Properties

Label 891.2.d.a.890.2
Level $891$
Weight $2$
Character 891.890
Analytic conductor $7.115$
Analytic rank $0$
Dimension $4$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [891,2,Mod(890,891)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(891, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("891.890"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 890.2
Root \(1.68614 + 0.396143i\) of defining polynomial
Character \(\chi\) \(=\) 891.890
Dual form 891.2.d.a.890.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{4} -0.939764i q^{5} +3.31662i q^{11} +4.00000 q^{16} +1.87953i q^{20} -3.31662i q^{23} +4.11684 q^{25} +6.11684 q^{31} +12.1168 q^{37} -6.63325i q^{44} -13.7089i q^{47} +7.00000 q^{49} +11.8294i q^{53} +3.11684 q^{55} +14.6487i q^{59} -8.00000 q^{64} +15.1168 q^{67} -10.8896i q^{71} -3.75906i q^{80} +16.5831i q^{89} +6.63325i q^{92} +0.116844 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} + 16 q^{16} - 18 q^{25} - 10 q^{31} + 14 q^{37} + 28 q^{49} - 22 q^{55} - 32 q^{64} + 26 q^{67} - 34 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(3\) 0 0
\(4\) −2.00000 −1.00000
\(5\) − 0.939764i − 0.420275i −0.977672 0.210138i \(-0.932609\pi\)
0.977672 0.210138i \(-0.0673912\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.31662i 1.00000i
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 4.00000 1.00000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 1.87953i 0.420275i
\(21\) 0 0
\(22\) 0 0
\(23\) − 3.31662i − 0.691564i −0.938315 0.345782i \(-0.887614\pi\)
0.938315 0.345782i \(-0.112386\pi\)
\(24\) 0 0
\(25\) 4.11684 0.823369
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 6.11684 1.09862 0.549309 0.835619i \(-0.314891\pi\)
0.549309 + 0.835619i \(0.314891\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 12.1168 1.99200 0.995998 0.0893706i \(-0.0284856\pi\)
0.995998 + 0.0893706i \(0.0284856\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) − 6.63325i − 1.00000i
\(45\) 0 0
\(46\) 0 0
\(47\) − 13.7089i − 1.99965i −0.0186297 0.999826i \(-0.505930\pi\)
0.0186297 0.999826i \(-0.494070\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.8294i 1.62489i 0.583036 + 0.812447i \(0.301865\pi\)
−0.583036 + 0.812447i \(0.698135\pi\)
\(54\) 0 0
\(55\) 3.11684 0.420275
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 14.6487i 1.90710i 0.301239 + 0.953549i \(0.402600\pi\)
−0.301239 + 0.953549i \(0.597400\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 15.1168 1.84682 0.923408 0.383819i \(-0.125391\pi\)
0.923408 + 0.383819i \(0.125391\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 10.8896i − 1.29236i −0.763184 0.646181i \(-0.776365\pi\)
0.763184 0.646181i \(-0.223635\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) − 3.75906i − 0.420275i
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 16.5831i 1.75781i 0.476999 + 0.878904i \(0.341725\pi\)
−0.476999 + 0.878904i \(0.658275\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 6.63325i 0.691564i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0.116844 0.0118637 0.00593185 0.999982i \(-0.498112\pi\)
0.00593185 + 0.999982i \(0.498112\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −8.23369 −0.823369
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) −15.2337 −1.50102 −0.750510 0.660859i \(-0.770192\pi\)
−0.750510 + 0.660859i \(0.770192\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 16.5282i − 1.55484i −0.628979 0.777422i \(-0.716527\pi\)
0.628979 0.777422i \(-0.283473\pi\)
\(114\) 0 0
\(115\) −3.11684 −0.290647
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) −12.2337 −1.09862
\(125\) − 8.56768i − 0.766317i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.01011i 0.769786i 0.922961 + 0.384893i \(0.125762\pi\)
