369 + 0.432561i
\(65\) −0.932429 −0.115654
\(66\) 0 0
\(67\) −8.09142 −0.988524 −0.494262 0.869313i \(-0.664562\pi\)
−0.494262 + 0.869313i \(0.664562\pi\)
\(68\) −1.45085 + 1.05411i −0.175942 + 0.127829i
\(69\) 0 0
\(70\) 0.204213 0.628502i 0.0244081 0.0751204i
\(71\) 9.95852 + 7.23528i 1.18186 + 0.858670i 0.992380 0.123215i \(-0.0393203\pi\)
0.189478 + 0.981885i \(0.439320\pi\)
\(72\) 0 0
\(73\) 4.78461 14.7255i 0.559996 1.72349i −0.122373 0.992484i \(-0.539050\pi\)
0.682370 0.731007i \(-0.260950\pi\)
\(74\) 1.38160 + 4.25213i 0.160608 + 0.494300i
\(75\) 0 0
\(76\) 0.979704 0.112380
\(77\) 2.12651 + 1.10058i 0.242339 + 0.125423i
\(78\) 0 0
\(79\) 11.8275 8.59316i 1.33069 0.966806i 0.330962 0.943644i \(-0.392627\pi\)
0.999732 0.0231619i \(-0.00737332\pi\)
\(80\) −0.846785 2.60614i −0.0946734 0.291375i
\(81\) 0 0
\(82\) 1.44363 + 1.04886i 0.159422 + 0.115827i
\(83\) 5.62510 + 4.08687i 0.617435 + 0.448593i 0.852024 0.523502i \(-0.175375\pi\)
−0.234590 + 0.972094i \(0.575375\pi\)
\(84\) 0 0
\(85\) 0.840097 + 2.58555i 0.0911214 + 0.280443i
\(86\) 5.27169 3.83010i 0.568461 0.413011i
\(87\) 0 0
\(88\) 8.15967 1.23930i 0.869824 0.132110i
\(89\) 12.4803 1.32291 0.661453 0.749986i \(-0.269940\pi\)
0.661453 + 0.749986i \(0.269940\pi\)
\(90\) 0 0
\(91\) −0.351367 1.08140i −0.0368332 0.113361i
\(92\) −0.537280 + 1.65358i −0.0560153 + 0.172397i
\(93\) 0 0
\(94\) 0.284638 + 0.206802i 0.0293582 + 0.0213300i
\(95\) 0.458943 1.41248i 0.0470866 0.144918i
\(96\) 0 0
\(97\) −11.4722 + 8.33507i −1.16483 + 0.846298i −0.990381 0.138368i \(-0.955814\pi\)
−0.174449 + 0.984666i \(0.555814\pi\)
\(98\) −10.0171 −1.01188
\(99\) 0 0
\(100\) −1.81581 −0.181581
\(101\) 11.6244 8.44561i 1.15667 0.840370i 0.167317 0.985903i \(-0.446490\pi\)
0.989353 + 0.145533i \(0.0464897\pi\)
\(102\) 0 0
\(103\) −1.36859 + 4.21209i −0.134851 + 0.415029i −0.995567 0.0940566i \(-0.970017\pi\)
0.860716 + 0.509086i \(0.170017\pi\)
\(104\) −3.17071 2.30366i −0.310914 0.225892i
\(105\) 0 0
\(106\) −2.72508 + 8.38693i −0.264683 + 0.814610i
\(107\) −4.86529 14.9738i −0.470345 1.44757i −0.852134 0.523324i \(-0.824692\pi\)
0.381788 0.924250i \(-0.375308\pi\)
\(108\) 0 0
\(109\) −13.6970 −1.31194 −0.655969 0.754788i \(-0.727740\pi\)
−0.655969 + 0.754788i \(0.727740\pi\)
\(110\) −0.493954 + 2.99546i −0.0470967 + 0.285606i
\(111\) 0 0
\(112\) 2.70340 1.96414i 0.255447 0.185593i
\(113\) 2.48145 + 7.63711i 0.233435 + 0.718439i 0.997325 + 0.0730926i \(0.0232869\pi\)
−0.763890 + 0.645346i \(0.776713\pi\)
\(114\) 0 0
\(115\) 2.13235 + 1.54924i 0.198842 + 0.144467i
\(116\) −2.20491 1.60196i −0.204721 0.148738i
\(117\) 0 0
\(118\) 3.40829 + 10.4896i 0.313758 + 0.965648i
\(119\) −2.68205 + 1.94862i −0.245863 + 0.178630i
\(120\) 0 0
\(121\) −10.4176 3.53178i −0.947055 0.321071i
\(122\) 7.04877 0.638166
\(123\) 0 0
\(124\) −1.10162 3.39045i −0.0989286 0.304471i
\(125\) −1.76536 + 5.43321i −0.157898 + 0.485961i
\(126\) 0 0
\(127\) 9.70522 + 7.05126i 0.861199 + 0.625698i 0.928211 0.372054i \(-0.121347\pi\)
−0.0670118 + 0.997752i \(0.521347\pi\)
\(128\) 4.15986 12.8027i 0.367683 1.13161i
\(129\) 0 0
\(130\) 1.16633 0.847388i 0.102294 0.0743209i
\(131\) −6.89109 −0.602077 −0.301039 0.953612i \(-0.597333\pi\)
−0.301039 + 0.953612i \(0.597333\pi\)
\(132\) 0 0
\(133\) 1.81109 0.157041
\(134\) 10.1212 7.35345i 0.874335 0.635242i
\(135\) 0 0
\(136\) −3.53112 + 10.8677i −0.302791 + 0.931896i
\(137\) −7.48062 5.43499i −0.639112 0.464342i 0.220433 0.975402i \(-0.429253\pi\)
−0.859545 + 0.511060i \(0.829253\pi\)
\(138\) 0 0
\(139\) 6.67826 20.5536i 0.566442 1.74333i −0.0971841 0.995266i \(-0.530984\pi\)
0.663627 0.748064i \(-0.269016\pi\)
\(140\) 0.0515820 + 0.158753i 0.00435948 + 0.0134171i
\(141\) 0 0
\(142\) −19.0320 −1.59713
\(143\) 2.34184 + 4.66920i 0.195835 + 0.390458i
\(144\) 0 0
\(145\) −3.34251 + 2.42847i −0.277580 + 0.201674i
\(146\) 7.39766 + 22.7677i 0.612235 + 1.88426i
\(147\) 0 0
\(148\) −0.913637 0.663796i −0.0751005 0.0545637i
\(149\) 0.927483 + 0.673856i 0.0759824 + 0.0552044i 0.625128 0.780522i \(-0.285047\pi\)
−0.549146 + 0.835727i \(0.685047\pi\)
\(150\) 0 0
\(151\) 0.272133 + 0.837539i 0.0221459 + 0.0681579i 0.961519 0.274740i \(-0.0885916\pi\)
−0.939373 + 0.342898i \(0.888592\pi\)
\(152\) 5.05031 3.66926i 0.409634 0.297616i
\(153\) 0 0
\(154\) −3.66015 + 0.555908i −0.294944 + 0.0447963i
\(155\) −5.40421 −0.434077
\(156\) 0 0
\(157\) −3.02411 9.30724i −0.241350 0.742799i −0.996215 0.0869191i \(-0.972298\pi\)
0.754865 0.655880i \(-0.227702\pi\)
\(158\) −6.98497 + 21.4975i −0.555694 + 1.71025i
\(159\) 0 0
\(160\) 1.04389 + 0.758434i 0.0825271 + 0.0599594i
\(161\) −0.993219 + 3.05681i −0.0782766 + 0.240911i
\(162\) 0 0
\(163\) −3.74555 + 2.72130i −0.293374 + 0.213149i −0.724730 0.689033i \(-0.758035\pi\)
0.431355 + 0.902182i \(0.358035\pi\)
\(164\) −0.450728 −0.0351959
\(165\) 0 0
\(166\) −10.7503 −0.834384
\(167\) 13.7431 9.98493i 1.06347 0.772657i 0.0887440 0.996054i \(-0.471715\pi\)
0.974727 + 0.223397i \(0.0717147\pi\)
\(168\) 0 0
\(169\) −3.25070 + 10.0046i −0.250054 + 0.769587i
\(170\) −3.40058 2.47066i −0.260812 0.189491i
\(171\) 0 0
\(172\) −0.508616 + 1.56536i −0.0387816 + 0.119357i
\(173\) −0.182646 0.562127i −0.0138863 0.0427378i 0.943873 0.330308i \(-0.107153\pi\)
−0.957760 + 0.287570i \(0.907153\pi\)
\(174\) 0 0
\(175\) −3.35671 −0.253743
\(176\) −10.9236 + 10.7858i −0.823401 + 0.813008i
\(177\) 0 0
\(178\) −15.6110 + 11.3420i −1.17009 + 0.850121i
