Properties

Label 891.2.bb.a.413.20
Level $891$
Weight $2$
Character 891.413
Analytic conductor $7.115$
Analytic rank $0$
Dimension $816$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [891,2,Mod(8,891)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("891.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(891, base_ring=CyclotomicField(90)) chi = DirichletCharacter(H, H._module([5, 27])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.bb (of order \(90\), degree \(24\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(816\)
Relative dimension: \(34\) over \(\Q(\zeta_{90})\)
Twist minimal: no (minimal twist has level 297)
Sato-Tate group: $\mathrm{SU}(2)[C_{90}]$

Embedding invariants

Embedding label 413.20
Character \(\chi\) \(=\) 891.413
Dual form 891.2.bb.a.233.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.537360 - 0.0755211i) q^{2} +(-1.63947 + 0.470111i) q^{4} +(-3.32873 + 1.34490i) q^{5} +(0.885188 + 0.597067i) q^{7} +(-1.83694 + 0.817857i) q^{8} +(-1.68716 + 0.974083i) q^{10} +(-1.29032 - 3.05533i) q^{11} +(1.23652 + 2.32555i) q^{13} +(0.520756 + 0.253990i) q^{14} +(1.96743 - 1.22939i) q^{16} +(1.71802 - 0.365177i) q^{17} +(-0.0216751 - 0.0486831i) q^{19} +(4.82511 - 3.76979i) q^{20} +(-0.924110 - 1.54437i) q^{22} +(2.86915 - 7.88293i) q^{23} +(5.67502 - 5.48030i) q^{25} +(0.840084 + 1.15628i) q^{26} +(-1.73193 - 0.562737i) q^{28} +(-3.86018 - 7.91454i) q^{29} +(-0.0700374 + 2.00561i) q^{31} +(4.04507 - 3.39421i) q^{32} +(0.895619 - 0.325979i) q^{34} +(-3.74955 - 0.796991i) q^{35} +(-3.34485 - 1.48922i) q^{37} +(-0.0153239 - 0.0245234i) q^{38} +(5.01474 - 5.19292i) q^{40} +(-4.76416 + 9.76798i) q^{41} +(6.03712 - 7.19476i) q^{43} +(3.55179 + 4.40254i) q^{44} +(0.946441 - 4.45265i) q^{46} +(0.158533 - 0.552870i) q^{47} +(-2.19518 - 5.43326i) q^{49} +(2.63565 - 3.37348i) q^{50} +(-3.12050 - 3.23138i) q^{52} +(-0.862436 + 0.280222i) q^{53} +(8.40424 + 8.43504i) q^{55} +(-2.11435 - 0.372817i) q^{56} +(-2.67202 - 3.96143i) q^{58} +(7.68590 + 1.91631i) q^{59} +(10.3949 - 0.362997i) q^{61} +(0.113830 + 1.08302i) q^{62} +(-1.18738 + 1.31871i) q^{64} +(-7.24367 - 6.07816i) q^{65} +(-0.424053 - 2.40492i) q^{67} +(-2.64498 + 1.40636i) q^{68} +(-2.07505 - 0.145101i) q^{70} +(-0.524273 - 2.46651i) q^{71} +(-9.10036 + 0.956486i) q^{73} +(-1.90986 - 0.547642i) q^{74} +(0.0584222 + 0.0696248i) q^{76} +(0.682061 - 3.47495i) q^{77} +(-0.309973 - 2.20558i) q^{79} +(-4.89565 + 6.73828i) q^{80} +(-1.82238 + 5.60872i) q^{82} +(-8.66574 - 4.60765i) q^{83} +(-5.22772 + 3.52614i) q^{85} +(2.70075 - 4.32211i) q^{86} +(4.86907 + 4.55716i) q^{88} +(8.64475 + 4.99105i) q^{89} +(-0.293959 + 2.79684i) q^{91} +(-0.998041 + 14.2727i) q^{92} +(0.0434360 - 0.309063i) q^{94} +(0.137624 + 0.132902i) q^{95} +(-2.43238 + 6.02035i) q^{97} +(-1.58993 - 2.75383i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 816 q + 30 q^{2} - 18 q^{4} + 21 q^{5} - 30 q^{7} + 45 q^{8} + 33 q^{11} - 30 q^{13} + 18 q^{14} - 30 q^{16} + 45 q^{17} - 15 q^{19} + 60 q^{20} - 15 q^{22} + 84 q^{23} - 27 q^{25} - 60 q^{28} - 60 q^{29}+ \cdots - 81 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.537360 0.0755211i 0.379971 0.0534014i 0.0533977 0.998573i \(-0.482995\pi\)
0.326573 + 0.945172i \(0.394106\pi\)
\(3\) 0 0
\(4\) −1.63947 + 0.470111i −0.819735 + 0.235055i
\(5\) −3.32873 + 1.34490i −1.48865 + 0.601456i −0.967695 0.252125i \(-0.918870\pi\)
−0.520960 + 0.853581i \(0.674426\pi\)
\(6\) 0 0
\(7\) 0.885188 + 0.597067i 0.334569 + 0.225670i 0.714975 0.699150i \(-0.246438\pi\)
−0.380406 + 0.924820i \(0.624216\pi\)
\(8\) −1.83694 + 0.817857i −0.649456 + 0.289156i
\(9\) 0 0
\(10\) −1.68716 + 0.974083i −0.533527 + 0.308032i
\(11\) −1.29032 3.05533i −0.389047 0.921218i
\(12\) 0 0
\(13\) 1.23652 + 2.32555i 0.342949 + 0.644993i 0.993419 0.114539i \(-0.0365392\pi\)
−0.650470 + 0.759532i \(0.725428\pi\)
\(14\) 0.520756 + 0.253990i 0.139178 + 0.0678816i
\(15\) 0 0
\(16\) 1.96743 1.22939i 0.491857 0.307347i
\(17\) 1.71802 0.365177i 0.416682 0.0885685i 0.00520025 0.999986i \(-0.498345\pi\)
0.411482 + 0.911418i \(0.365011\pi\)
\(18\) 0 0
\(19\) −0.0216751 0.0486831i −0.00497261 0.0111687i 0.911042 0.412313i \(-0.135279\pi\)
−0.916015 + 0.401145i \(0.868612\pi\)
\(20\) 4.82511 3.76979i 1.07893 0.842951i
\(21\) 0 0
\(22\) −0.924110 1.54437i −0.197021 0.329261i
\(23\) 2.86915 7.88293i 0.598260 1.64370i −0.156481 0.987681i \(-0.550015\pi\)
0.754740 0.656024i \(-0.227763\pi\)
\(24\) 0 0
\(25\) 5.67502 5.48030i 1.13500 1.09606i
\(26\) 0.840084 + 1.15628i 0.164754 + 0.226765i
\(27\) 0 0
\(28\) −1.73193 0.562737i −0.327303 0.106347i
\(29\) −3.86018 7.91454i −0.716817 1.46969i −0.875933 0.482433i \(-0.839753\pi\)
0.159115 0.987260i \(-0.449136\pi\)
\(30\) 0 0
\(31\) −0.0700374 + 2.00561i −0.0125791 + 0.360218i 0.976738 + 0.214437i \(0.0687917\pi\)
−0.989317 + 0.145781i \(0.953431\pi\)
\(32\) 4.04507 3.39421i 0.715073 0.600018i
\(33\) 0 0
\(34\) 0.895619 0.325979i 0.153597 0.0559049i
\(35\) −3.74955 0.796991i −0.633789 0.134716i
\(36\) 0 0
\(37\) −3.34485 1.48922i −0.549889 0.244827i 0.112934 0.993603i \(-0.463975\pi\)
−0.662823 + 0.748776i \(0.730642\pi\)
\(38\) −0.0153239 0.0245234i −0.00248587 0.00397823i
\(39\) 0 0
\(40\) 5.01474 5.19292i 0.792901 0.821073i
\(41\) −4.76416 + 9.76798i −0.744037 + 1.52550i 0.103420 + 0.994638i \(0.467021\pi\)
−0.847457 + 0.530864i \(0.821868\pi\)
\(42\) 0 0
\(43\) 6.03712 7.19476i 0.920652 1.09719i −0.0743399 0.997233i \(-0.523685\pi\)
0.994992 0.0999572i \(-0.0318706\pi\)
\(44\) 3.55179 + 4.40254i 0.535453 + 0.663707i
\(45\) 0 0
\(46\) 0.946441 4.45265i 0.139545 0.656508i
\(47\) 0.158533 0.552870i 0.0231244 0.0806444i −0.948853 0.315717i \(-0.897755\pi\)
0.971978 + 0.235073i \(0.0755328\pi\)
\(48\) 0 0
\(49\) −2.19518 5.43326i −0.313597 0.776179i
\(50\) 2.63565 3.37348i 0.372738 0.477082i
\(51\) 0 0
\(52\) −3.12050 3.23138i −0.432736 0.448111i
\(53\) −0.862436 + 0.280222i −0.118465 + 0.0384915i −0.367649 0.929964i \(-0.619837\pi\)
0.249185 + 0.968456i \(0.419837\pi\)
\(54\) 0 0
\(55\) 8.40424 + 8.43504i 1.13323 + 1.13738i
\(56\) −2.11435 0.372817i −0.282542 0.0498198i
\(57\) 0 0
\(58\) −2.67202 3.96143i −0.350854 0.520162i
\(59\) 7.68590 + 1.91631i 1.00062 + 0.249482i 0.707591 0.706622i \(-0.249782\pi\)
0.293027 + 0.956104i \(0.405337\pi\)
\(60\) 0 0
\(61\) 10.3949 0.362997i 1.33093 0.0464770i 0.639427 0.768852i \(-0.279172\pi\)
0.691501 + 0.722375i \(0.256950\pi\)
\(62\) 0.113830 + 1.08302i 0.0144565 + 0.137544i
\(63\) 0 0
