Properties

Label 891.2.f.e.82.1
Level $891$
Weight $2$
Character 891.82
Analytic conductor $7.115$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(82,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(9\) over \(\Q(\zeta_{5})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 82.1
Character \(\chi\) \(=\) 891.82
Dual form 891.2.f.e.163.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.719701 - 2.21501i) q^{2} +(-2.77028 + 2.01272i) q^{4} +(0.0979645 - 0.301504i) q^{5} +(1.14758 - 0.833769i) q^{7} +(2.68358 + 1.94973i) q^{8} -0.738340 q^{10} +(3.24416 - 0.689532i) q^{11} +(1.29696 + 3.99162i) q^{13} +(-2.67273 - 1.94185i) q^{14} +(0.271005 - 0.834068i) q^{16} +(1.92957 - 5.93860i) q^{17} +(-2.50622 - 1.82087i) q^{19} +(0.335455 + 1.03242i) q^{20} +(-3.86214 - 6.68959i) q^{22} +4.52050 q^{23} +(3.96378 + 2.87985i) q^{25} +(7.90807 - 5.74555i) q^{26} +(-1.50098 + 4.61954i) q^{28} +(2.36916 - 1.72130i) q^{29} +(-2.94857 - 9.07476i) q^{31} +4.59165 q^{32} -14.5428 q^{34} +(-0.138962 - 0.427681i) q^{35} +(-0.685637 + 0.498145i) q^{37} +(-2.22953 + 6.86179i) q^{38} +(0.850747 - 0.618104i) q^{40} +(-3.13058 - 2.27450i) q^{41} +3.55302 q^{43} +(-7.59937 + 8.43978i) q^{44} +(-3.25341 - 10.0130i) q^{46} +(-6.02798 - 4.37959i) q^{47} +(-1.54134 + 4.74375i) q^{49} +(3.52617 - 10.8525i) q^{50} +(-11.6270 - 8.44748i) q^{52} +(-2.06517 - 6.35595i) q^{53} +(0.109916 - 1.04568i) q^{55} +4.70526 q^{56} +(-5.51778 - 4.00890i) q^{58} +(-9.76870 + 7.09737i) q^{59} +(1.42776 - 4.39418i) q^{61} +(-17.9786 + 13.0622i) q^{62} +(-3.84663 - 11.8387i) q^{64} +1.33054 q^{65} +9.96771 q^{67} +(6.60733 + 20.3353i) q^{68} +(-0.847308 + 0.615605i) q^{70} +(-0.905630 + 2.78724i) q^{71} +(-3.43158 + 2.49319i) q^{73} +(1.59685 + 1.16018i) q^{74} +10.6078 q^{76} +(3.14803 - 3.49617i) q^{77} +(-1.04509 - 3.21646i) q^{79} +(-0.224926 - 0.163418i) q^{80} +(-2.78496 + 8.57123i) q^{82} +(4.16786 - 12.8273i) q^{83} +(-1.60148 - 1.16355i) q^{85} +(-2.55711 - 7.86998i) q^{86} +(10.0503 + 4.47482i) q^{88} -2.69745 q^{89} +(4.81645 + 3.49936i) q^{91} +(-12.5230 + 9.09852i) q^{92} +(-5.36249 + 16.5041i) q^{94} +(-0.794521 + 0.577253i) q^{95} +(-1.62464 - 5.00013i) q^{97} +11.6168 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - q^{2} - 11 q^{4} - 8 q^{5} + 2 q^{7} - 3 q^{8} - 4 q^{10} - 2 q^{11} + 11 q^{13} - 10 q^{14} + 9 q^{16} + 10 q^{17} + 4 q^{19} - 45 q^{20} + 16 q^{22} + 20 q^{23} - 11 q^{25} + 6 q^{26} - 27 q^{28}+ \cdots + 164 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.719701 2.21501i −0.508906 1.56625i −0.794104 0.607782i \(-0.792059\pi\)
0.285198 0.958469i \(-0.407941\pi\)
\(3\) 0 0
\(4\) −2.77028 + 2.01272i −1.38514 + 1.00636i
\(5\) 0.0979645 0.301504i 0.0438111 0.134837i −0.926758 0.375658i \(-0.877417\pi\)
0.970569 + 0.240821i \(0.0774168\pi\)
\(6\) 0 0
\(7\) 1.14758 0.833769i 0.433746 0.315135i −0.349399 0.936974i \(-0.613614\pi\)
0.783145 + 0.621839i \(0.213614\pi\)
\(8\) 2.68358 + 1.94973i 0.948787 + 0.689334i
\(9\) 0 0
\(10\) −0.738340 −0.233484
\(11\) 3.24416 0.689532i 0.978150 0.207902i
\(12\) 0 0
\(13\) 1.29696 + 3.99162i 0.359711 + 1.10708i 0.953227 + 0.302254i \(0.0977391\pi\)
−0.593517 + 0.804822i \(0.702261\pi\)
\(14\) −2.67273 1.94185i −0.714316 0.518981i
\(15\) 0 0
\(16\) 0.271005 0.834068i 0.0677513 0.208517i
\(17\) 1.92957 5.93860i 0.467989 1.44032i −0.387195 0.921998i \(-0.626556\pi\)
0.855184 0.518325i \(-0.173444\pi\)
\(18\) 0 0
\(19\) −2.50622 1.82087i −0.574966 0.417737i 0.261940 0.965084i \(-0.415638\pi\)
−0.836906 + 0.547347i \(0.815638\pi\)
\(20\) 0.335455 + 1.03242i 0.0750101 + 0.230857i
\(21\) 0 0
\(22\) −3.86214 6.68959i −0.823412 1.42623i
\(23\) 4.52050 0.942589 0.471295 0.881976i \(-0.343787\pi\)
0.471295 + 0.881976i \(0.343787\pi\)
\(24\) 0 0
\(25\) 3.96378 + 2.87985i 0.792755 + 0.575971i
\(26\) 7.90807 5.74555i 1.55090 1.12679i
\(27\) 0 0
\(28\) −1.50098 + 4.61954i −0.283659 + 0.873011i
\(29\) 2.36916 1.72130i 0.439942 0.319637i −0.345670 0.938356i \(-0.612348\pi\)
0.785612 + 0.618719i \(0.212348\pi\)
\(30\) 0 0
\(31\) −2.94857 9.07476i −0.529578 1.62987i −0.755081 0.655632i \(-0.772402\pi\)
0.225503 0.974243i \(-0.427598\pi\)
\(32\) 4.59165 0.811697
\(33\) 0 0
\(34\) −14.5428 −2.49407
\(35\) −0.138962 0.427681i −0.0234889 0.0722913i
\(36\) 0 0
\(37\) −0.685637 + 0.498145i −0.112718 + 0.0818945i −0.642716 0.766104i \(-0.722193\pi\)
0.529998 + 0.847999i \(0.322193\pi\)
\(38\) −2.22953 + 6.86179i −0.361678 + 1.11313i
\(39\) 0 0
\(40\) 0.850747 0.618104i 0.134515 0.0977308i
\(41\) −3.13058 2.27450i −0.488914 0.355217i 0.315852 0.948808i \(-0.397710\pi\)
−0.804767 + 0.593591i \(0.797710\pi\)
\(42\) 0 0
\(43\) 3.55302 0.541830 0.270915 0.962603i \(-0.412674\pi\)
0.270915 + 0.962603i \(0.412674\pi\)
\(44\) −7.59937 + 8.43978i −1.14565 + 1.27235i
\(45\) 0 0
\(46\) −3.25341 10.0130i −0.479689 1.47633i
\(47\) −6.02798 4.37959i −0.879272 0.638828i 0.0537868 0.998552i \(-0.482871\pi\)
−0.933059 + 0.359724i \(0.882871\pi\)
\(48\) 0 0
\(49\) −1.54134 + 4.74375i −0.220191 + 0.677679i
\(50\) 3.52617 10.8525i 0.498676 1.53477i
\(51\) 0 0
\(52\) −11.6270 8.44748i −1.61237 1.17145i
\(53\) −2.06517 6.35595i −0.283673 0.873057i −0.986793 0.161986i \(-0.948210\pi\)
0.703120 0.711071i \(-0.251790\pi\)
\(54\) 0 0
\(55\) 0.109916 1.04568i 0.0148210 0.140999i
\(56\) 4.70526 0.628766
\(57\) 0 0
\(58\) −5.51778 4.00890i −0.724520 0.526395i
\(59\) −9.76870 + 7.09737i −1.27178 + 0.923999i −0.999272 0.0381555i \(-0.987852\pi\)
−0.272504 + 0.962155i \(0.587852\pi\)
\(60\) 0 0
\(61\) 1.42776 4.39418i 0.182806 0.562618i −0.817098 0.576499i \(-0.804419\pi\)
0.999904 + 0.0138810i \(0.00441859\pi\)
\(62\) −17.9786 + 13.0622i −2.28329 + 1.65890i
\(63\) 0 0
\(64\) −3.84663 11.8387i −0.480828 1.47984i
\(65\) 1.33054 0.165034
\(66\) 0 0
\(67\) 9.96771 1.21775 0.608875 0.793266i \(-0.291621\pi\)
0.608875 + 0.793266i \(0.291621\pi\)
\(68\) 6.60733 + 20.3353i 0.801256 + 2.46601i
\(69\) 0 0
\(70\) −0.847308 + 0.615605i −0.101273 + 0.0735789i
\(71\) −0.905630 + 2.78724i −0.107479 + 0.330785i −0.990304 0.138916i \(-0.955638\pi\)
0.882826 + 0.469701i \(0.155638\pi\)
\(72\) 0 0
