Properties

Label 891.2.f.e.163.5
Level $891$
Weight $2$
Character 891.163
Analytic conductor $7.115$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(82,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(9\) over \(\Q(\zeta_{5})\)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 163.5
Character \(\chi\) \(=\) 891.163
Dual form 891.2.f.e.82.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0881157 + 0.271192i) q^{2} +(1.55225 + 1.12778i) q^{4} +(-0.837045 - 2.57616i) q^{5} +(3.29540 + 2.39425i) q^{7} +(-0.904002 + 0.656796i) q^{8} +0.772391 q^{10} +(-1.82892 + 2.76678i) q^{11} +(1.19001 - 3.66248i) q^{13} +(-0.939677 + 0.682715i) q^{14} +(1.08735 + 3.34653i) q^{16} +(1.33502 + 4.10876i) q^{17} +(1.31246 - 0.953561i) q^{19} +(1.60603 - 4.94285i) q^{20} +(-0.589172 - 0.739785i) q^{22} +1.86423 q^{23} +(-1.89087 + 1.37379i) q^{25} +(0.888377 + 0.645443i) q^{26} +(2.41511 + 7.43295i) q^{28} +(2.87472 + 2.08860i) q^{29} +(-1.50324 + 4.62650i) q^{31} -3.23818 q^{32} -1.23190 q^{34} +(3.40956 - 10.4936i) q^{35} +(-6.26542 - 4.55210i) q^{37} +(0.142950 + 0.439954i) q^{38} +(2.44870 + 1.77909i) q^{40} +(5.55968 - 4.03935i) q^{41} +0.984991 q^{43} +(-5.95925 + 2.23213i) q^{44} +(-0.164268 + 0.505566i) q^{46} +(4.74598 - 3.44815i) q^{47} +(2.96411 + 9.12259i) q^{49} +(-0.205947 - 0.633841i) q^{50} +(5.97766 - 4.34302i) q^{52} +(0.485721 - 1.49489i) q^{53} +(8.65855 + 2.39567i) q^{55} -4.55158 q^{56} +(-0.819721 + 0.595562i) q^{58} +(9.19245 + 6.67871i) q^{59} +(-2.65986 - 8.18620i) q^{61} +(-1.12221 - 0.815335i) q^{62} +(-1.88937 + 5.81490i) q^{64} -10.4312 q^{65} -1.74056 q^{67} +(-2.56148 + 7.88344i) q^{68} +(2.54534 + 1.84929i) q^{70} +(1.77418 + 5.46036i) q^{71} +(3.27379 + 2.37855i) q^{73} +(1.78657 - 1.29802i) q^{74} +3.11268 q^{76} +(-12.6514 + 4.73875i) q^{77} +(-1.32264 + 4.07066i) q^{79} +(7.71104 - 5.60240i) q^{80} +(0.605544 + 1.86367i) q^{82} +(2.00867 + 6.18204i) q^{83} +(9.46735 - 6.87843i) q^{85} +(-0.0867932 + 0.267122i) q^{86} +(-0.163863 - 3.70240i) q^{88} -9.26243 q^{89} +(12.6904 - 9.22014i) q^{91} +(2.89376 + 2.10244i) q^{92} +(0.516917 + 1.59091i) q^{94} +(-3.55511 - 2.58294i) q^{95} +(-2.29064 + 7.04988i) q^{97} -2.73516 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q - q^{2} - 11 q^{4} - 8 q^{5} + 2 q^{7} - 3 q^{8} - 4 q^{10} - 2 q^{11} + 11 q^{13} - 10 q^{14} + 9 q^{16} + 10 q^{17} + 4 q^{19} - 45 q^{20} + 16 q^{22} + 20 q^{23} - 11 q^{25} + 6 q^{26} - 27 q^{28}+ \cdots + 164 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0881157 + 0.271192i −0.0623072 + 0.191762i −0.977365 0.211562i \(-0.932145\pi\)
0.915057 + 0.403324i \(0.132145\pi\)
\(3\) 0 0
\(4\) 1.55225 + 1.12778i 0.776127 + 0.563889i
\(5\) −0.837045 2.57616i −0.374338 1.15209i −0.943924 0.330162i \(-0.892897\pi\)
0.569587 0.821931i \(-0.307103\pi\)
\(6\) 0 0
\(7\) 3.29540 + 2.39425i 1.24554 + 0.904940i 0.997955 0.0639253i \(-0.0203619\pi\)
0.247588 + 0.968865i \(0.420362\pi\)
\(8\) −0.904002 + 0.656796i −0.319613 + 0.232212i
\(9\) 0 0
\(10\) 0.772391 0.244251
\(11\) −1.82892 + 2.76678i −0.551439 + 0.834215i
\(12\) 0 0
\(13\) 1.19001 3.66248i 0.330050 1.01579i −0.639060 0.769157i \(-0.720676\pi\)
0.969109 0.246631i \(-0.0793236\pi\)
\(14\) −0.939677 + 0.682715i −0.251139 + 0.182463i
\(15\) 0 0
\(16\) 1.08735 + 3.34653i 0.271839 + 0.836633i
\(17\) 1.33502 + 4.10876i 0.323789 + 0.996520i 0.971984 + 0.235046i \(0.0755241\pi\)
−0.648195 + 0.761474i \(0.724476\pi\)
\(18\) 0 0
\(19\) 1.31246 0.953561i 0.301100 0.218762i −0.426968 0.904267i \(-0.640418\pi\)
0.728068 + 0.685505i \(0.240418\pi\)
\(20\) 1.60603 4.94285i 0.359119 1.10526i
\(21\) 0 0
\(22\) −0.589172 0.739785i −0.125612 0.157723i
\(23\) 1.86423 0.388720 0.194360 0.980930i \(-0.437737\pi\)
0.194360 + 0.980930i \(0.437737\pi\)
\(24\) 0 0
\(25\) −1.89087 + 1.37379i −0.378173 + 0.274759i
\(26\) 0.888377 + 0.645443i 0.174225 + 0.126582i
\(27\) 0 0
\(28\) 2.41511 + 7.43295i 0.456413 + 1.40470i
\(29\) 2.87472 + 2.08860i 0.533821 + 0.387844i 0.821785 0.569797i \(-0.192978\pi\)
−0.287964 + 0.957641i \(0.592978\pi\)
\(30\) 0 0
\(31\) −1.50324 + 4.62650i −0.269990 + 0.830944i 0.720512 + 0.693443i \(0.243907\pi\)
−0.990502 + 0.137501i \(0.956093\pi\)
\(32\) −3.23818 −0.572435
\(33\) 0 0
\(34\) −1.23190 −0.211269
\(35\) 3.40956 10.4936i 0.576321 1.77374i
\(36\) 0 0
\(37\) −6.26542 4.55210i −1.03003 0.748360i −0.0617145 0.998094i \(-0.519657\pi\)
−0.968314 + 0.249734i \(0.919657\pi\)
\(38\) 0.142950 + 0.439954i 0.0231895 + 0.0713699i
\(39\) 0 0
\(40\) 2.44870 + 1.77909i 0.387174 + 0.281298i
\(41\) 5.55968 4.03935i 0.868276 0.630840i −0.0618474 0.998086i \(-0.519699\pi\)
0.930124 + 0.367246i \(0.119699\pi\)
\(42\) 0 0
\(43\) 0.984991 0.150210 0.0751049 0.997176i \(-0.476071\pi\)
0.0751049 + 0.997176i \(0.476071\pi\)
\(44\) −5.95925 + 2.23213i −0.898391 + 0.336506i
\(45\) 0 0
\(46\) −0.164268 + 0.505566i −0.0242200 + 0.0745416i
\(47\) 4.74598 3.44815i 0.692272 0.502965i −0.185134 0.982713i \(-0.559272\pi\)
0.877406 + 0.479748i \(0.159272\pi\)
\(48\) 0 0
\(49\) 2.96411 + 9.12259i 0.423444 + 1.30323i
\(50\) −0.205947 0.633841i −0.0291254 0.0896386i
\(51\) 0 0
\(52\) 5.97766 4.34302i 0.828952 0.602269i
\(53\) 0.485721 1.49489i 0.0667189 0.205340i −0.912139 0.409881i \(-0.865570\pi\)
0.978858 + 0.204541i \(0.0655703\pi\)
\(54\) 0 0
\(55\) 8.65855 + 2.39567i 1.16752 + 0.323032i
\(56\) −4.55158 −0.608230
\(57\) 0 0
\(58\) −0.819721 + 0.595562i −0.107635 + 0.0782011i
\(59\) 9.19245 + 6.67871i 1.19676 + 0.869494i 0.993962 0.109728i \(-0.0349980\pi\)
0.202794 + 0.979222i \(0.434998\pi\)
\(60\) 0 0
\(61\) −2.65986 8.18620i −0.340560 1.04814i −0.963918 0.266199i \(-0.914232\pi\)
0.623358 0.781936i \(-0.285768\pi\)
\(62\) −1.12221 0.815335i −0.142521 0.103548i
\(63\) 0 0
\(64\) −1.88937 + 5.81490i −0.236172 + 0.726862i
\(65\) −10.4312 −1.29383
\(66\) 0 0
\(67\) −1.74056 −0.212644 −0.106322 0.994332i \(-0.533907\pi\)
−0.106322 + 0.994332i \(0.533907\pi\)
\(68\) −2.56148 + 7.88344i −0.310626 + 0.956007i
\(69\) 0 0
\(70\) 2.54534 + 1.84929i 0.304226 + 0.221033i
\(71\) 1.77418 + 5.46036i 0.210556 + 0.648026i 0.999439 + 0.0334822i \(0.0106597\pi\)
−0.788883 + 0.614543i \(0.789340\pi\)
\(72\) 0 0