\(64\) −1.18738 + 1.31871i −0.148422 + 0.164839i
\(65\) −7.24367 6.07816i −0.898466 0.753903i
\(66\) 0 0
\(67\) −0.424053 2.40492i −0.0518063 0.293808i 0.947886 0.318609i \(-0.103216\pi\)
−0.999692 + 0.0248014i \(0.992105\pi\)
\(68\) −2.64498 + 1.40636i −0.320751 + 0.170546i
\(69\) 0 0
\(70\) −2.07505 0.145101i −0.248015 0.0173429i
\(71\) −0.524273 2.46651i −0.0622197 0.292721i 0.936026 0.351931i \(-0.114475\pi\)
−0.998246 + 0.0592107i \(0.981142\pi\)
\(72\) 0 0
\(73\) −9.10036 + 0.956486i −1.06512 + 0.111948i −0.620837 0.783940i \(-0.713207\pi\)
−0.444279 + 0.895888i \(0.646540\pi\)
\(74\) −1.90986 0.547642i −0.222016 0.0636621i
\(75\) 0 0
\(76\) 0.0584222 + 0.0696248i 0.00670148 + 0.00798652i
\(77\) 0.682061 3.47495i 0.0777281 0.396008i
\(78\) 0 0
\(79\) −0.309973 2.20558i −0.0348747 0.248147i 0.965027 0.262150i \(-0.0844314\pi\)
−0.999902 + 0.0140031i \(0.995543\pi\)
\(80\) −4.89565 + 6.73828i −0.547350 + 0.753363i
\(81\) 0 0
\(82\) −1.82238 + 5.60872i −0.201248 + 0.619379i
\(83\) −8.66574 4.60765i −0.951188 0.505756i −0.0800484 0.996791i \(-0.525508\pi\)
−0.871140 + 0.491035i \(0.836619\pi\)
\(84\) 0 0
\(85\) −5.22772 + 3.52614i −0.567026 + 0.382464i
\(86\) 2.70075 4.32211i 0.291229 0.466065i
\(87\) 0 0
\(88\) 4.86907 + 4.55716i 0.519045 + 0.485795i
\(89\) 8.64475 + 4.99105i 0.916342 + 0.529050i 0.882466 0.470376i \(-0.155882\pi\)
0.0338757 + 0.999426i \(0.489215\pi\)
\(90\) 0 0
\(91\) −0.293959 + 2.79684i −0.0308153 + 0.293188i
\(92\) −0.998041 + 14.2727i −0.104053 + 1.48803i
\(93\) 0 0
\(94\) 0.0434360 0.309063i 0.00448008 0.0318774i
\(95\) 0.137624 + 0.132902i 0.0141200 + 0.0136355i
\(96\) 0 0
\(97\) −2.43238 + 6.02035i −0.246971 + 0.611274i −0.998846 0.0480316i \(-0.984705\pi\)
0.751875 + 0.659306i \(0.229150\pi\)
\(98\) −1.58993 2.75383i −0.160607 0.278179i
\(99\) 0 0
\(100\) −6.72768 + 11.6527i −0.672768 + 1.16527i
\(101\) 0.734644 + 0.940301i 0.0730998 + 0.0935634i 0.823171 0.567794i \(-0.192203\pi\)
−0.750071 + 0.661357i \(0.769981\pi\)
\(102\) 0 0
\(103\) 1.72740 6.92824i 0.170206 0.682659i −0.823174 0.567789i \(-0.807799\pi\)
0.993380 0.114871i \(-0.0366454\pi\)
\(104\) −4.17338 3.26060i −0.409234 0.319728i
\(105\) 0 0
\(106\) −0.442276 + 0.215712i −0.0429576 + 0.0209518i
\(107\) −12.8871 9.36302i −1.24584 0.905157i −0.247869 0.968794i \(-0.579730\pi\)
−0.997973 + 0.0636360i \(0.979730\pi\)
\(108\) 0 0
\(109\) 18.9567i 1.81572i −0.419274 0.907860i \(-0.637715\pi\)
0.419274 0.907860i \(-0.362285\pi\)
\(110\) 5.15313 + 3.89796i 0.491332 + 0.371656i
\(111\) 0 0
\(112\) 2.47557 + 0.0864488i 0.233919 + 0.00816864i
\(113\) 0.328978 + 4.70461i 0.0309477 + 0.442573i 0.988185 + 0.153268i \(0.0489797\pi\)
−0.957237 + 0.289305i \(0.906576\pi\)
\(114\) 0 0
\(115\) 1.05108 + 30.0989i 0.0980134 + 2.80674i
\(116\) 10.0494 + 11.1609i 0.933060 + 1.03627i
\(117\) 0 0
\(118\) 4.27482 + 0.449301i 0.393529 + 0.0413615i
\(119\) 1.73881 + 0.702524i 0.159396 + 0.0644003i
\(120\) 0 0
\(121\) −7.67014 + 7.88473i −0.697285 + 0.716794i
\(122\) 5.55838 0.980093i 0.503232 0.0887334i
\(123\) 0 0
\(124\) −0.828034 3.32106i −0.0743596 0.298240i
\(125\) −4.21896 + 9.47594i −0.377355 + 0.847554i
\(126\) 0 0
\(127\) 1.24087 1.11729i 0.110110 0.0991432i −0.612237 0.790674i \(-0.709730\pi\)
0.722347 + 0.691531i \(0.243064\pi\)
\(128\) −6.44405 + 9.55369i −0.569579 + 0.844435i
\(129\) 0 0
\(130\) −4.35149 2.71911i −0.381651 0.238482i
\(131\) 7.54127 + 2.74480i 0.658884 + 0.239814i 0.649754 0.760144i \(-0.274872\pi\)
0.00912929 + 0.999958i \(0.497094\pi\)
\(132\) 0 0
\(133\) 0.00988051 0.0560352i 0.000856749 0.00485887i
\(134\) −0.409491 1.26028i −0.0353747 0.108872i
\(135\) 0 0
\(136\) −2.85724 + 2.07591i −0.245006 + 0.178008i
\(137\) −8.43317 + 15.8605i −0.720495 + 1.35505i 0.205928 + 0.978567i \(0.433979\pi\)
−0.926422 + 0.376486i \(0.877132\pi\)
\(138\) 0 0
\(139\) −5.66023 19.7396i −0.480094 1.67429i −0.712502 0.701670i \(-0.752438\pi\)
0.232408 0.972618i \(-0.425340\pi\)
\(140\) 6.52194 0.456059i 0.551205 0.0385440i
\(141\) 0 0
\(142\) −0.467997 1.28581i −0.0392734 0.107903i
\(143\) 5.50984 6.77869i 0.460756 0.566863i
\(144\) 0 0
\(145\) 23.4937 + 21.1539i 1.95105 + 1.75673i
\(146\) −4.81793 + 1.20125i −0.398735 + 0.0994158i
\(147\) 0 0
\(148\) 6.18388 + 0.869087i 0.508312 + 0.0714385i
\(149\) 1.81971 + 0.255743i 0.149076 + 0.0209513i 0.213316 0.976983i \(-0.431573\pi\)
−0.0642402 + 0.997934i \(0.520462\pi\)
\(150\) 0 0
\(151\) −5.66721 + 1.41300i −0.461191 + 0.114988i −0.465586 0.885002i \(-0.654157\pi\)
0.00439507 + 0.999990i \(0.498601\pi\)
\(152\) 0.0796317 + 0.0717007i 0.00645898 + 0.00581569i
\(153\) 0 0
\(154\) 0.104080 1.91881i 0.00838703 0.154622i
\(155\) −2.46420 6.77033i −0.197929 0.543806i
\(156\) 0 0
\(157\) −16.2641 + 1.13730i −1.29802 + 0.0907662i −0.701984 0.712193i \(-0.747702\pi\)
−0.596034 + 0.802959i \(0.703258\pi\)
\(158\) −0.333135 1.16178i −0.0265028 0.0924262i
\(159\) 0 0
\(160\) −8.90008 + 16.7386i −0.703613 + 1.32330i
\(161\) 7.24637 5.26480i 0.571094 0.414924i
\(162\) 0 0
\(163\) −2.58005 7.94058i −0.202085 0.621954i −0.999820 0.0189466i \(-0.993969\pi\)
0.797735 0.603008i \(-0.206031\pi\)
\(164\) 3.21867 18.2540i 0.251336 1.42540i
\(165\) 0 0
\(166\) −5.00460 1.82152i −0.388432 0.141378i
\(167\) −3.38595 2.11578i −0.262013 0.163724i 0.392552 0.919730i \(-0.371592\pi\)
−0.654565 + 0.756006i \(0.727148\pi\)
\(168\) 0 0
\(169\) 3.39029 5.02631i 0.260791 0.386639i
\(170\) −2.54287 + 2.28961i −0.195029 + 0.175605i
\(171\) 0 0
\(172\) −6.51535 + 14.6337i −0.496790 + 1.11581i
\(173\) −4.20044 16.8470i −0.319353 1.28086i −0.888597 0.458688i \(-0.848320\pi\)
0.569244 0.822169i \(-0.307236\pi\)
\(174\) 0 0
\(175\) 8.29557 1.46273i 0.627086 0.110572i
\(176\) −6.29480 4.42485i −0.474489 0.333536i
\(177\) 0 0
\(178\) 5.02228 + 2.02913i 0.376435 + 0.152090i
\(179\) 12.0443 + 1.26591i 0.900235 + 0.0946185i 0.543327 0.839521i \(-0.317164\pi\)
0.356908 + 0.934140i \(0.383831\pi\)
\(180\) 0 0
\(181\) −3.91374 4.34664i −0.290906 0.323084i 0.579922 0.814672i \(-0.303083\pi\)
−0.870828 + 0.491589i \(0.836416\pi\)
\(182\) 0.0532580 + 1.52511i 0.00394774 + 0.113049i
\(183\) 0 0
\(184\) 1.17666 + 16.8270i 0.0867445 + 1.24050i
\(185\) 13.1370 + 0.458752i 0.965848 + 0.0337282i
\(186\) 0 0
\(187\) −3.33254 4.77794i −0.243700 0.349398i
\(188\) 0.980943i 0.0715426i
\(189\) 0 0
\(190\) 0.0839908 + 0.0610229i 0.00609333 + 0.00442706i
\(191\) 4.59762 2.24241i 0.332672 0.162255i −0.264463 0.964396i \(-0.585195\pi\)
0.597135 + 0.802141i \(0.296306\pi\)
\(192\) 0 0