\(179\) −2.97921 9.16907i −0.222677 0.685328i −0.998519 0.0544017i \(-0.982675\pi\)
0.775842 0.630927i \(-0.217325\pi\)
\(180\) 0 0
\(181\) 3.85243 + 2.79896i 0.286349 + 0.208045i 0.721682 0.692225i \(-0.243369\pi\)
−0.435333 + 0.900270i \(0.643369\pi\)
\(182\) 1.42228 + 1.03334i 0.105426 + 0.0765965i
\(183\) 0 0
\(184\) 3.42347 + 10.5363i 0.252381 + 0.776750i
\(185\) −1.38502 + 1.00627i −0.101829 + 0.0739828i
\(186\) 0 0
\(187\) 10.8374 10.7006i 0.792507 0.782505i
\(188\) −0.0888691 −0.00648144
\(189\) 0 0
\(190\) 0.709589 + 2.18389i 0.0514790 + 0.158436i
\(191\) −1.60628 + 4.94362i −0.116226 + 0.357707i −0.992201 0.124650i \(-0.960219\pi\)
0.875975 + 0.482357i \(0.160219\pi\)
\(192\) 0 0
\(193\) −2.64390 1.92091i −0.190312 0.138270i 0.488549 0.872536i \(-0.337526\pi\)
−0.678861 + 0.734266i \(0.737526\pi\)
\(194\) 6.77518 20.8519i 0.486430 1.49708i
\(195\) 0 0
\(196\) 2.04699 1.48722i 0.146213 0.106230i
\(197\) −22.4626 −1.60039 −0.800197 0.599737i \(-0.795272\pi\)
−0.800197 + 0.599737i \(0.795272\pi\)
\(198\) 0 0
\(199\) −20.8291 −1.47654 −0.738269 0.674507i \(-0.764356\pi\)
−0.738269 + 0.674507i \(0.764356\pi\)
\(200\) −9.36035 + 6.80070i −0.661877 + 0.480882i
\(201\) 0 0
\(202\) −6.86504 + 21.1284i −0.483022 + 1.48659i
\(203\) −4.07600 2.96139i −0.286079 0.207849i
\(204\) 0 0
\(205\) −0.211144 + 0.649834i −0.0147469 + 0.0453864i
\(206\) −2.11603 6.51246i −0.147431 0.453745i
\(207\) 0 0
\(208\) 7.28981 0.505457
\(209\) −8.22575 + 1.24934i −0.568987 + 0.0864183i
\(210\) 0 0
\(211\) −2.74420 + 1.99378i −0.188919 + 0.137258i −0.678224 0.734855i \(-0.737250\pi\)
0.489306 + 0.872112i \(0.337250\pi\)
\(212\) −0.688326 2.11845i −0.0472744 0.145496i
\(213\) 0 0
\(214\) 19.6939 + 14.3085i 1.34625 + 0.978106i
\(215\) 2.01858 + 1.46659i 0.137666 + 0.100020i
\(216\) 0 0
\(217\) −2.03646 6.26759i −0.138244 0.425472i
\(218\) 17.1329 12.4478i 1.16039 0.843072i
\(219\) 0 0
\(220\) −0.343792 0.685457i −0.0231785 0.0462135i
\(221\) −7.23224 −0.486493
\(222\) 0 0
\(223\) −3.40734 10.4867i −0.228172 0.702243i −0.997954 0.0639353i \(-0.979635\pi\)
0.769782 0.638307i \(-0.220365\pi\)
\(224\) −0.486232 + 1.49647i −0.0324877 + 0.0999870i
\(225\) 0 0
\(226\) −10.0445 7.29775i −0.668150 0.485439i
\(227\) −1.84387 + 5.67485i −0.122382 + 0.376653i −0.993415 0.114571i \(-0.963451\pi\)
0.871033 + 0.491224i \(0.163451\pi\)
\(228\) 0 0
\(229\) −20.0237 + 14.5481i −1.32320 + 0.961364i −0.323318 + 0.946290i \(0.604798\pi\)
−0.999886 + 0.0150739i \(0.995202\pi\)
\(230\) −4.07519 −0.268710
\(231\) 0 0
\(232\) −17.3659 −1.14013
\(233\) −3.38850 + 2.46189i −0.221988 + 0.161284i −0.693221 0.720725i \(-0.743809\pi\)
0.471233 + 0.882009i \(0.343809\pi\)
\(234\) 0 0
\(235\) −0.0416308 + 0.128126i −0.00271569 + 0.00835805i
\(236\) −2.25386 1.63753i −0.146714 0.106594i
\(237\) 0 0
\(238\) 1.58394 4.87488i 0.102672 0.315991i
\(239\) −2.27833 7.01199i −0.147373 0.453568i 0.849935 0.526887i \(-0.176641\pi\)
−0.997309 + 0.0733190i \(0.976641\pi\)
\(240\) 0 0
\(241\) −8.82924 −0.568741 −0.284371 0.958714i \(-0.591785\pi\)
−0.284371 + 0.958714i \(0.591785\pi\)
\(242\) 16.2405 5.04975i 1.04398 0.324610i
\(243\) 0 0
\(244\) −1.44041 + 1.04652i −0.0922129 + 0.0669966i
\(245\) −1.18528 3.64792i −0.0757248 0.233057i
\(246\) 0 0
\(247\) 3.19639 + 2.32231i 0.203381 + 0.147765i
\(248\) −18.3769 13.3516i −1.16694 0.847829i
\(249\) 0 0
\(250\) −2.72948 8.40048i −0.172628 0.531293i
\(251\) −16.6439 + 12.0925i −1.05056 + 0.763274i −0.972318 0.233661i \(-0.924930\pi\)
−0.0782385 + 0.996935i \(0.524930\pi\)
\(252\) 0 0
\(253\) 2.40242 14.5689i 0.151039 0.915936i
\(254\) −18.5479 −1.16380
\(255\) 0 0
\(256\) 2.79314 + 8.59640i 0.174571 + 0.537275i
\(257\) −1.04521 + 3.21684i −0.0651987 + 0.200661i −0.978349 0.206962i \(-0.933642\pi\)
0.913150 + 0.407623i \(0.133642\pi\)
\(258\) 0 0
\(259\) −1.68895 1.22710i −0.104946 0.0762481i
\(260\) −0.112528 + 0.346326i −0.00697871 + 0.0214783i
\(261\) 0 0
\(262\) 8.61973 6.26260i 0.532528 0.386905i
\(263\) −14.2822 −0.880681 −0.440341 0.897831i \(-0.645142\pi\)
−0.440341 + 0.897831i \(0.645142\pi\)
\(264\) 0 0
\(265\) −3.37671 −0.207430
\(266\) −2.26540 + 1.64591i −0.138900 + 0.100917i
\(267\) 0 0
\(268\) −0.976496 + 3.00535i −0.0596490 + 0.183581i
\(269\) −5.43693 3.95016i −0.331495 0.240845i 0.409570 0.912279i \(-0.365679\pi\)
−0.741065 + 0.671433i \(0.765679\pi\)
\(270\) 0 0
\(271\) −1.23000 + 3.78554i −0.0747170 + 0.229955i −0.981439 0.191773i \(-0.938576\pi\)
0.906722 + 0.421728i \(0.138576\pi\)
\(272\) −6.56795 20.2141i −0.398241 1.22566i
\(273\) 0 0
\(274\) 14.2964 0.863679
\(275\) 15.2458 2.31555i 0.919356 0.139633i
\(276\) 0 0
\(277\) 10.6240 7.71880i 0.638335 0.463778i −0.220943 0.975287i \(-0.570913\pi\)
0.859278 + 0.511509i \(0.170913\pi\)
\(278\) 10.3255 + 31.7786i 0.619282 + 1.90595i
\(279\) 0 0
\(280\) 0.860476 + 0.625172i 0.0514233 + 0.0373612i
\(281\) 2.40106 + 1.74447i 0.143235 + 0.104066i 0.657095 0.753808i \(-0.271785\pi\)
−0.513860 + 0.857874i \(0.671785\pi\)
\(282\) 0 0
\(283\) 2.50081 + 7.69669i 0.148657 + 0.457521i 0.997463 0.0711843i \(-0.0226778\pi\)
−0.848806 + 0.528705i \(0.822678\pi\)
\(284\) 3.88918 2.82565i 0.230780 0.167672i
\(285\) 0 0
\(286\) −7.17265 3.71221i −0.424128 0.219508i
\(287\) −0.833217 −0.0491833
\(288\) 0 0
\(289\) 1.26279 + 3.88648i 0.0742820 + 0.228616i
\(290\) 1.97399 6.07532i 0.115917 0.356755i
\(291\) 0 0
\(292\) −4.89199 3.55424i −0.286282 0.207996i
\(293\) −4.85638 + 14.9464i −0.283713 + 0.873178i 0.703069 + 0.711122i \(0.251813\pi\)
