Properties

Label 891.2.f.e.487.5
Level $891$
Weight $2$
Character 891.487
Analytic conductor $7.115$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(82,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(9\) over \(\Q(\zeta_{5})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 487.5
Character \(\chi\) \(=\) 891.487
Dual form 891.2.f.e.730.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.396818 + 0.288305i) q^{2} +(-0.543689 + 1.67330i) q^{4} +(1.38194 + 1.00404i) q^{5} +(1.05391 - 3.24360i) q^{7} +(-0.569818 - 1.75372i) q^{8} -0.837851 q^{10} +(1.07799 - 3.13655i) q^{11} +(3.23439 - 2.34992i) q^{13} +(0.516936 + 1.59097i) q^{14} +(-2.11507 - 1.53669i) q^{16} +(-2.67346 - 1.94238i) q^{17} +(-1.36513 - 4.20144i) q^{19} +(-2.43141 + 1.76653i) q^{20} +(0.476515 + 1.55543i) q^{22} -7.49201 q^{23} +(-0.643414 - 1.98022i) q^{25} +(-0.605969 + 1.86498i) q^{26} +(4.85453 + 3.52702i) q^{28} +(-0.522637 + 1.60851i) q^{29} +(3.15397 - 2.29149i) q^{31} +4.97028 q^{32} +1.62087 q^{34} +(4.71315 - 3.42431i) q^{35} +(0.947300 - 2.91549i) q^{37} +(1.75300 + 1.27363i) q^{38} +(0.973351 - 2.99566i) q^{40} +(-0.120787 - 0.371744i) q^{41} +9.61268 q^{43} +(4.66230 + 3.50912i) q^{44} +(2.97296 - 2.15999i) q^{46} +(0.333818 + 1.02739i) q^{47} +(-3.74710 - 2.72242i) q^{49} +(0.826227 + 0.600289i) q^{50} +(2.17363 + 6.68974i) q^{52} +(-10.1643 + 7.38480i) q^{53} +(4.63895 - 3.25218i) q^{55} -6.28890 q^{56} +(-0.256350 - 0.788965i) q^{58} +(1.12993 - 3.47758i) q^{59} +(3.11728 + 2.26484i) q^{61} +(-0.590902 + 1.81861i) q^{62} +(2.25785 - 1.64043i) q^{64} +6.82916 q^{65} +3.10120 q^{67} +(4.70372 - 3.41746i) q^{68} +(-0.883019 + 2.71765i) q^{70} +(5.67699 + 4.12458i) q^{71} +(-4.64842 + 14.3064i) q^{73} +(0.464645 + 1.43003i) q^{74} +7.77248 q^{76} +(-9.03760 - 6.80222i) q^{77} +(3.23536 - 2.35063i) q^{79} +(-1.38001 - 4.24724i) q^{80} +(0.155106 + 0.112691i) q^{82} +(-0.101100 - 0.0734531i) q^{83} +(-1.74434 - 5.36852i) q^{85} +(-3.81449 + 2.77139i) q^{86} +(-6.11489 - 0.103238i) q^{88} +7.93327 q^{89} +(-4.21345 - 12.9677i) q^{91} +(4.07333 - 12.5364i) q^{92} +(-0.428666 - 0.311444i) q^{94} +(2.33188 - 7.17680i) q^{95} +(-0.277622 + 0.201704i) q^{97} +2.27180 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - q^{2} - 11 q^{4} - 8 q^{5} + 2 q^{7} - 3 q^{8} - 4 q^{10} - 2 q^{11} + 11 q^{13} - 10 q^{14} + 9 q^{16} + 10 q^{17} + 4 q^{19} - 45 q^{20} + 16 q^{22} + 20 q^{23} - 11 q^{25} + 6 q^{26} - 27 q^{28}+ \cdots + 164 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.396818 + 0.288305i −0.280593 + 0.203863i −0.719176 0.694828i \(-0.755480\pi\)
0.438583 + 0.898691i \(0.355480\pi\)
\(3\) 0 0
\(4\) −0.543689 + 1.67330i −0.271845 + 0.836652i
\(5\) 1.38194 + 1.00404i 0.618024 + 0.449021i 0.852231 0.523166i \(-0.175249\pi\)
−0.234207 + 0.972187i \(0.575249\pi\)
\(6\) 0 0
\(7\) 1.05391 3.24360i 0.398340 1.22597i −0.527989 0.849251i \(-0.677054\pi\)
0.926329 0.376714i \(-0.122946\pi\)
\(8\) −0.569818 1.75372i −0.201461 0.620034i
\(9\) 0 0
\(10\) −0.837851 −0.264952
\(11\) 1.07799 3.13655i 0.325027 0.945705i
\(12\) 0 0
\(13\) 3.23439 2.34992i 0.897058 0.651751i −0.0406508 0.999173i \(-0.512943\pi\)
0.937709 + 0.347423i \(0.112943\pi\)
\(14\) 0.516936 + 1.59097i 0.138157 + 0.425204i
\(15\) 0 0
\(16\) −2.11507 1.53669i −0.528768 0.384173i
\(17\) −2.67346 1.94238i −0.648409 0.471097i 0.214320 0.976763i \(-0.431246\pi\)
−0.862729 + 0.505667i \(0.831246\pi\)
\(18\) 0 0
\(19\) −1.36513 4.20144i −0.313182 0.963875i −0.976496 0.215534i \(-0.930851\pi\)
0.663314 0.748341i \(-0.269149\pi\)
\(20\) −2.43141 + 1.76653i −0.543681 + 0.395007i
\(21\) 0 0
\(22\) 0.476515 + 1.55543i 0.101593 + 0.331619i
\(23\) −7.49201 −1.56219 −0.781096 0.624411i \(-0.785339\pi\)
−0.781096 + 0.624411i \(0.785339\pi\)
\(24\) 0 0
\(25\) −0.643414 1.98022i −0.128683 0.396045i
\(26\) −0.605969 + 1.86498i −0.118840 + 0.365753i
\(27\) 0 0
\(28\) 4.85453 + 3.52702i 0.917420 + 0.666544i
\(29\) −0.522637 + 1.60851i −0.0970512 + 0.298693i −0.987783 0.155837i \(-0.950193\pi\)
0.890732 + 0.454530i \(0.150193\pi\)
\(30\) 0 0
\(31\) 3.15397 2.29149i 0.566469 0.411564i −0.267352 0.963599i \(-0.586149\pi\)
0.833821 + 0.552035i \(0.186149\pi\)
\(32\) 4.97028 0.878629
\(33\) 0 0
\(34\) 1.62087 0.277978
\(35\) 4.71315 3.42431i 0.796668 0.578813i
\(36\) 0 0
\(37\) 0.947300 2.91549i 0.155735 0.479304i −0.842499 0.538697i \(-0.818917\pi\)
0.998235 + 0.0593935i \(0.0189167\pi\)
\(38\) 1.75300 + 1.27363i 0.284375 + 0.206610i
\(39\) 0 0
\(40\) 0.973351 2.99566i 0.153900 0.473656i
\(41\) −0.120787 0.371744i −0.0188637 0.0580566i 0.941182 0.337901i \(-0.109717\pi\)
−0.960045 + 0.279845i \(0.909717\pi\)
\(42\) 0 0
\(43\) 9.61268 1.46592 0.732960 0.680272i \(-0.238138\pi\)
0.732960 + 0.680272i \(0.238138\pi\)
\(44\) 4.66230 + 3.50912i 0.702869 + 0.529020i
\(45\) 0 0
\(46\) 2.97296 2.15999i 0.438340 0.318472i
\(47\) 0.333818 + 1.02739i 0.0486924 + 0.149860i 0.972446 0.233127i \(-0.0748956\pi\)
−0.923754 + 0.382986i \(0.874896\pi\)
\(48\) 0 0
\(49\) −3.74710 2.72242i −0.535299 0.388918i
\(50\) 0.826227 + 0.600289i 0.116846 + 0.0848937i
\(51\) 0 0
\(52\) 2.17363 + 6.68974i 0.301428 + 0.927700i
\(53\) −10.1643 + 7.38480i −1.39618 + 1.01438i −0.401020 + 0.916069i \(0.631344\pi\)
−0.995156 + 0.0983117i \(0.968656\pi\)
\(54\) 0 0
\(55\) 4.63895 3.25218i 0.625516 0.438524i
\(56\) −6.28890 −0.840390
\(57\) 0 0
\(58\) −0.256350 0.788965i −0.0336604 0.103596i
\(59\) 1.12993 3.47758i 0.147105 0.452742i −0.850171 0.526507i \(-0.823501\pi\)
0.997276 + 0.0737648i \(0.0235014\pi\)
\(60\) 0 0
\(61\) 3.11728 + 2.26484i 0.399127 + 0.289983i 0.769185 0.639026i \(-0.220662\pi\)
−0.370058 + 0.929009i \(0.620662\pi\)
\(62\) −0.590902 + 1.81861i −0.0750446 + 0.230964i
\(63\) 0 0
\(64\) 2.25785 1.64043i 0.282232 0.205053i
\(65\) 6.82916 0.847053
\(66\) 0 0
\(67\) 3.10120 0.378872 0.189436 0.981893i \(-0.439334\pi\)
0.189436 + 0.981893i \(0.439334\pi\)
\(68\) 4.70372 3.41746i 0.570410 0.414427i
\(69\) 0 0
\(70\) −0.883019 + 2.71765i −0.105541 + 0.324822i
\(71\) 5.67699 + 4.12458i 0.673735 + 0.489497i 0.871273 0.490798i \(-0.163295\pi\)
−0.197538 + 0.980295i \(0.563295\pi\)
\(72\) 0 0