−0.922961 + 0.384893i \(0.874238\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −24.2337 −1.99200
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 5.74839i − 0.461722i
\(156\) 0 0
\(157\) −2.88316 −0.230101 −0.115050 0.993360i \(-0.536703\pi\)
−0.115050 + 0.993360i \(0.536703\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −9.23369 −0.723238 −0.361619 0.932326i \(-0.617776\pi\)
−0.361619 + 0.932326i \(0.617776\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 13.2665i 1.00000i
\(177\) 0 0
\(178\) 0 0
\(179\) − 26.4781i − 1.97907i −0.144308 0.989533i \(-0.546095\pi\)
0.144308 0.989533i \(-0.453905\pi\)
\(180\) 0 0
\(181\) 21.1168 1.56960 0.784801 0.619747i \(-0.212765\pi\)
0.784801 + 0.619747i \(0.212765\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 11.3870i − 0.837187i
\(186\) 0 0
\(187\) 0 0
\(188\) 27.4179i 1.99965i
\(189\) 0 0
\(190\) 0 0
\(191\) 24.5986i 1.77989i 0.456068 + 0.889945i \(0.349257\pi\)
−0.456068 + 0.889945i \(0.650743\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −14.0000 −1.00000
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) −27.2337 −1.93054 −0.965272 0.261245i \(-0.915867\pi\)
−0.965272 + 0.261245i \(0.915867\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) − 23.6588i − 1.62489i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) −6.23369 −0.420275
\(221\) 0 0
\(222\) 0 0
\(223\) −1.00000 −0.0669650 −0.0334825 0.999439i \(-0.510660\pi\)
−0.0334825 + 0.999439i \(0.510660\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 5.00000 0.330409 0.165205 0.986259i \(-0.447172\pi\)
0.165205 + 0.986259i \(0.447172\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) −12.8832 −0.840404
\(236\) − 29.2974i − 1.90710i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 6.57835i − 0.420275i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 16.5831i 1.04672i 0.852112 + 0.523359i \(0.175321\pi\)
−0.852112 + 0.523359i \(0.824679\pi\)
\(252\) 0 0
\(253\) 11.0000 0.691564
\(254\) 0 0
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 26.5330i 1.65508i 0.561405 + 0.827541i \(0.310261\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 11.1168 0.682902
\(266\) 0 0
\(267\) 0 0
\(268\) −30.2337 −1.84682
\(269\) − 19.3475i − 1.17964i −0.807535 0.589819i \(-0.799199\pi\)
0.807535 0.589819i \(-0.200801\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 13.6540i 0.823369i
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 21.7793i 1.29236i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 13.7663 0.801506
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6.19082i 0.351049i 0.984475 + 0.175525i \(0.0561621\pi\)
−0.984475 + 0.175525i \(0.943838\pi\)
\(312\) 0 0
\(313\) −19.0000 −1.07394 −0.536972 0.843600i \(-0.680432\pi\)
−0.536972 + 0.843600i \(0.680432\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 23.2164i − 1.30396i −0.758236 0.651981i \(-0.773938\pi\)
0.758236 0.651981i \(-0.226062\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 7.51811i 0.420275i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −8.88316 −0.488262 −0.244131 0.969742i \(-0.578503\pi\)
−0.244131 + 0.969742i \(0.578503\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 14.2063i − 0.776171i
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 20.2873i 1.09862i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 36.4829i 1.94179i 0.239511 + 0.970894i \(0.423013\pi\)
−0.239511 + 0.970894i \(0.576987\pi\)
\(354\) 0 0
\(355\) −10.2337 −0.543148
\(356\) − 33.1662i − 1.75781i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 27.1168 1.41549 0.707744 0.706469i \(-0.249713\pi\)