\(73\) −3.43158 + 2.49319i −0.401636 + 0.291806i −0.770207 0.637794i \(-0.779847\pi\)
0.368571 + 0.929600i \(0.379847\pi\)
\(74\) 1.59685 + 1.16018i 0.185630 + 0.134868i
\(75\) 0 0
\(76\) 10.6078 1.21680
\(77\) 3.14803 3.49617i 0.358752 0.398426i
\(78\) 0 0
\(79\) −1.04509 3.21646i −0.117582 0.361880i 0.874895 0.484313i \(-0.160930\pi\)
−0.992477 + 0.122433i \(0.960930\pi\)
\(80\) −0.224926 0.163418i −0.0251475 0.0182707i
\(81\) 0 0
\(82\) −2.78496 + 8.57123i −0.307548 + 0.946534i
\(83\) 4.16786 12.8273i 0.457482 1.40798i −0.410715 0.911764i \(-0.634721\pi\)
0.868196 0.496221i \(-0.165279\pi\)
\(84\) 0 0
\(85\) −1.60148 1.16355i −0.173705 0.126204i
\(86\) −2.55711 7.86998i −0.275740 0.848642i
\(87\) 0 0
\(88\) 10.0503 + 4.47482i 1.07137 + 0.477018i
\(89\) −2.69745 −0.285929 −0.142965 0.989728i \(-0.545664\pi\)
−0.142965 + 0.989728i \(0.545664\pi\)
\(90\) 0 0
\(91\) 4.81645 + 3.49936i 0.504902 + 0.366833i
\(92\) −12.5230 + 9.09852i −1.30562 + 0.948586i
\(93\) 0 0
\(94\) −5.36249 + 16.5041i −0.553099 + 1.70226i
\(95\) −0.794521 + 0.577253i −0.0815161 + 0.0592249i
\(96\) 0 0
\(97\) −1.62464 5.00013i −0.164957 0.507686i 0.834076 0.551650i \(-0.186001\pi\)
−0.999033 + 0.0439637i \(0.986001\pi\)
\(98\) 11.6168 1.17347
\(99\) 0 0
\(100\) −16.7771 −1.67771
\(101\) 2.94485 + 9.06333i 0.293024 + 0.901835i 0.983878 + 0.178841i \(0.0572346\pi\)
−0.690854 + 0.722994i \(0.742765\pi\)
\(102\) 0 0
\(103\) −7.71449 + 5.60490i −0.760131 + 0.552267i −0.898951 0.438050i \(-0.855669\pi\)
0.138820 + 0.990318i \(0.455669\pi\)
\(104\) −4.30211 + 13.2405i −0.421857 + 1.29834i
\(105\) 0 0
\(106\) −12.5922 + 9.14877i −1.22306 + 0.888607i
\(107\) 4.18472 + 3.04038i 0.404552 + 0.293924i 0.771393 0.636359i \(-0.219560\pi\)
−0.366840 + 0.930284i \(0.619560\pi\)
\(108\) 0 0
\(109\) 14.4767 1.38661 0.693307 0.720643i \(-0.256153\pi\)
0.693307 + 0.720643i \(0.256153\pi\)
\(110\) −2.39529 + 0.509109i −0.228382 + 0.0485416i
\(111\) 0 0
\(112\) −0.384419 1.18312i −0.0363242 0.111794i
\(113\) −6.01230 4.36819i −0.565589 0.410925i 0.267911 0.963444i \(-0.413667\pi\)
−0.833500 + 0.552519i \(0.813667\pi\)
\(114\) 0 0
\(115\) 0.442849 1.36295i 0.0412958 0.127096i
\(116\) −3.09874 + 9.53694i −0.287711 + 0.885482i
\(117\) 0 0
\(118\) 22.7513 + 16.5298i 2.09443 + 1.52169i
\(119\) −2.73708 8.42386i −0.250908 0.772214i
\(120\) 0 0
\(121\) 10.0491 4.47390i 0.913554 0.406718i
\(122\) −10.7607 −0.974231
\(123\) 0 0
\(124\) 26.4333 + 19.2049i 2.37378 + 1.72465i
\(125\) 2.53897 1.84467i 0.227092 0.164992i
\(126\) 0 0
\(127\) −4.08040 + 12.5582i −0.362077 + 1.11436i 0.589715 + 0.807612i \(0.299240\pi\)
−0.951791 + 0.306746i \(0.900760\pi\)
\(128\) −16.0250 + 11.6428i −1.41642 + 1.02909i
\(129\) 0 0
\(130\) −0.957594 2.94717i −0.0839866 0.258484i
\(131\) 7.30043 0.637841 0.318921 0.947781i \(-0.396680\pi\)
0.318921 + 0.947781i \(0.396680\pi\)
\(132\) 0 0
\(133\) −4.39429 −0.381033
\(134\) −7.17377 22.0786i −0.619719 1.90730i
\(135\) 0 0
\(136\) 16.7568 12.1746i 1.43689 1.04396i
\(137\) −3.03063 + 9.32733i −0.258924 + 0.796887i 0.734107 + 0.679034i \(0.237601\pi\)
−0.993031 + 0.117853i \(0.962399\pi\)
\(138\) 0 0
\(139\) 7.66697 5.57038i 0.650304 0.472473i −0.213071 0.977037i \(-0.568347\pi\)
0.863375 + 0.504563i \(0.168347\pi\)
\(140\) 1.24577 + 0.905103i 0.105287 + 0.0764951i
\(141\) 0 0
\(142\) 6.82556 0.572789
\(143\) 6.95987 + 12.0551i 0.582014 + 1.00810i
\(144\) 0 0
\(145\) −0.286884 0.882938i −0.0238244 0.0733240i
\(146\) 7.99216 + 5.80665i 0.661436 + 0.480562i
\(147\) 0 0
\(148\) 0.896778 2.76000i 0.0737147 0.226870i
\(149\) 1.27545 3.92544i 0.104489 0.321584i −0.885121 0.465361i \(-0.845925\pi\)
0.989610 + 0.143776i \(0.0459246\pi\)
\(150\) 0 0
\(151\) 14.3805 + 10.4480i 1.17027 + 0.850249i 0.991041 0.133559i \(-0.0426404\pi\)
0.179227 + 0.983808i \(0.442640\pi\)
\(152\) −3.17541 9.77291i −0.257560 0.792688i
\(153\) 0 0
\(154\) −10.0097 4.45673i −0.806605 0.359134i
\(155\) −3.02493 −0.242968
\(156\) 0 0
\(157\) 1.63200 + 1.18571i 0.130247 + 0.0946303i 0.651002 0.759076i \(-0.274349\pi\)
−0.520754 + 0.853707i \(0.674349\pi\)
\(158\) −6.37235 + 4.62978i −0.506957 + 0.368326i
\(159\) 0 0
\(160\) 0.449819 1.38440i 0.0355613 0.109446i
\(161\) 5.18765 3.76905i 0.408844 0.297043i
\(162\) 0 0
\(163\) −0.488377 1.50307i −0.0382526 0.117729i 0.930107 0.367289i \(-0.119714\pi\)
−0.968359 + 0.249560i \(0.919714\pi\)
\(164\) 13.2505 1.03469
\(165\) 0 0
\(166\) −31.4124 −2.43807
\(167\) −4.73464 14.5717i −0.366378 1.12759i −0.949114 0.314933i \(-0.898018\pi\)
0.582736 0.812661i \(-0.301982\pi\)
\(168\) 0 0
\(169\) −3.73371 + 2.71270i −0.287208 + 0.208669i
\(170\) −1.42468 + 4.38471i −0.109268 + 0.336292i
\(171\) 0 0
\(172\) −9.84284 + 7.15124i −0.750510 + 0.545277i
\(173\) −0.797722 0.579579i −0.0606497 0.0440646i 0.557047 0.830481i \(-0.311934\pi\)
−0.617697 + 0.786416i \(0.711934\pi\)
\(174\) 0 0
\(175\) 6.94990 0.525363
\(176\) 0.304067 2.89271i 0.0229199 0.218046i
\(177\) 0 0
\(178\) 1.94136 + 5.97489i 0.145511 + 0.447837i
\(179\) −9.08186 6.59836i −0.678810 0.493185i 0.194153 0.980971i \(-0.437804\pi\)
−0.872963 + 0.487787i \(0.837804\pi\)
\(180\) 0 0
\(181\) 5.53932 17.0483i 0.411735 1.26719i −0.503405 0.864051i \(-0.667919\pi\)
0.915139 0.403138i \(-0.132081\pi\)
\(182\) 4.28472 13.1870i 0.317604 0.977486i
\(183\) 0 0
\(184\) 12.1311 + 8.81376i 0.894317 + 0.649759i
\(185\) 0.0830244 + 0.255523i 0.00610408 + 0.0187864i
\(186\) 0 0
\(187\) 2.16497 20.5963i 0.158318 1.50615i
\(188\) 25.5141 1.86081
\(189\) 0 0
\(190\) 1.85044 + 1.34442i 0.134245 + 0.0975348i
\(191\) 10.4266 7.57534i 0.754440 0.548133i −0.142760 0.989757i \(-0.545598\pi\)
0.897200 + 0.441625i \(0.145598\pi\)
\(192\) 0 0
\(193\) −7.15406 + 22.0179i −0.514960 + 1.58489i 0.268393 + 0.963309i \(0.413507\pi\)
−0.783354 + 0.621576i \(0.786493\pi\)
\(194\) −9.90609 + 7.19719i −0.711216 + 0.516728i
\(195\) 0 0
\(196\) −5.27793 16.2438i −0.376995 1.16027i
\(197\) −1.07766 −0.0767801 −0.0383900 0.999263i \(-0.512223\pi\)
−0.0383900 + 0.999263i \(0.512223\pi\)
\(198\) 0 0
\(199\) 16.4307 1.16474 0.582371 0.812923i \(-0.302125\pi\)
0.582371 + 0.812923i \(0.302125\pi\)
\(200\) 5.02216 + 15.4566i 0.355120 + 1.09295i
\(201\) 0 0