\(193\) 15.1350 + 11.8247i 1.08944 + 0.851164i 0.989601 0.143840i \(-0.0459450\pi\)
0.0998389 + 0.995004i \(0.468167\pi\)
\(194\) −0.852401 + 3.41879i −0.0611988 + 0.245455i
\(195\) 0 0
\(196\) 6.15316 + 7.87569i 0.439511 + 0.562549i
\(197\) 5.18853 8.98679i 0.369667 0.640282i −0.619846 0.784723i \(-0.712805\pi\)
0.989513 + 0.144441i \(0.0461384\pi\)
\(198\) 0 0
\(199\) −13.1963 22.8567i −0.935463 1.62027i −0.773806 0.633423i \(-0.781649\pi\)
−0.161658 0.986847i \(-0.551684\pi\)
\(200\) −5.94255 + 14.7083i −0.420202 + 1.04004i
\(201\) 0 0
\(202\) 0.465781 + 0.449799i 0.0327722 + 0.0316478i
\(203\) 1.30852 9.31064i 0.0918404 0.653479i
\(204\) 0 0
\(205\) 2.72171 38.9223i 0.190093 2.71845i
\(206\) 0.405010 3.85341i 0.0282184 0.268480i
\(207\) 0 0
\(208\) 5.29177 + 3.05520i 0.366918 + 0.211840i
\(209\) −0.120775 + 0.129042i −0.00835420 + 0.00892600i
\(210\) 0 0
\(211\) 0.199344 0.319016i 0.0137234 0.0219620i −0.841115 0.540856i \(-0.818100\pi\)
0.854839 + 0.518894i \(0.173656\pi\)
\(212\) 1.28220 0.864857i 0.0880621 0.0593986i
\(213\) 0 0
\(214\) −7.63212 4.05807i −0.521721 0.277404i
\(215\) −10.4198 + 32.0687i −0.710622 + 2.18707i
\(216\) 0 0
\(217\) −1.25948 + 1.73352i −0.0854989 + 0.117679i
\(218\) −1.43163 10.1866i −0.0969621 0.689921i
\(219\) 0 0
\(220\) −17.7439 9.87808i −1.19629 0.665980i
\(221\) 2.97361 + 3.54381i 0.200027 + 0.238382i
\(222\) 0 0
\(223\) 0.0426395 + 0.0122267i 0.00285535 + 0.000818760i 0.277065 0.960851i \(-0.410638\pi\)
−0.274209 + 0.961670i \(0.588416\pi\)
\(224\) 5.60721 0.589342i 0.374648 0.0393771i
\(225\) 0 0
\(226\) 0.532077 + 2.50323i 0.0353932 + 0.166512i
\(227\) 8.44001 + 0.590183i 0.560183 + 0.0391718i 0.347042 0.937850i \(-0.387186\pi\)
0.213141 + 0.977021i \(0.431631\pi\)
\(228\) 0 0
\(229\) 8.00867 4.25828i 0.529228 0.281395i −0.183279 0.983061i \(-0.558671\pi\)
0.712506 + 0.701666i \(0.247560\pi\)
\(230\) 2.83791 + 16.0946i 0.187126 + 1.06124i
\(231\) 0 0
\(232\) 13.5639 + 11.3814i 0.890512 + 0.747228i
\(233\) −7.83982 + 8.70700i −0.513604 + 0.570415i −0.943039 0.332683i \(-0.892046\pi\)
0.429435 + 0.903098i \(0.358713\pi\)
\(234\) 0 0
\(235\) 0.215839 + 2.05357i 0.0140798 + 0.133960i
\(236\) −13.5017 + 0.471489i −0.878884 + 0.0306913i
\(237\) 0 0
\(238\) 0.987422 + 0.246192i 0.0640051 + 0.0159583i
\(239\) 9.41880 + 13.9639i 0.609251 + 0.903252i 0.999850 0.0173086i \(-0.00550978\pi\)
−0.390599 + 0.920561i \(0.627732\pi\)
\(240\) 0 0
\(241\) −4.18318 0.737607i −0.269462 0.0475134i 0.0372844 0.999305i \(-0.488129\pi\)
−0.306746 + 0.951791i \(0.599240\pi\)
\(242\) −3.52616 + 4.81620i −0.226670 + 0.309597i
\(243\) 0 0
\(244\) −16.8715 + 5.48187i −1.08008 + 0.350941i
\(245\) 14.6143 + 15.1336i 0.933675 + 0.966848i
\(246\) 0 0
\(247\) 0.0864135 0.110604i 0.00549836 0.00703758i
\(248\) −1.51165 3.74146i −0.0959897 0.237583i
\(249\) 0 0
\(250\) −1.55147 + 5.41061i −0.0981234 + 0.342197i
\(251\) −1.82747 + 8.59758i −0.115349 + 0.542675i 0.882085 + 0.471090i \(0.156139\pi\)
−0.997434 + 0.0715852i \(0.977194\pi\)
\(252\) 0 0
\(253\) −27.7871 + 1.40530i −1.74696 + 0.0883505i
\(254\) 0.582417 0.694097i 0.0365441 0.0435515i
\(255\) 0 0
\(256\) −1.18549 + 2.43061i −0.0740928 + 0.151913i
\(257\) 14.1871 14.6912i 0.884967 0.916410i −0.112042 0.993704i \(-0.535739\pi\)
0.997008 + 0.0772936i \(0.0246279\pi\)
\(258\) 0 0
\(259\) −2.07165 3.31534i −0.128726 0.206005i
\(260\) 14.7332 + 6.55964i 0.913714 + 0.406812i
\(261\) 0 0
\(262\) 4.25967 + 0.905420i 0.263163 + 0.0559370i
\(263\) 6.62272 2.41047i 0.408374 0.148636i −0.129661 0.991558i \(-0.541389\pi\)
0.538035 + 0.842922i \(0.319167\pi\)
\(264\) 0 0
\(265\) 2.49395 2.09267i 0.153202 0.128552i
\(266\) 0.00107756 0.0308573i 6.60694e−5 0.00189198i
\(267\) 0 0
\(268\) 1.82580 + 3.74345i 0.111529 + 0.228667i
\(269\) −12.3185 4.00253i −0.751074 0.244039i −0.0916309 0.995793i \(-0.529208\pi\)
−0.659443 + 0.751754i \(0.729208\pi\)
\(270\) 0 0
\(271\) 16.4548 + 22.6480i 0.999556 + 1.37577i 0.925598 + 0.378509i \(0.123563\pi\)
0.0739580 + 0.997261i \(0.476437\pi\)
\(272\) 2.93115 2.83058i 0.177727 0.171629i
\(273\) 0 0
\(274\) −3.33385 + 9.15968i −0.201405 + 0.553356i
\(275\) −24.0668 10.2677i −1.45128 0.619167i
\(276\) 0 0
\(277\) 15.6164 12.2009i 0.938298 0.733079i −0.0255102 0.999675i \(-0.508121\pi\)
0.963808 + 0.266596i \(0.0858988\pi\)
\(278\) −4.53233 10.1798i −0.271831 0.610543i
\(279\) 0 0
\(280\) 7.53951 1.60257i 0.450572 0.0957720i
\(281\) −3.80981 + 2.38064i −0.227274 + 0.142017i −0.638777 0.769392i \(-0.720560\pi\)
0.411503 + 0.911408i \(0.365004\pi\)
\(282\) 0 0
\(283\) −0.447851 0.218432i −0.0266220 0.0129844i 0.425012 0.905188i \(-0.360270\pi\)
−0.451634 + 0.892203i \(0.649159\pi\)
\(284\) 2.01906 + 3.79730i 0.119809 + 0.225328i
\(285\) 0 0
\(286\) 2.44883 4.05871i 0.144803 0.239996i
\(287\) −10.0493 + 5.80197i −0.593192 + 0.342480i
\(288\) 0 0
\(289\) −12.7120 + 5.65976i −0.747766 + 0.332927i
\(290\) 14.2222 + 9.59297i 0.835154 + 0.563319i
\(291\) 0 0
\(292\) 14.4701 5.84631i 0.846799 0.342129i
\(293\) −31.5713 + 9.05293i −1.84442 + 0.528878i −0.999977 0.00677345i \(-0.997844\pi\)
−0.844439 + 0.535651i \(0.820066\pi\)
\(294\) 0 0
\(295\) −28.1615 + 3.95785i −1.63963 + 0.230435i
\(296\) 7.36225 0.427922
\(297\) 0 0
\(298\) 0.997152 0.0577634
\(299\) 21.8799 3.07503i 1.26535 0.177833i
\(300\) 0 0
\(301\) 9.63973 2.76415i 0.555625 0.159323i
\(302\) −2.93862 + 1.18728i −0.169099 + 0.0683204i
\(303\) 0 0
\(304\) −0.102495 0.0691335i −0.00587847 0.00396508i
\(305\) −34.1136 + 15.1883i −1.95334 + 0.869682i
\(306\) 0 0
\(307\) −14.1577 + 8.17396i −0.808023 + 0.466512i −0.846269 0.532756i \(-0.821156\pi\)
0.0382458 + 0.999268i \(0.487823\pi\)
\(308\) 0.515393 + 6.01773i 0.0293673 + 0.342892i
\(309\) 0 0
\(310\) −1.83546 3.45201i −0.104247 0.196061i
\(311\) 3.21980 + 1.57040i 0.182578 + 0.0890494i 0.527393 0.849621i \(-0.323169\pi\)
−0.344815 + 0.938671i \(0.612058\pi\)
\(312\) 0 0
\(313\) 10.1456 6.33968i 0.573464 0.358340i −0.211979 0.977274i \(-0.567991\pi\)
0.785443 + 0.618934i \(0.212435\pi\)
\(314\) −8.65380 + 1.83942i −0.488362 + 0.103805i
\(315\) 0 0
\(316\) 1.54506 + 3.47025i 0.0869162 + 0.195217i
\(317\) 19.5234 15.2534i 1.09654 0.856714i 0.106062 0.994360i \(-0.466176\pi\)
0.990482 + 0.137646i \(0.0439535\pi\)
\(318\) 0 0
\(319\) −19.2007 + 22.0064i −1.07503 + 1.23212i
\(320\) 2.17892 5.98655i 0.121806 0.334658i
\(321\) 0 0
\(322\) 3.49631 3.37635i 0.194842 0.188156i
\(323\) −0.0550163 0.0757235i −0.00306119 0.00421337i
\(324\) 0 0
\(325\) 19.7620 + 6.42107i 1.09620 + 0.356177i