0.707744 + 0.706469i \(0.249713\pi\)
\(368\) − 13.2665i − 0.691564i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −25.0000 −1.28416 −0.642082 0.766636i \(-0.721929\pi\)
−0.642082 + 0.766636i \(0.721929\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 32.1167i − 1.64109i −0.571585 0.820543i \(-0.693671\pi\)
0.571585 0.820543i \(-0.306329\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) −0.233688 −0.0118637
\(389\) − 5.25106i − 0.266239i −0.991100 0.133120i \(-0.957501\pi\)
0.991100 0.133120i \(-0.0424994\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 33.4674 1.67968 0.839840 0.542834i \(-0.182649\pi\)
0.839840 + 0.542834i \(0.182649\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 16.4674 0.823369
\(401\) − 39.2473i − 1.95991i −0.199207 0.979957i \(-0.563837\pi\)
0.199207 0.979957i \(-0.436163\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 40.1870i 1.99200i
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 30.4674 1.50102
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 37.3677i 1.82553i 0.408481 + 0.912767i \(0.366058\pi\)
−0.408481 + 0.912767i \(0.633942\pi\)
\(420\) 0 0
\(421\) 39.4674 1.92352 0.961761 0.273890i \(-0.0883103\pi\)
0.961761 + 0.273890i \(0.0883103\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 29.0000 1.39365 0.696826 0.717241i \(-0.254595\pi\)
0.696826 + 0.717241i \(0.254595\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 36.4280i − 1.73075i −0.501129 0.865373i \(-0.667082\pi\)
0.501129 0.865373i \(-0.332918\pi\)
\(444\) 0 0
\(445\) 15.5842 0.738763
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 42.0666i − 1.98524i −0.121253 0.992622i \(-0.538691\pi\)
0.121253 0.992622i \(-0.461309\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 33.0564i 1.55484i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 6.23369 0.290647
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) −31.0000 −1.44069 −0.720346 0.693615i \(-0.756017\pi\)
−0.720346 + 0.693615i \(0.756017\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 18.9600i 0.877363i 0.898642 + 0.438682i \(0.144554\pi\)
−0.898642 + 0.438682i \(0.855446\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 22.0000 1.00000
\(485\) − 0.109806i − 0.00498602i
\(486\) 0 0
\(487\) 30.1168 1.36472 0.682362 0.731014i \(-0.260953\pi\)
0.682362 + 0.731014i \(0.260953\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 24.4674 1.09862
\(497\) 0 0
\(498\) 0 0
\(499\) 2.76631 0.123837 0.0619186 0.998081i \(-0.480278\pi\)
0.0619186 + 0.998081i \(0.480278\pi\)
\(500\) 17.1354i 0.766317i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 3.31662i − 0.147007i −0.997295 0.0735034i \(-0.976582\pi\)
0.997295 0.0735034i \(-0.0234180\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 14.3161i 0.630841i
\(516\) 0 0
\(517\) 45.4674 1.99965
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 34.5484i 1.51359i 0.653650 + 0.756797i \(0.273237\pi\)
−0.653650 + 0.756797i \(0.726763\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 12.0000 0.521739
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 23.2164i 1.00000i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) − 18.0202i − 0.769786i
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) −15.5326 −0.653462
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 13.6540i − 0.569412i
\(576\) 0 0
\(577\) −14.8832 −0.619594 −0.309797 0.950803i \(-0.600261\pi\)
−0.309797 + 0.950803i \(0.600261\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −39.2337 −1.62489
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 44.8858i − 1.85264i −0.376741 0.926319i \(-0.622955\pi\)
0.376741 0.926319i \(-0.377045\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 48.4674 1.99200