\(202\) 17.9560 13.0458i 1.26338 0.917897i
\(203\) 1.28365 3.95067i 0.0900945 0.277282i
\(204\) 0 0
\(205\) −0.992456 + 0.721062i −0.0693161 + 0.0503611i
\(206\) 17.9671 + 13.0538i 1.25182 + 0.909503i
\(207\) 0 0
\(208\) 3.68076 0.255215
\(209\) −9.38611 4.17908i −0.649251 0.289073i
\(210\) 0 0
\(211\) −4.61974 14.2181i −0.318036 0.978814i −0.974487 0.224445i \(-0.927943\pi\)
0.656451 0.754369i \(-0.272057\pi\)
\(212\) 18.5139 + 13.4511i 1.27154 + 0.923827i
\(213\) 0 0
\(214\) 3.72273 11.4574i 0.254480 0.783210i
\(215\) 0.348070 1.07125i 0.0237382 0.0730585i
\(216\) 0 0
\(217\) −10.9500 7.95563i −0.743333 0.540063i
\(218\) −10.4189 32.0660i −0.705655 2.17178i
\(219\) 0 0
\(220\) 1.80016 + 3.11804i 0.121367 + 0.210218i
\(221\) 26.2072 1.76289
\(222\) 0 0
\(223\) −1.55839 1.13224i −0.104358 0.0758203i 0.534383 0.845243i \(-0.320544\pi\)
−0.638740 + 0.769422i \(0.720544\pi\)
\(224\) 5.26931 3.82838i 0.352070 0.255794i
\(225\) 0 0
\(226\) −5.34854 + 16.4611i −0.355779 + 1.09498i
\(227\) −12.9532 + 9.41108i −0.859737 + 0.624635i −0.927813 0.373045i \(-0.878314\pi\)
0.0680764 + 0.997680i \(0.478314\pi\)
\(228\) 0 0
\(229\) −0.161593 0.497332i −0.0106784 0.0328646i 0.945575 0.325403i \(-0.105500\pi\)
−0.956254 + 0.292539i \(0.905500\pi\)
\(230\) −3.33766 −0.220079
\(231\) 0 0
\(232\) 9.71389 0.637748
\(233\) 3.16820 + 9.75073i 0.207556 + 0.638792i 0.999599 + 0.0283260i \(0.00901764\pi\)
−0.792043 + 0.610466i \(0.790982\pi\)
\(234\) 0 0
\(235\) −1.91099 + 1.38842i −0.124659 + 0.0905703i
\(236\) 12.7769 39.3234i 0.831708 2.55973i
\(237\) 0 0
\(238\) −16.6891 + 12.1253i −1.08179 + 0.785969i
\(239\) −7.79977 5.66686i −0.504525 0.366559i 0.306218 0.951962i \(-0.400936\pi\)
−0.810743 + 0.585403i \(0.800936\pi\)
\(240\) 0 0
\(241\) −0.278731 −0.0179547 −0.00897733 0.999960i \(-0.502858\pi\)
−0.00897733 + 0.999960i \(0.502858\pi\)
\(242\) −17.1421 19.0390i −1.10193 1.22387i
\(243\) 0 0
\(244\) 4.88900 + 15.0468i 0.312986 + 0.963272i
\(245\) 1.27926 + 0.929440i 0.0817292 + 0.0593797i
\(246\) 0 0
\(247\) 4.01778 12.3655i 0.255645 0.786795i
\(248\) 9.78064 30.1017i 0.621071 1.91146i
\(249\) 0 0
\(250\) −5.91326 4.29624i −0.373988 0.271718i
\(251\) −1.36753 4.20881i −0.0863175 0.265658i 0.898576 0.438817i \(-0.144602\pi\)
−0.984894 + 0.173159i \(0.944602\pi\)
\(252\) 0 0
\(253\) 14.6652 3.11703i 0.921993 0.195966i
\(254\) 30.7532 1.92963
\(255\) 0 0
\(256\) 17.1811 + 12.4828i 1.07382 + 0.780173i
\(257\) 2.95657 2.14807i 0.184426 0.133993i −0.491742 0.870741i \(-0.663640\pi\)
0.676168 + 0.736748i \(0.263640\pi\)
\(258\) 0 0
\(259\) −0.371489 + 1.14333i −0.0230832 + 0.0710429i
\(260\) −3.68598 + 2.67802i −0.228595 + 0.166084i
\(261\) 0 0
\(262\) −5.25413 16.1705i −0.324601 0.999019i
\(263\) 14.4524 0.891174 0.445587 0.895239i \(-0.352995\pi\)
0.445587 + 0.895239i \(0.352995\pi\)
\(264\) 0 0
\(265\) −2.11866 −0.130148
\(266\) 3.16257 + 9.73340i 0.193910 + 0.596793i
\(267\) 0 0
\(268\) −27.6133 + 20.0622i −1.68675 + 1.22550i
\(269\) −0.283600 + 0.872830i −0.0172914 + 0.0532174i −0.959330 0.282287i \(-0.908907\pi\)
0.942039 + 0.335505i \(0.108907\pi\)
\(270\) 0 0
\(271\) 2.13921 1.55422i 0.129948 0.0944124i −0.520913 0.853610i \(-0.674408\pi\)
0.650860 + 0.759197i \(0.274408\pi\)
\(272\) −4.43028 3.21878i −0.268625 0.195167i
\(273\) 0 0
\(274\) 22.8413 1.37989
\(275\) 14.8449 + 6.60954i 0.895179 + 0.398570i
\(276\) 0 0
\(277\) 8.93198 + 27.4898i 0.536671 + 1.65170i 0.740011 + 0.672594i \(0.234820\pi\)
−0.203341 + 0.979108i \(0.565180\pi\)
\(278\) −17.8564 12.9734i −1.07095 0.778094i
\(279\) 0 0
\(280\) 0.460948 1.41865i 0.0275469 0.0847807i
\(281\) −2.70160 + 8.31468i −0.161164 + 0.496012i −0.998733 0.0503194i \(-0.983976\pi\)
0.837569 + 0.546331i \(0.183976\pi\)
\(282\) 0 0
\(283\) 18.7832 + 13.6468i 1.11654 + 0.811216i 0.983681 0.179919i \(-0.0575835\pi\)
0.132861 + 0.991135i \(0.457583\pi\)
\(284\) −3.10111 9.54422i −0.184017 0.566345i
\(285\) 0 0
\(286\) 21.6933 24.0923i 1.28275 1.42461i
\(287\) −5.48901 −0.324006
\(288\) 0 0
\(289\) −17.7905 12.9255i −1.04650 0.760326i
\(290\) −1.74925 + 1.27090i −0.102719 + 0.0746300i
\(291\) 0 0
\(292\) 4.48833 13.8137i 0.262660 0.808383i
\(293\) −16.9694 + 12.3290i −0.991366 + 0.720269i −0.960220 0.279245i \(-0.909916\pi\)
−0.0311460 + 0.999515i \(0.509916\pi\)
\(294\) 0 0
\(295\) 1.18290 + 3.64059i 0.0688711 + 0.211963i
\(296\) −2.81121 −0.163398
\(297\) 0 0
\(298\) −9.61284 −0.556857
\(299\) 5.86289 + 18.0441i 0.339059 + 1.04352i
\(300\) 0 0
\(301\) 4.07739 2.96240i 0.235017 0.170750i
\(302\) 12.7929 39.3724i 0.736147 2.26563i
\(303\) 0 0
\(304\) −2.19793 + 1.59689i −0.126060 + 0.0915879i
\(305\) −1.18499 0.860949i −0.0678526 0.0492978i
\(306\) 0 0
\(307\) 23.1324 1.32024 0.660118 0.751162i \(-0.270506\pi\)
0.660118 + 0.751162i \(0.270506\pi\)
\(308\) −1.68409 + 16.0215i −0.0959601 + 0.912909i
\(309\) 0 0
\(310\) 2.17704 + 6.70026i 0.123648 + 0.380549i
\(311\) 16.5159 + 11.9995i 0.936533 + 0.680431i 0.947584 0.319508i \(-0.103518\pi\)
−0.0110507 + 0.999939i \(0.503518\pi\)
\(312\) 0 0
\(313\) −10.5187 + 32.3733i −0.594554 + 1.82985i −0.0376200 + 0.999292i \(0.511978\pi\)
−0.556934 + 0.830557i \(0.688022\pi\)
\(314\) 1.45182 4.46825i 0.0819311 0.252158i
\(315\) 0 0
\(316\) 9.36904 + 6.80701i 0.527050 + 0.382924i
\(317\) 8.47337 + 26.0784i 0.475912 + 1.46471i 0.844724 + 0.535203i \(0.179765\pi\)
−0.368812 + 0.929504i \(0.620235\pi\)
\(318\) 0 0
\(319\) 6.49904 7.21777i 0.363876 0.404117i
\(320\) −3.94625 −0.220602
\(321\) 0 0
\(322\) −12.0821 8.77813i −0.673307 0.489186i
\(323\) −15.6494 + 11.3699i −0.870754 + 0.632640i
\(324\) 0 0
\(325\) −6.35443 + 19.5569i −0.352480 + 1.08482i
\(326\) −2.97783 + 2.16352i −0.164927 + 0.119826i
\(327\) 0 0
\(328\) −3.96648 12.2076i −0.219012 0.674051i
\(329\) −10.5692 −0.582698
\(330\) 0 0
\(331\) −17.9724 −0.987854 −0.493927 0.869503i \(-0.664439\pi\)
−0.493927 + 0.869503i \(0.664439\pi\)
\(332\) 14.2718 + 43.9241i 0.783266 + 2.41065i
\(333\) 0 0
\(334\) −28.8690 + 20.9746i −1.57964 + 1.14768i
\(335\) 0.976482 3.00530i 0.0533509 0.164197i
\(336\) 0 0
\(337\) −8.87665 + 6.44927i −0.483542 + 0.351314i −0.802695 0.596389i \(-0.796601\pi\)