\(73\) 3.27379 + 2.37855i 0.383168 + 0.278388i 0.762650 0.646811i \(-0.223898\pi\)
−0.379482 + 0.925199i \(0.623898\pi\)
\(74\) 1.78657 1.29802i 0.207685 0.150892i
\(75\) 0 0
\(76\) 3.11268 0.357049
\(77\) −12.6514 + 4.73875i −1.44176 + 0.540031i
\(78\) 0 0
\(79\) −1.32264 + 4.07066i −0.148808 + 0.457985i −0.997481 0.0709332i \(-0.977402\pi\)
0.848673 + 0.528918i \(0.177402\pi\)
\(80\) 7.71104 5.60240i 0.862120 0.626367i
\(81\) 0 0
\(82\) 0.605544 + 1.86367i 0.0668711 + 0.205808i
\(83\) 2.00867 + 6.18204i 0.220480 + 0.678567i 0.998719 + 0.0505994i \(0.0161132\pi\)
−0.778239 + 0.627968i \(0.783887\pi\)
\(84\) 0 0
\(85\) 9.46735 6.87843i 1.02688 0.746071i
\(86\) −0.0867932 + 0.267122i −0.00935915 + 0.0288045i
\(87\) 0 0
\(88\) −0.163863 3.70240i −0.0174679 0.394677i
\(89\) −9.26243 −0.981816 −0.490908 0.871211i \(-0.663335\pi\)
−0.490908 + 0.871211i \(0.663335\pi\)
\(90\) 0 0
\(91\) 12.6904 9.22014i 1.33032 0.966533i
\(92\) 2.89376 + 2.10244i 0.301696 + 0.219195i
\(93\) 0 0
\(94\) 0.516917 + 1.59091i 0.0533160 + 0.164090i
\(95\) −3.55511 2.58294i −0.364747 0.265004i
\(96\) 0 0
\(97\) −2.29064 + 7.04988i −0.232580 + 0.715807i 0.764854 + 0.644204i \(0.222811\pi\)
−0.997433 + 0.0716026i \(0.977189\pi\)
\(98\) −2.73516 −0.276293
\(99\) 0 0
\(100\) −4.48444 −0.448444
\(101\) 4.23897 13.0462i 0.421794 1.29815i −0.484238 0.874936i \(-0.660903\pi\)
0.906031 0.423211i \(-0.139097\pi\)
\(102\) 0 0
\(103\) −4.10596 2.98316i −0.404572 0.293939i 0.366828 0.930289i \(-0.380444\pi\)
−0.771401 + 0.636350i \(0.780444\pi\)
\(104\) 1.32973 + 4.09248i 0.130391 + 0.401301i
\(105\) 0 0
\(106\) 0.362604 + 0.263447i 0.0352192 + 0.0255883i
\(107\) −2.24824 + 1.63344i −0.217346 + 0.157911i −0.691131 0.722730i \(-0.742887\pi\)
0.473785 + 0.880640i \(0.342887\pi\)
\(108\) 0 0
\(109\) −17.3573 −1.66253 −0.831263 0.555879i \(-0.812382\pi\)
−0.831263 + 0.555879i \(0.812382\pi\)
\(110\) −1.41264 + 2.13703i −0.134690 + 0.203758i
\(111\) 0 0
\(112\) −4.42916 + 13.6316i −0.418516 + 1.28806i
\(113\) 0.763432 0.554666i 0.0718177 0.0521786i −0.551297 0.834309i \(-0.685867\pi\)
0.623115 + 0.782130i \(0.285867\pi\)
\(114\) 0 0
\(115\) −1.56045 4.80257i −0.145513 0.447842i
\(116\) 2.10681 + 6.48408i 0.195612 + 0.602032i
\(117\) 0 0
\(118\) −2.62121 + 1.90442i −0.241302 + 0.175316i
\(119\) −5.43797 + 16.7364i −0.498498 + 1.53422i
\(120\) 0 0
\(121\) −4.31012 10.1204i −0.391829 0.920038i
\(122\) 2.45441 0.222212
\(123\) 0 0
\(124\) −7.55108 + 5.48618i −0.678107 + 0.492673i
\(125\) −5.83521 4.23953i −0.521917 0.379195i
\(126\) 0 0
\(127\) 0.757216 + 2.33047i 0.0671920 + 0.206796i 0.979015 0.203787i \(-0.0653251\pi\)
−0.911823 + 0.410583i \(0.865325\pi\)
\(128\) −6.64996 4.83148i −0.587779 0.427047i
\(129\) 0 0
\(130\) 0.919154 2.82886i 0.0806151 0.248108i
\(131\) −3.99737 −0.349252 −0.174626 0.984635i \(-0.555872\pi\)
−0.174626 + 0.984635i \(0.555872\pi\)
\(132\) 0 0
\(133\) 6.60815 0.572999
\(134\) 0.153371 0.472027i 0.0132492 0.0407769i
\(135\) 0 0
\(136\) −3.90547 2.83749i −0.334892 0.243313i
\(137\) −0.336599 1.03594i −0.0287576 0.0885067i 0.935648 0.352936i \(-0.114817\pi\)
−0.964405 + 0.264429i \(0.914817\pi\)
\(138\) 0 0
\(139\) −2.33395 1.69572i −0.197963 0.143829i 0.484388 0.874853i \(-0.339042\pi\)
−0.682351 + 0.731025i \(0.739042\pi\)
\(140\) 17.1269 12.4434i 1.44749 1.05166i
\(141\) 0 0
\(142\) −1.63714 −0.137386
\(143\) 7.95683 + 9.99087i 0.665383 + 0.835478i
\(144\) 0 0
\(145\) 2.97431 9.15398i 0.247003 0.760197i
\(146\) −0.933515 + 0.678238i −0.0772583 + 0.0561314i
\(147\) 0 0
\(148\) −4.59177 14.1320i −0.377441 1.16164i
\(149\) −6.23436 19.1874i −0.510739 1.57189i −0.790904 0.611940i \(-0.790389\pi\)
0.280165 0.959952i \(-0.409611\pi\)
\(150\) 0 0
\(151\) 8.96258 6.51169i 0.729364 0.529914i −0.159998 0.987117i \(-0.551149\pi\)
0.889362 + 0.457203i \(0.151149\pi\)
\(152\) −0.560175 + 1.72404i −0.0454362 + 0.139838i
\(153\) 0 0
\(154\) −0.170330 3.84851i −0.0137255 0.310122i
\(155\) 13.1769 1.05839
\(156\) 0 0
\(157\) −0.269228 + 0.195606i −0.0214867 + 0.0156110i −0.598477 0.801140i \(-0.704227\pi\)
0.576990 + 0.816751i \(0.304227\pi\)
\(158\) −0.987387 0.717378i −0.0785523 0.0570716i
\(159\) 0 0
\(160\) 2.71050 + 8.34207i 0.214284 + 0.659499i
\(161\) 6.14339 + 4.46344i 0.484167 + 0.351768i
\(162\) 0 0
\(163\) 4.12168 12.6852i 0.322835 0.993584i −0.649574 0.760299i \(-0.725053\pi\)
0.972408 0.233285i \(-0.0749475\pi\)
\(164\) 13.1855 1.02962
\(165\) 0 0
\(166\) −1.85352 −0.143861
\(167\) 5.84510 17.9894i 0.452308 1.39206i −0.421960 0.906615i \(-0.638658\pi\)
0.874267 0.485445i \(-0.161342\pi\)
\(168\) 0 0
\(169\) −1.48039 1.07557i −0.113876 0.0827359i
\(170\) 1.03115 + 3.17357i 0.0790860 + 0.243402i
\(171\) 0 0
\(172\) 1.52896 + 1.11085i 0.116582 + 0.0847016i
\(173\) −1.22492 + 0.889958i −0.0931292 + 0.0676623i −0.633375 0.773845i \(-0.718331\pi\)
0.540246 + 0.841507i \(0.318331\pi\)
\(174\) 0 0
\(175\) −9.52036 −0.719671
\(176\) −11.2478 3.11207i −0.847835 0.234581i
\(177\) 0 0
\(178\) 0.816166 2.51190i 0.0611742 0.188275i
\(179\) 10.6703 7.75244i 0.797537 0.579445i −0.112653 0.993634i \(-0.535935\pi\)
0.910191 + 0.414190i \(0.135935\pi\)
\(180\) 0 0
\(181\) 0.864886 + 2.66185i 0.0642865 + 0.197853i 0.978041 0.208414i \(-0.0668301\pi\)
−0.913754 + 0.406267i \(0.866830\pi\)
\(182\) 1.38220 + 4.25398i 0.102456 + 0.315326i
\(183\) 0 0
\(184\) −1.68527 + 1.22442i −0.124240 + 0.0902656i
\(185\) −6.48248 + 19.9510i −0.476602 + 1.46683i
\(186\) 0 0
\(187\) −13.8097 3.82089i −1.00986 0.279411i
\(188\) 11.2557 0.820907
\(189\) 0 0
\(190\) 1.01374 0.736522i 0.0735441 0.0534329i
\(191\) −13.5442 9.84044i −0.980024 0.712029i −0.0223100 0.999751i \(-0.507102\pi\)
−0.957714 + 0.287722i \(0.907102\pi\)
\(192\) 0 0
\(193\) −6.81054 20.9607i −0.490233 1.50878i −0.824255 0.566218i \(-0.808406\pi\)
0.334022 0.942565i \(-0.391594\pi\)
\(194\) −1.71003 1.24241i −0.122773 0.0891998i
\(195\) 0 0
\(196\) −5.68721 + 17.5034i −0.406229 + 1.25024i
\(197\) −18.2247 −1.29845 −0.649227 0.760595i \(-0.724907\pi\)
−0.649227 + 0.760595i \(0.724907\pi\)
\(198\) 0 0
\(199\) −25.0958 −1.77899 −0.889497 0.456942i \(-0.848945\pi\)
−0.889497 + 0.456942i \(0.848945\pi\)
\(200\) 0.807044 2.48383i 0.0570666 0.175633i