\(73\) −4.64842 + 14.3064i −0.544057 + 1.67443i 0.179165 + 0.983819i \(0.442660\pi\)
−0.723222 + 0.690615i \(0.757340\pi\)
\(74\) 0.464645 + 1.43003i 0.0540139 + 0.166238i
\(75\) 0 0
\(76\) 7.77248 0.891565
\(77\) −9.03760 6.80222i −1.02993 0.775185i
\(78\) 0 0
\(79\) 3.23536 2.35063i 0.364007 0.264467i −0.390714 0.920512i \(-0.627772\pi\)
0.754721 + 0.656045i \(0.227772\pi\)
\(80\) −1.38001 4.24724i −0.154290 0.474856i
\(81\) 0 0
\(82\) 0.155106 + 0.112691i 0.0171286 + 0.0124447i
\(83\) −0.101100 0.0734531i −0.0110971 0.00806252i 0.582223 0.813029i \(-0.302183\pi\)
−0.593320 + 0.804967i \(0.702183\pi\)
\(84\) 0 0
\(85\) −1.74434 5.36852i −0.189200 0.582298i
\(86\) −3.81449 + 2.77139i −0.411327 + 0.298846i
\(87\) 0 0
\(88\) −6.11489 0.103238i −0.651849 0.0110052i
\(89\) 7.93327 0.840925 0.420462 0.907310i \(-0.361868\pi\)
0.420462 + 0.907310i \(0.361868\pi\)
\(90\) 0 0
\(91\) −4.21345 12.9677i −0.441690 1.35938i
\(92\) 4.07333 12.5364i 0.424674 1.30701i
\(93\) 0 0
\(94\) −0.428666 0.311444i −0.0442135 0.0321230i
\(95\) 2.33188 7.17680i 0.239246 0.736324i
\(96\) 0 0
\(97\) −0.277622 + 0.201704i −0.0281882 + 0.0204800i −0.601790 0.798654i \(-0.705546\pi\)
0.573602 + 0.819134i \(0.305546\pi\)
\(98\) 2.27180 0.229487
\(99\) 0 0
\(100\) 3.66333 0.366333
\(101\) 5.75663 4.18244i 0.572806 0.416168i −0.263318 0.964709i \(-0.584817\pi\)
0.836123 + 0.548541i \(0.184817\pi\)
\(102\) 0 0
\(103\) −0.511203 + 1.57332i −0.0503703 + 0.155024i −0.973078 0.230477i \(-0.925971\pi\)
0.922707 + 0.385501i \(0.125971\pi\)
\(104\) −5.96412 4.33318i −0.584830 0.424904i
\(105\) 0 0
\(106\) 1.90430 5.86085i 0.184962 0.569256i
\(107\) −1.02187 3.14498i −0.0987876 0.304037i 0.889435 0.457062i \(-0.151098\pi\)
−0.988222 + 0.153025i \(0.951098\pi\)
\(108\) 0 0
\(109\) −5.50709 −0.527484 −0.263742 0.964593i \(-0.584957\pi\)
−0.263742 + 0.964593i \(0.584957\pi\)
\(110\) −0.903198 + 2.62796i −0.0861165 + 0.250566i
\(111\) 0 0
\(112\) −7.21351 + 5.24092i −0.681612 + 0.495220i
\(113\) 5.07073 + 15.6061i 0.477014 + 1.46810i 0.843222 + 0.537565i \(0.180656\pi\)
−0.366208 + 0.930533i \(0.619344\pi\)
\(114\) 0 0
\(115\) −10.3535 7.52229i −0.965473 0.701457i
\(116\) −2.40738 1.74906i −0.223519 0.162396i
\(117\) 0 0
\(118\) 0.554226 + 1.70573i 0.0510206 + 0.157025i
\(119\) −9.11789 + 6.62453i −0.835835 + 0.607270i
\(120\) 0 0
\(121\) −8.67586 6.76236i −0.788714 0.614760i
\(122\) −1.88996 −0.171109
\(123\) 0 0
\(124\) 2.11958 + 6.52340i 0.190344 + 0.585819i
\(125\) 3.73834 11.5054i 0.334368 1.02908i
\(126\) 0 0
\(127\) −8.73327 6.34509i −0.774952 0.563036i 0.128508 0.991709i \(-0.458981\pi\)
−0.903460 + 0.428673i \(0.858981\pi\)
\(128\) −3.49481 + 10.7559i −0.308901 + 0.950699i
\(129\) 0 0
\(130\) −2.70993 + 1.96888i −0.237677 + 0.172682i
\(131\) 21.1557 1.84838 0.924189 0.381935i \(-0.124742\pi\)
0.924189 + 0.381935i \(0.124742\pi\)
\(132\) 0 0
\(133\) −15.0665 −1.30643
\(134\) −1.23061 + 0.894092i −0.106309 + 0.0772378i
\(135\) 0 0
\(136\) −1.88301 + 5.79530i −0.161467 + 0.496943i
\(137\) 2.58928 + 1.88122i 0.221217 + 0.160724i 0.692874 0.721058i \(-0.256344\pi\)
−0.471657 + 0.881782i \(0.656344\pi\)
\(138\) 0 0
\(139\) −4.63329 + 14.2598i −0.392991 + 1.20950i 0.537525 + 0.843248i \(0.319360\pi\)
−0.930515 + 0.366253i \(0.880640\pi\)
\(140\) 3.16741 + 9.74829i 0.267695 + 0.823881i
\(141\) 0 0
\(142\) −3.44187 −0.288835
\(143\) −3.88399 12.6780i −0.324795 1.06019i
\(144\) 0 0
\(145\) −2.33727 + 1.69812i −0.194099 + 0.141021i
\(146\) −2.28002 7.01719i −0.188696 0.580747i
\(147\) 0 0
\(148\) 4.36346 + 3.17024i 0.358675 + 0.260592i
\(149\) 3.27743 + 2.38119i 0.268497 + 0.195075i 0.713885 0.700263i \(-0.246934\pi\)
−0.445387 + 0.895338i \(0.646934\pi\)
\(150\) 0 0
\(151\) −2.40847 7.41252i −0.195999 0.603222i −0.999963 0.00854528i \(-0.997280\pi\)
0.803965 0.594677i \(-0.202720\pi\)
\(152\) −6.59027 + 4.78811i −0.534541 + 0.388367i
\(153\) 0 0
\(154\) 5.54740 + 0.0936570i 0.447022 + 0.00754709i
\(155\) 6.65936 0.534892
\(156\) 0 0
\(157\) 0.0955332 + 0.294021i 0.00762438 + 0.0234654i 0.954796 0.297261i \(-0.0960731\pi\)
−0.947172 + 0.320726i \(0.896073\pi\)
\(158\) −0.606152 + 1.86554i −0.0482229 + 0.148415i
\(159\) 0 0
\(160\) 6.86865 + 4.99036i 0.543014 + 0.394523i
\(161\) −7.89590 + 24.3011i −0.622284 + 1.91519i
\(162\) 0 0
\(163\) −8.89442 + 6.46217i −0.696665 + 0.506157i −0.878844 0.477109i \(-0.841685\pi\)
0.182179 + 0.983265i \(0.441685\pi\)
\(164\) 0.687711 0.0537012
\(165\) 0 0
\(166\) 0.0612950 0.00475741
\(167\) −14.2176 + 10.3297i −1.10019 + 0.799333i −0.981090 0.193550i \(-0.938000\pi\)
−0.119097 + 0.992883i \(0.538000\pi\)
\(168\) 0 0
\(169\) 0.921919 2.83737i 0.0709168 0.218260i
\(170\) 2.23996 + 1.62742i 0.171797 + 0.124818i
\(171\) 0 0
\(172\) −5.22631 + 16.0849i −0.398503 + 1.22646i
\(173\) −3.82122 11.7605i −0.290522 0.894135i −0.984689 0.174321i \(-0.944227\pi\)
0.694167 0.719814i \(-0.255773\pi\)
\(174\) 0 0
\(175\) −7.10116 −0.536797
\(176\) −7.09994 + 4.97748i −0.535178 + 0.375192i
\(177\) 0 0
\(178\) −3.14806 + 2.28720i −0.235957 + 0.171433i
\(179\) −6.76200 20.8113i −0.505416 1.55551i −0.800071 0.599906i \(-0.795205\pi\)
0.294655 0.955604i \(-0.404795\pi\)
\(180\) 0 0
\(181\) 3.54364 + 2.57460i 0.263396 + 0.191369i 0.711643 0.702541i \(-0.247951\pi\)
−0.448247 + 0.893910i \(0.647951\pi\)
\(182\) 5.41062 + 3.93104i 0.401062 + 0.291388i
\(183\) 0 0
\(184\) 4.26908 + 13.1389i 0.314721 + 0.968612i
\(185\) 4.23639 3.07792i 0.311466 0.226293i
\(186\) 0 0
\(187\) −8.97434 + 6.29155i −0.656269 + 0.460084i
\(188\) −1.90062 −0.138617
\(189\) 0 0
\(190\) 1.14377 + 3.52018i 0.0829781 + 0.255380i
\(191\) −3.86727 + 11.9022i −0.279826 + 0.861214i 0.708077 + 0.706136i \(0.249563\pi\)
−0.987902 + 0.155079i \(0.950437\pi\)
\(192\) 0 0
\(193\) 10.1659 + 7.38594i 0.731756 + 0.531652i 0.890118 0.455729i \(-0.150622\pi\)
−0.158363 + 0.987381i \(0.550622\pi\)
\(194\) 0.0520130 0.160080i 0.00373432 0.0114930i
\(195\) 0 0
\(196\) 6.59270 4.78988i 0.470907 0.342134i
\(197\) 10.3453 0.737075 0.368538 0.929613i \(-0.379859\pi\)
0.368538 + 0.929613i \(0.379859\pi\)
\(198\) 0 0
\(199\) 26.4773 1.87693 0.938464 0.345376i \(-0.112249\pi\)
0.938464 + 0.345376i \(0.112249\pi\)
\(200\) −3.10613 + 2.25674i −0.219637 + 0.159575i