0.319153 + 0.947703i \(0.396601\pi\)
\(338\) 8.69581 + 6.31788i 0.472990 + 0.343647i
\(339\) 0 0
\(340\) 6.77845 0.367613
\(341\) −15.8229 27.4068i −0.856860 1.48416i
\(342\) 0 0
\(343\) 5.25475 + 16.1724i 0.283730 + 0.873230i
\(344\) 9.53479 + 6.92743i 0.514082 + 0.373502i
\(345\) 0 0
\(346\) −0.709654 + 2.18409i −0.0381512 + 0.117417i
\(347\) −6.82891 + 21.0172i −0.366595 + 1.12826i 0.582381 + 0.812916i \(0.302121\pi\)
−0.948976 + 0.315348i \(0.897879\pi\)
\(348\) 0 0
\(349\) 14.8889 + 10.8174i 0.796986 + 0.579044i 0.910028 0.414546i \(-0.136060\pi\)
−0.113042 + 0.993590i \(0.536060\pi\)
\(350\) −5.00185 15.3941i −0.267360 0.822850i
\(351\) 0 0
\(352\) 14.8960 3.16609i 0.793961 0.168753i
\(353\) −33.0708 −1.76018 −0.880089 0.474808i \(-0.842517\pi\)
−0.880089 + 0.474808i \(0.842517\pi\)
\(354\) 0 0
\(355\) 0.751645 + 0.546102i 0.0398932 + 0.0289841i
\(356\) 7.47269 5.42923i 0.396052 0.287749i
\(357\) 0 0
\(358\) −8.07922 + 24.8653i −0.427000 + 1.31417i
\(359\) 2.42595 1.76256i 0.128037 0.0930242i −0.521924 0.852992i \(-0.674785\pi\)
0.649960 + 0.759968i \(0.274785\pi\)
\(360\) 0 0
\(361\) −2.90578 8.94306i −0.152936 0.470687i
\(362\) −41.7488 −2.19427
\(363\) 0 0
\(364\) −20.3862 −1.06852
\(365\) 0.415533 + 1.27888i 0.0217500 + 0.0669396i
\(366\) 0 0
\(367\) −1.34496 + 0.977170i −0.0702063 + 0.0510078i −0.622335 0.782751i \(-0.713816\pi\)
0.552129 + 0.833759i \(0.313816\pi\)
\(368\) 1.22508 3.77040i 0.0638616 0.196546i
\(369\) 0 0
\(370\) 0.506234 0.367800i 0.0263178 0.0191210i
\(371\) −7.66936 5.57211i −0.398173 0.289290i
\(372\) 0 0
\(373\) −21.5087 −1.11368 −0.556839 0.830621i \(-0.687986\pi\)
−0.556839 + 0.830621i \(0.687986\pi\)
\(374\) −47.1791 + 10.0277i −2.43957 + 0.518521i
\(375\) 0 0
\(376\) −7.63753 23.5059i −0.393876 1.21222i
\(377\) 9.94346 + 7.22435i 0.512114 + 0.372073i
\(378\) 0 0
\(379\) 3.83779 11.8115i 0.197134 0.606715i −0.802811 0.596233i \(-0.796663\pi\)
0.999945 0.0104822i \(-0.00333665\pi\)
\(380\) 1.03919 3.19830i 0.0533094 0.164069i
\(381\) 0 0
\(382\) −24.2835 17.6430i −1.24245 0.902694i
\(383\) −0.247114 0.760538i −0.0126269 0.0388617i 0.944545 0.328383i \(-0.106504\pi\)
−0.957171 + 0.289522i \(0.906504\pi\)
\(384\) 0 0
\(385\) −0.745714 1.29165i −0.0380051 0.0658283i
\(386\) 53.9188 2.74439
\(387\) 0 0
\(388\) 14.5646 + 10.5818i 0.739404 + 0.537209i
\(389\) −1.40501 + 1.02080i −0.0712367 + 0.0517565i −0.622834 0.782354i \(-0.714019\pi\)
0.551597 + 0.834111i \(0.314019\pi\)
\(390\) 0 0
\(391\) 8.72261 26.8454i 0.441122 1.35763i
\(392\) −13.3854 + 9.72503i −0.676062 + 0.491188i
\(393\) 0 0
\(394\) 0.775593 + 2.38703i 0.0390738 + 0.120257i
\(395\) −1.07216 −0.0539461
\(396\) 0 0
\(397\) −24.7599 −1.24267 −0.621333 0.783547i \(-0.713409\pi\)
−0.621333 + 0.783547i \(0.713409\pi\)
\(398\) −11.8252 36.3942i −0.592744 1.82428i
\(399\) 0 0
\(400\) 3.47620 2.52561i 0.173810 0.126280i
\(401\) −6.75274 + 20.7828i −0.337216 + 1.03784i 0.628404 + 0.777887i \(0.283708\pi\)
−0.965620 + 0.259957i \(0.916292\pi\)
\(402\) 0 0
\(403\) 32.3988 23.5391i 1.61390 1.17257i
\(404\) −26.4000 19.1807i −1.31345 0.954278i
\(405\) 0 0
\(406\) −9.67462 −0.480143
\(407\) −1.88083 + 2.08883i −0.0932292 + 0.103539i
\(408\) 0 0
\(409\) 2.48288 + 7.64152i 0.122771 + 0.377849i 0.993488 0.113934i \(-0.0363453\pi\)
−0.870718 + 0.491783i \(0.836345\pi\)
\(410\) 2.31143 + 1.67935i 0.114154 + 0.0829374i
\(411\) 0 0
\(412\) 10.0901 31.0543i 0.497106 1.52993i
\(413\) −5.29283 + 16.2897i −0.260443 + 0.801562i
\(414\) 0 0
\(415\) −3.45919 2.51325i −0.169805 0.123371i
\(416\) 5.95517 + 18.3281i 0.291976 + 0.898610i
\(417\) 0 0
\(418\) −2.50152 + 23.7980i −0.122354 + 1.16400i
\(419\) 5.59681 0.273422 0.136711 0.990611i \(-0.456347\pi\)
0.136711 + 0.990611i \(0.456347\pi\)
\(420\) 0 0
\(421\) −30.6248 22.2502i −1.49256 1.08441i −0.973228 0.229840i \(-0.926180\pi\)
−0.519335 0.854571i \(-0.673820\pi\)
\(422\) −28.1684 + 20.4656i −1.37122 + 0.996248i
\(423\) 0 0
\(424\) 6.85035 21.0832i 0.332682 1.02389i
\(425\) 24.7507 17.9824i 1.20058 0.872276i
\(426\) 0 0
\(427\) −2.02526 6.23312i −0.0980093 0.301642i
\(428\) −17.7123 −0.856155
\(429\) 0 0
\(430\) −2.62333 −0.126508
\(431\) 9.20389 + 28.3267i 0.443336 + 1.36445i 0.884299 + 0.466922i \(0.154637\pi\)
−0.440963 + 0.897525i \(0.645363\pi\)
\(432\) 0 0
\(433\) 0.225935 0.164152i 0.0108578 0.00788862i −0.582343 0.812943i \(-0.697864\pi\)
0.593201 + 0.805054i \(0.297864\pi\)
\(434\) −9.74110 + 29.9800i −0.467588 + 1.43909i
\(435\) 0 0
\(436\) −40.1044 + 29.1375i −1.92065 + 1.39543i
\(437\) −11.3294 8.23126i −0.541957 0.393754i
\(438\) 0 0
\(439\) 14.9965 0.715746 0.357873 0.933770i \(-0.383502\pi\)
0.357873 + 0.933770i \(0.383502\pi\)
\(440\) 2.33375 2.59184i 0.111257 0.123561i
\(441\) 0 0
\(442\) −18.8614 58.0493i −0.897143 2.76112i
\(443\) 11.7306 + 8.52278i 0.557337 + 0.404929i 0.830483 0.557043i \(-0.188064\pi\)
−0.273146 + 0.961973i \(0.588064\pi\)
\(444\) 0 0
\(445\) −0.264255 + 0.813293i −0.0125269 + 0.0385538i
\(446\) −1.38634 + 4.26673i −0.0656453 + 0.202036i
\(447\) 0 0
\(448\) −14.2851 10.3787i −0.674906 0.490348i
\(449\) 6.55787 + 20.1830i 0.309485 + 0.952497i 0.977965 + 0.208767i \(0.0669450\pi\)
−0.668481 + 0.743730i \(0.733055\pi\)
\(450\) 0 0
\(451\) −11.7244 5.22020i −0.552082 0.245809i
\(452\) 25.4477 1.19696
\(453\) 0 0
\(454\) 30.1681 + 21.9184i 1.41586 + 1.02868i
\(455\) 1.52691 1.10937i 0.0715827 0.0520079i
\(456\) 0 0
\(457\) −0.991791 + 3.05242i −0.0463940 + 0.142786i −0.971570 0.236752i \(-0.923917\pi\)
0.925176 + 0.379538i \(0.123917\pi\)
\(458\) −0.985297 + 0.715860i −0.0460399 + 0.0334499i
\(459\) 0 0
\(460\) 1.51642 + 4.66707i 0.0707037 + 0.217603i
\(461\) −26.3256 −1.22610 −0.613052 0.790042i \(-0.710058\pi\)
−0.613052 + 0.790042i \(0.710058\pi\)
\(462\) 0 0
\(463\) 3.62824 0.168619 0.0843093 0.996440i \(-0.473132\pi\)
0.0843093 + 0.996440i \(0.473132\pi\)
\(464\) −0.793624 2.44252i −0.0368431 0.113391i
\(465\) 0 0
\(466\) 19.3178 14.0352i 0.894881 0.650169i
\(467\) 5.71532 17.5899i 0.264473 0.813965i −0.727341 0.686276i \(-0.759244\pi\)
0.991814 0.127689i \(-0.0407559\pi\)
\(468\) 0 0
\(469\) 11.4388 8.31077i 0.528194 0.383756i