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 33.1662i − 1.35514i −0.735460 0.677568i \(-0.763034\pi\)
0.735460 0.677568i \(-0.236966\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 10.3374i 0.420275i
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23.1066i 0.930235i 0.885249 + 0.465118i \(0.153988\pi\)
−0.885249 + 0.465118i \(0.846012\pi\)
\(618\) 0 0
\(619\) −42.5842 −1.71160 −0.855802 0.517303i \(-0.826936\pi\)
−0.855802 + 0.517303i \(0.826936\pi\)
\(620\) 11.4968i 0.461722i
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 12.5326 0.501305
\(626\) 0 0
\(627\) 0 0
\(628\) 5.76631 0.230101
\(629\) 0 0
\(630\) 0 0
\(631\) −39.5842 −1.57582 −0.787911 0.615789i \(-0.788838\pi\)
−0.787911 + 0.615789i \(0.788838\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 23.2164i − 0.916992i −0.888697 0.458496i \(-0.848388\pi\)
0.888697 0.458496i \(-0.151612\pi\)
\(642\) 0 0
\(643\) 41.0000 1.61688 0.808441 0.588577i \(-0.200312\pi\)
0.808441 + 0.588577i \(0.200312\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 43.1161i − 1.69507i −0.530740 0.847535i \(-0.678086\pi\)
0.530740 0.847535i \(-0.321914\pi\)
\(648\) 0 0
\(649\) −48.5842 −1.90710
\(650\) 0 0
\(651\) 0 0
\(652\) 18.4674 0.723238
\(653\) 45.8256i 1.79329i 0.442746 + 0.896647i \(0.354005\pi\)
−0.442746 + 0.896647i \(0.645995\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) −36.5842 −1.42296 −0.711481 0.702706i \(-0.751975\pi\)
−0.711481 + 0.702706i \(0.751975\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −26.0000 −1.00000
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 2.43176i − 0.0930489i −0.998917 0.0465244i \(-0.985185\pi\)
0.998917 0.0465244i \(-0.0148145\pi\)
\(684\) 0 0
\(685\) 8.46738 0.323522
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −51.5842 −1.96236 −0.981178 0.193105i \(-0.938144\pi\)
−0.981178 + 0.193105i \(0.938144\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) − 26.5330i − 1.00000i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −33.5842 −1.26128 −0.630641 0.776075i \(-0.717208\pi\)
−0.630641 + 0.776075i \(0.717208\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 20.2873i − 0.759764i
\(714\) 0 0
\(715\) 0 0
\(716\) 52.9562i 1.97907i
\(717\) 0 0
\(718\) 0 0
\(719\) 35.8757i 1.33794i 0.743290 + 0.668970i \(0.233264\pi\)
−0.743290 + 0.668970i \(0.766736\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) −42.2337 −1.56960
\(725\) 0 0
\(726\) 0 0
\(727\) −17.8832 −0.663250 −0.331625 0.943411i \(-0.607597\pi\)
−0.331625 + 0.943411i \(0.607597\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 50.1369i 1.84682i
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 22.7739i 0.837187i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −54.5842 −1.99181 −0.995903 0.0904254i \(-0.971177\pi\)
−0.995903 + 0.0904254i \(0.971177\pi\)
\(752\) − 54.8357i − 1.99965i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 15.4674 0.562171 0.281086 0.959683i \(-0.409305\pi\)
0.281086 + 0.959683i \(0.409305\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) − 49.1971i − 1.77989i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 13.2665i − 0.477163i −0.971123 0.238581i \(-0.923318\pi\)
0.971123 0.238581i \(-0.0766824\pi\)
\(774\) 0 0
\(775\) 25.1821 0.904567
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 36.1168 1.29236
\(782\) 0 0
\(783\) 0 0
\(784\) 28.0000 1.00000
\(785\) 2.70949i 0.0967057i
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 54.4674 1.93054
\(797\) − 30.7894i − 1.09062i −0.838236 0.545308i \(-0.816413\pi\)
0.838236 0.545308i \(-0.183587\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 8.67749i 0.303959i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) −49.0000 −1.70803 −0.854016 0.520246i \(-0.825840\pi\)