\(326\) −1.98610 4.07211i −0.110000 0.225533i
\(327\) 0 0
\(328\) 0.762655 21.8396i 0.0421106 1.20589i
\(329\) 0.470432 0.394739i 0.0259358 0.0217627i
\(330\) 0 0
\(331\) −19.3560 + 7.04503i −1.06390 + 0.387230i −0.813894 0.581013i \(-0.802656\pi\)
−0.250011 + 0.968243i \(0.580434\pi\)
\(332\) 16.3733 + 3.48026i 0.898603 + 0.191004i
\(333\) 0 0
\(334\) −1.97926 0.881224i −0.108300 0.0482184i
\(335\) 4.64593 + 7.43504i 0.253834 + 0.406219i
\(336\) 0 0
\(337\) −9.36026 + 9.69284i −0.509886 + 0.528002i −0.924087 0.382183i \(-0.875172\pi\)
0.414201 + 0.910186i \(0.364061\pi\)
\(338\) 1.44221 2.95698i 0.0784460 0.160838i
\(339\) 0 0
\(340\) 6.91302 8.23861i 0.374911 0.446801i
\(341\) 6.21818 2.37389i 0.336733 0.128554i
\(342\) 0 0
\(343\) 2.85482 13.4309i 0.154146 0.725200i
\(344\) −5.20552 + 18.1538i −0.280663 + 0.978789i
\(345\) 0 0
\(346\) −3.52945 8.73571i −0.189745 0.469635i
\(347\) −12.5855 + 16.1087i −0.675624 + 0.864759i −0.996605 0.0823263i \(-0.973765\pi\)
0.320982 + 0.947085i \(0.395987\pi\)
\(348\) 0 0
\(349\) −20.1038 20.8181i −1.07613 1.11437i −0.993034 0.117824i \(-0.962408\pi\)
−0.0830962 0.996542i \(-0.526481\pi\)
\(350\) 4.34724 1.41250i 0.232370 0.0755015i
\(351\) 0 0
\(352\) −15.5899 7.97940i −0.830944 0.425303i
\(353\) −27.2570 4.80614i −1.45074 0.255805i −0.607921 0.793997i \(-0.707996\pi\)
−0.842822 + 0.538192i \(0.819107\pi\)
\(354\) 0 0
\(355\) 5.06236 + 7.50526i 0.268682 + 0.398338i
\(356\) −16.5192 4.11869i −0.875514 0.218290i
\(357\) 0 0
\(358\) 6.56774 0.229351i 0.347116 0.0121216i
\(359\) −1.65504 15.7466i −0.0873495 0.831075i −0.947225 0.320570i \(-0.896125\pi\)
0.859875 0.510504i \(-0.170541\pi\)
\(360\) 0 0
\(361\) 12.7116 14.1176i 0.669031 0.743034i
\(362\) −2.43135 2.04014i −0.127789 0.107228i
\(363\) 0 0
\(364\) −0.832885 4.72352i −0.0436550 0.247580i
\(365\) 29.0063 15.4229i 1.51826 0.807272i
\(366\) 0 0
\(367\) 19.7769 + 1.38293i 1.03234 + 0.0721886i 0.575865 0.817545i \(-0.304666\pi\)
0.456480 + 0.889734i \(0.349110\pi\)
\(368\) −4.04631 19.0364i −0.210929 0.992341i
\(369\) 0 0
\(370\) 7.09392 0.745601i 0.368795 0.0387620i
\(371\) −0.930729 0.266882i −0.0483210 0.0138558i
\(372\) 0 0
\(373\) 7.88362 + 9.39534i 0.408199 + 0.486472i 0.930502 0.366288i \(-0.119371\pi\)
−0.522303 + 0.852760i \(0.674927\pi\)
\(374\) −2.15161 2.31580i −0.111257 0.119747i
\(375\) 0 0
\(376\) 0.160954 + 1.14525i 0.00830056 + 0.0590615i
\(377\) 13.6325 18.7635i 0.702110 0.966371i
\(378\) 0 0
\(379\) −3.89229 + 11.9792i −0.199934 + 0.615332i 0.799950 + 0.600067i \(0.204859\pi\)
−0.999883 + 0.0152656i \(0.995141\pi\)
\(380\) −0.288110 0.153191i −0.0147797 0.00785852i
\(381\) 0 0
\(382\) 2.30123 1.55220i 0.117741 0.0794173i
\(383\) 3.26429 5.22395i 0.166797 0.266932i −0.754081 0.656781i \(-0.771917\pi\)
0.920879 + 0.389850i \(0.127473\pi\)
\(384\) 0 0
\(385\) 2.40305 + 12.4845i 0.122471 + 0.636269i
\(386\) 9.02595 + 5.21114i 0.459409 + 0.265240i
\(387\) 0 0
\(388\) 1.15758 11.0137i 0.0587674 0.559135i
\(389\) 1.62287 23.2081i 0.0822828 1.17670i −0.764451 0.644682i \(-0.776990\pi\)
0.846734 0.532017i \(-0.178566\pi\)
\(390\) 0 0
\(391\) 2.05061 14.5908i 0.103704 0.737889i
\(392\) 8.47603 + 8.18521i 0.428104 + 0.413416i
\(393\) 0 0
\(394\) 2.10942 5.22099i 0.106271 0.263029i
\(395\) 3.99809 + 6.92489i 0.201166 + 0.348429i
\(396\) 0 0
\(397\) 7.41242 12.8387i 0.372018 0.644355i −0.617857 0.786290i \(-0.711999\pi\)
0.989876 + 0.141935i \(0.0453325\pi\)
\(398\) −8.81735 11.2857i −0.441974 0.565701i
\(399\) 0 0
\(400\) 4.42779 17.7589i 0.221390 0.887945i
\(401\) 9.14444 + 7.14442i 0.456652 + 0.356775i 0.817577 0.575819i \(-0.195317\pi\)
−0.360925 + 0.932595i \(0.617539\pi\)
\(402\) 0 0
\(403\) −4.75075 + 2.31710i −0.236652 + 0.115423i
\(404\) −1.64647 1.19623i −0.0819151 0.0595148i
\(405\) 0 0
\(406\) 5.10199i 0.253207i
\(407\) −0.234141 + 12.1412i −0.0116059 + 0.601817i
\(408\) 0 0
\(409\) 15.0665 + 0.526134i 0.744991 + 0.0260156i 0.404880 0.914370i \(-0.367313\pi\)
0.340111 + 0.940385i \(0.389536\pi\)
\(410\) −1.47691 21.1208i −0.0729395 1.04308i
\(411\) 0 0
\(412\) 0.425011 + 12.1707i 0.0209388 + 0.599608i
\(413\) 5.65930 + 6.28528i 0.278476 + 0.309279i
\(414\) 0 0
\(415\) 35.0427 + 3.68314i 1.72018 + 0.180798i
\(416\) 12.8952 + 5.21001i 0.632240 + 0.255442i
\(417\) 0 0
\(418\) −0.0551545 + 0.0784629i −0.00269769 + 0.00383775i
\(419\) −29.6409 + 5.22648i −1.44805 + 0.255330i −0.841734 0.539892i \(-0.818465\pi\)
−0.606317 + 0.795223i \(0.707354\pi\)
\(420\) 0 0
\(421\) −2.27311 9.11694i −0.110785 0.444332i 0.889127 0.457661i \(-0.151313\pi\)
−0.999911 + 0.0133288i \(0.995757\pi\)
\(422\) 0.0830269 0.186481i 0.00404168 0.00907777i
\(423\) 0 0
\(424\) 1.35506 1.22010i 0.0658075 0.0592533i
\(425\) 7.74854 11.4877i 0.375859 0.557235i
\(426\) 0 0
\(427\) 9.41815 + 5.88512i 0.455776 + 0.284801i
\(428\) 25.5297 + 9.29204i 1.23402 + 0.449148i
\(429\) 0 0
\(430\) −3.17730 + 18.0194i −0.153223 + 0.868971i
\(431\) −1.95441 6.01505i −0.0941406 0.289735i 0.892888 0.450278i \(-0.148675\pi\)
−0.987029 + 0.160544i \(0.948675\pi\)
\(432\) 0 0
\(433\) −2.99784 + 2.17806i −0.144067 + 0.104671i −0.657484 0.753468i \(-0.728379\pi\)
0.513417 + 0.858139i \(0.328379\pi\)
\(434\) −0.545876 + 1.02664i −0.0262029 + 0.0492805i
\(435\) 0 0
\(436\) 8.91173 + 31.0789i 0.426795 + 1.48841i
\(437\) −0.445955 + 0.0311842i −0.0213329 + 0.00149174i
\(438\) 0 0
\(439\) 1.51479 + 4.16186i 0.0722971 + 0.198635i 0.970578 0.240787i \(-0.0774056\pi\)
−0.898281 + 0.439422i \(0.855183\pi\)
\(440\) −22.3367 8.62118i −1.06486 0.410999i
\(441\) 0 0
\(442\) 1.86553 + 1.67973i 0.0887343 + 0.0798967i
\(443\) 26.2850 6.55359i 1.24884 0.311370i 0.439248 0.898366i \(-0.355245\pi\)
0.809590 + 0.586995i \(0.199689\pi\)
\(444\) 0 0
\(445\) −35.4885 4.98759i −1.68232 0.236434i
\(446\) 0.0238362 + 0.00334995i 0.00112868 + 0.000158625i
\(447\) 0 0
\(448\) −1.83841 + 0.458367i −0.0868568 + 0.0216558i
\(449\) −29.3966 26.4688i −1.38731 1.24914i −0.933755 0.357912i \(-0.883489\pi\)
−0.453555 0.891228i \(-0.649845\pi\)
\(450\) 0 0
\(451\) 35.9917 + 1.95227i 1.69478 + 0.0919287i
\(452\) −2.75104 7.55841i −0.129398 0.355518i
\(453\) 0 0
\(454\) 4.57989 0.320257i 0.214945 0.0150304i
\(455\) −2.78294 9.70526i −0.130466 0.454990i
\(456\) 0 0
\(457\) −5.56440 + 10.4651i −0.260292 + 0.489537i −0.978488 0.206303i \(-0.933857\pi\)
0.718197 + 0.695840i \(0.244968\pi\)
\(458\) 3.98195 2.89306i 0.186064 0.135184i
\(459\) 0 0
\(460\) −15.8730 48.8521i −0.740083 2.27774i