\(470\) 4.45070 + 3.23362i 0.205296 + 0.149156i
\(471\) 0 0
\(472\) −40.0530 −1.84359
\(473\) 11.5265 2.44992i 0.529991 0.112647i
\(474\) 0 0
\(475\) −4.69024 14.4351i −0.215203 0.662327i
\(476\) 24.5374 + 17.8275i 1.12467 + 0.817120i
\(477\) 0 0
\(478\) −6.93867 + 21.3550i −0.317367 + 0.976756i
\(479\) 0.0485151 0.149314i 0.00221671 0.00682234i −0.949942 0.312426i \(-0.898858\pi\)
0.952159 + 0.305604i \(0.0988583\pi\)
\(480\) 0 0
\(481\) −2.87765 2.09073i −0.131209 0.0953292i
\(482\) 0.200603 + 0.617393i 0.00913722 + 0.0281215i
\(483\) 0 0
\(484\) −18.8341 + 32.6200i −0.856093 + 1.48273i
\(485\) −1.66671 −0.0756816
\(486\) 0 0
\(487\) −14.5028 10.5369i −0.657187 0.477474i 0.208525 0.978017i \(-0.433134\pi\)
−0.865712 + 0.500543i \(0.833134\pi\)
\(488\) 12.3990 9.00839i 0.561275 0.407790i
\(489\) 0 0
\(490\) 1.13803 3.50250i 0.0514111 0.158227i
\(491\) −5.37832 + 3.90758i −0.242720 + 0.176347i −0.702494 0.711689i \(-0.747930\pi\)
0.459774 + 0.888036i \(0.347930\pi\)
\(492\) 0 0
\(493\) −5.65064 17.3909i −0.254492 0.783246i
\(494\) −30.2813 −1.36242
\(495\) 0 0
\(496\) −8.36804 −0.375736
\(497\) 1.28463 + 3.95368i 0.0576235 + 0.177347i
\(498\) 0 0
\(499\) −27.4640 + 19.9537i −1.22946 + 0.893252i −0.996849 0.0793185i \(-0.974726\pi\)
−0.232607 + 0.972571i \(0.574726\pi\)
\(500\) −3.32084 + 10.2205i −0.148512 + 0.457074i
\(501\) 0 0
\(502\) −8.33837 + 6.05818i −0.372159 + 0.270390i
\(503\) 2.53812 + 1.84405i 0.113169 + 0.0822222i 0.642930 0.765925i \(-0.277718\pi\)
−0.529761 + 0.848147i \(0.677718\pi\)
\(504\) 0 0
\(505\) 3.02112 0.134438
\(506\) −17.4588 30.2403i −0.776139 1.34434i
\(507\) 0 0
\(508\) −13.9723 43.0023i −0.619921 1.90792i
\(509\) 18.4484 + 13.4036i 0.817712 + 0.594102i 0.916056 0.401050i \(-0.131355\pi\)
−0.0983444 + 0.995152i \(0.531355\pi\)
\(510\) 0 0
\(511\) −1.85929 + 5.72230i −0.0822500 + 0.253139i
\(512\) 3.04225 9.36310i 0.134450 0.413794i
\(513\) 0 0
\(514\) −6.88586 5.00287i −0.303722 0.220667i
\(515\) 0.934154 + 2.87503i 0.0411637 + 0.126689i
\(516\) 0 0
\(517\) −22.5756 10.0516i −0.992873 0.442068i
\(518\) 2.79984 0.123018
\(519\) 0 0
\(520\) 3.57062 + 2.59421i 0.156582 + 0.113763i
\(521\) 4.26200 3.09653i 0.186722 0.135661i −0.490497 0.871443i \(-0.663185\pi\)
0.677219 + 0.735781i \(0.263185\pi\)
\(522\) 0 0
\(523\) 3.67595 11.3134i 0.160738 0.494701i −0.837959 0.545733i \(-0.816251\pi\)
0.998697 + 0.0510325i \(0.0162512\pi\)
\(524\) −20.2242 + 14.6937i −0.883499 + 0.641899i
\(525\) 0 0
\(526\) −10.4014 32.0123i −0.453524 1.39580i
\(527\) −59.5808 −2.59538
\(528\) 0 0
\(529\) −2.56510 −0.111526
\(530\) 1.52480 + 4.69285i 0.0662331 + 0.203845i
\(531\) 0 0
\(532\) 12.1734 8.84448i 0.527783 0.383457i
\(533\) 5.01871 15.4460i 0.217385 0.669041i
\(534\) 0 0
\(535\) 1.32664 0.963860i 0.0573557 0.0416713i
\(536\) 26.7491 + 19.4344i 1.15539 + 0.839437i
\(537\) 0 0
\(538\) 2.13744 0.0921515
\(539\) −1.72938 + 16.4523i −0.0744895 + 0.708650i
\(540\) 0 0
\(541\) 12.5401 + 38.5945i 0.539142 + 1.65931i 0.734525 + 0.678581i \(0.237405\pi\)
−0.195383 + 0.980727i \(0.562595\pi\)
\(542\) −4.98222 3.61979i −0.214005 0.155483i
\(543\) 0 0
\(544\) 8.85991 27.2680i 0.379865 1.16911i
\(545\) 1.41820 4.36477i 0.0607490 0.186966i
\(546\) 0 0
\(547\) −19.0397 13.8331i −0.814077 0.591461i 0.100933 0.994893i \(-0.467817\pi\)
−0.915010 + 0.403432i \(0.867817\pi\)
\(548\) −10.3776 31.9391i −0.443311 1.36437i
\(549\) 0 0
\(550\) 3.95635 37.6384i 0.168699 1.60491i
\(551\) −9.07190 −0.386476
\(552\) 0 0
\(553\) −3.88112 2.81980i −0.165042 0.119910i
\(554\) 54.4619 39.5689i 2.31386 1.68112i
\(555\) 0 0
\(556\) −10.0280 + 30.8630i −0.425282 + 1.30888i
\(557\) −5.08590 + 3.69513i −0.215497 + 0.156568i −0.690297 0.723526i \(-0.742520\pi\)
0.474800 + 0.880093i \(0.342520\pi\)
\(558\) 0 0
\(559\) 4.60811 + 14.1823i 0.194902 + 0.599847i
\(560\) −0.394374 −0.0166654
\(561\) 0 0
\(562\) 20.3615 0.858896
\(563\) 5.24291 + 16.1360i 0.220962 + 0.680052i 0.998676 + 0.0514336i \(0.0163791\pi\)
−0.777714 + 0.628618i \(0.783621\pi\)
\(564\) 0 0
\(565\) −1.90602 + 1.38480i −0.0801868 + 0.0582591i
\(566\) 16.7095 51.4265i 0.702352 2.16162i
\(567\) 0 0
\(568\) −7.86471 + 5.71404i −0.329996 + 0.239756i
\(569\) 18.0010 + 13.0785i 0.754643 + 0.548280i 0.897262 0.441498i \(-0.145553\pi\)
−0.142620 + 0.989778i \(0.545553\pi\)
\(570\) 0 0
\(571\) 35.3152 1.47789 0.738947 0.673763i \(-0.235323\pi\)
0.738947 + 0.673763i \(0.235323\pi\)
\(572\) −43.5445 19.3878i −1.82068 0.810644i
\(573\) 0 0
\(574\) 3.95045 + 12.1582i 0.164889 + 0.507475i
\(575\) 17.9182 + 13.0184i 0.747243 + 0.542904i
\(576\) 0 0
\(577\) −11.8156 + 36.3646i −0.491889 + 1.51388i 0.329859 + 0.944030i \(0.392999\pi\)
−0.821749 + 0.569850i \(0.807001\pi\)
\(578\) −15.8264 + 48.7087i −0.658292 + 2.02601i
\(579\) 0 0
\(580\) 2.57186 + 1.86856i 0.106791 + 0.0775879i
\(581\) −5.91208 18.1955i −0.245274 0.754877i
\(582\) 0 0
\(583\) −11.0824 19.1957i −0.458985 0.795004i
\(584\) −14.0700 −0.582219
\(585\) 0 0
\(586\) 39.5219 + 28.7143i 1.63263 + 1.18618i
\(587\) −10.0234 + 7.28245i −0.413711 + 0.300579i −0.775103 0.631835i \(-0.782302\pi\)
0.361391 + 0.932414i \(0.382302\pi\)
\(588\) 0 0
\(589\) −9.13423 + 28.1123i −0.376370 + 1.15835i
\(590\) 7.21262 5.24027i 0.296939 0.215739i
\(591\) 0 0
\(592\) 0.229675 + 0.706868i 0.00943960 + 0.0290521i
\(593\) −4.18039 −0.171668 −0.0858340 0.996309i \(-0.527355\pi\)
−0.0858340 + 0.996309i \(0.527355\pi\)
\(594\) 0 0
\(595\) −2.80796 −0.115115
\(596\) 4.36747 + 13.4417i 0.178898 + 0.550593i
\(597\) 0 0
\(598\) 35.7484 25.9727i 1.46186 1.06210i
\(599\) 13.6211 41.9214i 0.556542 1.71286i −0.135292 0.990806i \(-0.543197\pi\)
0.691835 0.722056i \(-0.256803\pi\)
\(600\) 0 0
\(601\) 1.41684 1.02940i 0.0577943 0.0419900i −0.558513 0.829496i \(-0.688628\pi\)
0.616307 + 0.787506i \(0.288628\pi\)
\(602\) −9.49624 6.89943i −0.387038 0.281200i
\(603\) 0 0
\(604\) −60.8670 −2.47664
\(605\) −0.364442 3.46812i −0.0148167 0.140999i
\(606\) 0 0
\(607\) −3.35875 10.3372i −0.136327 0.419573i 0.859467 0.511192i \(-0.170796\pi\)
−0.995794 + 0.0916189i \(0.970796\pi\)
\(608\) −11.5077 8.36082i −0.466698 0.339076i
\(609\) 0 0
\(610\) −1.05417 + 3.24440i −0.0426821 + 0.131362i