\(201\) 0 0
\(202\) 3.16451 + 2.29915i 0.222654 + 0.161768i
\(203\) 4.47270 + 13.7656i 0.313922 + 0.966153i
\(204\) 0 0
\(205\) −15.0597 10.9415i −1.05181 0.764188i
\(206\) 1.17081 0.850642i 0.0815741 0.0592670i
\(207\) 0 0
\(208\) 13.5506 0.939563
\(209\) 0.237902 + 5.37528i 0.0164560 + 0.371816i
\(210\) 0 0
\(211\) 2.55558 7.86526i 0.175933 0.541467i −0.823742 0.566965i \(-0.808117\pi\)
0.999675 + 0.0254986i \(0.00811733\pi\)
\(212\) 2.43987 1.77267i 0.167571 0.121747i
\(213\) 0 0
\(214\) −0.244872 0.753637i −0.0167391 0.0515176i
\(215\) −0.824482 2.53749i −0.0562292 0.173056i
\(216\) 0 0
\(217\) −16.0308 + 11.6470i −1.08824 + 0.790652i
\(218\) 1.52945 4.70716i 0.103587 0.318809i
\(219\) 0 0
\(220\) 10.7385 + 13.4836i 0.723988 + 0.909064i
\(221\) 16.6369 1.11912
\(222\) 0 0
\(223\) 5.94796 4.32145i 0.398305 0.289385i −0.370545 0.928814i \(-0.620829\pi\)
0.768850 + 0.639429i \(0.220829\pi\)
\(224\) −10.6711 7.75301i −0.712993 0.518020i
\(225\) 0 0
\(226\) 0.0831507 + 0.255912i 0.00553110 + 0.0170230i
\(227\) −15.3237 11.1334i −1.01707 0.738947i −0.0513921 0.998679i \(-0.516366\pi\)
−0.965681 + 0.259732i \(0.916366\pi\)
\(228\) 0 0
\(229\) −2.42870 + 7.47478i −0.160493 + 0.493947i −0.998676 0.0514422i \(-0.983618\pi\)
0.838183 + 0.545389i \(0.183618\pi\)
\(230\) 1.43992 0.0949454
\(231\) 0 0
\(232\) −3.97054 −0.260678
\(233\) 2.03006 6.24789i 0.132994 0.409313i −0.862279 0.506434i \(-0.830963\pi\)
0.995273 + 0.0971212i \(0.0309634\pi\)
\(234\) 0 0
\(235\) −12.8556 9.34013i −0.838606 0.609283i
\(236\) 6.73691 + 20.7341i 0.438536 + 1.34967i
\(237\) 0 0
\(238\) −4.05960 2.94947i −0.263145 0.191186i
\(239\) −20.6674 + 15.0157i −1.33686 + 0.971287i −0.337308 + 0.941394i \(0.609516\pi\)
−0.999553 + 0.0298925i \(0.990484\pi\)
\(240\) 0 0
\(241\) −2.98198 −0.192086 −0.0960432 0.995377i \(-0.530619\pi\)
−0.0960432 + 0.995377i \(0.530619\pi\)
\(242\) 3.12437 0.277103i 0.200842 0.0178129i
\(243\) 0 0
\(244\) 5.10344 15.7068i 0.326714 1.00552i
\(245\) 21.0201 15.2720i 1.34293 0.975694i
\(246\) 0 0
\(247\) −1.93055 5.94161i −0.122838 0.378056i
\(248\) −1.67973 5.16969i −0.106663 0.328276i
\(249\) 0 0
\(250\) 1.66390 1.20889i 0.105234 0.0764572i
\(251\) −3.60577 + 11.0974i −0.227594 + 0.700463i 0.770424 + 0.637532i \(0.220045\pi\)
−0.998018 + 0.0629308i \(0.979955\pi\)
\(252\) 0 0
\(253\) −3.40953 + 5.15792i −0.214355 + 0.324276i
\(254\) −0.698728 −0.0438421
\(255\) 0 0
\(256\) −7.99667 + 5.80992i −0.499792 + 0.363120i
\(257\) 16.7664 + 12.1815i 1.04586 + 0.759863i 0.971421 0.237363i \(-0.0762830\pi\)
0.0744403 + 0.997225i \(0.476283\pi\)
\(258\) 0 0
\(259\) −9.74822 30.0019i −0.605725 1.86423i
\(260\) −16.1919 11.7641i −1.00418 0.729578i
\(261\) 0 0
\(262\) 0.352231 1.08406i 0.0217609 0.0669732i
\(263\) −9.08545 −0.560233 −0.280117 0.959966i \(-0.590373\pi\)
−0.280117 + 0.959966i \(0.590373\pi\)
\(264\) 0 0
\(265\) −4.25766 −0.261546
\(266\) −0.582281 + 1.79208i −0.0357020 + 0.109879i
\(267\) 0 0
\(268\) −2.70179 1.96297i −0.165038 0.119907i
\(269\) −2.45399 7.55261i −0.149623 0.460491i 0.847954 0.530070i \(-0.177834\pi\)
−0.997576 + 0.0695792i \(0.977834\pi\)
\(270\) 0 0
\(271\) −3.01249 2.18870i −0.182995 0.132954i 0.492516 0.870303i \(-0.336077\pi\)
−0.675512 + 0.737349i \(0.736077\pi\)
\(272\) −12.2985 + 8.93536i −0.745704 + 0.541786i
\(273\) 0 0
\(274\) 0.310600 0.0187640
\(275\) −0.342746 7.74416i −0.0206683 0.466991i
\(276\) 0 0
\(277\) −1.20536 + 3.70973i −0.0724232 + 0.222896i −0.980716 0.195440i \(-0.937386\pi\)
0.908292 + 0.418336i \(0.137386\pi\)
\(278\) 0.665523 0.483531i 0.0399154 0.0290003i
\(279\) 0 0
\(280\) 3.80987 + 11.7256i 0.227684 + 0.700738i
\(281\) −0.0122442 0.0376838i −0.000730428 0.00224803i 0.950691 0.310141i \(-0.100376\pi\)
−0.951421 + 0.307893i \(0.900376\pi\)
\(282\) 0 0
\(283\) −5.17275 + 3.75822i −0.307488 + 0.223403i −0.730818 0.682572i \(-0.760861\pi\)
0.423330 + 0.905976i \(0.360861\pi\)
\(284\) −3.40410 + 10.4767i −0.201996 + 0.621680i
\(285\) 0 0
\(286\) −3.41057 + 1.27748i −0.201671 + 0.0755388i
\(287\) 27.9925 1.65235
\(288\) 0 0
\(289\) −1.34634 + 0.978174i −0.0791965 + 0.0575397i
\(290\) 2.22041 + 1.61322i 0.130387 + 0.0947315i
\(291\) 0 0
\(292\) 2.39928 + 7.38421i 0.140407 + 0.432128i
\(293\) −18.9370 13.7585i −1.10631 0.803782i −0.124233 0.992253i \(-0.539647\pi\)
−0.982079 + 0.188471i \(0.939647\pi\)
\(294\) 0 0
\(295\) 9.51092 29.2716i 0.553747 1.70426i
\(296\) 8.65375 0.502989
\(297\) 0 0
\(298\) 5.75282 0.333252
\(299\) 2.21846 6.82772i 0.128297 0.394857i
\(300\) 0 0
\(301\) 3.24594 + 2.35831i 0.187093 + 0.135931i
\(302\) 0.976177 + 3.00436i 0.0561727 + 0.172882i
\(303\) 0 0
\(304\) 4.61824 + 3.35534i 0.264874 + 0.192442i
\(305\) −18.8625 + 13.7044i −1.08007 + 0.784713i
\(306\) 0 0
\(307\) 29.1494 1.66365 0.831823 0.555042i \(-0.187298\pi\)
0.831823 + 0.555042i \(0.187298\pi\)
\(308\) −24.9824 6.91218i −1.42350 0.393858i
\(309\) 0 0
\(310\) −1.16109 + 3.57347i −0.0659455 + 0.202959i
\(311\) −15.9423 + 11.5827i −0.904003 + 0.656797i −0.939491 0.342573i \(-0.888701\pi\)
0.0354879 + 0.999370i \(0.488701\pi\)
\(312\) 0 0
\(313\) 0.413581 + 1.27287i 0.0233770 + 0.0719470i 0.962064 0.272822i \(-0.0879571\pi\)
−0.938687 + 0.344769i \(0.887957\pi\)
\(314\) −0.0293235 0.0902485i −0.00165482 0.00509302i
\(315\) 0 0
\(316\) −6.64387 + 4.82706i −0.373747 + 0.271543i
\(317\) −1.23634 + 3.80507i −0.0694400 + 0.213714i −0.979754 0.200203i \(-0.935840\pi\)
0.910314 + 0.413917i \(0.135840\pi\)
\(318\) 0 0
\(319\) −11.0363 + 4.13382i −0.617915 + 0.231449i
\(320\) 16.5616 0.925821
\(321\) 0 0
\(322\) −1.75178 + 1.27274i −0.0976228 + 0.0709271i
\(323\) 5.67011 + 4.11958i 0.315493 + 0.229219i
\(324\) 0 0
\(325\) 2.78134 + 8.56008i 0.154281 + 0.474828i
\(326\) 3.07695 + 2.23554i 0.170417 + 0.123815i
\(327\) 0 0
\(328\) −2.37294 + 7.30315i −0.131024 + 0.403249i
\(329\) 23.8956 1.31741
\(330\) 0 0
\(331\) 3.18033 0.174807 0.0874034 0.996173i \(-0.472143\pi\)
0.0874034 + 0.996173i \(0.472143\pi\)
\(332\) −3.85401 + 11.8614i −0.211516 + 0.650980i
\(333\) 0 0
\(334\) 4.36353 + 3.17029i 0.238762 + 0.173471i
\(335\) 1.45693 + 4.48397i 0.0796006 + 0.244985i
\(336\) 0 0