−0.986782 + 0.162056i \(0.948187\pi\)
\(294\) 0 0
\(295\) −3.41671 + 2.48239i −0.198929 + 0.144530i
\(296\) −7.19584 −0.418249
\(297\) 0 0
\(298\) −1.77254 −0.102681
\(299\) −5.67262 + 4.12140i −0.328056 + 0.238347i
\(300\) 0 0
\(301\) −0.940229 + 2.89373i −0.0541939 + 0.166792i
\(302\) −1.10155 0.800323i −0.0633871 0.0460534i
\(303\) 0 0
\(304\) −3.58806 + 11.0429i −0.205789 + 0.633354i
\(305\) 0.834052 + 2.56695i 0.0477577 + 0.146983i
\(306\) 0 0
\(307\) −3.51315 −0.200506 −0.100253 0.994962i \(-0.531965\pi\)
−0.100253 + 0.994962i \(0.531965\pi\)
\(308\) 0.665415 0.657017i 0.0379156 0.0374370i
\(309\) 0 0
\(310\) 6.75986 4.91133i 0.383934 0.278945i
\(311\) 8.13778 + 25.0455i 0.461451 + 1.42020i 0.863391 + 0.504535i \(0.168336\pi\)
−0.401940 + 0.915666i \(0.631664\pi\)
\(312\) 0 0
\(313\) 1.99111 + 1.44662i 0.112544 + 0.0817679i 0.642634 0.766174i \(-0.277842\pi\)
−0.530090 + 0.847942i \(0.677842\pi\)
\(314\) 12.2411 + 8.89367i 0.690805 + 0.501899i
\(315\) 0 0
\(316\) −1.76433 5.43005i −0.0992513 0.305464i
\(317\) 21.4447 15.5805i 1.20446 0.875089i 0.209740 0.977757i \(-0.432738\pi\)
0.994716 + 0.102669i \(0.0327381\pi\)
\(318\) 0 0
\(319\) 20.5556 + 10.6386i 1.15089 + 0.595646i
\(320\) 3.48549 0.194845
\(321\) 0 0
\(322\) −1.53565 4.72625i −0.0855785 0.263384i
\(323\) 3.55972 10.9557i 0.198068 0.609591i
\(324\) 0 0
\(325\) −5.92427 4.30423i −0.328619 0.238756i
\(326\) 2.21202 6.80789i 0.122512 0.377054i
\(327\) 0 0
\(328\) −2.32347 + 1.68810i −0.128292 + 0.0932097i
\(329\) −0.164284 −0.00905726
\(330\) 0 0
\(331\) 8.10397 0.445434 0.222717 0.974883i \(-0.428507\pi\)
0.222717 + 0.974883i \(0.428507\pi\)
\(332\) 2.19681 1.59608i 0.120566 0.0875962i
\(333\) 0 0
\(334\) −8.11627 + 24.9793i −0.444103 + 1.36681i
\(335\) 3.87550 + 2.81571i 0.211741 + 0.153839i
\(336\) 0 0
\(337\) 7.63910 23.5107i 0.416128 1.28071i −0.495110 0.868830i \(-0.664872\pi\)
0.911238 0.411880i \(-0.135128\pi\)
\(338\) −5.02603 15.4685i −0.273380 0.841376i
\(339\) 0 0
\(340\) 1.06172 0.0575799
\(341\) 13.5730 + 27.0619i 0.735017 + 1.46549i
\(342\) 0 0
\(343\) 7.87256 5.71975i 0.425078 0.308837i
\(344\) 3.24082 + 9.97422i 0.174733 + 0.537774i
\(345\) 0 0
\(346\) 0.739322 + 0.537149i 0.0397462 + 0.0288773i
\(347\) 1.67438 + 1.21651i 0.0898853 + 0.0653055i 0.631820 0.775115i \(-0.282308\pi\)
−0.541935 + 0.840420i \(0.682308\pi\)
\(348\) 0 0
\(349\) −1.61130 4.95906i −0.0862507 0.265452i 0.898624 0.438719i \(-0.144568\pi\)
−0.984875 + 0.173267i \(0.944568\pi\)
\(350\) 4.19874 3.05056i 0.224432 0.163059i
\(351\) 0 0
\(352\) 1.17611 7.13221i 0.0626868 0.380148i
\(353\) 21.6725 1.15351 0.576756 0.816917i \(-0.304319\pi\)
0.576756 + 0.816917i \(0.304319\pi\)
\(354\) 0 0
\(355\) −2.25198 6.93088i −0.119523 0.367853i
\(356\) 1.50616 4.63547i 0.0798261 0.245680i
\(357\) 0 0
\(358\) 12.0594 + 8.76164i 0.637357 + 0.463067i
\(359\) 2.70478 8.32446i 0.142753 0.439348i −0.853962 0.520335i \(-0.825807\pi\)
0.996715 + 0.0809868i \(0.0258072\pi\)
\(360\) 0 0
\(361\) 10.2801 7.46894i 0.541059 0.393102i
\(362\) −7.36250 −0.386964
\(363\) 0 0
\(364\) −0.444060 −0.0232751
\(365\) −7.41595 + 5.38801i −0.388169 + 0.282021i
\(366\) 0 0
\(367\) −2.09088 + 6.43506i −0.109143 + 0.335908i −0.990680 0.136206i \(-0.956509\pi\)
0.881537 + 0.472114i \(0.156509\pi\)
\(368\) −16.6709 12.1121i −0.869029 0.631387i
\(369\) 0 0
\(370\) 0.817952 2.51740i 0.0425233 0.130873i
\(371\) −1.27244 3.91618i −0.0660620 0.203318i
\(372\) 0 0
\(373\) −21.8933 −1.13359 −0.566797 0.823857i \(-0.691818\pi\)
−0.566797 + 0.823857i \(0.691818\pi\)
\(374\) −3.83128 + 23.2338i −0.198111 + 1.20139i
\(375\) 0 0
\(376\) −0.458114 + 0.332839i −0.0236254 + 0.0171649i
\(377\) −3.39643 10.4531i −0.174925 0.538364i
\(378\) 0 0
\(379\) 27.3639 + 19.8810i 1.40559 + 1.02122i 0.993946 + 0.109873i \(0.0350445\pi\)
0.411642 + 0.911346i \(0.364955\pi\)
\(380\) −0.469243 0.340925i −0.0240716 0.0174891i
\(381\) 0 0
\(382\) −2.48353 7.64350i −0.127068 0.391076i
\(383\) 14.8648 10.7999i 0.759555 0.551849i −0.139219 0.990262i \(-0.544459\pi\)
0.898774 + 0.438413i \(0.144459\pi\)
\(384\) 0 0
\(385\) −0.635536 1.26714i −0.0323899 0.0645794i
\(386\) 5.05284 0.257183
\(387\) 0 0
\(388\) 1.71134 + 5.26696i 0.0868801 + 0.267390i
\(389\) −9.51975 + 29.2988i −0.482670 + 1.48551i 0.352657 + 0.935753i \(0.385278\pi\)
−0.835327 + 0.549754i \(0.814722\pi\)
\(390\) 0 0
\(391\) 16.5392 + 12.0164i 0.836424 + 0.607698i
\(392\) 4.98201 15.3331i 0.251630 0.774436i
\(393\) 0 0
\(394\) 28.0974 20.4139i 1.41552 1.02844i
\(395\) −8.65524 −0.435493
\(396\) 0 0
\(397\) −8.29578 −0.416353 −0.208177 0.978091i \(-0.566753\pi\)
−0.208177 + 0.978091i \(0.566753\pi\)
\(398\) 26.0541 18.9294i 1.30598 0.948847i
\(399\) 0 0
\(400\) 6.65019 20.4672i 0.332509 1.02336i
\(401\) 3.18237 + 2.31212i 0.158920 + 0.115462i 0.664403 0.747374i \(-0.268686\pi\)
−0.505483 + 0.862836i \(0.668686\pi\)
\(402\) 0 0
\(403\) 4.44263 13.6730i 0.221303 0.681101i
\(404\) −1.73404 5.33682i −0.0862716 0.265517i
\(405\) 0 0
\(406\) 7.78977 0.386600
\(407\) 8.51753 + 4.40825i 0.422198 + 0.218509i
\(408\) 0 0
\(409\) 2.02598 1.47196i 0.100178 0.0727839i −0.536568 0.843857i \(-0.680280\pi\)
0.636747 + 0.771073i \(0.280280\pi\)
\(410\) −0.326457 1.00473i −0.0161226 0.0496202i
\(411\) 0 0
\(412\) 1.39930 + 1.01665i 0.0689388 + 0.0500870i
\(413\) −4.16650 3.02714i −0.205020 0.148956i
\(414\) 0 0
\(415\) −1.27204 3.91493i −0.0624419 0.192176i
\(416\) −2.77704 + 2.01764i −0.136156 + 0.0989228i
\(417\) 0 0