\(611\) 9.66362 29.7416i 0.390948 1.20321i
\(612\) 0 0
\(613\) −14.3951 10.4586i −0.581412 0.422421i 0.257821 0.966193i \(-0.416996\pi\)
−0.839233 + 0.543772i \(0.816996\pi\)
\(614\) −16.6484 51.2385i −0.671875 2.06782i
\(615\) 0 0
\(616\) 15.2646 3.24442i 0.615028 0.130722i
\(617\) −3.99611 −0.160877 −0.0804386 0.996760i \(-0.525632\pi\)
−0.0804386 + 0.996760i \(0.525632\pi\)
\(618\) 0 0
\(619\) 8.87927 + 6.45117i 0.356888 + 0.259294i 0.751753 0.659445i \(-0.229209\pi\)
−0.394865 + 0.918739i \(0.629209\pi\)
\(620\) 8.37989 6.08835i 0.336544 0.244514i
\(621\) 0 0
\(622\) 14.6926 45.2191i 0.589118 1.81312i
\(623\) −3.09556 + 2.24905i −0.124021 + 0.0901064i
\(624\) 0 0
\(625\) 7.26270 + 22.3523i 0.290508 + 0.894091i
\(626\) 79.2777 3.16857
\(627\) 0 0
\(628\) −6.90760 −0.275643
\(629\) 1.63530 + 5.03293i 0.0652037 + 0.200676i
\(630\) 0 0
\(631\) −6.99735 + 5.08388i −0.278560 + 0.202386i −0.718289 0.695745i \(-0.755075\pi\)
0.439729 + 0.898131i \(0.355075\pi\)
\(632\) 3.46666 10.6693i 0.137896 0.424401i
\(633\) 0 0
\(634\) 51.6656 37.5373i 2.05190 1.49079i
\(635\) 3.38660 + 2.46051i 0.134393 + 0.0976424i
\(636\) 0 0
\(637\) −20.9343 −0.829448
\(638\) −20.6648 9.20082i −0.818128 0.364264i
\(639\) 0 0
\(640\) 1.94048 + 5.97219i 0.0767042 + 0.236071i
\(641\) 30.0045 + 21.7995i 1.18511 + 0.861030i 0.992738 0.120292i \(-0.0383832\pi\)
0.192368 + 0.981323i \(0.438383\pi\)
\(642\) 0 0
\(643\) −12.5871 + 38.7390i −0.496385 + 1.52772i 0.318402 + 0.947956i \(0.396854\pi\)
−0.814787 + 0.579761i \(0.803146\pi\)
\(644\) −6.78518 + 20.8826i −0.267373 + 0.822891i
\(645\) 0 0
\(646\) 36.4474 + 26.4806i 1.43400 + 1.04187i
\(647\) 0.175813 + 0.541098i 0.00691193 + 0.0212727i 0.954453 0.298361i \(-0.0964400\pi\)
−0.947541 + 0.319634i \(0.896440\pi\)
\(648\) 0 0
\(649\) −26.7973 + 29.7608i −1.05189 + 1.16821i
\(650\) 47.8921 1.87848
\(651\) 0 0
\(652\) 4.37820 + 3.18095i 0.171464 + 0.124576i
\(653\) −29.5514 + 21.4704i −1.15644 + 0.840201i −0.989323 0.145737i \(-0.953445\pi\)
−0.167114 + 0.985938i \(0.553445\pi\)
\(654\) 0 0
\(655\) 0.715183 2.20111i 0.0279445 0.0860044i
\(656\) −2.74549 + 1.99472i −0.107193 + 0.0778806i
\(657\) 0 0
\(658\) 7.60666 + 23.4109i 0.296538 + 0.912651i
\(659\) 24.0070 0.935179 0.467590 0.883946i \(-0.345123\pi\)
0.467590 + 0.883946i \(0.345123\pi\)
\(660\) 0 0
\(661\) 12.9833 0.504992 0.252496 0.967598i \(-0.418749\pi\)
0.252496 + 0.967598i \(0.418749\pi\)
\(662\) 12.9348 + 39.8092i 0.502725 + 1.54723i
\(663\) 0 0
\(664\) 36.1947 26.2970i 1.40463 1.02052i
\(665\) −0.430484 + 1.32489i −0.0166935 + 0.0513772i
\(666\) 0 0
\(667\) 10.7098 7.78112i 0.414685 0.301286i
\(668\) 42.4452 + 30.8382i 1.64225 + 1.19317i
\(669\) 0 0
\(670\) −7.35956 −0.284325
\(671\) 1.60194 15.2399i 0.0618421 0.588330i
\(672\) 0 0
\(673\) 5.26122 + 16.1924i 0.202805 + 0.624170i 0.999796 + 0.0201790i \(0.00642360\pi\)
−0.796991 + 0.603991i \(0.793576\pi\)
\(674\) 20.6737 + 15.0204i 0.796323 + 0.578562i
\(675\) 0 0
\(676\) 4.88349 15.0298i 0.187827 0.578071i
\(677\) 10.9490 33.6975i 0.420803 1.29510i −0.486153 0.873874i \(-0.661600\pi\)
0.906956 0.421226i \(-0.138400\pi\)
\(678\) 0 0
\(679\) −6.03336 4.38349i −0.231539 0.168223i
\(680\) −2.02910 6.24492i −0.0778124 0.239482i
\(681\) 0 0
\(682\) −49.3186 + 54.7727i −1.88851 + 2.09736i
\(683\) −23.8967 −0.914381 −0.457191 0.889369i \(-0.651144\pi\)
−0.457191 + 0.889369i \(0.651144\pi\)
\(684\) 0 0
\(685\) 2.51533 + 1.82749i 0.0961058 + 0.0698250i
\(686\) 32.0403 23.2787i 1.22331 0.888783i
\(687\) 0 0
\(688\) 0.962886 2.96346i 0.0367097 0.112981i
\(689\) 22.6921 16.4868i 0.864500 0.628096i
\(690\) 0 0
\(691\) −0.183128 0.563610i −0.00696652 0.0214407i 0.947513 0.319718i \(-0.103588\pi\)
−0.954479 + 0.298277i \(0.903588\pi\)
\(692\) 3.37645 0.128353
\(693\) 0 0
\(694\) 51.4682 1.95371
\(695\) −0.928400 2.85732i −0.0352162 0.108384i
\(696\) 0 0
\(697\) −19.5480 + 14.2025i −0.740434 + 0.537957i
\(698\) 13.2452 40.7645i 0.501338 1.54296i
\(699\) 0 0
\(700\) −19.2532 + 13.9882i −0.727701 + 0.528706i
\(701\) −20.5701 14.9451i −0.776922 0.564467i 0.127131 0.991886i \(-0.459423\pi\)
−0.904054 + 0.427419i \(0.859423\pi\)
\(702\) 0 0
\(703\) 2.62542 0.0990194
\(704\) −20.6422 35.7542i −0.777983 1.34754i
\(705\) 0 0
\(706\) 23.8011 + 73.2521i 0.895765 + 2.75688i
\(707\) 10.9362 + 7.94561i 0.411298 + 0.298825i
\(708\) 0 0
\(709\) 4.66760 14.3654i 0.175295 0.539503i −0.824352 0.566078i \(-0.808460\pi\)
0.999647 + 0.0265748i \(0.00846000\pi\)
\(710\) 0.668663 2.05793i 0.0250945 0.0772329i
\(711\) 0 0
\(712\) −7.23882 5.25931i −0.271286 0.197101i
\(713\) −13.3290 41.0224i −0.499175 1.53630i
\(714\) 0 0
\(715\) 4.31649 0.917452i 0.161428 0.0343108i
\(716\) 38.4399 1.43657
\(717\) 0 0
\(718\) −5.65004 4.10500i −0.210858 0.153197i
\(719\) 9.74281 7.07857i 0.363345 0.263986i −0.391101 0.920348i \(-0.627906\pi\)
0.754446 + 0.656362i \(0.227906\pi\)
\(720\) 0 0
\(721\) −4.17983 + 12.8642i −0.155665 + 0.479088i
\(722\) −17.7177 + 12.8727i −0.659384 + 0.479071i
\(723\) 0 0
\(724\) 18.9680 + 58.3776i 0.704941 + 2.16959i
\(725\) 14.3479 0.532868
\(726\) 0 0
\(727\) 49.5932 1.83931 0.919654 0.392729i \(-0.128469\pi\)
0.919654 + 0.392729i \(0.128469\pi\)
\(728\) 6.10251 + 18.7816i 0.226174 + 0.696092i
\(729\) 0 0
\(730\) 2.53368 1.84082i 0.0937755 0.0681319i
\(731\) 6.85579 21.1000i 0.253571 0.780410i
\(732\) 0 0
\(733\) 26.1032 18.9651i 0.964145 0.700493i 0.0100355 0.999950i \(-0.496806\pi\)
0.954110 + 0.299457i \(0.0968055\pi\)
\(734\) 3.13241 + 2.27583i 0.115619 + 0.0840024i
\(735\) 0 0
\(736\) 20.7566 0.765097
\(737\) 32.3368 6.87305i 1.19114 0.253172i
\(738\) 0 0
\(739\) −0.968005 2.97921i −0.0356086 0.109592i 0.931672 0.363300i \(-0.118350\pi\)
−0.967281 + 0.253708i \(0.918350\pi\)
\(740\) −0.744298 0.540764i −0.0273609 0.0198789i
\(741\) 0 0
\(742\) −6.82266 + 20.9980i −0.250468 + 0.770860i
\(743\) −2.40686 + 7.40756i −0.0882992 + 0.271757i −0.985450 0.169968i \(-0.945633\pi\)
0.897150 + 0.441725i \(0.145633\pi\)
\(744\) 0 0
\(745\) −1.05859 0.769107i −0.0387836 0.0281779i
\(746\) 15.4798 + 47.6420i 0.566756 + 1.74430i
\(747\) 0 0
\(748\) 35.4570 + 61.4148i 1.29644 + 2.24555i
\(749\) 7.33730 0.268099