\(337\) 14.7223 + 10.6964i 0.801977 + 0.582670i 0.911493 0.411315i \(-0.134930\pi\)
−0.109517 + 0.993985i \(0.534930\pi\)
\(338\) 0.422131 0.306696i 0.0229609 0.0166821i
\(339\) 0 0
\(340\) 22.4531 1.21769
\(341\) −10.0512 12.6206i −0.544303 0.683445i
\(342\) 0 0
\(343\) −3.26270 + 10.0416i −0.176169 + 0.542193i
\(344\) −0.890434 + 0.646938i −0.0480090 + 0.0348806i
\(345\) 0 0
\(346\) −0.133415 0.410609i −0.00717243 0.0220745i
\(347\) 8.47142 + 26.0724i 0.454770 + 1.39964i 0.871405 + 0.490564i \(0.163209\pi\)
−0.416635 + 0.909074i \(0.636791\pi\)
\(348\) 0 0
\(349\) −18.5310 + 13.4635i −0.991940 + 0.720686i −0.960345 0.278815i \(-0.910059\pi\)
−0.0315945 + 0.999501i \(0.510059\pi\)
\(350\) 0.838893 2.58185i 0.0448407 0.138006i
\(351\) 0 0
\(352\) 5.92237 8.95933i 0.315663 0.477534i
\(353\) 29.7047 1.58102 0.790511 0.612448i \(-0.209815\pi\)
0.790511 + 0.612448i \(0.209815\pi\)
\(354\) 0 0
\(355\) 12.5817 9.14113i 0.667767 0.485161i
\(356\) −14.3776 10.4460i −0.762013 0.553635i
\(357\) 0 0
\(358\) 1.16218 + 3.57682i 0.0614231 + 0.189041i
\(359\) −29.8183 21.6643i −1.57375 1.14340i −0.923450 0.383718i \(-0.874644\pi\)
−0.650299 0.759678i \(-0.725356\pi\)
\(360\) 0 0
\(361\) −5.05804 + 15.5670i −0.266213 + 0.819318i
\(362\) −0.798082 −0.0419462
\(363\) 0 0
\(364\) 30.0970 1.57751
\(365\) 3.38721 10.4247i 0.177294 0.545656i
\(366\) 0 0
\(367\) 20.1127 + 14.6127i 1.04987 + 0.762777i 0.972188 0.234201i \(-0.0752473\pi\)
0.0776846 + 0.996978i \(0.475247\pi\)
\(368\) 2.02708 + 6.23872i 0.105669 + 0.325216i
\(369\) 0 0
\(370\) −4.83936 3.51600i −0.251586 0.182788i
\(371\) 5.17979 3.76334i 0.268921 0.195383i
\(372\) 0 0
\(373\) 18.2790 0.946453 0.473227 0.880941i \(-0.343089\pi\)
0.473227 + 0.880941i \(0.343089\pi\)
\(374\) 2.25304 3.40839i 0.116502 0.176244i
\(375\) 0 0
\(376\) −2.02564 + 6.23428i −0.104464 + 0.321508i
\(377\) 11.0704 8.04312i 0.570155 0.414242i
\(378\) 0 0
\(379\) −9.72145 29.9196i −0.499357 1.53686i −0.810054 0.586355i \(-0.800562\pi\)
0.310697 0.950509i \(-0.399438\pi\)
\(380\) −2.60545 8.01876i −0.133657 0.411354i
\(381\) 0 0
\(382\) 3.86211 2.80598i 0.197603 0.143567i
\(383\) 3.84163 11.8233i 0.196298 0.604143i −0.803661 0.595087i \(-0.797117\pi\)
0.999959 0.00905578i \(-0.00288258\pi\)
\(384\) 0 0
\(385\) 22.7975 + 28.6254i 1.16187 + 1.45888i
\(386\) 6.28449 0.319872
\(387\) 0 0
\(388\) −11.5064 + 8.35986i −0.584147 + 0.424408i
\(389\) 5.92175 + 4.30240i 0.300244 + 0.218140i 0.727699 0.685896i \(-0.240590\pi\)
−0.427455 + 0.904037i \(0.640590\pi\)
\(390\) 0 0
\(391\) 2.48878 + 7.65969i 0.125863 + 0.387367i
\(392\) −8.67124 6.30003i −0.437964 0.318199i
\(393\) 0 0
\(394\) 1.60588 4.94239i 0.0809030 0.248994i
\(395\) 11.5938 0.583346
\(396\) 0 0
\(397\) 34.2087 1.71688 0.858442 0.512911i \(-0.171433\pi\)
0.858442 + 0.512911i \(0.171433\pi\)
\(398\) 2.21133 6.80578i 0.110844 0.341143i
\(399\) 0 0
\(400\) −6.65349 4.83404i −0.332675 0.241702i
\(401\) −2.31014 7.10988i −0.115363 0.355051i 0.876660 0.481111i \(-0.159767\pi\)
−0.992023 + 0.126061i \(0.959767\pi\)
\(402\) 0 0
\(403\) 15.1556 + 11.0112i 0.754953 + 0.548505i
\(404\) 21.2932 15.4704i 1.05938 0.769682i
\(405\) 0 0
\(406\) −4.12723 −0.204831
\(407\) 24.0536 9.00962i 1.19229 0.446590i
\(408\) 0 0
\(409\) 0.744792 2.29224i 0.0368276 0.113344i −0.930953 0.365140i \(-0.881021\pi\)
0.967780 + 0.251796i \(0.0810212\pi\)
\(410\) 4.29425 3.11995i 0.212078 0.154084i
\(411\) 0 0
\(412\) −3.00915 9.26122i −0.148250 0.456268i
\(413\) 14.3023 + 44.0180i 0.703771 + 2.16598i
\(414\) 0 0
\(415\) 14.2446 10.3493i 0.699239 0.508027i
\(416\) −3.85347 + 11.8598i −0.188932 + 0.581473i
\(417\) 0 0
\(418\) −1.47870 0.409129i −0.0723254 0.0200112i
\(419\) 11.2018 0.547242 0.273621 0.961838i \(-0.411779\pi\)
0.273621 + 0.961838i \(0.411779\pi\)
\(420\) 0 0
\(421\) 5.58615 4.05858i 0.272252 0.197803i −0.443279 0.896384i \(-0.646185\pi\)
0.715531 + 0.698581i \(0.246185\pi\)
\(422\) 1.90781 + 1.38611i 0.0928708 + 0.0674746i
\(423\) 0 0
\(424\) 0.542748 + 1.67041i 0.0263582 + 0.0811222i
\(425\) −8.16893 5.93507i −0.396251 0.287893i
\(426\) 0 0
\(427\) 10.8345 33.3451i 0.524318 1.61368i
\(428\) −5.33200 −0.257732
\(429\) 0 0
\(430\) 0.760798 0.0366890
\(431\) 9.01729 27.7524i 0.434348 1.33678i −0.459406 0.888226i \(-0.651938\pi\)
0.893754 0.448558i \(-0.148062\pi\)
\(432\) 0 0
\(433\) 29.5582 + 21.4753i 1.42048 + 1.03204i 0.991693 + 0.128630i \(0.0410581\pi\)
0.428785 + 0.903407i \(0.358942\pi\)
\(434\) −1.74602 5.37370i −0.0838117 0.257946i
\(435\) 0 0
\(436\) −26.9429 19.5752i −1.29033 0.937480i
\(437\) 2.44674 1.77766i 0.117043 0.0850370i
\(438\) 0 0
\(439\) −21.4975 −1.02602 −0.513009 0.858383i \(-0.671469\pi\)
−0.513009 + 0.858383i \(0.671469\pi\)
\(440\) −9.40081 + 3.52121i −0.448166 + 0.167867i
\(441\) 0 0
\(442\) −1.46597 + 4.51180i −0.0697293 + 0.214605i
\(443\) −27.0576 + 19.6585i −1.28554 + 0.934002i −0.999705 0.0242753i \(-0.992272\pi\)
−0.285839 + 0.958278i \(0.592272\pi\)
\(444\) 0 0
\(445\) 7.75307 + 23.8615i 0.367531 + 1.13114i
\(446\) 0.647834 + 1.99383i 0.0306758 + 0.0944105i
\(447\) 0 0
\(448\) −20.1485 + 14.6388i −0.951929 + 0.691617i
\(449\) −12.2165 + 37.5984i −0.576530 + 1.77438i 0.0543777 + 0.998520i \(0.482682\pi\)
−0.630908 + 0.775858i \(0.717318\pi\)
\(450\) 0 0
\(451\) 1.00777 + 22.7700i 0.0474540 + 1.07220i
\(452\) 1.81058 0.0851625
\(453\) 0 0
\(454\) 4.36954 3.17466i 0.205073 0.148994i
\(455\) −34.3750 24.9749i −1.61152 1.17084i
\(456\) 0 0
\(457\) 11.5919 + 35.6763i 0.542248 + 1.66887i 0.727444 + 0.686167i \(0.240708\pi\)
−0.185196 + 0.982702i \(0.559292\pi\)
\(458\) −1.81309 1.31729i −0.0847204 0.0615529i
\(459\) 0 0
\(460\) 2.99402 9.21464i 0.139597 0.429635i
\(461\) −19.3653 −0.901932 −0.450966 0.892541i \(-0.648920\pi\)
−0.450966 + 0.892541i \(0.648920\pi\)
\(462\) 0 0
\(463\) −14.3493 −0.666867 −0.333434 0.942774i \(-0.608207\pi\)
−0.333434 + 0.942774i \(0.608207\pi\)
\(464\) −3.86375 + 11.8914i −0.179370 + 0.552044i
\(465\) 0 0
\(466\) 1.51550 + 1.10107i 0.0702041 + 0.0510063i
\(467\) 6.89755 + 21.2285i 0.319180 + 0.982336i 0.973999 + 0.226551i \(0.0727449\pi\)
−0.654819 + 0.755786i \(0.727255\pi\)
\(468\) 0 0
\(469\) −5.73585 4.16734i −0.264857 0.192430i
\(470\) 3.66575 2.66332i 0.169088 0.122850i