\(201\) 0 0
\(202\) −1.07852 + 3.31933i −0.0758841 + 0.233547i
\(203\) 4.66655 + 3.39045i 0.327528 + 0.237963i
\(204\) 0 0
\(205\) 0.206325 0.635004i 0.0144104 0.0443506i
\(206\) −0.250742 0.771705i −0.0174700 0.0537672i
\(207\) 0 0
\(208\) −10.4521 −0.724721
\(209\) −14.6496 0.247330i −1.01333 0.0171082i
\(210\) 0 0
\(211\) 5.89280 4.28137i 0.405677 0.294742i −0.366172 0.930547i \(-0.619332\pi\)
0.771849 + 0.635805i \(0.219332\pi\)
\(212\) −6.83079 21.0230i −0.469141 1.44387i
\(213\) 0 0
\(214\) 1.31221 + 0.953376i 0.0897008 + 0.0651715i
\(215\) 13.2842 + 9.65153i 0.905974 + 0.658229i
\(216\) 0 0
\(217\) −4.10868 12.6452i −0.278916 0.858414i
\(218\) 2.18531 1.58772i 0.148008 0.107534i
\(219\) 0 0
\(220\) 2.91974 + 9.53055i 0.196849 + 0.642550i
\(221\) −13.2114 −0.888698
\(222\) 0 0
\(223\) 7.26501 + 22.3594i 0.486501 + 1.49730i 0.829795 + 0.558068i \(0.188457\pi\)
−0.343294 + 0.939228i \(0.611543\pi\)
\(224\) 5.23822 16.1216i 0.349993 1.07717i
\(225\) 0 0
\(226\) −6.51148 4.73086i −0.433137 0.314692i
\(227\) 3.68416 11.3387i 0.244526 0.752574i −0.751188 0.660089i \(-0.770519\pi\)
0.995714 0.0924858i \(-0.0294813\pi\)
\(228\) 0 0
\(229\) −2.47363 + 1.79719i −0.163462 + 0.118762i −0.666509 0.745497i \(-0.732212\pi\)
0.503047 + 0.864259i \(0.332212\pi\)
\(230\) 6.27719 0.413905
\(231\) 0 0
\(232\) 3.11869 0.204752
\(233\) −19.8463 + 14.4192i −1.30017 + 0.944632i −0.999957 0.00923938i \(-0.997059\pi\)
−0.300217 + 0.953871i \(0.597059\pi\)
\(234\) 0 0
\(235\) −0.570221 + 1.75496i −0.0371971 + 0.114481i
\(236\) 5.20471 + 3.78145i 0.338798 + 0.246151i
\(237\) 0 0
\(238\) 1.70825 5.25747i 0.110730 0.340791i
\(239\) 2.14786 + 6.61044i 0.138934 + 0.427594i 0.996181 0.0873108i \(-0.0278273\pi\)
−0.857247 + 0.514905i \(0.827827\pi\)
\(240\) 0 0
\(241\) −7.77059 −0.500547 −0.250274 0.968175i \(-0.580521\pi\)
−0.250274 + 0.968175i \(0.580521\pi\)
\(242\) 5.39236 + 0.182131i 0.346634 + 0.0117078i
\(243\) 0 0
\(244\) −5.48460 + 3.98480i −0.351116 + 0.255100i
\(245\) −2.44485 7.52448i −0.156196 0.480721i
\(246\) 0 0
\(247\) −14.2884 10.3811i −0.909149 0.660535i
\(248\) −5.81582 4.22544i −0.369305 0.268316i
\(249\) 0 0
\(250\) 1.83364 + 5.64335i 0.115969 + 0.356917i
\(251\) 0.264684 0.192304i 0.0167067 0.0121381i −0.579401 0.815043i \(-0.696713\pi\)
0.596107 + 0.802905i \(0.296713\pi\)
\(252\) 0 0
\(253\) −8.07634 + 23.4990i −0.507755 + 1.47737i
\(254\) 5.29484 0.332228
\(255\) 0 0
\(256\) 0.0106606 + 0.0328101i 0.000666290 + 0.00205063i
\(257\) 4.24255 13.0572i 0.264643 0.814487i −0.727133 0.686497i \(-0.759148\pi\)
0.991775 0.127990i \(-0.0408525\pi\)
\(258\) 0 0
\(259\) −8.45832 6.14533i −0.525574 0.381852i
\(260\) −3.71294 + 11.4273i −0.230267 + 0.708689i
\(261\) 0 0
\(262\) −8.39495 + 6.09928i −0.518641 + 0.376815i
\(263\) 16.8542 1.03927 0.519637 0.854387i \(-0.326067\pi\)
0.519637 + 0.854387i \(0.326067\pi\)
\(264\) 0 0
\(265\) −21.4612 −1.31835
\(266\) 5.97866 4.34375i 0.366575 0.266332i
\(267\) 0 0
\(268\) −1.68609 + 5.18925i −0.102994 + 0.316984i
\(269\) 10.0297 + 7.28700i 0.611522 + 0.444296i 0.849950 0.526864i \(-0.176632\pi\)
−0.238428 + 0.971160i \(0.576632\pi\)
\(270\) 0 0
\(271\) 5.95460 18.3264i 0.361716 1.11325i −0.590296 0.807187i \(-0.700989\pi\)
0.952012 0.306061i \(-0.0990112\pi\)
\(272\) 2.66972 + 8.21656i 0.161876 + 0.498202i
\(273\) 0 0
\(274\) −1.56984 −0.0948374
\(275\) −6.90466 0.116572i −0.416367 0.00702954i
\(276\) 0 0
\(277\) −8.37420 + 6.08421i −0.503157 + 0.365565i −0.810222 0.586124i \(-0.800653\pi\)
0.307065 + 0.951689i \(0.400653\pi\)
\(278\) −2.27260 6.99435i −0.136302 0.419493i
\(279\) 0 0
\(280\) −8.69092 6.31432i −0.519382 0.377353i
\(281\) −13.2968 9.66072i −0.793223 0.576310i 0.115695 0.993285i \(-0.463090\pi\)
−0.908918 + 0.416974i \(0.863090\pi\)
\(282\) 0 0
\(283\) −0.390892 1.20304i −0.0232361 0.0715135i 0.938766 0.344555i \(-0.111970\pi\)
−0.962002 + 0.273042i \(0.911970\pi\)
\(284\) −9.98819 + 7.25685i −0.592690 + 0.430615i
\(285\) 0 0
\(286\) 5.19637 + 3.91109i 0.307268 + 0.231268i
\(287\) −1.33309 −0.0786896
\(288\) 0 0
\(289\) −1.87876 5.78222i −0.110515 0.340130i
\(290\) 0.437892 1.34769i 0.0257139 0.0791392i
\(291\) 0 0
\(292\) −21.4116 15.5564i −1.25302 0.910372i
\(293\) 7.44342 22.9085i 0.434849 1.33833i −0.458392 0.888750i \(-0.651574\pi\)
0.893241 0.449578i \(-0.148426\pi\)
\(294\) 0 0
\(295\) 5.05314 3.67132i 0.294205 0.213753i
\(296\) −5.65274 −0.328559
\(297\) 0 0
\(298\) −1.98705 −0.115107
\(299\) −24.2321 + 17.6056i −1.40138 + 1.01816i
\(300\) 0 0
\(301\) 10.1309 31.1797i 0.583935 1.79717i
\(302\) 3.09279 + 2.24705i 0.177970 + 0.129303i
\(303\) 0 0
\(304\) −3.56896 + 10.9841i −0.204694 + 0.629983i
\(305\) 2.03392 + 6.25977i 0.116462 + 0.358433i
\(306\) 0 0
\(307\) 16.2949 0.930001 0.465001 0.885310i \(-0.346054\pi\)
0.465001 + 0.885310i \(0.346054\pi\)
\(308\) 16.2958 11.4244i 0.928541 0.650963i
\(309\) 0 0
\(310\) −2.64255 + 1.91993i −0.150087 + 0.109044i
\(311\) −6.60408 20.3253i −0.374483 1.15254i −0.943827 0.330441i \(-0.892803\pi\)
0.569344 0.822100i \(-0.307197\pi\)
\(312\) 0 0
\(313\) −2.52100 1.83161i −0.142495 0.103529i 0.514254 0.857638i \(-0.328069\pi\)
−0.656749 + 0.754109i \(0.728069\pi\)
\(314\) −0.122677 0.0891301i −0.00692307 0.00502990i
\(315\) 0 0
\(316\) 2.17428 + 6.69176i 0.122313 + 0.376441i
\(317\) −14.7766 + 10.7358i −0.829935 + 0.602983i −0.919541 0.392994i \(-0.871439\pi\)
0.0896059 + 0.995977i \(0.471439\pi\)
\(318\) 0 0
\(319\) 4.48177 + 3.37324i 0.250931 + 0.188865i
\(320\) 4.76728 0.266499
\(321\) 0 0
\(322\) −3.87289 11.9195i −0.215828 0.664250i
\(323\) −4.51117 + 13.8840i −0.251008 + 0.772524i
\(324\) 0 0
\(325\) −6.73442 4.89284i −0.373558 0.271406i
\(326\) 1.66639 5.12861i 0.0922927 0.284048i
\(327\) 0 0
\(328\) −0.583108 + 0.423653i −0.0321968 + 0.0233923i
\(329\) 3.68425 0.203119
\(330\) 0 0
\(331\) 3.76616 0.207007 0.103503 0.994629i \(-0.466995\pi\)
0.103503 + 0.994629i \(0.466995\pi\)
\(332\) 0.177876 0.129235i 0.00976222 0.00709267i
\(333\) 0 0
\(334\) 2.66369 8.19799i 0.145751 0.448574i
\(335\) 4.28569 + 3.11373i 0.234152 + 0.170121i
\(336\) 0 0
\(337\) 1.84365 5.67417i 0.100430 0.309092i −0.888201 0.459456i \(-0.848045\pi\)