\(418\) 9.15380 9.03826i 0.447727 0.442076i
\(419\) 10.7394 0.524654 0.262327 0.964979i \(-0.415510\pi\)
0.262327 + 0.964979i \(0.415510\pi\)
\(420\) 0 0
\(421\) 6.85630 + 21.1015i 0.334156 + 1.02843i 0.967136 + 0.254258i \(0.0818311\pi\)
−0.632981 + 0.774167i \(0.718169\pi\)
\(422\) 1.62065 4.98785i 0.0788920 0.242805i
\(423\) 0 0
\(424\) −11.4825 8.34249i −0.557637 0.405147i
\(425\) −6.59767 + 20.3055i −0.320034 + 0.984963i
\(426\) 0 0
\(427\) −2.66275 + 1.93460i −0.128860 + 0.0936219i
\(428\) −6.14879 −0.297213
\(429\) 0 0
\(430\) −3.85778 −0.186038
\(431\) 14.9330 10.8495i 0.719297 0.522600i −0.166862 0.985980i \(-0.553364\pi\)
0.886160 + 0.463380i \(0.153364\pi\)
\(432\) 0 0
\(433\) 4.67130 14.3768i 0.224488 0.690904i −0.773855 0.633363i \(-0.781674\pi\)
0.998343 0.0575408i \(-0.0183259\pi\)
\(434\) 8.24328 + 5.98909i 0.395690 + 0.287486i
\(435\) 0 0
\(436\) −1.65300 + 5.08740i −0.0791642 + 0.243642i
\(437\) −3.45119 10.6217i −0.165093 0.508103i
\(438\) 0 0
\(439\) 23.9553 1.14333 0.571663 0.820488i \(-0.306298\pi\)
0.571663 + 0.820488i \(0.306298\pi\)
\(440\) −4.33945 2.24589i −0.206875 0.107068i
\(441\) 0 0
\(442\) 9.04645 6.57263i 0.430296 0.312628i
\(443\) 7.87922 + 24.2498i 0.374353 + 1.15214i 0.943914 + 0.330192i \(0.107113\pi\)
−0.569561 + 0.821949i \(0.692887\pi\)
\(444\) 0 0
\(445\) −5.97760 4.34298i −0.283366 0.205877i
\(446\) 13.7924 + 10.0207i 0.653088 + 0.474496i
\(447\) 0 0
\(448\) 1.31343 + 4.04234i 0.0620539 + 0.190982i
\(449\) 18.1886 13.2148i 0.858375 0.623646i −0.0690672 0.997612i \(-0.522002\pi\)
0.927442 + 0.373966i \(0.122002\pi\)
\(450\) 0 0
\(451\) 3.78438 0.574776i 0.178200 0.0270651i
\(452\) 3.13607 0.147508
\(453\) 0 0
\(454\) −2.85087 8.77409i −0.133798 0.411788i
\(455\) −0.208020 + 0.640221i −0.00975214 + 0.0300140i
\(456\) 0 0
\(457\) −17.5472 12.7488i −0.820825 0.596364i 0.0961237 0.995369i \(-0.469356\pi\)
−0.916949 + 0.399005i \(0.869356\pi\)
\(458\) 11.8254 36.3950i 0.552566 1.70062i
\(459\) 0 0
\(460\) 0.832763 0.605037i 0.0388278 0.0282100i
\(461\) −12.1036 −0.563722 −0.281861 0.959455i \(-0.590952\pi\)
−0.281861 + 0.959455i \(0.590952\pi\)
\(462\) 0 0
\(463\) 20.0308 0.930910 0.465455 0.885071i \(-0.345891\pi\)
0.465455 + 0.885071i \(0.345891\pi\)
\(464\) 26.1320 18.9860i 1.21315 0.881404i
\(465\) 0 0
\(466\) 2.00115 6.15891i 0.0927015 0.285306i
\(467\) −4.90871 3.56639i −0.227148 0.165033i 0.468390 0.883522i \(-0.344834\pi\)
−0.695538 + 0.718489i \(0.744834\pi\)
\(468\) 0 0
\(469\) −1.80516 + 5.55570i −0.0833543 + 0.256538i
\(470\) −0.0643669 0.198101i −0.00296902 0.00913772i
\(471\) 0 0
\(472\) −17.7515 −0.817078
\(473\) 2.27425 13.7916i 0.104570 0.634138i
\(474\) 0 0
\(475\) 9.43616 6.85577i 0.432961 0.314564i
\(476\) 0.400088 + 1.23134i 0.0183380 + 0.0564385i
\(477\) 0 0
\(478\) 9.22233 + 6.70041i 0.421819 + 0.306470i
\(479\) −29.3453 21.3206i −1.34082 0.974164i −0.999413 0.0342489i \(-0.989096\pi\)
−0.341408 0.939915i \(-0.610904\pi\)
\(480\) 0 0
\(481\) −1.40736 4.33141i −0.0641702 0.197496i
\(482\) 11.0441 8.02398i 0.503043 0.365482i
\(483\) 0 0
\(484\) −2.56902 + 3.44312i −0.116773 + 0.156505i
\(485\) 8.39529 0.381211
\(486\) 0 0
\(487\) −2.68379 8.25986i −0.121614 0.374290i 0.871655 0.490120i \(-0.163047\pi\)
−0.993269 + 0.115830i \(0.963047\pi\)
\(488\) −3.50571 + 10.7895i −0.158696 + 0.488417i
\(489\) 0 0
\(490\) 4.79782 + 3.48582i 0.216744 + 0.157473i
\(491\) −10.2585 + 31.5725i −0.462961 + 1.42485i 0.398567 + 0.917139i \(0.369508\pi\)
−0.861529 + 0.507709i \(0.830492\pi\)
\(492\) 0 0
\(493\) −25.9256 + 18.8361i −1.16763 + 0.848334i
\(494\) −6.10872 −0.274844
\(495\) 0 0
\(496\) 42.2506 1.89711
\(497\) 7.18956 5.22352i 0.322496 0.234307i
\(498\) 0 0
\(499\) 6.45131 19.8551i 0.288800 0.888837i −0.696433 0.717622i \(-0.745231\pi\)
0.985234 0.171215i \(-0.0547692\pi\)
\(500\) 1.80497 + 1.31139i 0.0807209 + 0.0586472i
\(501\) 0 0
\(502\) 9.82944 30.2519i 0.438710 1.35021i
\(503\) 7.20593 + 22.1776i 0.321297 + 0.988850i 0.973085 + 0.230448i \(0.0740193\pi\)
−0.651788 + 0.758401i \(0.725981\pi\)
\(504\) 0 0
\(505\) −8.50663 −0.378540
\(506\) 10.2351 + 20.4068i 0.455004 + 0.907192i
\(507\) 0 0
\(508\) 3.79026 2.75378i 0.168166 0.122179i
\(509\) 2.00280 + 6.16400i 0.0887728 + 0.273214i 0.985581 0.169205i \(-0.0541201\pi\)
−0.896808 + 0.442420i \(0.854120\pi\)
\(510\) 0 0
\(511\) −9.04335 6.57038i −0.400054 0.290656i
\(512\) 10.4751 + 7.61063i 0.462940 + 0.336346i
\(513\) 0 0
\(514\) −1.61605 4.97368i −0.0712807 0.219379i
\(515\) 2.12126 1.54119i 0.0934739 0.0679128i
\(516\) 0 0
\(517\) 0.746159 0.113327i 0.0328160 0.00498413i
\(518\) 3.22781 0.141822
\(519\) 0 0
\(520\) 0.717013 + 2.20674i 0.0314431 + 0.0967719i
\(521\) −10.2625 + 31.5848i −0.449610 + 1.38376i 0.427738 + 0.903903i \(0.359311\pi\)
−0.877348 + 0.479855i \(0.840689\pi\)
\(522\) 0 0
\(523\) 32.4728 + 23.5929i 1.41994 + 1.03164i 0.991782 + 0.127938i \(0.0408359\pi\)
0.428154 + 0.903706i \(0.359164\pi\)
\(524\) −0.831637 + 2.55952i −0.0363302 + 0.111813i
\(525\) 0 0
\(526\) 17.8650 12.9797i 0.778949 0.565940i
\(527\) −41.9169 −1.82593
\(528\) 0 0
\(529\) −3.17970 −0.138248
\(530\) 4.22376 3.06874i 0.183468 0.133298i
\(531\) 0 0
\(532\) 0.218567 0.672680i 0.00947608 0.0291644i
\(533\) −1.47055 1.06842i −0.0636965 0.0462782i
\(534\) 0 0
\(535\) −2.88041 + 8.86498i −0.124531 + 0.383267i
\(536\) 6.22208 + 19.1496i 0.268753 + 0.827137i
\(537\) 0 0
\(538\) 10.3907 0.447974
\(539\) −15.2903 + 15.0973i −0.658599 + 0.650287i
\(540\) 0 0