\(471\) 0 0
\(472\) −12.6965 −0.584406
\(473\) −1.80147 + 2.72525i −0.0828316 + 0.125307i
\(474\) 0 0
\(475\) −1.17170 + 3.60611i −0.0537611 + 0.165460i
\(476\) −27.3160 + 19.8462i −1.25203 + 0.909651i
\(477\) 0 0
\(478\) −2.25103 6.92795i −0.102960 0.316877i
\(479\) 7.18824 + 22.1231i 0.328439 + 1.01083i 0.969864 + 0.243646i \(0.0783435\pi\)
−0.641425 + 0.767186i \(0.721657\pi\)
\(480\) 0 0
\(481\) −24.1279 + 17.5299i −1.10014 + 0.799296i
\(482\) 0.262760 0.808691i 0.0119684 0.0368349i
\(483\) 0 0
\(484\) 4.72319 20.5703i 0.214690 0.935014i
\(485\) 20.0790 0.911740
\(486\) 0 0
\(487\) −0.219083 + 0.159173i −0.00992760 + 0.00721282i −0.592738 0.805395i \(-0.701953\pi\)
0.582810 + 0.812608i \(0.301953\pi\)
\(488\) 7.78118 + 5.65336i 0.352237 + 0.255915i
\(489\) 0 0
\(490\) 2.28945 + 7.04621i 0.103427 + 0.318315i
\(491\) −3.40318 2.47255i −0.153583 0.111585i 0.508340 0.861157i \(-0.330259\pi\)
−0.661923 + 0.749572i \(0.730259\pi\)
\(492\) 0 0
\(493\) −4.74377 + 14.5998i −0.213649 + 0.657544i
\(494\) 1.78143 0.0801504
\(495\) 0 0
\(496\) −17.1173 −0.768589
\(497\) −7.22682 + 22.2419i −0.324167 + 0.997685i
\(498\) 0 0
\(499\) 12.4299 + 9.03087i 0.556440 + 0.404277i 0.830154 0.557534i \(-0.188252\pi\)
−0.273714 + 0.961811i \(0.588252\pi\)
\(500\) −4.27647 13.1616i −0.191250 0.588606i
\(501\) 0 0
\(502\) −2.69181 1.95571i −0.120141 0.0872878i
\(503\) 3.16786 2.30159i 0.141248 0.102623i −0.514917 0.857240i \(-0.672177\pi\)
0.656165 + 0.754617i \(0.272177\pi\)
\(504\) 0 0
\(505\) −37.1573 −1.65348
\(506\) −1.09836 1.37913i −0.0488279 0.0613099i
\(507\) 0 0
\(508\) −1.45286 + 4.47145i −0.0644604 + 0.198389i
\(509\) 23.0969 16.7809i 1.02375 0.743801i 0.0567047 0.998391i \(-0.481941\pi\)
0.967049 + 0.254590i \(0.0819407\pi\)
\(510\) 0 0
\(511\) 5.09361 + 15.6765i 0.225328 + 0.693488i
\(512\) −5.95109 18.3156i −0.263004 0.809442i
\(513\) 0 0
\(514\) −4.78092 + 3.47354i −0.210877 + 0.153211i
\(515\) −4.24821 + 13.0746i −0.187198 + 0.576138i
\(516\) 0 0
\(517\) 0.860274 + 19.4375i 0.0378348 + 0.854858i
\(518\) 8.99526 0.395229
\(519\) 0 0
\(520\) 9.42984 6.85118i 0.413526 0.300444i
\(521\) −11.5485 8.39049i −0.505950 0.367594i 0.305335 0.952245i \(-0.401232\pi\)
−0.811285 + 0.584651i \(0.801232\pi\)
\(522\) 0 0
\(523\) −10.2462 31.5345i −0.448034 1.37891i −0.879122 0.476597i \(-0.841870\pi\)
0.431088 0.902310i \(-0.358130\pi\)
\(524\) −6.20494 4.50815i −0.271064 0.196939i
\(525\) 0 0
\(526\) 0.800571 2.46390i 0.0349066 0.107431i
\(527\) −21.0160 −0.915472
\(528\) 0 0
\(529\) −19.5246 −0.848897
\(530\) 0.375166 1.15464i 0.0162962 0.0501545i
\(531\) 0 0
\(532\) 10.2575 + 7.45252i 0.444720 + 0.323108i
\(533\) −8.17793 25.1691i −0.354225 1.09019i
\(534\) 0 0
\(535\) 6.08988 + 4.42456i 0.263289 + 0.191290i
\(536\) 1.57347 1.14320i 0.0679637 0.0493785i
\(537\) 0 0
\(538\) 2.26444 0.0976271
\(539\) −30.6613 8.48344i −1.32068 0.365407i
\(540\) 0 0
\(541\) −8.79490 + 27.0679i −0.378122 + 1.16374i 0.563226 + 0.826303i \(0.309560\pi\)
−0.941348 + 0.337437i \(0.890440\pi\)
\(542\) 0.859005 0.624104i 0.0368974 0.0268076i
\(543\) 0 0
\(544\) −4.32303 13.3049i −0.185348 0.570443i
\(545\) 14.5288 + 44.7151i 0.622346 + 1.91539i
\(546\) 0 0
\(547\) 24.8745 18.0724i 1.06356 0.772721i 0.0888154 0.996048i \(-0.471692\pi\)
0.974744 + 0.223327i \(0.0716919\pi\)
\(548\) 0.645829 1.98766i 0.0275884 0.0849085i
\(549\) 0 0
\(550\) 2.13036 + 0.589432i 0.0908388 + 0.0251335i
\(551\) 5.76457 0.245579
\(552\) 0 0
\(553\) −14.1048 + 10.2477i −0.599796 + 0.435778i
\(554\) −0.899837 0.653770i −0.0382304 0.0277760i
\(555\) 0 0
\(556\) −1.71050 5.26436i −0.0725412 0.223259i
\(557\) −5.90145 4.28765i −0.250052 0.181674i 0.455698 0.890135i \(-0.349390\pi\)
−0.705750 + 0.708461i \(0.749390\pi\)
\(558\) 0 0
\(559\) 1.17215 3.60751i 0.0495767 0.152581i
\(560\) 38.8245 1.64063
\(561\) 0 0
\(562\) 0.0112985 0.000476597
\(563\) 11.3018 34.7834i 0.476315 1.46595i −0.367862 0.929881i \(-0.619910\pi\)
0.844176 0.536065i \(-0.180090\pi\)
\(564\) 0 0
\(565\) −2.06793 1.50244i −0.0869987 0.0632082i
\(566\) −0.563400 1.73397i −0.0236815 0.0728841i
\(567\) 0 0
\(568\) −5.19020 3.77090i −0.217776 0.158224i
\(569\) 0.122553 0.0890399i 0.00513769 0.00373275i −0.585213 0.810879i \(-0.698989\pi\)
0.590351 + 0.807147i \(0.298989\pi\)
\(570\) 0 0
\(571\) 43.2254 1.80893 0.904463 0.426552i \(-0.140272\pi\)
0.904463 + 0.426552i \(0.140272\pi\)
\(572\) 1.08353 + 24.4819i 0.0453048 + 1.02364i
\(573\) 0 0
\(574\) −2.46658 + 7.59136i −0.102953 + 0.316857i
\(575\) −3.52502 + 2.56108i −0.147003 + 0.106804i
\(576\) 0 0
\(577\) 9.00017 + 27.6997i 0.374682 + 1.15315i 0.943693 + 0.330822i \(0.107326\pi\)
−0.569011 + 0.822330i \(0.692674\pi\)
\(578\) −0.146639 0.451310i −0.00609940 0.0187720i
\(579\) 0 0
\(580\) 14.9405 10.8549i 0.620372 0.450727i
\(581\) −8.18198 + 25.1815i −0.339446 + 1.04471i
\(582\) 0 0
\(583\) 3.24770 + 4.07792i 0.134506 + 0.168890i
\(584\) −4.52173 −0.187111
\(585\) 0 0
\(586\) 5.39985 3.92322i 0.223066 0.162067i
\(587\) −18.3605 13.3397i −0.757821 0.550589i 0.140420 0.990092i \(-0.455155\pi\)
−0.898241 + 0.439503i \(0.855155\pi\)
\(588\) 0 0
\(589\) 2.43870 + 7.50554i 0.100485 + 0.309261i
\(590\) 7.10017 + 5.15857i 0.292309 + 0.212375i
\(591\) 0 0
\(592\) 8.42100 25.9172i 0.346101 1.06519i
\(593\) 22.9308 0.941656 0.470828 0.882225i \(-0.343955\pi\)
0.470828 + 0.882225i \(0.343955\pi\)
\(594\) 0 0
\(595\) 47.6673 1.95417
\(596\) 11.9618 36.8147i 0.489975 1.50799i
\(597\) 0 0
\(598\) 1.65614 + 1.20326i 0.0677247 + 0.0492049i
\(599\) 3.86293 + 11.8889i 0.157835 + 0.485766i 0.998437 0.0558871i \(-0.0177987\pi\)
−0.840602 + 0.541653i \(0.817799\pi\)
\(600\) 0 0
\(601\) −18.1858 13.2127i −0.741812 0.538958i 0.151466 0.988462i \(-0.451601\pi\)
−0.893278 + 0.449504i \(0.851601\pi\)
\(602\) −0.925574 + 0.672469i −0.0377236 + 0.0274078i
\(603\) 0 0
\(604\) 21.2559 0.864892
\(605\) −22.4640 + 19.5748i −0.913293 + 0.795829i
\(606\) 0 0
\(607\) 8.25222 25.3977i 0.334947 1.03086i −0.631801 0.775131i \(-0.717684\pi\)
0.966748 0.255731i \(-0.0823161\pi\)
\(608\) −4.25000 + 3.08780i −0.172360 + 0.125227i
\(609\) 0 0
\(610\) −2.05445 6.32295i −0.0831822 0.256009i