\(461\) −0.142306 + 0.807056i −0.00662784 + 0.0375883i −0.987942 0.154822i \(-0.950519\pi\)
0.981314 + 0.192411i \(0.0616306\pi\)
\(462\) 0 0
\(463\) 0.626971 + 0.228199i 0.0291378 + 0.0106053i 0.356548 0.934277i \(-0.383954\pi\)
−0.327410 + 0.944882i \(0.606176\pi\)
\(464\) −17.3247 10.8256i −0.804277 0.502568i
\(465\) 0 0
\(466\) −3.55525 + 5.27087i −0.164694 + 0.244168i
\(467\) 14.9874 13.4947i 0.693535 0.624461i −0.245050 0.969510i \(-0.578804\pi\)
0.938585 + 0.345049i \(0.112138\pi\)
\(468\) 0 0
\(469\) 1.06053 2.38199i 0.0489708 0.109990i
\(470\) 0.271071 + 1.08721i 0.0125036 + 0.0501491i
\(471\) 0 0
\(472\) −15.6858 + 2.76583i −0.721997 + 0.127307i
\(473\) −29.7722 9.16186i −1.36893 0.421263i
\(474\) 0 0
\(475\) −0.389805 0.157491i −0.0178855 0.00722620i
\(476\) −3.18099 0.334336i −0.145800 0.0153242i
\(477\) 0 0
\(478\) 6.11586 + 6.79235i 0.279733 + 0.310675i
\(479\) 0.287530 + 8.23378i 0.0131376 + 0.376211i 0.988097 + 0.153830i \(0.0491608\pi\)
−0.974960 + 0.222381i \(0.928617\pi\)
\(480\) 0 0
\(481\) −0.672701 9.62007i −0.0306725 0.438638i
\(482\) −2.30358 0.0804427i −0.104925 0.00366407i
\(483\) 0 0
\(484\) 8.86827 16.5326i 0.403103 0.751482i
\(485\) 23.3114i 1.05852i
\(486\) 0 0
\(487\) 28.2137 + 20.4984i 1.27848 + 0.928873i 0.999506 0.0314241i \(-0.0100043\pi\)
0.278978 + 0.960297i \(0.410004\pi\)
\(488\) −18.7979 + 9.16833i −0.850940 + 0.415031i
\(489\) 0 0
\(490\) 8.99606 + 7.02849i 0.406400 + 0.317515i
\(491\) −1.16625 + 4.67757i −0.0526321 + 0.211096i −0.990854 0.134938i \(-0.956916\pi\)
0.938222 + 0.346034i \(0.112472\pi\)
\(492\) 0 0
\(493\) −9.52209 12.1877i −0.428854 0.548907i
\(494\) 0.0380822 0.0659603i 0.00171340 0.00296770i
\(495\) 0 0
\(496\) 2.32787 + 4.03199i 0.104525 + 0.181042i
\(497\) 1.00859 2.49635i 0.0452415 0.111977i
\(498\) 0 0
\(499\) 13.9416 + 13.4632i 0.624111 + 0.602697i 0.937946 0.346780i \(-0.112725\pi\)
−0.313835 + 0.949477i \(0.601614\pi\)
\(500\) 2.46212 17.5189i 0.110109 0.783469i
\(501\) 0 0
\(502\) −0.332713 + 4.75801i −0.0148497 + 0.212361i
\(503\) 1.94852 18.5389i 0.0868802 0.826610i −0.861133 0.508380i \(-0.830245\pi\)
0.948013 0.318231i \(-0.103089\pi\)
\(504\) 0 0
\(505\) −3.71004 2.14199i −0.165095 0.0953174i
\(506\) −14.8256 + 2.85367i −0.659077 + 0.126861i
\(507\) 0 0
\(508\) −1.50913 + 2.41511i −0.0669566 + 0.107153i
\(509\) −6.79118 + 4.58071i −0.301014 + 0.203036i −0.700408 0.713743i \(-0.746998\pi\)
0.399394 + 0.916779i \(0.369221\pi\)
\(510\) 0 0
\(511\) −8.62661 4.58685i −0.381619 0.202910i
\(512\) 6.66865 20.5240i 0.294716 0.907041i
\(513\) 0 0
\(514\) 6.51409 8.96587i 0.287324 0.395468i
\(515\) 3.56769 + 25.3854i 0.157211 + 1.11862i
\(516\) 0 0
\(517\) −1.89376 + 0.229009i −0.0832876 + 0.0100718i
\(518\) −1.36360 1.62508i −0.0599132 0.0714018i
\(519\) 0 0
\(520\) 18.2772 + 5.24091i 0.801510 + 0.229829i
\(521\) −22.9892 + 2.41626i −1.00717 + 0.105858i −0.593724 0.804669i \(-0.702343\pi\)
−0.413450 + 0.910527i \(0.635676\pi\)
\(522\) 0 0
\(523\) −5.19998 24.4640i −0.227379 1.06973i −0.932646 0.360793i \(-0.882506\pi\)
0.705267 0.708942i \(-0.250827\pi\)
\(524\) −13.6540 0.954784i −0.596480 0.0417099i
\(525\) 0 0
\(526\) 3.37674 1.79545i 0.147233 0.0782852i
\(527\) 0.612077 + 3.47126i 0.0266625 + 0.151210i
\(528\) 0 0
\(529\) −36.2895 30.4505i −1.57781 1.32394i
\(530\) 1.18211 1.31286i 0.0513475 0.0570272i
\(531\) 0 0
\(532\) 0.0101439 + 0.0965130i 0.000439795 + 0.00418437i
\(533\) −28.6069 + 0.998976i −1.23910 + 0.0432705i
\(534\) 0 0
\(535\) 55.4900 + 13.8352i 2.39904 + 0.598148i
\(536\) 2.74584 + 4.07088i 0.118602 + 0.175835i
\(537\) 0 0
\(538\) −6.92177 1.22049i −0.298419 0.0526192i
\(539\) −13.7679 + 13.7177i −0.593027 + 0.590861i
\(540\) 0 0
\(541\) −8.47526 + 2.75378i −0.364380 + 0.118394i −0.485484 0.874246i \(-0.661357\pi\)
0.121104 + 0.992640i \(0.461357\pi\)
\(542\) 10.5525 + 10.9275i 0.453270 + 0.469375i
\(543\) 0 0
\(544\) 5.71003 7.30851i 0.244816 0.313350i
\(545\) 25.4947 + 63.1017i 1.09207 + 2.70298i
\(546\) 0 0
\(547\) −10.3311 + 36.0290i −0.441728 + 1.54049i 0.354243 + 0.935153i \(0.384739\pi\)
−0.795971 + 0.605335i \(0.793039\pi\)
\(548\) 6.36975 29.9673i 0.272102 1.28014i
\(549\) 0 0
\(550\) −13.7080 3.69992i −0.584509 0.157765i
\(551\) −0.301635 + 0.359474i −0.0128501 + 0.0153141i
\(552\) 0 0
\(553\) 1.04249 2.13742i 0.0443312 0.0908925i
\(554\) 7.47021 7.73563i 0.317379 0.328655i
\(555\) 0 0
\(556\) 18.5596 + 29.7015i 0.787101 + 1.25962i
\(557\) 29.4829 + 13.1266i 1.24923 + 0.556193i 0.921426 0.388553i \(-0.127025\pi\)
0.327803 + 0.944746i \(0.393692\pi\)
\(558\) 0 0
\(559\) 24.1968 + 5.14319i 1.02342 + 0.217534i
\(560\) −8.35677 + 3.04162i −0.353138 + 0.128532i
\(561\) 0 0
\(562\) −1.86745 + 1.56698i −0.0787738 + 0.0660990i
\(563\) −1.08873 + 31.1771i −0.0458844 + 1.31396i 0.730158 + 0.683278i \(0.239446\pi\)
−0.776043 + 0.630680i \(0.782776\pi\)
\(564\) 0 0
\(565\) −7.42229 15.2180i −0.312258 0.640224i
\(566\) −0.257154 0.0835543i −0.0108090 0.00351205i
\(567\) 0 0
\(568\) 2.98031 + 4.10204i 0.125051 + 0.172118i
\(569\) −11.1522 + 10.7695i −0.467523 + 0.451481i −0.890717 0.454557i \(-0.849797\pi\)
0.423195 + 0.906039i \(0.360909\pi\)
\(570\) 0 0
\(571\) 0.309692 0.850873i 0.0129602 0.0356079i −0.933044 0.359763i \(-0.882858\pi\)
0.946004 + 0.324155i \(0.105080\pi\)
\(572\) −5.84648 + 13.7037i −0.244454 + 0.572981i
\(573\) 0 0
\(574\) −4.96193 + 3.87668i −0.207107 + 0.161810i
\(575\) −26.9184 60.4596i −1.12257 2.52134i
\(576\) 0 0
\(577\) 27.6834 5.88428i 1.15247 0.244966i 0.408233 0.912878i \(-0.366145\pi\)
0.744241 + 0.667912i \(0.232812\pi\)
\(578\) −6.40350 + 4.00135i −0.266351 + 0.166434i
\(579\) 0 0
\(580\) −48.4620 23.6365i −2.01227 0.981451i
\(581\) −4.91973 9.25266i −0.204105 0.383865i
\(582\) 0 0
\(583\) 1.96899 + 2.27345i 0.0815474 + 0.0941568i
\(584\) 15.9345 9.19980i 0.659375 0.380690i
\(585\) 0 0
\(586\) −16.2815 + 7.24898i −0.672582 + 0.299453i
\(587\) 8.44651 + 5.69724i 0.348625 + 0.235150i 0.721005 0.692930i \(-0.243680\pi\)
−0.372380 + 0.928080i \(0.621458\pi\)
\(588\) 0 0
\(589\) 0.0991573 0.0400622i 0.00408571 0.00165073i
\(590\) −14.8340 + 4.25358i −0.610706 + 0.175117i
\(591\) 0 0
\(592\) −8.41158 + 1.18217i −0.345714 + 0.0485869i
\(593\) 35.2916 1.44925 0.724626 0.689142i \(-0.242012\pi\)
0.724626 + 0.689142i \(0.242012\pi\)
\(594\) 0 0
\(595\) −6.73285 −0.276020
\(596\) −3.10358 + 0.436180i −0.127128 + 0.0178666i
\(597\) 0 0
\(598\) 11.5252 3.30479i 0.471300 0.135143i
\(599\) 12.7896 5.16735i 0.522570 0.211132i −0.0981392 0.995173i \(-0.531289\pi\)
0.620710 + 0.784041i \(0.286845\pi\)