\(541\) −19.9410 + 14.4880i −0.857332 + 0.622888i −0.927158 0.374671i \(-0.877756\pi\)
0.0698260 + 0.997559i \(0.477756\pi\)
\(542\) −1.90174 5.85296i −0.0816868 0.251406i
\(543\) 0 0
\(544\) 8.09680 + 5.88267i 0.347147 + 0.252217i
\(545\) 6.56038 + 4.76640i 0.281016 + 0.204170i
\(546\) 0 0
\(547\) 7.94803 + 24.4615i 0.339833 + 1.04590i 0.964292 + 0.264841i \(0.0853195\pi\)
−0.624459 + 0.781058i \(0.714681\pi\)
\(548\) −2.92147 + 2.12257i −0.124799 + 0.0906716i
\(549\) 0 0
\(550\) −16.9659 + 16.7517i −0.723427 + 0.714296i
\(551\) 17.5066 0.745805
\(552\) 0 0
\(553\) −3.26155 10.0380i −0.138695 0.426860i
\(554\) −6.27424 + 19.3101i −0.266567 + 0.820409i
\(555\) 0 0
\(556\) −6.82813 4.96093i −0.289577 0.210390i
\(557\) 3.60979 11.1098i 0.152952 0.470737i −0.844996 0.534773i \(-0.820397\pi\)
0.997948 + 0.0640357i \(0.0203972\pi\)
\(558\) 0 0
\(559\) −5.36998 + 3.90152i −0.227126 + 0.165017i
\(560\) −1.97833 −0.0835996
\(561\) 0 0
\(562\) −4.58873 −0.193564
\(563\) −6.57092 + 4.77405i −0.276931 + 0.201202i −0.717578 0.696478i \(-0.754749\pi\)
0.440647 + 0.897681i \(0.354749\pi\)
\(564\) 0 0
\(565\) 1.46910 4.52141i 0.0618053 0.190217i
\(566\) −10.1229 7.35468i −0.425495 0.309140i
\(567\) 0 0
\(568\) 9.46559 29.1321i 0.397167 1.22236i
\(569\) −5.56435 17.1253i −0.233270 0.717930i −0.997346 0.0728046i \(-0.976805\pi\)
0.764077 0.645126i \(-0.223195\pi\)
\(570\) 0 0
\(571\) −2.60645 −0.109076 −0.0545382 0.998512i \(-0.517369\pi\)
−0.0545382 + 0.998512i \(0.517369\pi\)
\(572\) 2.01687 0.306324i 0.0843296 0.0128081i
\(573\) 0 0
\(574\) 1.04223 0.757225i 0.0435019 0.0316059i
\(575\) 6.39652 + 19.6865i 0.266753 + 0.820982i
\(576\) 0 0
\(577\) −28.4684 20.6835i −1.18515 0.861064i −0.192409 0.981315i \(-0.561630\pi\)
−0.992744 + 0.120251i \(0.961630\pi\)
\(578\) −5.11158 3.71378i −0.212614 0.154473i
\(579\) 0 0
\(580\) 0.498609 + 1.53456i 0.0207036 + 0.0637192i
\(581\) 4.06104 2.95052i 0.168480 0.122408i
\(582\) 0 0
\(583\) 8.48078 + 16.9091i 0.351238 + 0.700303i
\(584\) −38.5294 −1.59436
\(585\) 0 0
\(586\) −7.50863 23.1092i −0.310179 0.954631i
\(587\) 7.27809 22.3997i 0.300399 0.924533i −0.680955 0.732325i \(-0.738435\pi\)
0.981354 0.192208i \(-0.0615649\pi\)
\(588\) 0 0
\(589\) 18.5258 + 13.4598i 0.763341 + 0.554600i
\(590\) 2.01781 6.21019i 0.0830721 0.255670i
\(591\) 0 0
\(592\) 10.8282 7.86714i 0.445036 0.323337i
\(593\) 13.1828 0.541354 0.270677 0.962670i \(-0.412752\pi\)
0.270677 + 0.962670i \(0.412752\pi\)
\(594\) 0 0
\(595\) 1.96270 0.0804630
\(596\) 0.362218 0.263166i 0.0148370 0.0107797i
\(597\) 0 0
\(598\) 3.35009 10.3105i 0.136995 0.421628i
\(599\) −27.6817 20.1119i −1.13104 0.821750i −0.145196 0.989403i \(-0.546381\pi\)
−0.985846 + 0.167653i \(0.946381\pi\)
\(600\) 0 0
\(601\) 8.97030 27.6077i 0.365906 1.12614i −0.583505 0.812109i \(-0.698319\pi\)
0.949412 0.314034i \(-0.101681\pi\)
\(602\) −1.45372 4.47410i −0.0592493 0.182351i
\(603\) 0 0
\(604\) 0.343924 0.0139941
\(605\) 3.76064 + 5.31680i 0.152892 + 0.216158i
\(606\) 0 0
\(607\) 2.55354 1.85526i 0.103645 0.0753026i −0.534756 0.845007i \(-0.679596\pi\)
0.638401 + 0.769704i \(0.279596\pi\)
\(608\) −1.68954 5.19986i −0.0685197 0.210882i
\(609\) 0 0
\(610\) −3.37611 2.45288i −0.136695 0.0993144i
\(611\) −0.289945 0.210657i −0.0117299 0.00852229i
\(612\) 0 0
\(613\) 10.4884 + 32.2798i 0.423620 + 1.30377i 0.904309 + 0.426878i \(0.140387\pi\)
−0.480689 + 0.876891i \(0.659613\pi\)
\(614\) 4.39443 3.19274i 0.177345 0.128848i
\(615\) 0 0
\(616\) 0.969460 5.87904i 0.0390606 0.236873i
\(617\) −21.6077 −0.869895 −0.434948 0.900456i \(-0.643233\pi\)
−0.434948 + 0.900456i \(0.643233\pi\)
\(618\) 0 0
\(619\) 6.33874 + 19.5086i 0.254775 + 0.784118i 0.993874 + 0.110521i \(0.0352519\pi\)
−0.739098 + 0.673598i \(0.764748\pi\)
\(620\) −0.652196 + 2.00725i −0.0261928 + 0.0806132i
\(621\) 0 0
\(622\) −32.9404 23.9326i −1.32079 0.959611i
\(623\) 2.78429 8.56915i 0.111550 0.343316i
\(624\) 0 0
\(625\) −16.0714 + 11.6765i −0.642855 + 0.467062i
\(626\) −3.80526 −0.152089
\(627\) 0 0
\(628\) −3.82189 −0.152510
\(629\) −10.7427 + 7.80501i −0.428339 + 0.311206i
\(630\) 0 0
\(631\) 9.22863 28.4028i 0.367386 1.13070i −0.581087 0.813841i \(-0.697372\pi\)
0.948473 0.316857i \(-0.102628\pi\)
\(632\) −29.4320 21.3836i −1.17074 0.850595i
\(633\) 0 0
\(634\) −12.6646 + 38.9778i −0.502977 + 1.54801i
\(635\) −2.19470 6.75459i −0.0870940 0.268048i
\(636\) 0 0
\(637\) 10.2039 0.404292
\(638\) −35.3803 + 5.37360i −1.40072 + 0.212743i
\(639\) 0 0
\(640\) −6.44762 + 4.68447i −0.254864 + 0.185170i
\(641\) −11.7797 36.2543i −0.465272 1.43196i −0.858640 0.512579i \(-0.828690\pi\)
0.393368 0.919381i \(-0.371310\pi\)
\(642\) 0 0
\(643\) 13.6118 + 9.88957i 0.536798 + 0.390006i 0.822894 0.568194i \(-0.192358\pi\)
−0.286097 + 0.958201i \(0.592358\pi\)
\(644\) 1.01551 + 0.737810i 0.0400166 + 0.0290738i
\(645\) 0 0
\(646\) 5.50381 + 16.9390i 0.216545 + 0.666456i
\(647\) 16.9687 12.3285i 0.667109 0.484683i −0.201947 0.979396i \(-0.564727\pi\)
0.869056 + 0.494713i \(0.164727\pi\)
\(648\) 0 0
\(649\) 21.0120 + 10.8748i 0.824792 + 0.426872i
\(650\) 11.3220 0.444087
\(651\) 0 0
\(652\) 0.558733 + 1.71960i 0.0218817 + 0.0673449i
\(653\) 6.10818 18.7990i 0.239031 0.735663i −0.757530 0.652801i \(-0.773594\pi\)
0.996561 0.0828623i \(-0.0264062\pi\)
\(654\) 0 0
\(655\) 3.30058 + 2.39801i 0.128964 + 0.0936982i
\(656\) 1.65074 5.08046i 0.0644506 0.198358i
\(657\) 0 0
\(658\) 0.205494 0.149300i 0.00801101 0.00582034i
\(659\) −11.8055 −0.459879 −0.229939 0.973205i \(-0.573853\pi\)