\(750\) 0 0
\(751\) −40.1993 29.2065i −1.46689 1.06576i −0.981500 0.191463i \(-0.938677\pi\)
−0.485392 0.874297i \(-0.661323\pi\)
\(752\) −5.28649 + 3.84086i −0.192778 + 0.140062i
\(753\) 0 0
\(754\) 8.84570 27.2243i 0.322141 0.991449i
\(755\) 4.55890 3.31224i 0.165915 0.120545i
\(756\) 0 0
\(757\) −8.35296 25.7078i −0.303594 0.934365i −0.980198 0.198018i \(-0.936549\pi\)
0.676605 0.736346i \(-0.263451\pi\)
\(758\) −28.9247 −1.05059
\(759\) 0 0
\(760\) −3.25765 −0.118167
\(761\) −13.7545 42.3320i −0.498601 1.53454i −0.811269 0.584673i \(-0.801223\pi\)
0.312668 0.949862i \(-0.398777\pi\)
\(762\) 0 0
\(763\) 16.6132 12.0702i 0.601438 0.436970i
\(764\) −13.6374 + 41.9716i −0.493384 + 1.51848i
\(765\) 0 0
\(766\) −1.50675 + 1.09472i −0.0544412 + 0.0395538i
\(767\) −40.9996 29.7879i −1.48041 1.07558i
\(768\) 0 0
\(769\) −3.31905 −0.119688 −0.0598440 0.998208i \(-0.519060\pi\)
−0.0598440 + 0.998208i \(0.519060\pi\)
\(770\) −2.32432 + 2.58136i −0.0837626 + 0.0930259i
\(771\) 0 0
\(772\) −24.4973 75.3949i −0.881677 2.71352i
\(773\) 23.0471 + 16.7447i 0.828946 + 0.602264i 0.919261 0.393649i \(-0.128787\pi\)
−0.0903152 + 0.995913i \(0.528787\pi\)
\(774\) 0 0
\(775\) 14.4465 44.4617i 0.518934 1.59711i
\(776\) 5.38906 16.5858i 0.193456 0.595397i
\(777\) 0 0
\(778\) 3.27227 + 2.37744i 0.117316 + 0.0852354i
\(779\) 3.70434 + 11.4008i 0.132722 + 0.408475i
\(780\) 0 0
\(781\) −1.01611 + 9.66671i −0.0363594 + 0.345902i
\(782\) −65.7407 −2.35088
\(783\) 0 0
\(784\) 3.53890 + 2.57116i 0.126389 + 0.0918273i
\(785\) 0.517375 0.375895i 0.0184659 0.0134163i
\(786\) 0 0
\(787\) 4.03227 12.4101i 0.143735 0.442371i −0.853111 0.521729i \(-0.825287\pi\)
0.996846 + 0.0793585i \(0.0252872\pi\)
\(788\) 2.98542 2.16903i 0.106351 0.0772685i
\(789\) 0 0
\(790\) 0.771633 + 2.37484i 0.0274535 + 0.0844931i
\(791\) −10.5417 −0.374819
\(792\) 0 0
\(793\) 19.3917 0.688618
\(794\) 17.8198 + 54.8436i 0.632400 + 1.94633i
\(795\) 0 0
\(796\) −45.5176 + 33.0705i −1.61333 + 1.17215i
\(797\) −15.5044 + 47.7177i −0.549195 + 1.69025i 0.161607 + 0.986855i \(0.448332\pi\)
−0.710802 + 0.703392i \(0.751668\pi\)
\(798\) 0 0
\(799\) −37.6400 + 27.3471i −1.33161 + 0.967471i
\(800\) 18.2003 + 13.2233i 0.643477 + 0.467514i
\(801\) 0 0
\(802\) 50.8941 1.79713
\(803\) −9.41346 + 10.4545i −0.332194 + 0.368931i
\(804\) 0 0
\(805\) −0.628177 1.93333i −0.0221403 0.0681410i
\(806\) −75.4569 54.8226i −2.65786 1.93104i
\(807\) 0 0
\(808\) −9.76832 + 30.0638i −0.343648 + 1.05764i
\(809\) 10.8621 33.4301i 0.381892 1.17534i −0.556819 0.830634i \(-0.687978\pi\)
0.938710 0.344707i \(-0.112022\pi\)
\(810\) 0 0
\(811\) −17.8837 12.9933i −0.627981 0.456255i 0.227719 0.973727i \(-0.426873\pi\)
−0.855700 + 0.517472i \(0.826873\pi\)
\(812\) 4.39554 + 13.5281i 0.154253 + 0.474742i
\(813\) 0 0
\(814\) 5.98041 + 2.66273i 0.209613 + 0.0933285i
\(815\) −0.501025 −0.0175501
\(816\) 0 0
\(817\) −8.90464 6.46960i −0.311534 0.226343i
\(818\) 15.1391 10.9992i 0.529327 0.384579i
\(819\) 0 0
\(820\) 1.29808 3.99508i 0.0453309 0.139514i
\(821\) 2.05264 1.49133i 0.0716375 0.0520477i −0.551390 0.834248i \(-0.685902\pi\)
0.623028 + 0.782200i \(0.285902\pi\)
\(822\) 0 0
\(823\) −3.20534 9.86502i −0.111731 0.343873i 0.879520 0.475862i \(-0.157864\pi\)
−0.991251 + 0.131989i \(0.957864\pi\)
\(824\) −31.6305 −1.10190
\(825\) 0 0
\(826\) 39.8911 1.38799
\(827\) −16.2925 50.1431i −0.566546 1.74365i −0.663314 0.748341i \(-0.730851\pi\)
0.0967683 0.995307i \(-0.469149\pi\)
\(828\) 0 0
\(829\) −30.6163 + 22.2440i −1.06335 + 0.772566i −0.974705 0.223497i \(-0.928253\pi\)
−0.0886419 + 0.996064i \(0.528253\pi\)
\(830\) −3.07730 + 9.47095i −0.106815 + 0.328741i
\(831\) 0 0
\(832\) 42.2667 30.7085i 1.46533 1.06463i
\(833\) 25.1972 + 18.3068i 0.873030 + 0.634293i
\(834\) 0 0
\(835\) −4.85726 −0.168092
\(836\) 34.4135 7.31444i 1.19021 0.252975i
\(837\) 0 0
\(838\) −4.02803 12.3970i −0.139146 0.428247i
\(839\) −16.2738 11.8236i −0.561835 0.408197i 0.270295 0.962778i \(-0.412879\pi\)
−0.832130 + 0.554581i \(0.812879\pi\)
\(840\) 0 0
\(841\) −6.31143 + 19.4246i −0.217635 + 0.669813i
\(842\) −27.2438 + 83.8479i −0.938885 + 2.88959i
\(843\) 0 0
\(844\) 41.4150 + 30.0898i 1.42556 + 1.03573i
\(845\) 0.452118 + 1.39148i 0.0155533 + 0.0478682i
\(846\) 0 0
\(847\) 7.80199 13.5128i 0.268079 0.464305i
\(848\) −5.86097 −0.201266
\(849\) 0 0
\(850\) −57.6444 41.8811i −1.97719 1.43651i
\(851\) −3.09942 + 2.25186i −0.106247 + 0.0771929i
\(852\) 0 0
\(853\) 2.81829 8.67382i 0.0964966 0.296986i −0.891144 0.453720i \(-0.850097\pi\)
0.987641 + 0.156734i \(0.0500966\pi\)
\(854\) −12.3489 + 8.97197i −0.422569 + 0.307014i
\(855\) 0 0
\(856\) 5.30210 + 16.3182i 0.181222 + 0.557744i
\(857\) 1.84536 0.0630362 0.0315181 0.999503i \(-0.489966\pi\)
0.0315181 + 0.999503i \(0.489966\pi\)
\(858\) 0 0
\(859\) 28.5111 0.972785 0.486392 0.873741i \(-0.338313\pi\)
0.486392 + 0.873741i \(0.338313\pi\)
\(860\) 1.19188 + 3.66822i 0.0406427 + 0.125085i
\(861\) 0 0
\(862\) 56.1199 40.7735i 1.91145 1.38875i
\(863\) 3.30628 10.1757i 0.112547 0.346385i −0.878880 0.477042i \(-0.841709\pi\)
0.991428 + 0.130658i \(0.0417089\pi\)
\(864\) 0 0
\(865\) −0.252894 + 0.183738i −0.00859865 + 0.00624729i
\(866\) −0.526204 0.382309i −0.0178811 0.0129914i
\(867\) 0 0
\(868\) 46.3470 1.57312
\(869\) −5.60829 9.71408i −0.190248 0.329528i
\(870\) 0 0
\(871\) 12.9277 + 39.7873i 0.438038 + 1.34814i
\(872\) 38.8492 + 28.2256i 1.31560 + 0.955840i
\(873\) 0 0
\(874\) −10.0786 + 31.0187i −0.340913 + 1.04922i
\(875\) 1.37565 4.23383i 0.0465056 0.143129i
\(876\) 0 0
\(877\) −33.0340 24.0006i −1.11548 0.810442i −0.131961 0.991255i \(-0.542127\pi\)
−0.983518 + 0.180812i \(0.942127\pi\)
\(878\) −10.7930 33.2175i −0.364247 1.12104i
\(879\) 0 0
\(880\) −0.842377 0.375061i −0.0283965 0.0126433i
\(881\) −21.0458 −0.709050 −0.354525 0.935047i \(-0.615357\pi\)
−0.354525 + 0.935047i \(0.615357\pi\)
\(882\) 0 0
\(883\) −10.2973 7.48145i −0.346533 0.251771i 0.400880 0.916130i \(-0.368704\pi\)
−0.747413 + 0.664360i \(0.768704\pi\)
\(884\) −72.6012 + 52.7479i −2.44184 + 1.77410i
\(885\) 0 0
\(886\) 10.4355 32.1173i 0.350589 1.07900i
\(887\) 8.67670 6.30399i 0.291335 0.211667i −0.432511 0.901628i \(-0.642372\pi\)