\(600\) 0 0
\(601\) −3.61563 2.43878i −0.147485 0.0994797i 0.483234 0.875491i \(-0.339462\pi\)
−0.630719 + 0.776012i \(0.717240\pi\)
\(602\) 4.97126 2.21335i 0.202613 0.0902092i
\(603\) 0 0
\(604\) 8.62697 4.98078i 0.351026 0.202665i
\(605\) 14.9277 36.5617i 0.606897 1.48644i
\(606\) 0 0
\(607\) 15.3953 + 28.9544i 0.624876 + 1.17522i 0.971460 + 0.237203i \(0.0762306\pi\)
−0.346584 + 0.938019i \(0.612658\pi\)
\(608\) −0.252918 0.123356i −0.0102572 0.00500276i
\(609\) 0 0
\(610\) −17.1842 + 10.7379i −0.695770 + 0.434765i
\(611\) 1.48176 0.314958i 0.0599455 0.0127418i
\(612\) 0 0
\(613\) −3.61714 8.12423i −0.146095 0.328134i 0.825645 0.564191i \(-0.190812\pi\)
−0.971739 + 0.236056i \(0.924145\pi\)
\(614\) −6.99048 + 5.46156i −0.282113 + 0.220411i
\(615\) 0 0
\(616\) 1.58911 + 6.94110i 0.0640272 + 0.279665i
\(617\) 4.75525 13.0649i 0.191439 0.525975i −0.806422 0.591340i \(-0.798599\pi\)
0.997861 + 0.0653652i \(0.0208212\pi\)
\(618\) 0 0
\(619\) −28.8044 + 27.8161i −1.15775 + 1.11802i −0.166495 + 0.986042i \(0.553245\pi\)
−0.991252 + 0.131981i \(0.957866\pi\)
\(620\) 7.22278 + 9.94131i 0.290074 + 0.399253i
\(621\) 0 0
\(622\) 1.84879 + 0.600709i 0.0741298 + 0.0240862i
\(623\) 4.67224 + 9.57951i 0.187189 + 0.383795i
\(624\) 0 0
\(625\) −0.0770034 + 2.20509i −0.00308013 + 0.0882035i
\(626\) 4.97307 4.17290i 0.198764 0.166783i
\(627\) 0 0
\(628\) 26.1299 9.51050i 1.04270 0.379510i
\(629\) −6.29036 1.33706i −0.250813 0.0533120i
\(630\) 0 0
\(631\) −16.2036 7.21432i −0.645056 0.287197i 0.0580165 0.998316i \(-0.481522\pi\)
−0.703073 + 0.711118i \(0.748189\pi\)
\(632\) 2.37325 + 3.79799i 0.0944027 + 0.151076i
\(633\) 0 0
\(634\) 9.33915 9.67097i 0.370905 0.384083i
\(635\) −2.62790 + 5.38799i −0.104285 + 0.213816i
\(636\) 0 0
\(637\) 9.92095 11.8233i 0.393082 0.468457i
\(638\) −8.65574 + 13.2754i −0.342684 + 0.525580i
\(639\) 0 0
\(640\) 8.60180 40.4683i 0.340016 1.59965i
\(641\) 9.59436 33.4595i 0.378954 1.32157i −0.508653 0.860971i \(-0.669857\pi\)
0.887608 0.460600i \(-0.152366\pi\)
\(642\) 0 0
\(643\) −4.40635 10.9061i −0.173769 0.430094i 0.815016 0.579439i \(-0.196728\pi\)
−0.988785 + 0.149344i \(0.952284\pi\)
\(644\) −9.40518 + 12.0381i −0.370616 + 0.474367i
\(645\) 0 0
\(646\) −0.0352823 0.0365359i −0.00138816 0.00143749i
\(647\) 5.95410 1.93461i 0.234080 0.0760572i −0.189628 0.981856i \(-0.560728\pi\)
0.423708 + 0.905799i \(0.360728\pi\)
\(648\) 0 0
\(649\) −4.06232 25.9556i −0.159460 1.01885i
\(650\) 11.1042 + 1.95798i 0.435544 + 0.0767982i
\(651\) 0 0
\(652\) 7.96287 + 11.8054i 0.311850 + 0.462337i
\(653\) −4.17707 1.04146i −0.163461 0.0407555i 0.159332 0.987225i \(-0.449066\pi\)
−0.322793 + 0.946470i \(0.604622\pi\)
\(654\) 0 0
\(655\) −28.7943 + 1.00552i −1.12509 + 0.0392889i
\(656\) 2.63547 + 25.0748i 0.102898 + 0.979006i
\(657\) 0 0
\(658\) 0.222980 0.247645i 0.00869268 0.00965419i
\(659\) 27.5014 + 23.0764i 1.07130 + 0.898930i 0.995170 0.0981673i \(-0.0312980\pi\)
0.0761335 + 0.997098i \(0.475742\pi\)
\(660\) 0 0
\(661\) 0.340867 + 1.93315i 0.0132582 + 0.0751910i 0.990719 0.135926i \(-0.0434010\pi\)
−0.977461 + 0.211117i \(0.932290\pi\)
\(662\) −9.86912 + 5.24751i −0.383574 + 0.203950i
\(663\) 0 0
\(664\) 19.6868 + 1.37664i 0.763997 + 0.0534239i
\(665\) 0.0424719 + 0.199814i 0.00164699 + 0.00774847i
\(666\) 0 0
\(667\) −73.4652 + 7.72151i −2.84459 + 0.298978i
\(668\) 6.54582 + 1.87698i 0.253265 + 0.0726227i
\(669\) 0 0
\(670\) 3.05804 + 3.64443i 0.118142 + 0.140797i
\(671\) −14.5218 31.2915i −0.560609 1.20799i
\(672\) 0 0
\(673\) −0.0277930 0.197758i −0.00107134 0.00762299i 0.989725 0.142984i \(-0.0456696\pi\)
−0.990796 + 0.135361i \(0.956781\pi\)
\(674\) −4.29782 + 5.91544i −0.165546 + 0.227854i
\(675\) 0 0
\(676\) −3.19536 + 9.83429i −0.122898 + 0.378242i
\(677\) 6.93865 + 3.68935i 0.266674 + 0.141793i 0.597425 0.801925i \(-0.296191\pi\)
−0.330751 + 0.943718i \(0.607302\pi\)
\(678\) 0 0
\(679\) −5.74766 + 3.87685i −0.220575 + 0.148780i
\(680\) 6.71911 10.7528i 0.257666 0.412352i
\(681\) 0 0
\(682\) 3.16212 1.74524i 0.121084 0.0668287i
\(683\) 34.5551 + 19.9504i 1.32221 + 0.763380i 0.984081 0.177719i \(-0.0568719\pi\)
0.338131 + 0.941099i \(0.390205\pi\)
\(684\) 0 0
\(685\) 6.74108 64.1371i 0.257563 2.45055i
\(686\) 0.519754 7.43283i 0.0198443 0.283787i
\(687\) 0 0
\(688\) 3.03247 21.5771i 0.115612 0.822620i
\(689\) −1.71809 1.65914i −0.0654540 0.0632082i
\(690\) 0 0
\(691\) 14.3439 35.5025i 0.545669 1.35058i −0.362504 0.931982i \(-0.618078\pi\)
0.908173 0.418596i \(-0.137478\pi\)
\(692\) 14.8065 + 25.6456i 0.562858 + 0.974898i
\(693\) 0 0
\(694\) −5.54639 + 9.60663i −0.210538 + 0.364663i
\(695\) 45.3890 + 58.0953i 1.72170 + 2.20368i
\(696\) 0 0
\(697\) −4.61790 + 18.5214i −0.174915 + 0.701547i
\(698\) −12.3752 9.66855i −0.468407 0.365960i
\(699\) 0 0
\(700\) −12.9127 + 6.29794i −0.488054 + 0.238040i
\(701\) 25.9677 + 18.8666i 0.980787 + 0.712583i 0.957884 0.287154i \(-0.0927093\pi\)
0.0229024 + 0.999738i \(0.492709\pi\)
\(702\) 0 0
\(703\) 0.195117i 0.00735896i
\(704\) 5.56121 + 1.92626i 0.209596 + 0.0725988i
\(705\) 0 0
\(706\) −15.0098 0.524153i −0.564901 0.0197268i
\(707\) 0.0888752 + 1.27097i 0.00334249 + 0.0477999i
\(708\) 0 0
\(709\) 0.366215 + 10.4870i 0.0137535 + 0.393849i 0.986674 + 0.162709i \(0.0520232\pi\)
−0.972921 + 0.231140i \(0.925755\pi\)
\(710\) 3.28712 + 3.65071i 0.123363 + 0.137009i
\(711\) 0 0
\(712\) −19.9618 2.09807i −0.748102 0.0786286i
\(713\) 15.6091 + 6.30650i 0.584566 + 0.236180i
\(714\) 0 0
\(715\) −9.22414 + 29.9746i −0.344963 + 1.12099i
\(716\) −20.3414 + 3.58674i −0.760195 + 0.134043i
\(717\) 0 0
\(718\) −2.07855 8.33662i −0.0775709 0.311120i
\(719\) −19.9909 + 44.9004i −0.745536 + 1.67450i −0.00728560 + 0.999973i \(0.502319\pi\)
−0.738250 + 0.674527i \(0.764348\pi\)
\(720\) 0 0
\(721\) 5.66569 5.10141i 0.211001 0.189987i
\(722\) 5.76452 8.54625i 0.214533 0.318059i
\(723\) 0 0
\(724\) 8.45986 + 5.28631i 0.314408 + 0.196464i
\(725\) −65.2807 23.7602i −2.42446 0.882433i
\(726\) 0 0
\(727\) −3.86949 + 21.9450i −0.143511 + 0.813894i 0.825039 + 0.565076i \(0.191153\pi\)
−0.968550 + 0.248818i \(0.919958\pi\)
\(728\) −1.74743 5.37803i −0.0647640 0.199323i
\(729\) 0 0
\(730\) 14.4221 10.4782i 0.533785 0.387817i
\(731\) 7.74455 14.5654i 0.286443 0.538720i
\(732\) 0 0
\(733\) 0.181640 + 0.633455i 0.00670904 + 0.0233972i 0.964545 0.263918i \(-0.0850149\pi\)
−0.957836 + 0.287316i \(0.907237\pi\)
\(734\) 10.7317 0.750437i 0.396116 0.0276991i
\(735\) 0 0
\(736\) −15.1504 41.6255i −0.558453 1.53434i