\(611\) −6.98102 21.4854i −0.282422 0.869205i
\(612\) 0 0
\(613\) 35.1797 25.5595i 1.42089 1.03234i 0.429269 0.903176i \(-0.358771\pi\)
0.991623 0.129163i \(-0.0412289\pi\)
\(614\) −2.56852 + 7.90510i −0.103657 + 0.319024i
\(615\) 0 0
\(616\) 8.32446 12.5932i 0.335402 0.507395i
\(617\) −41.4255 −1.66773 −0.833864 0.551969i \(-0.813877\pi\)
−0.833864 + 0.551969i \(0.813877\pi\)
\(618\) 0 0
\(619\) −7.20976 + 5.23820i −0.289785 + 0.210541i −0.723174 0.690666i \(-0.757318\pi\)
0.433389 + 0.901207i \(0.357318\pi\)
\(620\) 20.4539 + 14.8606i 0.821446 + 0.596816i
\(621\) 0 0
\(622\) −1.73638 5.34404i −0.0696227 0.214277i
\(623\) −30.5234 22.1765i −1.22289 0.888485i
\(624\) 0 0
\(625\) −9.64859 + 29.6953i −0.385944 + 1.18781i
\(626\) −0.381636 −0.0152532
\(627\) 0 0
\(628\) −0.638510 −0.0254793
\(629\) 10.3390 31.8202i 0.412244 1.26876i
\(630\) 0 0
\(631\) 4.58752 + 3.33303i 0.182626 + 0.132686i 0.675342 0.737504i \(-0.263996\pi\)
−0.492716 + 0.870190i \(0.663996\pi\)
\(632\) −1.47793 4.54859i −0.0587888 0.180933i
\(633\) 0 0
\(634\) −0.922965 0.670573i −0.0366556 0.0266319i
\(635\) 5.36984 3.90142i 0.213096 0.154823i
\(636\) 0 0
\(637\) 36.9386 1.46356
\(638\) −0.148586 3.35722i −0.00588257 0.132914i
\(639\) 0 0
\(640\) −6.88034 + 21.1755i −0.271970 + 0.837036i
\(641\) 21.6964 15.7633i 0.856955 0.622615i −0.0700995 0.997540i \(-0.522332\pi\)
0.927055 + 0.374925i \(0.122332\pi\)
\(642\) 0 0
\(643\) 4.36902 + 13.4465i 0.172297 + 0.530277i 0.999500 0.0316272i \(-0.0100689\pi\)
−0.827202 + 0.561904i \(0.810069\pi\)
\(644\) 4.50234 + 13.8568i 0.177417 + 0.546033i
\(645\) 0 0
\(646\) −1.61682 + 1.17469i −0.0636130 + 0.0462176i
\(647\) 0.393698 1.21168i 0.0154779 0.0476360i −0.943019 0.332738i \(-0.892027\pi\)
0.958497 + 0.285102i \(0.0920275\pi\)
\(648\) 0 0
\(649\) −35.2907 + 13.2187i −1.38528 + 0.518878i
\(650\) −2.56651 −0.100667
\(651\) 0 0
\(652\) 20.7040 15.0423i 0.810832 0.589104i
\(653\) −3.90620 2.83802i −0.152861 0.111060i 0.508726 0.860929i \(-0.330117\pi\)
−0.661587 + 0.749868i \(0.730117\pi\)
\(654\) 0 0
\(655\) 3.34598 + 10.2979i 0.130738 + 0.402371i
\(656\) 19.5632 + 14.2135i 0.763813 + 0.554942i
\(657\) 0 0
\(658\) −2.10558 + 6.48030i −0.0820840 + 0.252628i
\(659\) 22.1777 0.863921 0.431961 0.901892i \(-0.357822\pi\)
0.431961 + 0.901892i \(0.357822\pi\)
\(660\) 0 0
\(661\) −27.3975 −1.06564 −0.532820 0.846229i \(-0.678868\pi\)
−0.532820 + 0.846229i \(0.678868\pi\)
\(662\) −0.280237 + 0.862481i −0.0108917 + 0.0335213i
\(663\) 0 0
\(664\) −5.87618 4.26930i −0.228040 0.165681i
\(665\) −5.53132 17.0236i −0.214495 0.660148i
\(666\) 0 0
\(667\) 5.35915 + 3.89365i 0.207507 + 0.150763i
\(668\) 29.3611 21.3321i 1.13602 0.825363i
\(669\) 0 0
\(670\) −1.34440 −0.0519385
\(671\) 27.5141 + 7.61265i 1.06217 + 0.293883i
\(672\) 0 0
\(673\) 10.8909 33.5186i 0.419812 1.29205i −0.488064 0.872808i \(-0.662297\pi\)
0.907876 0.419239i \(-0.137703\pi\)
\(674\) −4.19805 + 3.05006i −0.161703 + 0.117484i
\(675\) 0 0
\(676\) −1.08494 3.33910i −0.0417285 0.128427i
\(677\) 13.6122 + 41.8940i 0.523159 + 1.61012i 0.767928 + 0.640536i \(0.221288\pi\)
−0.244769 + 0.969581i \(0.578712\pi\)
\(678\) 0 0
\(679\) −24.4277 + 17.7478i −0.937450 + 0.681098i
\(680\) −4.04078 + 12.4362i −0.154957 + 0.476908i
\(681\) 0 0
\(682\) 4.30828 1.61373i 0.164973 0.0617929i
\(683\) −42.2845 −1.61797 −0.808985 0.587829i \(-0.799983\pi\)
−0.808985 + 0.587829i \(0.799983\pi\)
\(684\) 0 0
\(685\) −2.38701 + 1.73426i −0.0912029 + 0.0662628i
\(686\) −2.43570 1.76964i −0.0929954 0.0675651i
\(687\) 0 0
\(688\) 1.07103 + 3.29631i 0.0408328 + 0.125670i
\(689\) −4.89701 3.55788i −0.186561 0.135545i
\(690\) 0 0
\(691\) −2.61641 + 8.05248i −0.0995329 + 0.306331i −0.988408 0.151818i \(-0.951487\pi\)
0.888876 + 0.458149i \(0.151487\pi\)
\(692\) −2.90507 −0.110434
\(693\) 0 0
\(694\) −7.81709 −0.296733
\(695\) −2.41481 + 7.43203i −0.0915990 + 0.281913i
\(696\) 0 0
\(697\) 24.0190 + 17.4508i 0.909783 + 0.660996i
\(698\) −2.01834 6.21180i −0.0763952 0.235120i
\(699\) 0 0
\(700\) −14.7780 10.7368i −0.558556 0.405815i
\(701\) 35.2342 25.5991i 1.33078 0.966865i 0.331046 0.943615i \(-0.392599\pi\)
0.999730 0.0232503i \(-0.00740148\pi\)
\(702\) 0 0
\(703\) −12.5638 −0.473854
\(704\) −12.6330 15.8624i −0.476125 0.597839i
\(705\) 0 0
\(706\) −2.61745 + 8.05569i −0.0985091 + 0.303180i
\(707\) 45.2050 32.8433i 1.70011 1.23520i
\(708\) 0 0
\(709\) −1.86253 5.73229i −0.0699489 0.215281i 0.909971 0.414672i \(-0.136104\pi\)
−0.979920 + 0.199391i \(0.936104\pi\)
\(710\) 1.37036 + 4.21753i 0.0514287 + 0.158281i
\(711\) 0 0
\(712\) 8.37326 6.08353i 0.313801 0.227990i
\(713\) −2.80239 + 8.62488i −0.104950 + 0.323004i
\(714\) 0 0
\(715\) 19.0778 28.8609i 0.713471 1.07933i
\(716\) 25.3061 0.945732
\(717\) 0 0
\(718\) 8.50264 6.17753i 0.317316 0.230543i
\(719\) 32.6897 + 23.7504i 1.21912 + 0.885741i 0.996027 0.0890560i \(-0.0283850\pi\)
0.223092 + 0.974797i \(0.428385\pi\)
\(720\) 0 0
\(721\) −6.38836 19.6614i −0.237915 0.732227i
\(722\) −3.77597 2.74340i −0.140527 0.102099i
\(723\) 0 0
\(724\) −1.65945 + 5.10726i −0.0616729 + 0.189810i
\(725\) −8.30501 −0.308441
\(726\) 0 0
\(727\) 18.7206 0.694310 0.347155 0.937808i \(-0.387148\pi\)
0.347155 + 0.937808i \(0.387148\pi\)
\(728\) −5.41643 + 16.6700i −0.200746 + 0.617833i
\(729\) 0 0
\(730\) 2.52864 + 1.83717i 0.0935893 + 0.0679966i
\(731\) 1.31498 + 4.04709i 0.0486363 + 0.149687i
\(732\) 0 0
\(733\) −0.456440 0.331623i −0.0168590 0.0122488i 0.579324 0.815097i \(-0.303317\pi\)
−0.596183 + 0.802849i \(0.703317\pi\)
\(734\) −5.73510 + 4.16679i −0.211686 + 0.153799i
\(735\) 0 0
\(736\) −6.03673 −0.222517
\(737\) 3.18335 4.81575i 0.117260 0.177391i
\(738\) 0 0
\(739\) 0.602004 1.85278i 0.0221451 0.0681555i −0.939373 0.342896i \(-0.888592\pi\)
0.961518 + 0.274741i \(0.0885921\pi\)
\(740\) −32.5628 + 23.6582i −1.19703 + 0.869694i
\(741\) 0 0
\(742\) 0.564167 + 1.73633i 0.0207112 + 0.0637426i
\(743\) 8.42464 + 25.9284i 0.309070 + 0.951220i 0.978127 + 0.208009i \(0.0666982\pi\)
−0.669057 + 0.743211i \(0.733302\pi\)
\(744\) 0 0
\(745\) −44.2113 + 32.1214i −1.61978 + 1.17684i
\(746\) −1.61067 + 4.95714i −0.0589709 + 0.181494i
\(747\) 0 0
\(748\) −17.1270 21.5052i −0.626224 0.786308i