0.723846 + 0.689961i \(0.242372\pi\)
\(888\) 0 0
\(889\) 5.78801 + 17.8137i 0.194124 + 0.597452i
\(890\) 1.99164 0.0667599
\(891\) 0 0
\(892\) 6.59606 0.220852
\(893\) 7.13277 + 21.9524i 0.238689 + 0.734609i
\(894\) 0 0
\(895\) −2.87913 + 2.09181i −0.0962387 + 0.0699215i
\(896\) −8.68260 + 26.7223i −0.290065 + 0.892729i
\(897\) 0 0
\(898\) 39.9860 29.0515i 1.33435 0.969462i
\(899\) −22.6060 16.4242i −0.753952 0.547778i
\(900\) 0 0
\(901\) −41.7304 −1.39024
\(902\) −3.12472 + 29.7267i −0.104042 + 0.989792i
\(903\) 0 0
\(904\) −7.61766 23.4447i −0.253360 0.779761i
\(905\) −4.59747 3.34025i −0.152825 0.111034i
\(906\) 0 0
\(907\) −4.09311 + 12.5973i −0.135909 + 0.418286i −0.995730 0.0923094i \(-0.970575\pi\)
0.859821 + 0.510596i \(0.170575\pi\)
\(908\) 16.9422 52.1426i 0.562245 1.73041i
\(909\) 0 0
\(910\) −3.55618 2.58372i −0.117886 0.0856494i
\(911\) 17.6524 + 54.3286i 0.584851 + 1.79999i 0.599867 + 0.800099i \(0.295220\pi\)
−0.0150163 + 0.999887i \(0.504780\pi\)
\(912\) 0 0
\(913\) 4.67632 44.4878i 0.154764 1.47233i
\(914\) 7.47494 0.247249
\(915\) 0 0
\(916\) 1.44865 + 1.05250i 0.0478647 + 0.0347757i
\(917\) 8.37786 6.08687i 0.276661 0.201006i
\(918\) 0 0
\(919\) 5.12287 15.7666i 0.168988 0.520091i −0.830320 0.557287i \(-0.811842\pi\)
0.999308 + 0.0371955i \(0.0118424\pi\)
\(920\) 3.84580 2.79414i 0.126792 0.0921200i
\(921\) 0 0
\(922\) 18.9465 + 58.3115i 0.623971 + 1.92039i
\(923\) −12.3002 −0.404865
\(924\) 0 0
\(925\) −4.15230 −0.136527
\(926\) −2.61125 8.03660i −0.0858109 0.264099i
\(927\) 0 0
\(928\) 10.8784 7.90359i 0.357100 0.259448i
\(929\) 2.27554 7.00338i 0.0746580 0.229774i −0.906763 0.421641i \(-0.861454\pi\)
0.981421 + 0.191867i \(0.0614543\pi\)
\(930\) 0 0
\(931\) 12.5007 9.08230i 0.409694 0.297660i
\(932\) −28.4023 20.6355i −0.930349 0.675938i
\(933\) 0 0
\(934\) −43.0753 −1.40947
\(935\) −5.99776 2.67045i −0.196148 0.0873330i
\(936\) 0 0
\(937\) 14.6033 + 44.9444i 0.477069 + 1.46827i 0.843147 + 0.537684i \(0.180701\pi\)
−0.366077 + 0.930584i \(0.619299\pi\)
\(938\) −26.6410 19.3558i −0.869858 0.631989i
\(939\) 0 0
\(940\) 2.49948 7.69260i 0.0815239 0.250905i
\(941\) 17.3447 53.3816i 0.565422 1.74019i −0.101273 0.994859i \(-0.532291\pi\)
0.666695 0.745331i \(-0.267709\pi\)
\(942\) 0 0
\(943\) −14.1518 10.2819i −0.460845 0.334824i
\(944\) 3.27233 + 10.0712i 0.106505 + 0.327789i
\(945\) 0 0
\(946\) −13.7223 23.7682i −0.446149 0.772772i
\(947\) 12.7865 0.415504 0.207752 0.978182i \(-0.433385\pi\)
0.207752 + 0.978182i \(0.433385\pi\)
\(948\) 0 0
\(949\) −14.4025 10.4640i −0.467524 0.339676i
\(950\) −28.5983 + 20.7779i −0.927852 + 0.674124i
\(951\) 0 0
\(952\) 9.07912 27.9427i 0.294256 0.905627i
\(953\) −18.8480 + 13.6939i −0.610547 + 0.443588i −0.849607 0.527417i \(-0.823161\pi\)
0.239060 + 0.971005i \(0.423161\pi\)
\(954\) 0 0
\(955\) −1.26256 3.88576i −0.0408555 0.125740i
\(956\) 33.0133 1.06773
\(957\) 0 0
\(958\) −0.365649 −0.0118136
\(959\) 4.29893 + 13.2307i 0.138820 + 0.427243i
\(960\) 0 0
\(961\) −48.5776 + 35.2937i −1.56702 + 1.13851i
\(962\) −2.55995 + 7.87872i −0.0825362 + 0.254020i
\(963\) 0 0
\(964\) 0.772163 0.561009i 0.0248697 0.0180689i
\(965\) 5.93765 + 4.31395i 0.191140 + 0.138871i
\(966\) 0 0
\(967\) −55.5173 −1.78531 −0.892657 0.450736i \(-0.851162\pi\)
−0.892657 + 0.450736i \(0.851162\pi\)
\(968\) 35.6904 + 7.58700i 1.14713 + 0.243855i
\(969\) 0 0
\(970\) 1.19954 + 3.69179i 0.0385148 + 0.118536i
\(971\) −3.65698 2.65695i −0.117358 0.0852656i 0.527558 0.849519i \(-0.323108\pi\)
−0.644916 + 0.764253i \(0.723108\pi\)
\(972\) 0 0
\(973\) 4.15409 12.7850i 0.133174 0.409867i
\(974\) −12.9017 + 39.7074i −0.413398 + 1.27231i
\(975\) 0 0
\(976\) −3.27812 2.38169i −0.104930 0.0762361i
\(977\) 8.35560 + 25.7159i 0.267319 + 0.822724i 0.991150 + 0.132746i \(0.0423796\pi\)
−0.723831 + 0.689977i \(0.757620\pi\)
\(978\) 0 0
\(979\) −8.75096 + 1.85998i −0.279682 + 0.0594452i
\(980\) −5.41462 −0.172964
\(981\) 0 0
\(982\) 12.5261 + 9.10076i 0.399725 + 0.290417i
\(983\) 8.60599 6.25262i 0.274489 0.199428i −0.442021 0.897005i \(-0.645738\pi\)
0.716510 + 0.697577i \(0.245738\pi\)
\(984\) 0 0
\(985\) −0.105572 + 0.324919i −0.00336382 + 0.0103528i
\(986\) −34.4542 + 25.0325i −1.09725 + 0.797196i
\(987\) 0 0
\(988\) 13.7579 + 42.3424i 0.437697 + 1.34709i
\(989\) 16.0614 0.510723
\(990\) 0 0
\(991\) −18.7938 −0.597005 −0.298502 0.954409i \(-0.596487\pi\)
−0.298502 + 0.954409i \(0.596487\pi\)
\(992\) −13.5388 41.6681i −0.429857 1.32296i
\(993\) 0 0
\(994\) 7.83291 5.69094i 0.248445 0.180506i
\(995\) 1.60963 4.95392i 0.0510286 0.157050i
\(996\) 0 0
\(997\) 21.1375 15.3573i 0.669433 0.486371i −0.200403 0.979714i \(-0.564225\pi\)
0.869835 + 0.493342i \(0.164225\pi\)
\(998\) 63.9637 + 46.4723i 2.02473 + 1.47106i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.f.e.82.1 36
3.2 odd 2 891.2.f.f.82.9 36
9.2 odd 6 99.2.m.b.49.9 yes 72
9.4 even 3 297.2.n.b.181.9 72
9.5 odd 6 99.2.m.b.16.1 72
9.7 even 3 297.2.n.b.280.1 72
11.3 even 5 9801.2.a.cp.1.1 18
11.8 odd 10 9801.2.a.cn.1.18 18
11.9 even 5 inner 891.2.f.e.163.1 36
33.8 even 10 9801.2.a.co.1.1 18
33.14 odd 10 9801.2.a.cm.1.18 18
33.20 odd 10 891.2.f.f.163.9 36
99.14 odd 30 1089.2.e.p.727.1 36
99.20 odd 30 99.2.m.b.31.1 yes 72
99.31 even 15 297.2.n.b.262.1 72
99.41 even 30 1089.2.e.o.727.18 36
99.47 odd 30 1089.2.e.p.364.1 36
99.74 even 30 1089.2.e.o.364.18 36
99.86 odd 30 99.2.m.b.97.9 yes 72
99.97 even 15 297.2.n.b.64.9 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.16.1 72 9.5 odd 6
99.2.m.b.31.1 yes 72 99.20 odd 30
99.2.m.b.49.9 yes 72 9.2 odd 6
99.2.m.b.97.9 yes 72 99.86 odd 30
297.2.n.b.64.9 72 99.97 even 15
297.2.n.b.181.9 72 9.4 even 3
297.2.n.b.262.1 72 99.31 even 15
297.2.n.b.280.1 72 9.7 even 3
891.2.f.e.82.1 36 1.1 even 1 trivial
891.2.f.e.163.1 36 11.9 even 5 inner
891.2.f.f.82.9 36 3.2 odd 2
891.2.f.f.163.9 36 33.20 odd 10
1089.2.e.o.364.18 36 99.74 even 30
1089.2.e.o.727.18 36 99.41 even 30
1089.2.e.p.364.1 36 99.47 odd 30
1089.2.e.p.727.1 36 99.14 odd 30
9801.2.a.cm.1.18 18 33.14 odd 10
9801.2.a.cn.1.18 18 11.8 odd 10
9801.2.a.co.1.1 18 33.8 even 10
9801.2.a.cp.1.1 18 11.3 even 5