\(737\) −6.80068 + 4.39875i −0.250506 + 0.162030i
\(738\) 0 0
\(739\) −11.1411 10.0315i −0.409831 0.369014i 0.438274 0.898841i \(-0.355590\pi\)
−0.848105 + 0.529828i \(0.822257\pi\)
\(740\) −21.7533 + 5.42371i −0.799668 + 0.199380i
\(741\) 0 0
\(742\) −0.520292 0.0731223i −0.0191005 0.00268440i
\(743\) −5.54396 0.779153i −0.203388 0.0285843i 0.0367432 0.999325i \(-0.488302\pi\)
−0.240131 + 0.970740i \(0.577191\pi\)
\(744\) 0 0
\(745\) −6.40126 + 1.59601i −0.234524 + 0.0584734i
\(746\) 4.94589 + 4.45330i 0.181082 + 0.163047i
\(747\) 0 0
\(748\) 7.70977 + 6.26663i 0.281897 + 0.229131i
\(749\) −5.81715 15.9825i −0.212554 0.583987i
\(750\) 0 0
\(751\) −12.6875 + 0.887193i −0.462972 + 0.0323741i −0.299338 0.954147i \(-0.596766\pi\)
−0.163634 + 0.986521i \(0.552321\pi\)
\(752\) −0.367789 1.28263i −0.0134119 0.0467728i
\(753\) 0 0
\(754\) 5.90852 11.1123i 0.215176 0.404687i
\(755\) 16.9643 12.3253i 0.617395 0.448563i
\(756\) 0 0
\(757\) −8.93499 27.4991i −0.324748 0.999471i −0.971554 0.236817i \(-0.923896\pi\)
0.646807 0.762654i \(-0.276104\pi\)
\(758\) −1.18688 + 6.73112i −0.0431094 + 0.244485i
\(759\) 0 0
\(760\) −0.361503 0.131576i −0.0131131 0.00477277i
\(761\) 18.3085 + 11.4404i 0.663683 + 0.414715i 0.819507 0.573070i \(-0.194248\pi\)
−0.155823 + 0.987785i \(0.549803\pi\)
\(762\) 0 0
\(763\) 11.3184 16.7802i 0.409753 0.607484i
\(764\) −6.48348 + 5.83775i −0.234564 + 0.211202i
\(765\) 0 0
\(766\) 1.35958 3.05367i 0.0491236 0.110334i
\(767\) 5.04728 + 20.2435i 0.182247 + 0.730951i
\(768\) 0 0
\(769\) 46.2586 8.15665i 1.66813 0.294136i 0.741735 0.670693i \(-0.234003\pi\)
0.926394 + 0.376556i \(0.122892\pi\)
\(770\) 2.23414 + 6.52719i 0.0805130 + 0.235224i
\(771\) 0 0
\(772\) −30.3723 12.2712i −1.09312 0.441650i
\(773\) −36.8952 3.87784i −1.32703 0.139476i −0.585650 0.810564i \(-0.699161\pi\)
−0.741378 + 0.671088i \(0.765827\pi\)
\(774\) 0 0
\(775\) 10.5939 + 11.7657i 0.380543 + 0.422636i
\(776\) −0.455658 13.0483i −0.0163572 0.468408i
\(777\) 0 0
\(778\) −0.880636 12.5937i −0.0315723 0.451505i
\(779\) 0.578799 + 0.0202121i 0.0207376 + 0.000724174i
\(780\) 0 0
\(781\) −6.85953 + 4.78442i −0.245453 + 0.171200i
\(782\) 7.99539i 0.285914i
\(783\) 0 0
\(784\) −10.9984 7.99082i −0.392801 0.285387i
\(785\) 52.6093 25.6593i 1.87771 0.915819i
\(786\) 0 0
\(787\) 24.3065 + 18.9903i 0.866433 + 0.676932i 0.947493 0.319778i \(-0.103608\pi\)
−0.0810597 + 0.996709i \(0.525830\pi\)
\(788\) −4.28165 + 17.1728i −0.152527 + 0.611754i
\(789\) 0 0
\(790\) 2.67139 + 3.41922i 0.0950437 + 0.121650i
\(791\) −2.51776 + 4.36088i −0.0895212 + 0.155055i
\(792\) 0 0
\(793\) 13.6976 + 23.7250i 0.486417 + 0.842499i
\(794\) 3.01355 7.45879i 0.106947 0.264703i
\(795\) 0 0
\(796\) 32.3802 + 31.2692i 1.14769 + 1.10831i
\(797\) −2.74561 + 19.5360i −0.0972545 + 0.692001i 0.879227 + 0.476402i \(0.158059\pi\)
−0.976482 + 0.215599i \(0.930830\pi\)
\(798\) 0 0
\(799\) 0.0704679 1.00774i 0.00249297 0.0356512i
\(800\) 4.35451 41.4304i 0.153955 1.46479i
\(801\) 0 0
\(802\) 5.45341 + 3.14853i 0.192567 + 0.111178i
\(803\) 14.6648 + 26.5705i 0.517509 + 0.937651i
\(804\) 0 0
\(805\) −17.0406 + 27.2707i −0.600604 + 0.961167i
\(806\) −2.37788 + 1.60390i −0.0837571 + 0.0564949i
\(807\) 0 0
\(808\) −2.11853 1.12644i −0.0745295 0.0396280i
\(809\) 9.46432 29.1282i 0.332748 1.02409i −0.635073 0.772452i \(-0.719030\pi\)
0.967821 0.251641i \(-0.0809701\pi\)
\(810\) 0 0
\(811\) −23.3881 + 32.1910i −0.821269 + 1.13038i 0.168217 + 0.985750i \(0.446199\pi\)
−0.989486 + 0.144630i \(0.953801\pi\)
\(812\) 2.23174 + 15.8797i 0.0783188 + 0.557267i
\(813\) 0 0
\(814\) 0.791099 + 6.54188i 0.0277280 + 0.229293i
\(815\) 19.2676 + 22.9622i 0.674913 + 0.804330i
\(816\) 0 0
\(817\) −0.481118 0.137958i −0.0168322 0.00482656i
\(818\) 8.13587 0.855115i 0.284464 0.0298984i
\(819\) 0 0
\(820\) 13.8356 + 65.0915i 0.483161 + 2.27309i
\(821\) −48.1453 3.36665i −1.68028 0.117497i −0.802530 0.596611i \(-0.796513\pi\)
−0.877753 + 0.479114i \(0.840958\pi\)
\(822\) 0 0
\(823\) −30.7527 + 16.3515i −1.07197 + 0.569977i −0.909061 0.416664i \(-0.863199\pi\)
−0.162911 + 0.986641i \(0.552088\pi\)
\(824\) 2.49318 + 14.1395i 0.0868539 + 0.492573i
\(825\) 0 0
\(826\) 3.51575 + 2.95007i 0.122329 + 0.102646i
\(827\) 3.74060 4.15436i 0.130074 0.144461i −0.674589 0.738193i \(-0.735679\pi\)
0.804663 + 0.593732i \(0.202346\pi\)
\(828\) 0 0
\(829\) 3.23508 + 30.7797i 0.112359 + 1.06902i 0.894852 + 0.446363i \(0.147281\pi\)
−0.782493 + 0.622659i \(0.786052\pi\)
\(830\) 19.1087 0.667291i 0.663274 0.0231620i
\(831\) 0 0
\(832\) −4.53496 1.13069i −0.157221 0.0391997i
\(833\) −5.75547 8.53283i −0.199415 0.295645i
\(834\) 0 0
\(835\) 14.1164 + 2.48911i 0.488519 + 0.0861391i
\(836\) 0.137344 0.268338i 0.00475013 0.00928065i
\(837\) 0 0
\(838\) −15.5331 + 5.04701i −0.536582 + 0.174346i
\(839\) −21.3293 22.0872i −0.736370 0.762533i 0.241803 0.970325i \(-0.422261\pi\)
−0.978173 + 0.207792i \(0.933372\pi\)
\(840\) 0 0
\(841\) −29.8848 + 38.2508i −1.03051 + 1.31899i
\(842\) −1.91000 4.72741i −0.0658229 0.162917i
\(843\) 0 0
\(844\) −0.176845 + 0.616732i −0.00608725 + 0.0212288i
\(845\) −4.52550 + 21.2908i −0.155682 + 0.732426i
\(846\) 0 0
\(847\) −11.4972 + 2.39988i −0.395049 + 0.0824610i
\(848\) −1.35228 + 1.61158i −0.0464375 + 0.0553420i
\(849\) 0 0
\(850\) 3.29620 6.75820i 0.113059 0.231804i
\(851\) −21.3363 + 22.0944i −0.731399 + 0.757386i
\(852\) 0 0
\(853\) 12.9075 + 20.6563i 0.441945 + 0.707259i 0.991772 0.128019i \(-0.0408619\pi\)
−0.549827 + 0.835279i \(0.685306\pi\)
\(854\) 5.50539 + 2.45116i 0.188391 + 0.0838769i
\(855\) 0 0
\(856\) 31.3304 + 6.65948i 1.07085 + 0.227616i
\(857\) −19.1995 + 6.98806i −0.655844 + 0.238708i −0.648441 0.761265i \(-0.724579\pi\)
−0.00740289 + 0.999973i \(0.502356\pi\)
\(858\) 0 0
\(859\) 10.8737 9.12408i 0.371004 0.311310i −0.438154 0.898900i \(-0.644368\pi\)
0.809159 + 0.587590i \(0.199923\pi\)
\(860\) 2.00704 57.4742i 0.0684396 1.95985i
\(861\) 0 0
\(862\) −1.50448 3.08465i −0.0512430 0.105064i
\(863\) −18.3231 5.95354i −0.623726 0.202661i −0.0199320 0.999801i \(-0.506345\pi\)
−0.603794 + 0.797141i \(0.706345\pi\)
\(864\) 0 0
\(865\) 36.6396 + 50.4301i 1.24579 + 1.71468i
\(866\) −1.44643 + 1.39680i −0.0491518 + 0.0474653i
\(867\) 0 0
\(868\) 1.24993 3.43415i 0.0424254 0.116563i
\(869\) −6.33880 + 3.79297i −0.215029 + 0.128668i
\(870\) 0 0
\(871\) 5.06843 3.95989i 0.171737 0.134176i
\(872\) 15.5039 + 34.8222i 0.525027 + 1.17923i
\(873\) 0 0
\(874\) −0.237283 + 0.0504361i −0.00802623 + 0.00170603i