−0.229939 + 0.973205i \(0.573853\pi\)
\(660\) 0 0
\(661\) 17.8076 0.692637 0.346318 0.938117i \(-0.387432\pi\)
0.346318 + 0.938117i \(0.387432\pi\)
\(662\) −10.1369 + 7.36485i −0.393980 + 0.286243i
\(663\) 0 0
\(664\) 5.34667 16.4554i 0.207491 0.638592i
\(665\) −0.867445 0.630235i −0.0336381 0.0244395i
\(666\) 0 0
\(667\) −9.60079 + 29.5482i −0.371744 + 1.14411i
\(668\) −2.05009 6.30952i −0.0793202 0.244123i
\(669\) 0 0
\(670\) −7.40658 −0.286141
\(671\) 10.7594 10.6236i 0.415361 0.410119i
\(672\) 0 0
\(673\) −15.9419 + 11.5825i −0.614515 + 0.446472i −0.851001 0.525163i \(-0.824004\pi\)
0.236486 + 0.971635i \(0.424004\pi\)
\(674\) 11.8111 + 36.3508i 0.454946 + 1.40018i
\(675\) 0 0
\(676\) 3.32365 + 2.41477i 0.127833 + 0.0928760i
\(677\) 10.0431 + 7.29671i 0.385986 + 0.280436i 0.763809 0.645443i \(-0.223327\pi\)
−0.377822 + 0.925878i \(0.623327\pi\)
\(678\) 0 0
\(679\) 3.16359 + 9.73653i 0.121408 + 0.373654i
\(680\) 5.47310 3.97644i 0.209884 0.152490i
\(681\) 0 0
\(682\) −41.5715 21.5154i −1.59186 0.823866i
\(683\) 2.02837 0.0776135 0.0388068 0.999247i \(-0.487644\pi\)
0.0388068 + 0.999247i \(0.487644\pi\)
\(684\) 0 0
\(685\) 1.69164 + 5.20632i 0.0646341 + 0.198923i
\(686\) −4.64931 + 14.3091i −0.177511 + 0.546324i
\(687\) 0 0
\(688\) −15.7815 11.4659i −0.601663 0.437133i
\(689\) 2.77589 8.54330i 0.105753 0.325474i
\(690\) 0 0
\(691\) −1.89542 + 1.37710i −0.0721052 + 0.0523875i −0.623254 0.782020i \(-0.714190\pi\)
0.551149 + 0.834407i \(0.314190\pi\)
\(692\) −0.230830 −0.00877483
\(693\) 0 0
\(694\) −3.19995 −0.121469
\(695\) −10.3510 + 7.52046i −0.392637 + 0.285267i
\(696\) 0 0
\(697\) −1.63770 + 5.04033i −0.0620324 + 0.190916i
\(698\) 6.52227 + 4.73871i 0.246871 + 0.179363i
\(699\) 0 0
\(700\) −0.405097 + 1.24676i −0.0153112 + 0.0471231i
\(701\) −1.37008 4.21668i −0.0517473 0.159262i 0.921843 0.387563i \(-0.126683\pi\)
−0.973591 + 0.228301i \(0.926683\pi\)
\(702\) 0 0
\(703\) 7.25411 0.273594
\(704\) −8.75399 17.4538i −0.329928 0.657815i
\(705\) 0 0
\(706\) −27.1091 + 19.6959i −1.02026 + 0.741265i
\(707\) −3.20555 9.86566i −0.120557 0.371037i
\(708\) 0 0
\(709\) −24.1755 17.5645i −0.907929 0.659649i 0.0325612 0.999470i \(-0.489634\pi\)
−0.940490 + 0.339821i \(0.889634\pi\)
\(710\) 9.11565 + 6.62291i 0.342104 + 0.248553i
\(711\) 0 0
\(712\) −9.59699 29.5365i −0.359662 1.10693i
\(713\) −32.8776 + 23.8870i −1.23127 + 0.894574i
\(714\) 0 0
\(715\) 0.503164 3.05131i 0.0188173 0.114113i
\(716\) −3.76515 −0.140710
\(717\) 0 0
\(718\) 4.18196 + 12.8707i 0.156069 + 0.480332i
\(719\) −6.68469 + 20.5734i −0.249297 + 0.767257i 0.745603 + 0.666390i \(0.232162\pi\)
−0.994900 + 0.100867i \(0.967838\pi\)
\(720\) 0 0
\(721\) 2.58676 + 1.87939i 0.0963360 + 0.0699922i
\(722\) −6.07115 + 18.6851i −0.225945 + 0.695386i
\(723\) 0 0
\(724\) 1.50452 1.09310i 0.0559151 0.0406247i
\(725\) −32.4471 −1.20505
\(726\) 0 0
\(727\) −12.4422 −0.461455 −0.230727 0.973018i \(-0.574111\pi\)
−0.230727 + 0.973018i \(0.574111\pi\)
\(728\) −2.28910 + 1.66313i −0.0848396 + 0.0616396i
\(729\) 0 0
\(730\) 4.37965 13.4792i 0.162098 0.498887i
\(731\) 15.6568 + 11.3754i 0.579089 + 0.420733i
\(732\) 0 0
\(733\) −16.1777 + 49.7899i −0.597538 + 1.83903i −0.0558724 + 0.998438i \(0.517794\pi\)
−0.541665 + 0.840594i \(0.682206\pi\)
\(734\) −3.23278 9.94949i −0.119324 0.367242i
\(735\) 0 0
\(736\) 9.70306 0.357660
\(737\) 4.36635 26.4786i 0.160837 0.975352i
\(738\) 0 0
\(739\) 37.7617 27.4355i 1.38909 1.00923i 0.393122 0.919486i \(-0.371395\pi\)
0.995965 0.0897445i \(-0.0286051\pi\)
\(740\) 0.206606 + 0.635869i 0.00759500 + 0.0233750i
\(741\) 0 0
\(742\) 5.15064 + 3.74216i 0.189086 + 0.137379i
\(743\) 17.6947 + 12.8560i 0.649156 + 0.471640i 0.862984 0.505232i \(-0.168593\pi\)
−0.213827 + 0.976871i \(0.568593\pi\)
\(744\) 0 0
\(745\) −0.209737 0.645506i −0.00768419 0.0236495i
\(746\) 27.3853 19.8966i 1.00265 0.728466i
\(747\) 0 0
\(748\) −2.66657 5.31664i −0.0974994 0.194395i
\(749\) −11.3667 −0.415330
\(750\) 0 0
\(751\) 12.2346 + 37.6543i 0.446448 + 1.37403i 0.880888 + 0.473326i \(0.156947\pi\)
−0.434439 + 0.900701i \(0.643053\pi\)
\(752\) 0.325473 1.00170i 0.0118688 0.0365284i
\(753\) 0 0
\(754\) 13.7482 + 9.98865i 0.500680 + 0.363765i
\(755\) 0.161111 0.495850i 0.00586344 0.0180458i
\(756\) 0 0
\(757\) −18.7253 + 13.6047i −0.680583 + 0.494472i −0.873551 0.486733i \(-0.838189\pi\)
0.192968 + 0.981205i \(0.438189\pi\)
\(758\) −52.2959 −1.89947
\(759\) 0 0
\(760\) −3.69577 −0.134060
\(761\) 12.0486 8.75381i 0.436761 0.317325i −0.347586 0.937648i \(-0.612998\pi\)
0.784346 + 0.620323i \(0.212998\pi\)
\(762\) 0 0
\(763\) −3.05574 + 9.40460i −0.110625 + 0.340469i
\(764\) 1.64233 + 1.19322i 0.0594173 + 0.0431692i
\(765\) 0 0
\(766\) −8.77872 + 27.0181i −0.317188 + 0.976204i
\(767\) −3.47183 10.6852i −0.125361 0.385820i
\(768\) 0 0
\(769\) 21.6233 0.779757 0.389879 0.920866i \(-0.372517\pi\)
0.389879 + 0.920866i \(0.372517\pi\)
\(770\) 1.94653 + 1.00743i 0.0701481 + 0.0363052i
\(771\) 0 0
\(772\) −1.03255 + 0.750188i −0.0371621 + 0.0269999i
\(773\) −1.87664 5.77569i −0.0674979 0.207737i 0.911619 0.411037i \(-0.134833\pi\)
−0.979117 + 0.203300i \(0.934833\pi\)
\(774\) 0 0
\(775\) −34.3361 24.9466i −1.23339 0.896109i
\(776\) 28.5481 + 20.7414i 1.02482 + 0.744572i
\(777\) 0 0
\(778\) −14.7188 45.2999i −0.527695 1.62408i
\(779\) 2.34229 1.70177i 0.0839211 0.0609722i
\(780\) 0 0
\(781\) −29.0509 + 28.6842i −1.03952 + 1.02640i
\(782\) −31.6086 −1.13032
\(783\) 0 0