0.988631 + 0.150364i \(0.0480445\pi\)
\(338\) 0.452196 + 1.39171i 0.0245962 + 0.0756993i
\(339\) 0 0
\(340\) 9.93155 0.538614
\(341\) −3.78741 12.3628i −0.205100 0.669482i
\(342\) 0 0
\(343\) 6.53464 4.74769i 0.352837 0.256351i
\(344\) −5.47748 16.8580i −0.295326 0.908920i
\(345\) 0 0
\(346\) 4.90695 + 3.56511i 0.263799 + 0.191661i
\(347\) 19.6990 + 14.3122i 1.05750 + 0.768318i 0.973624 0.228158i \(-0.0732704\pi\)
0.0838748 + 0.996476i \(0.473270\pi\)
\(348\) 0 0
\(349\) 5.17349 + 15.9224i 0.276931 + 0.852305i 0.988702 + 0.149894i \(0.0478932\pi\)
−0.711771 + 0.702411i \(0.752107\pi\)
\(350\) 2.81787 2.04730i 0.150621 0.109433i
\(351\) 0 0
\(352\) 5.35793 15.5895i 0.285579 0.830924i
\(353\) 8.03132 0.427464 0.213732 0.976892i \(-0.431438\pi\)
0.213732 + 0.976892i \(0.431438\pi\)
\(354\) 0 0
\(355\) 3.70404 + 11.3999i 0.196590 + 0.605042i
\(356\) −4.31323 + 13.2748i −0.228601 + 0.703561i
\(357\) 0 0
\(358\) 8.68329 + 6.30878i 0.458926 + 0.333429i
\(359\) 8.90742 27.4142i 0.470116 1.44687i −0.382317 0.924031i \(-0.624874\pi\)
0.852433 0.522836i \(-0.175126\pi\)
\(360\) 0 0
\(361\) −0.417162 + 0.303086i −0.0219559 + 0.0159519i
\(362\) −2.14845 −0.112920
\(363\) 0 0
\(364\) 23.9896 1.25740
\(365\) −20.7881 + 15.1034i −1.08810 + 0.790548i
\(366\) 0 0
\(367\) 6.90449 21.2498i 0.360411 1.10923i −0.592394 0.805649i \(-0.701817\pi\)
0.952805 0.303583i \(-0.0981831\pi\)
\(368\) 15.8462 + 11.5129i 0.826038 + 0.600152i
\(369\) 0 0
\(370\) −0.793696 + 2.44275i −0.0412623 + 0.126992i
\(371\) 13.2411 + 40.7519i 0.687443 + 2.11573i
\(372\) 0 0
\(373\) 7.07872 0.366522 0.183261 0.983064i \(-0.441335\pi\)
0.183261 + 0.983064i \(0.441335\pi\)
\(374\) 1.74729 5.08395i 0.0903504 0.262885i
\(375\) 0 0
\(376\) 1.61153 1.17085i 0.0831085 0.0603819i
\(377\) 2.08946 + 6.43070i 0.107613 + 0.331198i
\(378\) 0 0
\(379\) 19.6964 + 14.3103i 1.01174 + 0.735070i 0.964573 0.263818i \(-0.0849817\pi\)
0.0471638 + 0.998887i \(0.484982\pi\)
\(380\) 10.7411 + 7.80390i 0.551009 + 0.400331i
\(381\) 0 0
\(382\) −1.89687 5.83797i −0.0970523 0.298696i
\(383\) −14.2694 + 10.3673i −0.729130 + 0.529744i −0.889288 0.457348i \(-0.848800\pi\)
0.160158 + 0.987091i \(0.448800\pi\)
\(384\) 0 0
\(385\) −5.65975 18.4744i −0.288447 0.941543i
\(386\) −6.16341 −0.313709
\(387\) 0 0
\(388\) −0.186572 0.574210i −0.00947177 0.0291511i
\(389\) 5.52615 17.0077i 0.280187 0.862326i −0.707613 0.706600i \(-0.750228\pi\)
0.987800 0.155727i \(-0.0497719\pi\)
\(390\) 0 0
\(391\) 20.0296 + 14.5523i 1.01294 + 0.735943i
\(392\) −2.63921 + 8.12265i −0.133300 + 0.410256i
\(393\) 0 0
\(394\) −4.10522 + 2.98262i −0.206818 + 0.150262i
\(395\) 6.83122 0.343716
\(396\) 0 0
\(397\) −21.9395 −1.10111 −0.550556 0.834798i \(-0.685584\pi\)
−0.550556 + 0.834798i \(0.685584\pi\)
\(398\) −10.5067 + 7.63355i −0.526652 + 0.382635i
\(399\) 0 0
\(400\) −1.68213 + 5.17705i −0.0841063 + 0.258852i
\(401\) 4.37481 + 3.17848i 0.218467 + 0.158726i 0.691636 0.722246i \(-0.256890\pi\)
−0.473169 + 0.880972i \(0.656890\pi\)
\(402\) 0 0
\(403\) 4.81633 14.8231i 0.239918 0.738393i
\(404\) 3.86867 + 11.9065i 0.192473 + 0.592372i
\(405\) 0 0
\(406\) −2.82926 −0.140414
\(407\) −8.12339 6.11413i −0.402662 0.303066i
\(408\) 0 0
\(409\) −19.1091 + 13.8836i −0.944884 + 0.686498i −0.949591 0.313491i \(-0.898502\pi\)
0.00470736 + 0.999989i \(0.498502\pi\)
\(410\) 0.101201 + 0.311466i 0.00499798 + 0.0153822i
\(411\) 0 0
\(412\) −2.35471 1.71080i −0.116008 0.0842849i
\(413\) −10.0890 7.33011i −0.496449 0.360691i
\(414\) 0 0
\(415\) −0.0659639 0.203016i −0.00323804 0.00996567i
\(416\) 16.0758 11.6798i 0.788181 0.572647i
\(417\) 0 0
\(418\) 5.88453 4.12541i 0.287822 0.201780i
\(419\) 18.1313 0.885773 0.442886 0.896578i \(-0.353955\pi\)
0.442886 + 0.896578i \(0.353955\pi\)
\(420\) 0 0
\(421\) −3.95919 12.1851i −0.192959 0.593867i −0.999994 0.00336355i \(-0.998929\pi\)
0.807035 0.590503i \(-0.201071\pi\)
\(422\) −1.10403 + 3.39785i −0.0537432 + 0.165405i
\(423\) 0 0
\(424\) 18.7427 + 13.6174i 0.910226 + 0.661318i
\(425\) −2.12621 + 6.54380i −0.103136 + 0.317421i
\(426\) 0 0
\(427\) 10.6316 7.72429i 0.514498 0.373805i
\(428\) 5.81809 0.281228
\(429\) 0 0
\(430\) −8.05399 −0.388398
\(431\) −5.32265 + 3.86713i −0.256383 + 0.186273i −0.708551 0.705660i \(-0.750651\pi\)
0.452168 + 0.891933i \(0.350651\pi\)
\(432\) 0 0
\(433\) 4.32555 13.3127i 0.207873 0.639767i −0.791710 0.610897i \(-0.790809\pi\)
0.999583 0.0288700i \(-0.00919089\pi\)
\(434\) 5.27608 + 3.83330i 0.253260 + 0.184004i
\(435\) 0 0
\(436\) 2.99415 9.21504i 0.143394 0.441320i
\(437\) 10.2276 + 31.4772i 0.489251 + 1.50576i
\(438\) 0 0
\(439\) 25.1782 1.20169 0.600846 0.799365i \(-0.294831\pi\)
0.600846 + 0.799365i \(0.294831\pi\)
\(440\) −8.34678 6.28227i −0.397917 0.299495i
\(441\) 0 0
\(442\) 5.24254 3.80893i 0.249362 0.181172i
\(443\) −8.28860 25.5097i −0.393803 1.21200i −0.929890 0.367839i \(-0.880098\pi\)
0.536086 0.844163i \(-0.319902\pi\)
\(444\) 0 0
\(445\) 10.9633 + 7.96533i 0.519712 + 0.377593i
\(446\) −9.32921 6.77807i −0.441751 0.320951i
\(447\) 0 0
\(448\) −2.94131 9.05243i −0.138964 0.427687i
\(449\) 11.4685 8.33234i 0.541231 0.393228i −0.283311 0.959028i \(-0.591433\pi\)
0.824542 + 0.565801i \(0.191433\pi\)
\(450\) 0 0
\(451\) −1.29620 0.0218838i −0.0610357 0.00103047i
\(452\) −28.8706 −1.35796
\(453\) 0 0
\(454\) 1.80706 + 5.56155i 0.0848094 + 0.261017i
\(455\) 7.19732 22.1511i 0.337415 1.03846i
\(456\) 0 0
\(457\) −19.9352 14.4838i −0.932530 0.677523i 0.0140807 0.999901i \(-0.495518\pi\)
−0.946611 + 0.322378i \(0.895518\pi\)
\(458\) 0.463439 1.42632i 0.0216551 0.0666475i
\(459\) 0 0
\(460\) 18.2162 13.2348i 0.849334 0.617077i
\(461\) 26.2454 1.22237 0.611185 0.791488i \(-0.290693\pi\)
0.611185 + 0.791488i \(0.290693\pi\)
\(462\) 0 0
\(463\) 12.6922 0.589855 0.294928 0.955520i \(-0.404704\pi\)
0.294928 + 0.955520i \(0.404704\pi\)
\(464\) 3.57720 2.59899i 0.166067 0.120655i
\(465\) 0 0
\(466\) 3.71824 11.4436i 0.172244 0.530113i
\(467\) −22.4130 16.2840i −1.03715 0.753534i −0.0674235 0.997724i \(-0.521478\pi\)
−0.969727 + 0.244190i \(0.921478\pi\)
\(468\) 0 0
\(469\) 3.26838 10.0591i 0.150920 0.464484i
\(470\) −0.279690 0.860797i −0.0129011 0.0397056i
\(471\) 0 0