\(875\) −9.39234 + 5.86898i −0.317519 + 0.198408i
\(876\) 0 0
\(877\) 16.4549 + 8.02559i 0.555642 + 0.271005i 0.694724 0.719276i \(-0.255526\pi\)
−0.139082 + 0.990281i \(0.544415\pi\)
\(878\) 1.12830 + 2.12202i 0.0380782 + 0.0716146i
\(879\) 0 0
\(880\) 26.9047 + 6.26329i 0.906957 + 0.211136i
\(881\) −8.38112 + 4.83884i −0.282367 + 0.163025i −0.634494 0.772927i \(-0.718792\pi\)
0.352127 + 0.935952i \(0.385458\pi\)
\(882\) 0 0
\(883\) −35.1830 + 15.6645i −1.18400 + 0.527151i −0.901779 0.432198i \(-0.857738\pi\)
−0.282222 + 0.959349i \(0.591071\pi\)
\(884\) −6.54113 4.41205i −0.220002 0.148393i
\(885\) 0 0
\(886\) 13.6296 5.50671i 0.457895 0.185002i
\(887\) −4.32739 + 1.24086i −0.145299 + 0.0416639i −0.347499 0.937680i \(-0.612969\pi\)
0.202199 + 0.979344i \(0.435191\pi\)
\(888\) 0 0
\(889\) 1.76550 0.248125i 0.0592130 0.00832184i
\(890\) −19.4468 −0.651858
\(891\) 0 0
\(892\) −0.0756542 −0.00253309
\(893\) −0.0303517 + 0.00426565i −0.00101568 + 0.000142745i
\(894\) 0 0
\(895\) −41.7949 + 11.9845i −1.39705 + 0.400597i
\(896\) −11.4084 + 4.60929i −0.381127 + 0.153985i
\(897\) 0 0
\(898\) −17.7955 12.0032i −0.593844 0.400553i
\(899\) 16.1438 7.18770i 0.538427 0.239723i
\(900\) 0 0
\(901\) −1.37935 + 0.796371i −0.0459530 + 0.0265310i
\(902\) 19.4880 1.66906i 0.648878 0.0555737i
\(903\) 0 0
\(904\) −4.45201 8.37302i −0.148072 0.278482i
\(905\) 18.8736 + 9.20525i 0.627379 + 0.305993i
\(906\) 0 0
\(907\) −27.0709 + 16.9158i −0.898875 + 0.561680i −0.898819 0.438320i \(-0.855574\pi\)
−5.63944e−5 1.00000i \(0.500018\pi\)
\(908\) −14.1146 + 3.00015i −0.468409 + 0.0995635i
\(909\) 0 0
\(910\) −2.22839 5.00505i −0.0738705 0.165916i
\(911\) −24.0466 + 18.7873i −0.796699 + 0.622450i −0.929554 0.368686i \(-0.879808\pi\)
0.132855 + 0.991136i \(0.457586\pi\)
\(912\) 0 0
\(913\) −2.89633 + 32.4221i −0.0958546 + 1.07301i
\(914\) −2.19975 + 6.04376i −0.0727613 + 0.199910i
\(915\) 0 0
\(916\) −11.1281 + 10.7463i −0.367683 + 0.355068i
\(917\) 5.03661 + 6.93230i 0.166324 + 0.228925i
\(918\) 0 0
\(919\) −13.3016 4.32196i −0.438780 0.142568i 0.0812927 0.996690i \(-0.474095\pi\)
−0.520073 + 0.854122i \(0.674095\pi\)
\(920\) −26.5474 54.4302i −0.875240 1.79451i
\(921\) 0 0
\(922\) −0.0155197 + 0.444427i −0.000511115 + 0.0146364i
\(923\) 5.08773 4.26911i 0.167465 0.140519i
\(924\) 0 0
\(925\) −27.1435 + 9.87941i −0.892472 + 0.324833i
\(926\) 0.354143 + 0.0752754i 0.0116379 + 0.00247370i
\(927\) 0 0
\(928\) −42.4783 18.9126i −1.39442 0.620835i
\(929\) 9.42952 + 15.0904i 0.309372 + 0.495099i 0.965799 0.259290i \(-0.0834886\pi\)
−0.656427 + 0.754389i \(0.727933\pi\)
\(930\) 0 0
\(931\) −0.216927 + 0.224634i −0.00710950 + 0.00736210i
\(932\) 8.75990 17.9605i 0.286940 0.588315i
\(933\) 0 0
\(934\) 7.03450 8.38339i 0.230176 0.274313i
\(935\) 17.5190 + 11.4226i 0.572932 + 0.373558i
\(936\) 0 0
\(937\) 5.54827 26.1026i 0.181254 0.852734i −0.789705 0.613487i \(-0.789766\pi\)
0.970959 0.239247i \(-0.0769005\pi\)
\(938\) 0.389997 1.36008i 0.0127339 0.0444082i
\(939\) 0 0
\(940\) −1.31927 3.26530i −0.0430297 0.106502i
\(941\) 4.60346 5.89216i 0.150068 0.192079i −0.707102 0.707111i \(-0.749998\pi\)
0.857171 + 0.515033i \(0.172220\pi\)
\(942\) 0 0
\(943\) 63.3312 + 65.5814i 2.06235 + 2.13562i
\(944\) 17.4773 5.67873i 0.568839 0.184827i
\(945\) 0 0
\(946\) −16.6903 2.67479i −0.542649 0.0869649i
\(947\) 23.6490 + 4.16996i 0.768490 + 0.135505i 0.544130 0.839001i \(-0.316860\pi\)
0.224360 + 0.974506i \(0.427971\pi\)
\(948\) 0 0
\(949\) −13.4771 19.9807i −0.437486 0.648599i
\(950\) −0.221360 0.0551912i −0.00718185 0.00179064i
\(951\) 0 0
\(952\) −3.76865 + 0.131604i −0.122143 + 0.00426531i
\(953\) 0.246283 + 2.34323i 0.00797790 + 0.0759046i 0.997786 0.0665000i \(-0.0211832\pi\)
−0.989809 + 0.142405i \(0.954517\pi\)
\(954\) 0 0
\(955\) −12.2884 + 13.6477i −0.397644 + 0.441629i
\(956\) −22.0064 18.4656i −0.711739 0.597220i
\(957\) 0 0
\(958\) 0.776331 + 4.40279i 0.0250821 + 0.142248i
\(959\) −16.9347 + 9.00435i −0.546850 + 0.290765i
\(960\) 0 0
\(961\) 26.9069 + 1.88152i 0.867965 + 0.0606941i
\(962\) −1.08800 5.11864i −0.0350786 0.165032i
\(963\) 0 0
\(964\) 7.20495 0.757271i 0.232056 0.0243901i
\(965\) −66.2834 19.0064i −2.13374 0.611839i
\(966\) 0 0
\(967\) −33.9891 40.5066i −1.09302 1.30261i −0.949780 0.312917i \(-0.898694\pi\)
−0.143236 0.989689i \(-0.545751\pi\)
\(968\) 7.64098 20.7568i 0.245590 0.667150i
\(969\) 0 0
\(970\) −1.76050 12.5266i −0.0565264 0.402206i
\(971\) −25.6769 + 35.3412i −0.824011 + 1.13415i 0.164997 + 0.986294i \(0.447239\pi\)
−0.989008 + 0.147860i \(0.952761\pi\)
\(972\) 0 0
\(973\) 6.77547 20.8528i 0.217212 0.668509i
\(974\) 16.7090 + 8.88432i 0.535390 + 0.284672i
\(975\) 0 0
\(976\) 20.0049 13.4935i 0.640342 0.431916i
\(977\) −22.7204 + 36.3603i −0.726891 + 1.16327i 0.253715 + 0.967279i \(0.418347\pi\)
−0.980606 + 0.195990i \(0.937208\pi\)
\(978\) 0 0
\(979\) 4.09481 32.8527i 0.130871 1.04998i
\(980\) −31.0742 17.9407i −0.992629 0.573095i
\(981\) 0 0
\(982\) −0.273441 + 2.60162i −0.00872585 + 0.0830209i
\(983\) 0.608144 8.69687i 0.0193968 0.277387i −0.978177 0.207772i \(-0.933379\pi\)
0.997574 0.0696145i \(-0.0221769\pi\)
\(984\) 0 0
\(985\) −5.18492 + 36.8927i −0.165205 + 1.17550i
\(986\) −6.03722 5.83008i −0.192264 0.185668i
\(987\) 0 0
\(988\) −0.0896762 + 0.221956i −0.00285298 + 0.00706137i
\(989\) −39.3944 68.2330i −1.25267 2.16968i
\(990\) 0 0
\(991\) 6.37882 11.0484i 0.202630 0.350965i −0.746745 0.665110i \(-0.768385\pi\)
0.949375 + 0.314145i \(0.101718\pi\)
\(992\) 6.52416 + 8.35054i 0.207142 + 0.265130i
\(993\) 0 0
\(994\) 0.353449 1.41761i 0.0112107 0.0449638i
\(995\) 74.6670 + 58.3362i 2.36710 + 1.84938i
\(996\) 0 0
\(997\) −1.39044 + 0.678161i −0.0440356 + 0.0214776i −0.460257 0.887786i \(-0.652243\pi\)
0.416222 + 0.909263i \(0.363354\pi\)
\(998\) 8.50841 + 6.18172i 0.269329 + 0.195679i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.bb.a.413.20 816
3.2 odd 2 297.2.x.a.83.15 yes 816
11.2 odd 10 inner 891.2.bb.a.332.20 816
27.13 even 9 297.2.x.a.149.15 yes 816
27.14 odd 18 inner 891.2.bb.a.314.20 816
33.2 even 10 297.2.x.a.2.15 816
297.13 odd 90 297.2.x.a.68.15 yes 816
297.68 even 90 inner 891.2.bb.a.233.20 816
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
297.2.x.a.2.15 816 33.2 even 10
297.2.x.a.68.15 yes 816 297.13 odd 90
297.2.x.a.83.15 yes 816 3.2 odd 2
297.2.x.a.149.15 yes 816 27.13 even 9
891.2.bb.a.233.20 816 297.68 even 90 inner
891.2.bb.a.314.20 816 27.14 odd 18 inner
891.2.bb.a.332.20 816 11.2 odd 10 inner
891.2.bb.a.413.20 816 1.1 even 1 trivial