\(784\) 9.26663 + 28.5197i 0.330951 + 1.01856i
\(785\) −1.79037 + 5.51018i −0.0639010 + 0.196667i
\(786\) 0 0
\(787\) −41.3856 30.0684i −1.47524 1.07182i −0.979053 0.203604i \(-0.934735\pi\)
−0.496183 0.868218i \(-0.665265\pi\)
\(788\) −2.71085 + 8.34314i −0.0965701 + 0.297212i
\(789\) 0 0
\(790\) 10.8264 7.86585i 0.385187 0.279854i
\(791\) 5.79736 0.206130
\(792\) 0 0
\(793\) −7.18019 −0.254976
\(794\) 10.3768 7.53917i 0.368258 0.267555i
\(795\) 0 0
\(796\) −2.51372 + 7.73643i −0.0890964 + 0.274211i
\(797\) 20.4368 + 14.8482i 0.723907 + 0.525949i 0.887630 0.460557i \(-0.152350\pi\)
−0.163723 + 0.986506i \(0.552350\pi\)
\(798\) 0 0
\(799\) −0.322903 + 0.993792i −0.0114235 + 0.0351579i
\(800\) 3.13143 + 9.63754i 0.110713 + 0.340738i
\(801\) 0 0
\(802\) −6.08192 −0.214760
\(803\) 45.6063 + 23.6036i 1.60941 + 0.832953i
\(804\) 0 0
\(805\) 1.53945 1.11848i 0.0542584 0.0394211i
\(806\) 6.86891 + 21.1403i 0.241947 + 0.744637i
\(807\) 0 0
\(808\) −28.9267 21.0165i −1.01764 0.739357i
\(809\) −41.5248 30.1696i −1.45994 1.06071i −0.983380 0.181561i \(-0.941885\pi\)
−0.476556 0.879144i \(-0.658115\pi\)
\(810\) 0 0
\(811\) 1.40476 + 4.32339i 0.0493276 + 0.151815i 0.972686 0.232124i \(-0.0745674\pi\)
−0.923359 + 0.383939i \(0.874567\pi\)
\(812\) −1.59184 + 1.15654i −0.0558625 + 0.0405865i
\(813\) 0 0
\(814\) −14.6604 + 2.22663i −0.513845 + 0.0780433i
\(815\) 2.74097 0.0960119
\(816\) 0 0
\(817\) −3.26707 10.0550i −0.114300 0.351780i
\(818\) −1.19649 + 3.68241i −0.0418342 + 0.128753i
\(819\) 0 0
\(820\) 0.215882 + 0.156848i 0.00753894 + 0.00547736i
\(821\) 3.36019 10.3416i 0.117271 0.360924i −0.875143 0.483865i \(-0.839233\pi\)
0.992414 + 0.122941i \(0.0392326\pi\)
\(822\) 0 0
\(823\) 19.1059 13.8812i 0.665988 0.483869i −0.202692 0.979243i \(-0.564969\pi\)
0.868680 + 0.495374i \(0.164969\pi\)
\(824\) 11.0210 0.383934
\(825\) 0 0
\(826\) 7.96271 0.277058
\(827\) 22.3321 16.2252i 0.776564 0.564207i −0.127382 0.991854i \(-0.540657\pi\)
0.903946 + 0.427647i \(0.140657\pi\)
\(828\) 0 0
\(829\) −4.97546 + 15.3129i −0.172805 + 0.531839i −0.999526 0.0307727i \(-0.990203\pi\)
0.826722 + 0.562611i \(0.190203\pi\)
\(830\) 5.14900 + 3.74097i 0.178724 + 0.129851i
\(831\) 0 0
\(832\) −2.86531 + 8.81852i −0.0993368 + 0.305727i
\(833\) −9.19344 28.2945i −0.318534 0.980347i
\(834\) 0 0
\(835\) −10.0571 −0.348039
\(836\) −0.528675 + 3.20601i −0.0182846 + 0.110882i
\(837\) 0 0
\(838\) −13.4334 + 9.75993i −0.464049 + 0.337151i
\(839\) −6.00479 18.4809i −0.207309 0.638030i −0.999611 0.0279012i \(-0.991118\pi\)
0.792302 0.610129i \(-0.208882\pi\)
\(840\) 0 0
\(841\) −15.9386 11.5800i −0.549606 0.399312i
\(842\) −27.7532 20.1639i −0.956438 0.694893i
\(843\) 0 0
\(844\) 0.409359 + 1.25988i 0.0140907 + 0.0433668i
\(845\) 5.03845 3.66065i 0.173328 0.125930i
\(846\) 0 0
\(847\) −4.74909 + 6.36497i −0.163181 + 0.218703i
\(848\) 26.3994 0.906559
\(849\) 0 0
\(850\) −10.2009 31.3951i −0.349888 1.07684i
\(851\) −3.97823 + 12.2437i −0.136372 + 0.419710i
\(852\) 0 0
\(853\) 16.0068 + 11.6296i 0.548063 + 0.398191i 0.827071 0.562098i \(-0.190006\pi\)
−0.279008 + 0.960289i \(0.590006\pi\)
\(854\) 1.57255 4.83980i 0.0538114 0.165614i
\(855\) 0 0
\(856\) −31.6966 + 23.0289i −1.08337 + 0.787112i
\(857\) −4.34065 −0.148274 −0.0741369 0.997248i \(-0.523620\pi\)
−0.0741369 + 0.997248i \(0.523620\pi\)
\(858\) 0 0
\(859\) −5.17935 −0.176717 −0.0883586 0.996089i \(-0.528162\pi\)
−0.0883586 + 0.996089i \(0.528162\pi\)
\(860\) 0.788334 0.572758i 0.0268820 0.0195309i
\(861\) 0 0
\(862\) −8.81901 + 27.1421i −0.300377 + 0.924464i
\(863\) 2.17943 + 1.58345i 0.0741886 + 0.0539011i 0.624261 0.781216i \(-0.285400\pi\)
−0.550073 + 0.835117i \(0.685400\pi\)
\(864\) 0 0
\(865\) −0.108132 + 0.332797i −0.00367661 + 0.0113155i
\(866\) 7.22246 + 22.2285i 0.245429 + 0.755354i
\(867\) 0 0
\(868\) −2.57370 −0.0873571
\(869\) 21.7381 + 43.3417i 0.737414 + 1.47027i
\(870\) 0 0
\(871\) −10.3099 + 7.49056i −0.349337 + 0.253808i
\(872\) 10.5326 + 32.4161i 0.356680 + 1.09775i
\(873\) 0 0
\(874\) 13.9699 + 10.1497i 0.472538 + 0.343319i
\(875\) 3.33668 + 2.42424i 0.112800 + 0.0819543i
\(876\) 0 0
\(877\) −6.44139 19.8246i −0.217510 0.669428i −0.998966 0.0454669i \(-0.985522\pi\)
0.781456 0.623961i \(-0.214478\pi\)
\(878\) −29.9646 + 21.7705i −1.01125 + 0.734720i
\(879\) 0 0
\(880\) 8.98535 1.36470i 0.302896 0.0460041i
\(881\) 11.5843 0.390286 0.195143 0.980775i \(-0.437483\pi\)
0.195143 + 0.980775i \(0.437483\pi\)
\(882\) 0 0
\(883\) 4.75801 + 14.6437i 0.160120 + 0.492798i 0.998644 0.0520667i \(-0.0165808\pi\)
−0.838524 + 0.544865i \(0.816581\pi\)
\(884\) −0.872808 + 2.68623i −0.0293557 + 0.0903476i
\(885\) 0 0
\(886\) −31.8938 23.1722i −1.07149 0.778486i
\(887\) −1.82628 + 5.62070i −0.0613204 + 0.188725i −0.977024 0.213130i \(-0.931634\pi\)
0.915703 + 0.401855i \(0.131634\pi\)
\(888\) 0 0
\(889\) 7.00669 5.09066i 0.234997 0.170735i
\(890\) 11.4240 0.382932
\(891\) 0 0
\(892\) −4.30623 −0.144183
\(893\) 0.461824 0.335535i 0.0154543 0.0112282i
\(894\) 0 0
\(895\) −1.76379 + 5.42838i −0.0589569 + 0.181451i
\(896\) −7.86251 5.71245i −0.262668 0.190840i
\(897\) 0 0
\(898\) −10.7417 + 33.0595i −0.358455 + 1.10321i
\(899\) −19.6852 60.5847i −0.656537 2.02061i
\(900\) 0 0
\(901\) −26.1909 −0.872546
\(902\) −4.21134 + 4.15819i −0.140222 + 0.138453i
\(903\) 0 0
\(904\) 16.1662 11.7455i 0.537681 0.390648i
\(905\) −0.871174 2.68120i −0.0289588 0.0891260i
\(906\) 0 0
\(907\) 5.98132 + 4.34568i 0.198606 + 0.144296i 0.682644 0.730751i \(-0.260830\pi\)