\(749\) −11.3197 −0.413613
\(750\) 0 0
\(751\) −24.5183 + 17.8136i −0.894685 + 0.650027i −0.937095 0.349074i \(-0.886496\pi\)
0.0424105 + 0.999100i \(0.486496\pi\)
\(752\) 16.6999 + 12.1332i 0.608983 + 0.442452i
\(753\) 0 0
\(754\) 1.20576 + 3.71093i 0.0439110 + 0.135144i
\(755\) −24.2772 17.6384i −0.883539 0.641929i
\(756\) 0 0
\(757\) 3.43224 10.5634i 0.124747 0.383931i −0.869108 0.494622i \(-0.835306\pi\)
0.993855 + 0.110691i \(0.0353064\pi\)
\(758\) 8.97056 0.325826
\(759\) 0 0
\(760\) 4.91030 0.178115
\(761\) 10.3029 31.7091i 0.373481 1.14945i −0.571017 0.820938i \(-0.693451\pi\)
0.944498 0.328517i \(-0.106549\pi\)
\(762\) 0 0
\(763\) −57.1992 41.5576i −2.07075 1.50449i
\(764\) −9.92620 30.5497i −0.359117 1.10525i
\(765\) 0 0
\(766\) 2.86788 + 2.08364i 0.103621 + 0.0752849i
\(767\) 35.3997 25.7194i 1.27821 0.928674i
\(768\) 0 0
\(769\) −51.9401 −1.87301 −0.936504 0.350656i \(-0.885959\pi\)
−0.936504 + 0.350656i \(0.885959\pi\)
\(770\) −9.77180 + 3.66017i −0.352151 + 0.131903i
\(771\) 0 0
\(772\) 13.0673 40.2171i 0.470303 1.44744i
\(773\) −6.24784 + 4.53932i −0.224719 + 0.163268i −0.694448 0.719542i \(-0.744352\pi\)
0.469729 + 0.882811i \(0.344352\pi\)
\(774\) 0 0
\(775\) −3.51343 10.8132i −0.126206 0.388423i
\(776\) −2.55959 7.87759i −0.0918838 0.282789i
\(777\) 0 0
\(778\) −1.68858 + 1.22682i −0.0605384 + 0.0439837i
\(779\) 3.44512 10.6030i 0.123434 0.379891i
\(780\) 0 0
\(781\) −18.3524 5.07779i −0.656702 0.181698i
\(782\) −2.29655 −0.0821244
\(783\) 0 0
\(784\) −27.3060 + 19.8390i −0.975215 + 0.708535i
\(785\) 0.729267 + 0.529844i 0.0260287 + 0.0189109i
\(786\) 0 0
\(787\) −6.08959 18.7418i −0.217070 0.668074i −0.999000 0.0447073i \(-0.985764\pi\)
0.781930 0.623367i \(-0.214236\pi\)
\(788\) −28.2893 20.5534i −1.00776 0.732184i
\(789\) 0 0
\(790\) −1.02159 + 3.14414i −0.0363467 + 0.111864i
\(791\) 3.84382 0.136670
\(792\) 0 0
\(793\) −33.1470 −1.17709
\(794\) −3.01432 + 9.27712i −0.106974 + 0.329233i
\(795\) 0 0
\(796\) −38.9550 28.3025i −1.38072 1.00315i
\(797\) −4.33420 13.3393i −0.153525 0.472502i 0.844483 0.535582i \(-0.179908\pi\)
−0.998008 + 0.0630799i \(0.979908\pi\)
\(798\) 0 0
\(799\) 20.5036 + 14.8967i 0.725365 + 0.527008i
\(800\) 6.12297 4.44860i 0.216480 0.157282i
\(801\) 0 0
\(802\) 2.13170 0.0752731
\(803\) −12.5684 + 4.70768i −0.443529 + 0.166130i
\(804\) 0 0
\(805\) 6.35623 19.5625i 0.224028 0.689486i
\(806\) −4.32159 + 3.13982i −0.152221 + 0.110595i
\(807\) 0 0
\(808\) 4.73666 + 14.5779i 0.166635 + 0.512850i
\(809\) 6.46767 + 19.9055i 0.227391 + 0.699839i 0.998040 + 0.0625783i \(0.0199323\pi\)
−0.770649 + 0.637260i \(0.780068\pi\)
\(810\) 0 0
\(811\) −1.57186 + 1.14203i −0.0551956 + 0.0401019i −0.615041 0.788495i \(-0.710861\pi\)
0.559845 + 0.828597i \(0.310861\pi\)
\(812\) −8.58173 + 26.4118i −0.301160 + 0.926874i
\(813\) 0 0
\(814\) 0.323842 + 7.31703i 0.0113506 + 0.256462i
\(815\) −36.1292 −1.26555
\(816\) 0 0
\(817\) 1.29276 0.939249i 0.0452281 0.0328601i
\(818\) 0.556008 + 0.403964i 0.0194404 + 0.0141243i
\(819\) 0 0
\(820\) −11.0369 33.9680i −0.385424 1.18621i
\(821\) 8.77117 + 6.37263i 0.306116 + 0.222406i 0.730228 0.683203i \(-0.239414\pi\)
−0.424112 + 0.905610i \(0.639414\pi\)
\(822\) 0 0
\(823\) 14.7302 45.3348i 0.513461 1.58027i −0.272604 0.962126i \(-0.587885\pi\)
0.786065 0.618144i \(-0.212115\pi\)
\(824\) 5.67112 0.197563
\(825\) 0 0
\(826\) −13.1976 −0.459203
\(827\) −11.5619 + 35.5838i −0.402046 + 1.23737i 0.521291 + 0.853379i \(0.325451\pi\)
−0.923337 + 0.383991i \(0.874549\pi\)
\(828\) 0 0
\(829\) −8.66207 6.29336i −0.300846 0.218578i 0.427113 0.904198i \(-0.359531\pi\)
−0.727959 + 0.685621i \(0.759531\pi\)
\(830\) 1.55148 + 4.77496i 0.0538526 + 0.165741i
\(831\) 0 0
\(832\) 19.0486 + 13.8396i 0.660390 + 0.479801i
\(833\) −33.5254 + 24.3576i −1.16159 + 0.843941i
\(834\) 0 0
\(835\) −51.2361 −1.77310
\(836\) −5.69284 + 8.61209i −0.196891 + 0.297856i
\(837\) 0 0
\(838\) −0.987051 + 3.03783i −0.0340971 + 0.104940i
\(839\) 12.4277 9.02927i 0.429053 0.311725i −0.352217 0.935918i \(-0.614572\pi\)
0.781270 + 0.624193i \(0.214572\pi\)
\(840\) 0 0
\(841\) −5.05976 15.5724i −0.174475 0.536978i
\(842\) 0.608427 + 1.87255i 0.0209678 + 0.0645322i
\(843\) 0 0
\(844\) 12.8372 9.32675i 0.441874 0.321040i
\(845\) −1.53168 + 4.71402i −0.0526913 + 0.162167i
\(846\) 0 0
\(847\) 10.0272 43.6703i 0.344539 1.50053i
\(848\) 5.53087 0.189931
\(849\) 0 0
\(850\) 2.32936 1.69238i 0.0798963 0.0580480i
\(851\) −11.6802 8.48617i −0.400393 0.290902i
\(852\) 0 0
\(853\) 12.8132 + 39.4348i 0.438714 + 1.35022i 0.889232 + 0.457456i \(0.151239\pi\)
−0.450518 + 0.892767i \(0.648761\pi\)
\(854\) 8.08825 + 5.87646i 0.276774 + 0.201088i
\(855\) 0 0
\(856\) 0.959576 2.95327i 0.0327976 0.100941i
\(857\) −18.4055 −0.628719 −0.314359 0.949304i \(-0.601790\pi\)
−0.314359 + 0.949304i \(0.601790\pi\)
\(858\) 0 0
\(859\) −15.0485 −0.513449 −0.256725 0.966485i \(-0.582643\pi\)
−0.256725 + 0.966485i \(0.582643\pi\)
\(860\) 1.58192 4.86866i 0.0539432 0.166020i
\(861\) 0 0
\(862\) 6.73166 + 4.89084i 0.229281 + 0.166583i
\(863\) 4.45906 + 13.7236i 0.151788 + 0.467155i 0.997821 0.0659746i \(-0.0210156\pi\)
−0.846033 + 0.533130i \(0.821016\pi\)
\(864\) 0 0
\(865\) 3.31799 + 2.41066i 0.112815 + 0.0819649i
\(866\) −8.42848 + 6.12365i −0.286411 + 0.208090i
\(867\) 0 0
\(868\) −38.0191 −1.29045
\(869\) −8.84362 11.1044i −0.299999 0.376689i
\(870\) 0 0
\(871\) −2.07129 + 6.37477i −0.0701830 + 0.216001i
\(872\) 15.6910 11.4002i 0.531365 0.386059i
\(873\) 0 0
\(874\) 0.266492 + 0.820177i 0.00901421 + 0.0277429i
\(875\) −9.07885 27.9418i −0.306921 0.944607i
\(876\) 0 0
\(877\) 19.4774 14.1511i 0.657704 0.477850i −0.208183 0.978090i \(-0.566755\pi\)
0.865887 + 0.500240i \(0.166755\pi\)
\(878\) 1.89426 5.82994i 0.0639283 0.196751i
\(879\) 0 0
\(880\) 1.39773 + 31.5811i 0.0471176 + 1.06460i
\(881\) 10.0956 0.340129 0.170064 0.985433i \(-0.445602\pi\)
0.170064 + 0.985433i \(0.445602\pi\)
\(882\) 0 0
\(883\) −41.0332 + 29.8124i −1.38088 + 1.00327i −0.384079 + 0.923300i \(0.625481\pi\)
−0.996798 + 0.0799659i \(0.974519\pi\)
\(884\) 25.8247 + 18.7628i 0.868579 + 0.631060i
\(885\) 0 0
\(886\) −2.94703 9.07002i −0.0990074 0.304713i