\(472\) −6.74256 −0.310351
\(473\) 10.3624 30.1506i 0.476464 1.38633i
\(474\) 0 0
\(475\) −7.44144 + 5.40652i −0.341437 + 0.248068i
\(476\) −6.12756 18.8587i −0.280856 0.864386i
\(477\) 0 0
\(478\) −2.75813 2.00390i −0.126154 0.0916563i
\(479\) −12.6386 9.18250i −0.577474 0.419559i 0.260339 0.965517i \(-0.416166\pi\)
−0.837812 + 0.545958i \(0.816166\pi\)
\(480\) 0 0
\(481\) −3.78723 11.6559i −0.172683 0.531464i
\(482\) 3.08351 2.24030i 0.140450 0.102043i
\(483\) 0 0
\(484\) 16.0325 10.8407i 0.728748 0.492760i
\(485\) −0.586177 −0.0266169
\(486\) 0 0
\(487\) 8.32090 + 25.6091i 0.377056 + 1.16046i 0.942081 + 0.335386i \(0.108867\pi\)
−0.565025 + 0.825074i \(0.691133\pi\)
\(488\) 2.19561 6.75739i 0.0993906 0.305893i
\(489\) 0 0
\(490\) 3.13951 + 2.28098i 0.141828 + 0.103044i
\(491\) −12.0516 + 37.0910i −0.543880 + 1.67389i 0.179757 + 0.983711i \(0.442469\pi\)
−0.723637 + 0.690181i \(0.757531\pi\)
\(492\) 0 0
\(493\) 4.52159 3.28513i 0.203642 0.147955i
\(494\) 8.66283 0.389759
\(495\) 0 0
\(496\) −10.1922 −0.457642
\(497\) 19.3615 14.0670i 0.868483 0.630990i
\(498\) 0 0
\(499\) −7.42726 + 22.8588i −0.332490 + 1.02330i 0.635455 + 0.772138i \(0.280812\pi\)
−0.967945 + 0.251161i \(0.919188\pi\)
\(500\) 17.2196 + 12.5108i 0.770084 + 0.559499i
\(501\) 0 0
\(502\) −0.0495891 + 0.152620i −0.00221327 + 0.00681174i
\(503\) 7.41223 + 22.8125i 0.330495 + 1.01716i 0.968899 + 0.247457i \(0.0795949\pi\)
−0.638404 + 0.769701i \(0.720405\pi\)
\(504\) 0 0
\(505\) 12.1547 0.540876
\(506\) −3.57006 11.6533i −0.158708 0.518052i
\(507\) 0 0
\(508\) 15.3655 11.1637i 0.681732 0.495307i
\(509\) −1.14301 3.51783i −0.0506631 0.155925i 0.922524 0.385939i \(-0.126123\pi\)
−0.973187 + 0.230014i \(0.926123\pi\)
\(510\) 0 0
\(511\) 41.5051 + 30.1552i 1.83608 + 1.33399i
\(512\) −18.3128 13.3050i −0.809318 0.588004i
\(513\) 0 0
\(514\) 2.08094 + 6.40449i 0.0917865 + 0.282490i
\(515\) −2.28613 + 1.66097i −0.100739 + 0.0731912i
\(516\) 0 0
\(517\) 3.58230 + 0.0604802i 0.157549 + 0.00265992i
\(518\) 5.12814 0.225318
\(519\) 0 0
\(520\) −3.89138 11.9764i −0.170648 0.525202i
\(521\) 1.98178 6.09929i 0.0868234 0.267215i −0.898213 0.439560i \(-0.855134\pi\)
0.985037 + 0.172345i \(0.0551344\pi\)
\(522\) 0 0
\(523\) 2.21554 + 1.60969i 0.0968790 + 0.0703867i 0.635170 0.772372i \(-0.280930\pi\)
−0.538291 + 0.842759i \(0.680930\pi\)
\(524\) −11.5021 + 35.3998i −0.502472 + 1.54645i
\(525\) 0 0
\(526\) −6.68804 + 4.85915i −0.291613 + 0.211869i
\(527\) −12.8829 −0.561190
\(528\) 0 0
\(529\) 33.1302 1.44044
\(530\) 8.51617 6.18736i 0.369919 0.268762i
\(531\) 0 0
\(532\) 8.19149 25.2108i 0.355146 1.09303i
\(533\) −1.26424 0.918524i −0.0547603 0.0397857i
\(534\) 0 0
\(535\) 1.74553 5.37219i 0.0754658 0.232260i
\(536\) −1.76712 5.43864i −0.0763280 0.234913i
\(537\) 0 0
\(538\) −6.08085 −0.262164
\(539\) −12.5784 + 8.81819i −0.541788 + 0.379826i
\(540\) 0 0
\(541\) −16.9114 + 12.2869i −0.727079 + 0.528254i −0.888638 0.458609i \(-0.848348\pi\)
0.161559 + 0.986863i \(0.448348\pi\)
\(542\) 2.92070 + 8.98898i 0.125455 + 0.386110i
\(543\) 0 0
\(544\) −13.2878 9.65417i −0.569711 0.413919i
\(545\) −7.61050 5.52935i −0.325998 0.236851i
\(546\) 0 0
\(547\) −12.9405 39.8268i −0.553296 1.70287i −0.700401 0.713749i \(-0.746996\pi\)
0.147105 0.989121i \(-0.453004\pi\)
\(548\) −4.55562 + 3.30985i −0.194606 + 0.141390i
\(549\) 0 0
\(550\) 2.77350 1.94439i 0.118263 0.0829092i
\(551\) 7.47152 0.318298
\(552\) 0 0
\(553\) −4.21472 12.9716i −0.179228 0.551608i
\(554\) 1.56892 4.82865i 0.0666572 0.205150i
\(555\) 0 0
\(556\) −21.3419 15.5058i −0.905099 0.657593i
\(557\) 3.87025 11.9114i 0.163988 0.504702i −0.834973 0.550291i \(-0.814517\pi\)
0.998960 + 0.0455895i \(0.0145166\pi\)
\(558\) 0 0
\(559\) 31.0911 22.5890i 1.31502 0.955415i
\(560\) −15.2308 −0.643617
\(561\) 0 0
\(562\) 8.06166 0.340061
\(563\) −11.7378 + 8.52802i −0.494690 + 0.359413i −0.806985 0.590572i \(-0.798902\pi\)
0.312295 + 0.949985i \(0.398902\pi\)
\(564\) 0 0
\(565\) −8.66170 + 26.6580i −0.364401 + 1.12151i
\(566\) 0.501956 + 0.364693i 0.0210988 + 0.0153292i
\(567\) 0 0
\(568\) 3.99850 12.3061i 0.167773 0.516353i
\(569\) 8.64395 + 26.6034i 0.362373 + 1.11527i 0.951610 + 0.307310i \(0.0994287\pi\)
−0.589236 + 0.807961i \(0.700571\pi\)
\(570\) 0 0
\(571\) 9.04886 0.378683 0.189341 0.981911i \(-0.439365\pi\)
0.189341 + 0.981911i \(0.439365\pi\)
\(572\) 23.3258 + 0.393811i 0.975303 + 0.0164661i
\(573\) 0 0
\(574\) 0.528993 0.384336i 0.0220797 0.0160419i
\(575\) 4.82046 + 14.8359i 0.201027 + 0.618698i
\(576\) 0 0
\(577\) −31.0234 22.5398i −1.29152 0.938346i −0.291687 0.956514i \(-0.594217\pi\)
−0.999835 + 0.0181683i \(0.994217\pi\)
\(578\) 2.41257 + 1.75283i 0.100350 + 0.0729082i
\(579\) 0 0
\(580\) −1.57073 4.83421i −0.0652210 0.200730i
\(581\) −0.344802 + 0.250513i −0.0143048 + 0.0103930i
\(582\) 0 0
\(583\) 12.2057 + 39.8416i 0.505509 + 1.65007i
\(584\) 27.7381 1.14781
\(585\) 0 0
\(586\) 3.65095 + 11.2365i 0.150819 + 0.464175i
\(587\) 0.223301 0.687250i 0.00921662 0.0283658i −0.946342 0.323166i \(-0.895253\pi\)
0.955559 + 0.294800i \(0.0952529\pi\)
\(588\) 0 0
\(589\) −13.9331 10.1230i −0.574104 0.417111i
\(590\) −0.946716 + 2.91369i −0.0389757 + 0.119955i
\(591\) 0 0
\(592\) −6.48382 + 4.71077i −0.266483 + 0.193611i
\(593\) 39.6596 1.62863 0.814313 0.580426i \(-0.197114\pi\)
0.814313 + 0.580426i \(0.197114\pi\)
\(594\) 0 0
\(595\) −19.2517 −0.789244
\(596\) −5.76636 + 4.18950i −0.236199 + 0.171609i
\(597\) 0 0
\(598\) 4.53993 13.9725i 0.185651 0.571376i
\(599\) −16.4852 11.9772i −0.673566 0.489374i 0.197651 0.980272i \(-0.436669\pi\)
−0.871217 + 0.490898i \(0.836669\pi\)
\(600\) 0 0
\(601\) −14.9477 + 46.0042i −0.609729 + 1.87655i −0.149472 + 0.988766i \(0.547757\pi\)
−0.460257 + 0.887786i \(0.652243\pi\)
\(602\) 4.96914 + 15.2935i 0.202527 + 0.623315i
\(603\) 0 0
\(604\) 13.7129 0.557968
\(605\) −5.19987 18.0561i −0.211405 0.734086i
\(606\) 0 0
\(607\) 15.9395 11.5807i 0.646964 0.470047i −0.215272 0.976554i \(-0.569064\pi\)
0.862236 + 0.506508i \(0.169064\pi\)
\(608\) −6.78507 20.8823i −0.275171 0.846889i
\(609\) 0 0
\(610\) −2.61182 1.89760i −0.105749 0.0768315i
\(611\) 3.49397 + 2.53852i 0.141351 + 0.102698i
\(612\) 0 0