−0.484037 + 0.875047i \(0.660830\pi\)
\(908\) 1.88525 + 1.36971i 0.0625642 + 0.0454556i
\(909\) 0 0
\(910\) −0.321628 0.989869i −0.0106619 0.0328138i
\(911\) 11.4871 8.34585i 0.380584 0.276510i −0.381002 0.924574i \(-0.624421\pi\)
0.761586 + 0.648064i \(0.224421\pi\)
\(912\) 0 0
\(913\) −16.4095 + 16.2024i −0.543074 + 0.536220i
\(914\) 33.5350 1.10924
\(915\) 0 0
\(916\) 2.98698 + 9.19299i 0.0986927 + 0.303745i
\(917\) −1.53737 + 4.73153i −0.0507684 + 0.156249i
\(918\) 0 0
\(919\) 33.6895 + 24.4769i 1.11132 + 0.807418i 0.982870 0.184299i \(-0.0590013\pi\)
0.128445 + 0.991717i \(0.459001\pi\)
\(920\) 2.02680 6.23785i 0.0668217 0.205656i
\(921\) 0 0
\(922\) 15.1398 10.9997i 0.498604 0.362257i
\(923\) 19.3869 0.638127
\(924\) 0 0
\(925\) −13.4449 −0.442067
\(926\) −25.0555 + 18.2039i −0.823376 + 0.598218i
\(927\) 0 0
\(928\) −4.70008 + 14.4654i −0.154288 + 0.474849i
\(929\) 27.6140 + 20.0627i 0.905986 + 0.658237i 0.939996 0.341184i \(-0.110828\pi\)
−0.0340108 + 0.999421i \(0.510828\pi\)
\(930\) 0 0
\(931\) −5.02236 + 15.4572i −0.164601 + 0.506590i
\(932\) 0.505470 + 1.55568i 0.0165572 + 0.0509579i
\(933\) 0 0
\(934\) 9.38118 0.306962
\(935\) −8.91439 + 1.35393i −0.291532 + 0.0442781i
\(936\) 0 0
\(937\) −41.8118 + 30.3780i −1.36593 + 0.992407i −0.367889 + 0.929870i \(0.619919\pi\)
−0.998043 + 0.0625376i \(0.980081\pi\)
\(938\) −2.79102 8.58987i −0.0911299 0.280469i
\(939\) 0 0
\(940\) 0.0425651 + 0.0309253i 0.00138832 + 0.00100867i
\(941\) −14.5673 10.5838i −0.474881 0.345021i 0.324460 0.945900i \(-0.394818\pi\)
−0.799340 + 0.600878i \(0.794818\pi\)
\(942\) 0 0
\(943\) 1.58777 + 4.88666i 0.0517050 + 0.159132i
\(944\) 26.7122 19.4075i 0.869407 0.631661i
\(945\) 0 0
\(946\) 9.68901 + 19.3181i 0.315017 + 0.628084i
\(947\) 28.6303 0.930360 0.465180 0.885216i \(-0.345990\pi\)
0.465180 + 0.885216i \(0.345990\pi\)
\(948\) 0 0
\(949\) −7.53559 23.1922i −0.244616 0.752850i
\(950\) −5.57273 + 17.1511i −0.180803 + 0.556455i
\(951\) 0 0
\(952\) 6.67415 + 4.84905i 0.216310 + 0.157159i
\(953\) 5.15728 15.8725i 0.167061 0.514160i −0.832121 0.554594i \(-0.812874\pi\)
0.999182 + 0.0404331i \(0.0128738\pi\)
\(954\) 0 0
\(955\) 2.48967 1.80885i 0.0805637 0.0585330i
\(956\) −2.87938 −0.0931257
\(957\) 0 0
\(958\) 56.0827 1.81195
\(959\) −5.40063 + 3.92379i −0.174396 + 0.126706i
\(960\) 0 0
\(961\) 16.1692 49.7638i 0.521589 1.60528i
\(962\) 5.69677 + 4.13895i 0.183671 + 0.133445i
\(963\) 0 0
\(964\) −1.06554 + 3.27939i −0.0343187 + 0.105622i
\(965\) 0.597882 + 1.84009i 0.0192465 + 0.0592347i
\(966\) 0 0
\(967\) 24.3193 0.782057 0.391029 0.920379i \(-0.372119\pi\)
0.391029 + 0.920379i \(0.372119\pi\)
\(968\) −0.347660 + 27.3707i −0.0111742 + 0.879728i
\(969\) 0 0
\(970\) −10.5013 + 7.62961i −0.337175 + 0.244972i
\(971\) 2.33367 + 7.18229i 0.0748910 + 0.230491i 0.981494 0.191495i \(-0.0613334\pi\)
−0.906603 + 0.421985i \(0.861333\pi\)
\(972\) 0 0
\(973\) −12.6225 9.17079i −0.404659 0.294002i
\(974\) 10.8635 + 7.89283i 0.348091 + 0.252903i
\(975\) 0 0
\(976\) −6.52069 20.0686i −0.208722 0.642381i
\(977\) −1.64415 + 1.19455i −0.0526011 + 0.0382170i −0.613775 0.789481i \(-0.710350\pi\)
0.561174 + 0.827698i \(0.310350\pi\)
\(978\) 0 0
\(979\) −6.73470 + 40.8408i −0.215242 + 1.30528i
\(980\) −1.49797 −0.0478508
\(981\) 0 0
\(982\) −15.8611 48.8154i −0.506148 1.55776i
\(983\) 10.3334 31.8030i 0.329584 1.01436i −0.639744 0.768588i \(-0.720960\pi\)
0.969329 0.245769i \(-0.0790404\pi\)
\(984\) 0 0
\(985\) 10.7588 + 7.81671i 0.342803 + 0.249061i
\(986\) 15.3109 47.1222i 0.487600 1.50068i
\(987\) 0 0
\(988\) 1.24831 0.906952i 0.0397141 0.0288540i
\(989\) 18.7629 0.596624
\(990\) 0 0
\(991\) 40.1009 1.27385 0.636923 0.770927i \(-0.280207\pi\)
0.636923 + 0.770927i \(0.280207\pi\)
\(992\) −16.0953 + 11.6939i −0.511026 + 0.371282i
\(993\) 0 0
\(994\) −4.24595 + 13.0677i −0.134673 + 0.414482i
\(995\) 9.97640 + 7.24828i 0.316273 + 0.229786i
\(996\) 0 0
\(997\) 4.98448 15.3406i 0.157860 0.485843i −0.840580 0.541688i \(-0.817785\pi\)
0.998439 + 0.0558453i \(0.0177854\pi\)
\(998\) 9.97461 + 30.6987i 0.315741 + 0.971750i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.f.f.487.2 36
3.2 odd 2 891.2.f.e.487.8 36
9.2 odd 6 297.2.n.b.91.2 72
9.4 even 3 99.2.m.b.25.2 yes 72
9.5 odd 6 297.2.n.b.289.8 72
9.7 even 3 99.2.m.b.58.8 yes 72
11.2 odd 10 9801.2.a.co.1.4 18
11.4 even 5 inner 891.2.f.f.730.2 36
11.9 even 5 9801.2.a.cm.1.15 18
33.2 even 10 9801.2.a.cn.1.15 18
33.20 odd 10 9801.2.a.cp.1.4 18
33.26 odd 10 891.2.f.e.730.8 36
99.4 even 15 99.2.m.b.70.8 yes 72
99.13 odd 30 1089.2.e.o.727.15 36
99.31 even 15 1089.2.e.p.727.4 36
99.59 odd 30 297.2.n.b.235.2 72
99.70 even 15 99.2.m.b.4.2 72
99.79 odd 30 1089.2.e.o.364.15 36
99.92 odd 30 297.2.n.b.37.8 72
99.97 even 15 1089.2.e.p.364.4 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.4.2 72 99.70 even 15
99.2.m.b.25.2 yes 72 9.4 even 3
99.2.m.b.58.8 yes 72 9.7 even 3
99.2.m.b.70.8 yes 72 99.4 even 15
297.2.n.b.37.8 72 99.92 odd 30
297.2.n.b.91.2 72 9.2 odd 6
297.2.n.b.235.2 72 99.59 odd 30
297.2.n.b.289.8 72 9.5 odd 6
891.2.f.e.487.8 36 3.2 odd 2
891.2.f.e.730.8 36 33.26 odd 10
891.2.f.f.487.2 36 1.1 even 1 trivial
891.2.f.f.730.2 36 11.4 even 5 inner
1089.2.e.o.364.15 36 99.79 odd 30
1089.2.e.o.727.15 36 99.13 odd 30
1089.2.e.p.364.4 36 99.97 even 15
1089.2.e.p.727.4 36 99.31 even 15
9801.2.a.cm.1.15 18 11.9 even 5
9801.2.a.cn.1.15 18 33.2 even 10
9801.2.a.co.1.4 18 11.2 odd 10
9801.2.a.cp.1.4 18 33.20 odd 10