\(887\) −2.08136 1.51220i −0.0698854 0.0507747i 0.552294 0.833649i \(-0.313753\pi\)
−0.622179 + 0.782875i \(0.713753\pi\)
\(888\) 0 0
\(889\) −3.08439 + 9.49279i −0.103447 + 0.318378i
\(890\) −7.15422 −0.239810
\(891\) 0 0
\(892\) 14.1064 0.472316
\(893\) 2.94090 9.05115i 0.0984134 0.302885i
\(894\) 0 0
\(895\) −28.9031 20.9993i −0.966123 0.701929i
\(896\) −10.3465 31.8433i −0.345653 1.06381i
\(897\) 0 0
\(898\) −9.11993 6.62602i −0.304336 0.221113i
\(899\) −13.9843 + 10.1602i −0.466403 + 0.338862i
\(900\) 0 0
\(901\) 6.79061 0.226228
\(902\) −6.26386 1.73310i −0.208564 0.0577059i
\(903\) 0 0
\(904\) −0.325842 + 1.00284i −0.0108373 + 0.0333539i
\(905\) 6.13339 4.45617i 0.203881 0.148128i
\(906\) 0 0
\(907\) 3.18129 + 9.79100i 0.105633 + 0.325105i 0.989878 0.141917i \(-0.0453268\pi\)
−0.884246 + 0.467022i \(0.845327\pi\)
\(908\) −11.2304 34.5636i −0.372693 1.14703i
\(909\) 0 0
\(910\) 9.80197 7.12155i 0.324932 0.236077i
\(911\) 4.82145 14.8389i 0.159742 0.491635i −0.838869 0.544334i \(-0.816782\pi\)
0.998610 + 0.0526992i \(0.0167824\pi\)
\(912\) 0 0
\(913\) −20.7780 5.74891i −0.687652 0.190261i
\(914\) −10.6966 −0.353811
\(915\) 0 0
\(916\) −12.1999 + 8.86371i −0.403094 + 0.292865i
\(917\) −13.1729 9.57070i −0.435009 0.316052i
\(918\) 0 0
\(919\) 3.46483 + 10.6637i 0.114294 + 0.351761i 0.991799 0.127806i \(-0.0407935\pi\)
−0.877505 + 0.479568i \(0.840794\pi\)
\(920\) 4.56495 + 3.31663i 0.150502 + 0.109346i
\(921\) 0 0
\(922\) 1.70639 5.25172i 0.0561968 0.172956i
\(923\) 22.1097 0.727751
\(924\) 0 0
\(925\) 18.1007 0.595148
\(926\) 1.26440 3.89141i 0.0415506 0.127880i
\(927\) 0 0
\(928\) −9.30886 6.76328i −0.305578 0.222016i
\(929\) −7.27040 22.3760i −0.238534 0.734132i −0.996633 0.0819927i \(-0.973872\pi\)
0.758099 0.652140i \(-0.226128\pi\)
\(930\) 0 0
\(931\) 12.5892 + 9.14661i 0.412595 + 0.299768i
\(932\) 10.1974 7.40884i 0.334027 0.242685i
\(933\) 0 0
\(934\) −6.36478 −0.208262
\(935\) 1.71609 + 38.7741i 0.0561221 + 1.26805i
\(936\) 0 0
\(937\) 5.76486 17.7424i 0.188330 0.579619i −0.811660 0.584130i \(-0.801436\pi\)
0.999990 + 0.00451068i \(0.00143580\pi\)
\(938\) 1.63557 1.18831i 0.0534032 0.0387997i
\(939\) 0 0
\(940\) −9.42153 28.9965i −0.307296 0.945761i
\(941\) 10.0408 + 30.9023i 0.327320 + 1.00739i 0.970383 + 0.241574i \(0.0776635\pi\)
−0.643063 + 0.765814i \(0.722337\pi\)
\(942\) 0 0
\(943\) 10.3646 7.53029i 0.337516 0.245220i
\(944\) −12.3551 + 38.0250i −0.402123 + 1.23761i
\(945\) 0 0
\(946\) −0.580329 0.728681i −0.0188681 0.0236915i
\(947\) 3.84273 0.124872 0.0624360 0.998049i \(-0.480113\pi\)
0.0624360 + 0.998049i \(0.480113\pi\)
\(948\) 0 0
\(949\) 12.6072 9.15968i 0.409247 0.297336i
\(950\) −0.874704 0.635510i −0.0283792 0.0206187i
\(951\) 0 0
\(952\) −6.07643 18.7013i −0.196938 0.606114i
\(953\) 15.4434 + 11.2203i 0.500262 + 0.363461i 0.809117 0.587648i \(-0.199946\pi\)
−0.308855 + 0.951109i \(0.599946\pi\)
\(954\) 0 0
\(955\) −14.0134 + 43.1289i −0.453464 + 1.39562i
\(956\) −49.0154 −1.58527
\(957\) 0 0
\(958\) −6.63302 −0.214303
\(959\) 1.37108 4.21975i 0.0442745 0.136263i
\(960\) 0 0
\(961\) 5.93476 + 4.31185i 0.191444 + 0.139092i
\(962\) −2.62793 8.08795i −0.0847280 0.260766i
\(963\) 0 0
\(964\) −4.62879 3.36302i −0.149083 0.108315i
\(965\) −48.2973 + 35.0901i −1.55475 + 1.12959i
\(966\) 0 0
\(967\) 26.5627 0.854198 0.427099 0.904205i \(-0.359536\pi\)
0.427099 + 0.904205i \(0.359536\pi\)
\(968\) 10.5434 + 6.31801i 0.338878 + 0.203069i
\(969\) 0 0
\(970\) −1.76927 + 5.44526i −0.0568079 + 0.174837i
\(971\) −41.3472 + 30.0405i −1.32689 + 0.964045i −0.327076 + 0.944998i \(0.606063\pi\)
−0.999819 + 0.0190472i \(0.993937\pi\)
\(972\) 0 0
\(973\) −3.63134 11.1761i −0.116415 0.358290i
\(974\) −0.0238619 0.0734393i −0.000764584 0.00235315i
\(975\) 0 0
\(976\) 24.5032 17.8026i 0.784328 0.569847i
\(977\) 6.54331 20.1382i 0.209339 0.644279i −0.790168 0.612890i \(-0.790007\pi\)
0.999507 0.0313890i \(-0.00999308\pi\)
\(978\) 0 0
\(979\) 16.9402 25.6271i 0.541412 0.819046i
\(980\) 49.8521 1.59247
\(981\) 0 0
\(982\) 0.970410 0.705044i 0.0309670 0.0224989i
\(983\) 41.1267 + 29.8803i 1.31174 + 0.953034i 0.999996 + 0.00286753i \(0.000912763\pi\)
0.311743 + 0.950166i \(0.399087\pi\)
\(984\) 0 0
\(985\) 15.2549 + 46.9496i 0.486060 + 1.49594i
\(986\) −3.54136 2.57295i −0.112780 0.0819394i
\(987\) 0 0
\(988\) 3.70412 11.4001i 0.117844 0.362686i
\(989\) 1.83625 0.0583895
\(990\) 0 0
\(991\) −13.1480 −0.417662 −0.208831 0.977952i \(-0.566966\pi\)
−0.208831 + 0.977952i \(0.566966\pi\)
\(992\) 4.86777 14.9815i 0.154552 0.475662i
\(993\) 0 0
\(994\) −5.39503 3.91972i −0.171120 0.124326i
\(995\) 21.0063 + 64.6507i 0.665944 + 2.04957i
\(996\) 0 0
\(997\) 30.1024 + 21.8707i 0.953354 + 0.692652i 0.951598 0.307346i \(-0.0994410\pi\)
0.00175626 + 0.999998i \(0.499441\pi\)
\(998\) −3.54437 + 2.57514i −0.112195 + 0.0815146i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.f.e.163.5 36
3.2 odd 2 891.2.f.f.163.5 36
9.2 odd 6 99.2.m.b.31.5 yes 72
9.4 even 3 297.2.n.b.262.5 72
9.5 odd 6 99.2.m.b.97.5 yes 72
9.7 even 3 297.2.n.b.64.5 72
11.4 even 5 9801.2.a.cp.1.9 18
11.5 even 5 inner 891.2.f.e.82.5 36
11.7 odd 10 9801.2.a.cn.1.10 18
33.5 odd 10 891.2.f.f.82.5 36
33.26 odd 10 9801.2.a.cm.1.10 18
33.29 even 10 9801.2.a.co.1.9 18
99.5 odd 30 99.2.m.b.16.5 72
99.16 even 15 297.2.n.b.280.5 72
99.29 even 30 1089.2.e.o.364.10 36
99.38 odd 30 99.2.m.b.49.5 yes 72
99.49 even 15 297.2.n.b.181.5 72
99.59 odd 30 1089.2.e.p.727.9 36
99.92 odd 30 1089.2.e.p.364.9 36
99.95 even 30 1089.2.e.o.727.10 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.m.b.16.5 72 99.5 odd 30
99.2.m.b.31.5 yes 72 9.2 odd 6
99.2.m.b.49.5 yes 72 99.38 odd 30
99.2.m.b.97.5 yes 72 9.5 odd 6
297.2.n.b.64.5 72 9.7 even 3
297.2.n.b.181.5 72 99.49 even 15
297.2.n.b.262.5 72 9.4 even 3
297.2.n.b.280.5 72 99.16 even 15
891.2.f.e.82.5 36 11.5 even 5 inner
891.2.f.e.163.5 36 1.1 even 1 trivial
891.2.f.f.82.5 36 33.5 odd 10
891.2.f.f.163.5 36 3.2 odd 2
1089.2.e.o.364.10 36 99.29 even 30
1089.2.e.o.727.10 36 99.95 even 30
1089.2.e.p.364.9 36 99.92 odd 30
1089.2.e.p.727.9 36 99.59 odd 30
9801.2.a.cm.1.10 18 33.26 odd 10
9801.2.a.cn.1.10 18 11.7 odd 10
9801.2.a.co.1.9 18 33.29 even 10
9801.2.a.cp.1.9 18 11.4 even 5