\(613\) 1.76690 + 5.43796i 0.0713644 + 0.219637i 0.980377 0.197131i \(-0.0631626\pi\)
−0.909013 + 0.416768i \(0.863163\pi\)
\(614\) −6.46613 + 4.69791i −0.260952 + 0.189592i
\(615\) 0 0
\(616\) −6.77940 + 19.7254i −0.273150 + 0.794761i
\(617\) −6.10692 −0.245855 −0.122928 0.992416i \(-0.539228\pi\)
−0.122928 + 0.992416i \(0.539228\pi\)
\(618\) 0 0
\(619\) −0.549968 1.69263i −0.0221051 0.0680324i 0.939395 0.342835i \(-0.111387\pi\)
−0.961501 + 0.274803i \(0.911387\pi\)
\(620\) −3.62062 + 11.1431i −0.145408 + 0.447519i
\(621\) 0 0
\(622\) 8.48050 + 6.16144i 0.340037 + 0.247051i
\(623\) 8.36094 25.7323i 0.334974 1.03094i
\(624\) 0 0
\(625\) 8.29572 6.02719i 0.331829 0.241088i
\(626\) 1.52844 0.0610888
\(627\) 0 0
\(628\) −0.543927 −0.0217050
\(629\) −8.19556 + 5.95442i −0.326778 + 0.237418i
\(630\) 0 0
\(631\) −13.8566 + 42.6461i −0.551621 + 1.69771i 0.153084 + 0.988213i \(0.451079\pi\)
−0.704705 + 0.709501i \(0.748921\pi\)
\(632\) −5.96592 4.33449i −0.237311 0.172417i
\(633\) 0 0
\(634\) 2.76842 8.52032i 0.109948 0.338385i
\(635\) −5.69816 17.5371i −0.226124 0.695940i
\(636\) 0 0
\(637\) −18.5170 −0.733672
\(638\) −2.75097 0.0464448i −0.108912 0.00183877i
\(639\) 0 0
\(640\) −15.6290 + 11.3552i −0.617792 + 0.448852i
\(641\) 8.34641 + 25.6876i 0.329663 + 1.01460i 0.969291 + 0.245915i \(0.0790885\pi\)
−0.639628 + 0.768685i \(0.720912\pi\)
\(642\) 0 0
\(643\) 26.3395 + 19.1368i 1.03873 + 0.754680i 0.970037 0.242958i \(-0.0781178\pi\)
0.0686909 + 0.997638i \(0.478118\pi\)
\(644\) −36.3702 26.4245i −1.43319 1.04127i
\(645\) 0 0
\(646\) −2.21270 6.81000i −0.0870576 0.267936i
\(647\) −25.4705 + 18.5054i −1.00135 + 0.727523i −0.962377 0.271717i \(-0.912408\pi\)
−0.0389724 + 0.999240i \(0.512408\pi\)
\(648\) 0 0
\(649\) −9.68953 7.29290i −0.380347 0.286271i
\(650\) 4.08297 0.160147
\(651\) 0 0
\(652\) −5.97738 18.3965i −0.234092 0.720462i
\(653\) 1.43995 4.43171i 0.0563495 0.173426i −0.918920 0.394443i \(-0.870938\pi\)
0.975270 + 0.221017i \(0.0709376\pi\)
\(654\) 0 0
\(655\) 29.2359 + 21.2412i 1.14234 + 0.829961i
\(656\) −0.315782 + 0.971878i −0.0123292 + 0.0379455i
\(657\) 0 0
\(658\) −1.46197 + 1.06219i −0.0569937 + 0.0414084i
\(659\) 32.0418 1.24817 0.624086 0.781355i \(-0.285471\pi\)
0.624086 + 0.781355i \(0.285471\pi\)
\(660\) 0 0
\(661\) −40.7054 −1.58325 −0.791627 0.611004i \(-0.790766\pi\)
−0.791627 + 0.611004i \(0.790766\pi\)
\(662\) −1.49448 + 1.08580i −0.0580846 + 0.0422009i
\(663\) 0 0
\(664\) −0.0712078 + 0.219155i −0.00276340 + 0.00850487i
\(665\) −20.8211 15.1274i −0.807406 0.586615i
\(666\) 0 0
\(667\) 3.91560 12.0510i 0.151613 0.466616i
\(668\) −9.55472 29.4064i −0.369683 1.13777i
\(669\) 0 0
\(670\) −2.59834 −0.100383
\(671\) 10.4642 7.33603i 0.403966 0.283204i
\(672\) 0 0
\(673\) 30.5513 22.1968i 1.17767 0.855625i 0.185761 0.982595i \(-0.440525\pi\)
0.991907 + 0.126970i \(0.0405251\pi\)
\(674\) 0.904299 + 2.78315i 0.0348323 + 0.107203i
\(675\) 0 0
\(676\) 4.24655 + 3.08530i 0.163329 + 0.118665i
\(677\) 15.2910 + 11.1095i 0.587679 + 0.426974i 0.841484 0.540281i \(-0.181682\pi\)
−0.253805 + 0.967255i \(0.581682\pi\)
\(678\) 0 0
\(679\) 0.361659 + 1.11307i 0.0138792 + 0.0427158i
\(680\) −8.42093 + 6.11817i −0.322928 + 0.234621i
\(681\) 0 0
\(682\) 5.06716 + 3.81384i 0.194032 + 0.146040i
\(683\) −31.1053 −1.19021 −0.595105 0.803648i \(-0.702890\pi\)
−0.595105 + 0.803648i \(0.702890\pi\)
\(684\) 0 0
\(685\) 1.68941 + 5.19948i 0.0645492 + 0.198662i
\(686\) −1.22428 + 3.76794i −0.0467432 + 0.143861i
\(687\) 0 0
\(688\) −20.3315 14.7717i −0.775132 0.563167i
\(689\) −15.5216 + 47.7706i −0.591327 + 1.81992i
\(690\) 0 0
\(691\) −17.9694 + 13.0555i −0.683588 + 0.496656i −0.874546 0.484942i \(-0.838841\pi\)
0.190958 + 0.981598i \(0.438841\pi\)
\(692\) 21.7565 0.827057
\(693\) 0 0
\(694\) −11.9432 −0.453358
\(695\) −20.7204 + 15.0542i −0.785969 + 0.571040i
\(696\) 0 0
\(697\) −0.399149 + 1.22846i −0.0151189 + 0.0465311i
\(698\) −6.64344 4.82674i −0.251458 0.182695i
\(699\) 0 0
\(700\) 3.86082 11.8824i 0.145925 0.449112i
\(701\) 9.25374 + 28.4801i 0.349509 + 1.07568i 0.959125 + 0.282981i \(0.0913235\pi\)
−0.609616 + 0.792697i \(0.708677\pi\)
\(702\) 0 0
\(703\) −13.5424 −0.510763
\(704\) −2.71132 8.85023i −0.102187 0.333556i
\(705\) 0 0
\(706\) −3.18697 + 2.31547i −0.119943 + 0.0871439i
\(707\) −7.49918 23.0801i −0.282036 0.868017i
\(708\) 0 0
\(709\) −13.9197 10.1133i −0.522766 0.379812i 0.294879 0.955535i \(-0.404721\pi\)
−0.817645 + 0.575723i \(0.804721\pi\)
\(710\) −4.75647 3.45578i −0.178507 0.129693i
\(711\) 0 0
\(712\) −4.52052 13.9127i −0.169414 0.521402i
\(713\) −23.6295 + 17.1679i −0.884933 + 0.642942i
\(714\) 0 0
\(715\) 7.36179 21.4200i 0.275315 0.801062i
\(716\) 38.5001 1.43881
\(717\) 0 0
\(718\) 4.36904 + 13.4465i 0.163051 + 0.501819i
\(719\) −1.46013 + 4.49382i −0.0544537 + 0.167591i −0.974585 0.224020i \(-0.928082\pi\)
0.920131 + 0.391611i \(0.128082\pi\)
\(720\) 0 0
\(721\) 4.56446 + 3.31628i 0.169989 + 0.123505i
\(722\) 0.0781561 0.240540i 0.00290867 0.00895196i
\(723\) 0 0
\(724\) −6.23473 + 4.52980i −0.231712 + 0.168349i
\(725\) 3.52148 0.130785
\(726\) 0 0
\(727\) 5.20088 0.192890 0.0964450 0.995338i \(-0.469253\pi\)
0.0964450 + 0.995338i \(0.469253\pi\)
\(728\) −20.3408 + 14.7784i −0.753879 + 0.547725i
\(729\) 0 0
\(730\) 3.89468 11.9866i 0.144149 0.443644i
\(731\) −25.6991 18.6715i −0.950516 0.690590i
\(732\) 0 0
\(733\) −15.1614 + 46.6618i −0.559997 + 1.72349i 0.122369 + 0.992485i \(0.460951\pi\)
−0.682367 + 0.731010i \(0.739049\pi\)
\(734\) 3.38661 + 10.4229i 0.125002 + 0.384717i
\(735\) 0 0
\(736\) −37.2374 −1.37259
\(737\) 3.34308 9.72706i 0.123144 0.358301i
\(738\) 0 0
\(739\) 12.6160 9.16603i 0.464086 0.337178i −0.331046 0.943615i \(-0.607402\pi\)
0.795132 + 0.606437i \(0.207402\pi\)
\(740\) 2.84701 + 8.76220i 0.104658 + 0.322105i
\(741\) 0 0
\(742\) −17.0033 12.3536i −0.624210 0.453515i
\(743\) 9.00796 + 6.54466i 0.330470 + 0.240100i 0.740630 0.671913i \(-0.234527\pi\)
−0.410160 + 0.912014i \(0.634527\pi\)
\(744\) 0 0
\(745\) 2.13841 + 6.58134i 0.0783452 + 0.241122i
\(746\) −2.80897 + 2.04083i −0.102844 + 0.0747202i
\(747\) 0 0
\(748\) −5.64842 18.4374i −0.206527 0.674140i
\(749\) −11.2780 −0.412090
\(750\) 0 0