−0.854016 + 0.520246i \(0.825840\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) −57.5842 −1.99998 −0.999991 0.00416865i \(-0.998673\pi\)
−0.999991 + 0.00416865i \(0.998673\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 36.4829i 1.25953i 0.776786 + 0.629764i \(0.216849\pi\)
−0.776786 + 0.629764i \(0.783151\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 12.2169i − 0.420275i
\(846\) 0 0
\(847\) 0 0
\(848\) 47.3176i 1.62489i
\(849\) 0 0
\(850\) 0 0
\(851\) − 40.1870i − 1.37759i
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) −27.5842 −0.941161 −0.470581 0.882357i \(-0.655956\pi\)
−0.470581 + 0.882357i \(0.655956\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 46.4327i 1.58059i 0.612727 + 0.790295i \(0.290072\pi\)
−0.612727 + 0.790295i \(0.709928\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 12.4674 0.420275
\(881\) − 57.6550i − 1.94245i −0.238171 0.971223i \(-0.576548\pi\)
0.238171 0.971223i \(-0.423452\pi\)
\(882\) 0 0
\(883\) −45.2337 −1.52223 −0.761117 0.648614i \(-0.775349\pi\)
−0.761117 + 0.648614i \(0.775349\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 2.00000 0.0669650
\(893\) 0 0
\(894\) 0 0
\(895\) −24.8832 −0.831752
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 19.8448i − 0.659665i
\(906\) 0 0
\(907\) 8.00000 0.265636 0.132818 0.991140i \(-0.457597\pi\)
0.132818 + 0.991140i \(0.457597\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 48.6449i 1.61168i 0.592135 + 0.805839i \(0.298285\pi\)
−0.592135 + 0.805839i \(0.701715\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −10.0000 −0.330409
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 49.8832 1.64015
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0.552236i 0.0181183i 0.999959 + 0.00905914i \(0.00288365\pi\)
−0.999959 + 0.00905914i \(0.997116\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 25.7663 0.840404
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 58.5948i 1.90710i
\(945\) 0 0
\(946\) 0 0
\(947\) − 37.7553i − 1.22688i −0.789741 0.613441i \(-0.789785\pi\)
0.789741 0.613441i \(-0.210215\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 23.1168 0.748044
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 6.41578 0.206961
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 43.1161i − 1.38366i −0.722059 0.691831i \(-0.756804\pi\)
0.722059 0.691831i \(-0.243196\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 56.3826i 1.80384i 0.431903 + 0.901920i \(0.357842\pi\)
−0.431903 + 0.901920i \(0.642158\pi\)
\(978\) 0 0
\(979\) −55.0000 −1.75781
\(980\) 13.1567i 0.420275i
\(981\) 0 0
\(982\) 0 0
\(983\) 25.9259i 0.826906i 0.910525 + 0.413453i \(0.135677\pi\)
−0.910525 + 0.413453i \(0.864323\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 25.5932i 0.811360i
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.d.a.890.2 4
3.2 odd 2 inner 891.2.d.a.890.3 4
9.2 odd 6 99.2.g.a.32.2 4
9.4 even 3 99.2.g.a.65.2 yes 4
9.5 odd 6 297.2.g.a.197.1 4
9.7 even 3 297.2.g.a.98.1 4
11.10 odd 2 CM 891.2.d.a.890.2 4
33.32 even 2 inner 891.2.d.a.890.3 4
99.32 even 6 297.2.g.a.197.1 4
99.43 odd 6 297.2.g.a.98.1 4
99.65 even 6 99.2.g.a.32.2 4
99.76 odd 6 99.2.g.a.65.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.g.a.32.2 4 9.2 odd 6
99.2.g.a.32.2 4 99.65 even 6
99.2.g.a.65.2 yes 4 9.4 even 3
99.2.g.a.65.2 yes 4 99.76 odd 6
297.2.g.a.98.1 4 9.7 even 3
297.2.g.a.98.1 4 99.43 odd 6
297.2.g.a.197.1 4 9.5 odd 6
297.2.g.a.197.1 4 99.32 even 6
891.2.d.a.890.2 4 1.1 even 1 trivial
891.2.d.a.890.2 4 11.10 odd 2 CM
891.2.d.a.890.3 4 3.2 odd 2 inner
891.2.d.a.890.3 4 33.32 even 2 inner