\(751\) −2.49846 7.68948i −0.0911703 0.280593i 0.895066 0.445933i \(-0.147128\pi\)
−0.986237 + 0.165340i \(0.947128\pi\)
\(752\) 0.872726 2.68597i 0.0318250 0.0979474i
\(753\) 0 0
\(754\) −2.68314 1.94942i −0.0977142 0.0709935i
\(755\) 4.11410 12.6619i 0.149727 0.460814i
\(756\) 0 0
\(757\) −24.1585 + 17.5522i −0.878056 + 0.637945i −0.932737 0.360559i \(-0.882586\pi\)
0.0546803 + 0.998504i \(0.482586\pi\)
\(758\) −11.9416 −0.433739
\(759\) 0 0
\(760\) −13.9148 −0.504744
\(761\) 28.2287 20.5093i 1.02329 0.743463i 0.0563348 0.998412i \(-0.482059\pi\)
0.966955 + 0.254949i \(0.0820586\pi\)
\(762\) 0 0
\(763\) −5.80398 + 17.8628i −0.210118 + 0.646677i
\(764\) −17.8134 12.9422i −0.644468 0.468233i
\(765\) 0 0
\(766\) 2.67339 8.22786i 0.0965936 0.297284i
\(767\) −4.51739 13.9031i −0.163113 0.502012i
\(768\) 0 0
\(769\) −5.60723 −0.202202 −0.101101 0.994876i \(-0.532237\pi\)
−0.101101 + 0.994876i \(0.532237\pi\)
\(770\) 7.57216 + 5.69924i 0.272882 + 0.205386i
\(771\) 0 0
\(772\) −17.8860 + 12.9949i −0.643731 + 0.467698i
\(773\) 3.34979 + 10.3096i 0.120483 + 0.370810i 0.993051 0.117683i \(-0.0375467\pi\)
−0.872568 + 0.488493i \(0.837547\pi\)
\(774\) 0 0
\(775\) −6.56697 4.77118i −0.235893 0.171386i
\(776\) 0.511927 + 0.371937i 0.0183771 + 0.0133517i
\(777\) 0 0
\(778\) 2.71054 + 8.34219i 0.0971776 + 0.299082i
\(779\) −1.39697 + 1.01496i −0.0500516 + 0.0363646i
\(780\) 0 0
\(781\) 19.0567 13.3599i 0.681902 0.478054i
\(782\) −12.1436 −0.434255
\(783\) 0 0
\(784\) 3.74186 + 11.5163i 0.133638 + 0.411295i
\(785\) −0.163188 + 0.502240i −0.00582442 + 0.0179257i
\(786\) 0 0
\(787\) 2.00347 + 1.45561i 0.0714162 + 0.0518869i 0.622921 0.782285i \(-0.285946\pi\)
−0.551504 + 0.834172i \(0.685946\pi\)
\(788\) −5.62465 + 17.3109i −0.200370 + 0.616676i
\(789\) 0 0
\(790\) −2.71075 + 1.96948i −0.0964442 + 0.0700708i
\(791\) 55.9640 1.98985
\(792\) 0 0
\(793\) 15.4047 0.547037
\(794\) 8.70599 6.32527i 0.308964 0.224475i
\(795\) 0 0
\(796\) −14.3954 + 44.3046i −0.510233 + 1.57034i
\(797\) −7.83103 5.68958i −0.277389 0.201535i 0.440389 0.897807i \(-0.354841\pi\)
−0.717778 + 0.696272i \(0.754841\pi\)
\(798\) 0 0
\(799\) 1.10313 3.39508i 0.0390258 0.120109i
\(800\) −3.19795 9.84226i −0.113064 0.347977i
\(801\) 0 0
\(802\) −2.65237 −0.0936586
\(803\) 39.8616 + 30.0022i 1.40669 + 1.05875i
\(804\) 0 0
\(805\) −35.3110 + 25.6549i −1.24455 + 0.904218i
\(806\) 2.36238 + 7.27066i 0.0832113 + 0.256098i
\(807\) 0 0
\(808\) −10.6151 7.71229i −0.373436 0.271317i
\(809\) −6.36318 4.62312i −0.223717 0.162540i 0.470281 0.882517i \(-0.344153\pi\)
−0.693998 + 0.719976i \(0.744153\pi\)
\(810\) 0 0
\(811\) 12.2076 + 37.5712i 0.428668 + 1.31930i 0.899438 + 0.437048i \(0.143976\pi\)
−0.470770 + 0.882256i \(0.656024\pi\)
\(812\) −8.21041 + 5.96521i −0.288129 + 0.209338i
\(813\) 0 0
\(814\) 4.98624 + 0.0841830i 0.174768 + 0.00295061i
\(815\) −18.7799 −0.657831
\(816\) 0 0
\(817\) −13.1226 40.3871i −0.459100 1.41296i
\(818\) 3.58013 11.0185i 0.125176 0.385253i
\(819\) 0 0
\(820\) 0.950378 + 0.690490i 0.0331886 + 0.0241130i
\(821\) 1.03633 3.18948i 0.0361680 0.111314i −0.931343 0.364144i \(-0.881362\pi\)
0.967511 + 0.252831i \(0.0813615\pi\)
\(822\) 0 0
\(823\) −13.0266 + 9.46441i −0.454080 + 0.329909i −0.791205 0.611552i \(-0.790546\pi\)
0.337124 + 0.941460i \(0.390546\pi\)
\(824\) 3.05046 0.106268
\(825\) 0 0
\(826\) 6.11681 0.212831
\(827\) 12.3703 8.98751i 0.430156 0.312526i −0.351555 0.936167i \(-0.614347\pi\)
0.781711 + 0.623641i \(0.214347\pi\)
\(828\) 0 0
\(829\) −13.0239 + 40.0835i −0.452340 + 1.39216i 0.421890 + 0.906647i \(0.361367\pi\)
−0.874230 + 0.485512i \(0.838633\pi\)
\(830\) 0.0847063 + 0.0615427i 0.00294020 + 0.00213618i
\(831\) 0 0
\(832\) 3.44790 10.6115i 0.119534 0.367889i
\(833\) 4.72972 + 14.5566i 0.163875 + 0.504355i
\(834\) 0 0
\(835\) −30.0193 −1.03886
\(836\) 8.37869 24.3788i 0.289783 0.843157i
\(837\) 0 0
\(838\) −7.19483 + 5.22735i −0.248541 + 0.180576i
\(839\) −0.818089 2.51782i −0.0282436 0.0869247i 0.935941 0.352157i \(-0.114552\pi\)
−0.964185 + 0.265232i \(0.914552\pi\)
\(840\) 0 0
\(841\) 21.1473 + 15.3644i 0.729218 + 0.529808i
\(842\) 5.08411 + 3.69382i 0.175210 + 0.127298i
\(843\) 0 0
\(844\) 3.96018 + 12.1882i 0.136315 + 0.419534i
\(845\) 4.12288 2.99545i 0.141831 0.103047i
\(846\) 0 0
\(847\) −31.0780 + 21.0141i −1.06785 + 0.722053i
\(848\) 32.8464 1.12795
\(849\) 0 0
\(850\) −1.04289 3.20970i −0.0357709 0.110092i
\(851\) −7.09718 + 21.8429i −0.243288 + 0.748765i
\(852\) 0 0
\(853\) −7.49989 5.44899i −0.256791 0.186570i 0.451940 0.892048i \(-0.350732\pi\)
−0.708731 + 0.705479i \(0.750732\pi\)
\(854\) −1.99185 + 6.13027i −0.0681596 + 0.209774i
\(855\) 0 0
\(856\) −4.93314 + 3.58414i −0.168611 + 0.122503i
\(857\) 20.5356 0.701483 0.350742 0.936472i \(-0.385930\pi\)
0.350742 + 0.936472i \(0.385930\pi\)
\(858\) 0 0
\(859\) 36.0278 1.22925 0.614626 0.788819i \(-0.289307\pi\)
0.614626 + 0.788819i \(0.289307\pi\)
\(860\) −23.3724 + 16.9811i −0.796993 + 0.579049i
\(861\) 0 0
\(862\) 0.997209 3.06909i 0.0339651 0.104534i
\(863\) 3.49209 + 2.53715i 0.118872 + 0.0863656i 0.645633 0.763648i \(-0.276594\pi\)
−0.526761 + 0.850014i \(0.676594\pi\)
\(864\) 0 0
\(865\) 6.52733 20.0890i 0.221936 0.683048i
\(866\) 2.12166 + 6.52979i 0.0720969 + 0.221891i
\(867\) 0 0
\(868\) 23.3932 0.794015
\(869\) −3.88516 12.6818i −0.131795 0.430202i
\(870\) 0 0
\(871\) 10.0305 7.28757i 0.339870 0.246930i
\(872\) 3.13804 + 9.65790i 0.106268 + 0.327058i
\(873\) 0 0
\(874\) −13.1335 9.54206i −0.444248 0.322765i
\(875\) −33.3792 24.2514i −1.12842 0.819846i
\(876\) 0 0
\(877\) 9.61537 + 29.5931i 0.324688 + 0.999287i 0.971581 + 0.236707i \(0.0760680\pi\)
−0.646893 + 0.762581i \(0.723932\pi\)
\(878\) −9.99117 + 7.25901i −0.337186 + 0.244980i
\(879\) 0 0
\(880\) −14.8093 0.250027i −0.499222 0.00842839i
\(881\) −43.9267 −1.47993 −0.739964 0.672647i \(-0.765157\pi\)
−0.739964 + 0.672647i \(0.765157\pi\)
\(882\) 0 0
\(883\) −1.81685 5.59170i −0.0611420 0.188176i 0.915820 0.401589i \(-0.131542\pi\)
−0.976962 + 0.213413i \(0.931542\pi\)
\(884\) 7.18292 22.1068i 0.241588 0.743530i
\(885\) 0 0
\(886\) 10.6436 + 7.73306i 0.357580 + 0.259797i
\(887\) 2.37792 7.31848i 0.0798427 0.245730i −0.903165 0.429293i \(-0.858763\pi\)
0.983008 + 0.183562i \(0.0587629\pi\)
\(888\) 0 0
\(889\) −29.7850 + 21.6401i −0.998957 + 0.725785i
\(890\) −6.64689 −0.222804
\(891\) 0 0
\(892\) −41.3640 −1.38497
\(893\) 3.86079 2.80503i 0.129197 0.0938668i
\(894\) 0 0
\(895\) 11.5507 35.5494i 0.386097 1.18829i
\(896\) 31.2047 + 22.6716i 1.04248 + 0.757403i
\(897\) 0 0
\(898\) −2.14864 + 6.61285i −0.0717012 + 0.220674i
\(899\) 2.03751 + 6.27081i 0.0679547 + 0.209143i
\(900\) 0 0
\(901\) 41.5180 1.38316
\(902\) 0.520665 0.365017i 0.0173362 0.0121537i
\(903\) 0 0
\(904\) 24.4793 17.7853i 0.814171 0.591530i
\(905\) 2.31210 + 7.11591i 0.0768568 + 0.236541i
\(906\) 0 0
\(907\) 15.3637 + 11.1624i 0.510143 + 0.370640i 0.812878 0.582434i \(-0.197900\pi\)
−0.302735 + 0.953075i \(0.597900\pi\)
\(908\) 16.9700 + 12.3294i 0.563170 + 0.409167i
\(909\) 0 0
\(910\) 3.53024 + 10.8650i 0.117026 + 0.360170i
\(911\) 40.4794 29.4100i 1.34114 0.974397i 0.341741 0.939794i \(-0.388983\pi\)
0.999401 0.0346024i \(-0.0110165\pi\)
\(912\) 0 0
\(913\) −0.339374 + 0.237921i −0.0112316 + 0.00787405i
\(914\) 12.0864 0.399783
\(915\) 0 0
\(916\) −1.66237 5.11624i −0.0549262 0.169045i
\(917\) 22.2961 68.6205i 0.736284 2.26605i
\(918\) 0 0
\(919\) −2.48708 1.80697i −0.0820411 0.0596063i 0.546009 0.837780i \(-0.316147\pi\)
−0.628050 + 0.778173i \(0.716147\pi\)
\(920\) −7.29235 + 22.4436i −0.240422 + 0.739942i
\(921\) 0 0
\(922\) −10.4146 + 7.56668i −0.342988 + 0.249195i
\(923\) 28.0540 0.923410
\(924\) 0 0
\(925\) −6.38283 −0.209866
\(926\) −5.03648 + 3.65922i −0.165509 + 0.120249i
\(927\) 0 0
\(928\) −2.59765 + 7.99474i −0.0852720 + 0.262440i
\(929\) −0.732625 0.532283i −0.0240366 0.0174636i 0.575702 0.817660i \(-0.304729\pi\)
−0.599739 + 0.800196i \(0.704729\pi\)
\(930\) 0 0
\(931\) −6.32282 + 19.4596i −0.207222 + 0.637764i
\(932\) −13.3374 41.0484i −0.436882 1.34459i
\(933\) 0 0
\(934\) 13.5887 0.444634
\(935\) −18.7190 0.316034i −0.612177 0.0103354i
\(936\) 0 0
\(937\) 17.8423 12.9632i 0.582881 0.423488i −0.256881 0.966443i \(-0.582695\pi\)
0.839762 + 0.542955i \(0.182695\pi\)
\(938\) 1.60312 + 4.93390i 0.0523438 + 0.161098i
\(939\) 0 0
\(940\) −2.62656 1.90830i −0.0856688 0.0622420i
\(941\) 4.41798 + 3.20985i 0.144022 + 0.104638i 0.657463 0.753487i \(-0.271630\pi\)
−0.513441 + 0.858125i \(0.671630\pi\)
\(942\) 0 0
\(943\) 0.904937 + 2.78511i 0.0294688 + 0.0906956i
\(944\) −7.73386 + 5.61898i −0.251716 + 0.182882i
\(945\) 0 0
\(946\) 4.58059 + 14.9519i 0.148928 + 0.486127i
\(947\) −32.4406 −1.05418 −0.527089 0.849810i \(-0.676717\pi\)
−0.527089 + 0.849810i \(0.676717\pi\)
\(948\) 0 0
\(949\) 18.5840 + 57.1958i 0.603263 + 1.85665i
\(950\) 1.39417 4.29081i 0.0452328 0.139212i
\(951\) 0 0
\(952\) 16.8131 + 12.2154i 0.544916 + 0.395905i
\(953\) 16.6278 51.1752i 0.538628 1.65773i −0.197049 0.980394i \(-0.563136\pi\)
0.735677 0.677333i \(-0.236864\pi\)
\(954\) 0 0
\(955\) −17.2947 + 12.5653i −0.559642 + 0.406604i
\(956\) −12.2290 −0.395516
\(957\) 0 0
\(958\) 7.66260 0.247567
\(959\) 8.83079 6.41595i 0.285161 0.207182i
\(960\) 0 0
\(961\) −4.88295 + 15.0282i −0.157515 + 0.484780i
\(962\) 4.86330 + 3.53339i 0.156799 + 0.113921i
\(963\) 0 0
\(964\) 4.22478 13.0025i 0.136071 0.418784i
\(965\) 6.63288 + 20.4139i 0.213520 + 0.657147i
\(966\) 0 0
\(967\) −28.8151 −0.926630 −0.463315 0.886194i \(-0.653340\pi\)
−0.463315 + 0.886194i \(0.653340\pi\)
\(968\) −6.91562 + 19.0683i −0.222277 + 0.612880i
\(969\) 0 0
\(970\) 0.232606 0.168998i 0.00746852 0.00542620i
\(971\) −1.66685 5.13005i −0.0534919 0.164631i 0.920742 0.390173i \(-0.127585\pi\)
−0.974233 + 0.225542i \(0.927585\pi\)
\(972\) 0 0
\(973\) 41.3700 + 30.0571i 1.32626 + 0.963586i
\(974\) −10.6851 7.76320i −0.342373 0.248749i
\(975\) 0 0
\(976\) −3.11293 9.58061i −0.0996424 0.306668i
\(977\) −2.67975 + 1.94695i −0.0857329 + 0.0622886i −0.629826 0.776736i \(-0.716874\pi\)
0.544093 + 0.839025i \(0.316874\pi\)
\(978\) 0 0
\(979\) 8.55201 24.8831i 0.273324 0.795266i
\(980\) 13.9200 0.444657
\(981\) 0 0
\(982\) −5.91123 18.1929i −0.188635 0.580559i
\(983\) −10.4671 + 32.2143i −0.333847 + 1.02748i 0.633440 + 0.773792i \(0.281643\pi\)
−0.967287 + 0.253685i \(0.918357\pi\)
\(984\) 0 0
\(985\) 14.2967 + 10.3872i 0.455530 + 0.330962i
\(986\) −0.847129 + 2.60719i −0.0269781 + 0.0830300i
\(987\) 0 0
\(988\) 25.1392 18.2647i 0.799785 0.581078i
\(989\) −72.0183 −2.29005
\(990\) 0 0
\(991\) 8.66640 0.275297 0.137649 0.990481i \(-0.456046\pi\)
0.137649 + 0.990481i \(0.456046\pi\)
\(992\) 15.6761 11.3893i 0.497716 0.361612i
\(993\) 0 0
\(994\) −3.62742 + 11.1640i −0.115055 + 0.354102i
\(995\) 36.5902 + 26.5843i 1.15999 + 0.842780i
\(996\) 0 0
\(997\) −9.35253 + 28.7841i −0.296197 + 0.911602i 0.686619 + 0.727017i \(0.259094\pi\)
−0.982817 + 0.184585i \(0.940906\pi\)
\(998\) −3.64303 11.2121i −0.115318 0.354912i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.f.e.487.5 36
3.2 odd 2 891.2.f.f.487.5 36
9.2 odd 6 99.2.m.b.58.5 yes 72
9.4 even 3 297.2.n.b.289.5 72
9.5 odd 6 99.2.m.b.25.5 yes 72
9.7 even 3 297.2.n.b.91.5 72
11.2 odd 10 9801.2.a.cn.1.9 18
11.4 even 5 inner 891.2.f.e.730.5 36
11.9 even 5 9801.2.a.cp.1.10 18
33.2 even 10 9801.2.a.co.1.10 18
33.20 odd 10 9801.2.a.cm.1.9 18
33.26 odd 10 891.2.f.f.730.5 36
99.2 even 30 1089.2.e.o.364.9 36
99.4 even 15 297.2.n.b.235.5 72
99.20 odd 30 1089.2.e.p.364.10 36
99.59 odd 30 99.2.m.b.70.5 yes 72
99.68 even 30 1089.2.e.o.727.9 36
99.70 even 15 297.2.n.b.37.5 72
99.86 odd 30 1089.2.e.p.727.10 36
99.92 odd 30 99.2.m.b.4.5 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.4.5 72 99.92 odd 30
99.2.m.b.25.5 yes 72 9.5 odd 6
99.2.m.b.58.5 yes 72 9.2 odd 6
99.2.m.b.70.5 yes 72 99.59 odd 30
297.2.n.b.37.5 72 99.70 even 15
297.2.n.b.91.5 72 9.7 even 3
297.2.n.b.235.5 72 99.4 even 15
297.2.n.b.289.5 72 9.4 even 3
891.2.f.e.487.5 36 1.1 even 1 trivial
891.2.f.e.730.5 36 11.4 even 5 inner
891.2.f.f.487.5 36 3.2 odd 2
891.2.f.f.730.5 36 33.26 odd 10
1089.2.e.o.364.9 36 99.2 even 30
1089.2.e.o.727.9 36 99.68 even 30
1089.2.e.p.364.10 36 99.20 odd 30
1089.2.e.p.727.10 36 99.86 odd 30
9801.2.a.cm.1.9 18 33.20 odd 10
9801.2.a.cn.1.9 18 11.2 odd 10
9801.2.a.co.1.10 18 33.2 even 10
9801.2.a.cp.1.10 18 11.9 even 5