Properties

Label 891.2.bb.a.233.22
Level $891$
Weight $2$
Character 891.233
Analytic conductor $7.115$
Analytic rank $0$
Dimension $816$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [891,2,Mod(8,891)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("891.8"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(891, base_ring=CyclotomicField(90)) chi = DirichletCharacter(H, H._module([5, 27])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.bb (of order \(90\), degree \(24\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(816\)
Relative dimension: \(34\) over \(\Q(\zeta_{90})\)
Twist minimal: no (minimal twist has level 297)
Sato-Tate group: $\mathrm{SU}(2)[C_{90}]$

Embedding invariants

Embedding label 233.22
Character \(\chi\) \(=\) 891.233
Dual form 891.2.bb.a.413.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.793594 + 0.111532i) q^{2} +(-1.30517 - 0.374252i) q^{4} +(3.10727 + 1.25542i) q^{5} +(3.54248 - 2.38943i) q^{7} +(-2.45825 - 1.09449i) q^{8} +(2.32589 + 1.34285i) q^{10} +(-2.26366 - 2.42401i) q^{11} +(2.28030 - 4.28862i) q^{13} +(3.07779 - 1.50114i) q^{14} +(0.474121 + 0.296263i) q^{16} +(-5.16306 - 1.09744i) q^{17} +(0.636201 - 1.42893i) q^{19} +(-3.58568 - 2.80144i) q^{20} +(-1.52608 - 2.17615i) q^{22} +(1.01565 + 2.79048i) q^{23} +(4.48236 + 4.32856i) q^{25} +(2.28795 - 3.14910i) q^{26} +(-5.51779 + 1.79284i) q^{28} +(-0.936240 + 1.91958i) q^{29} +(0.219193 + 6.27687i) q^{31} +(4.46590 + 3.74734i) q^{32} +(-3.97498 - 1.44677i) q^{34} +(14.0072 - 2.97732i) q^{35} +(9.67024 - 4.30547i) q^{37} +(0.664258 - 1.06303i) q^{38} +(-6.26442 - 6.48700i) q^{40} +(-2.36287 - 4.84460i) q^{41} +(-3.85110 - 4.58956i) q^{43} +(2.04728 + 4.01093i) q^{44} +(0.494786 + 2.32779i) q^{46} +(1.60291 + 5.59002i) q^{47} +(4.21753 - 10.4388i) q^{49} +(3.07440 + 3.93505i) q^{50} +(-4.58121 + 4.74398i) q^{52} +(4.45134 + 1.44633i) q^{53} +(-3.99067 - 10.3739i) q^{55} +(-11.3235 + 1.99664i) q^{56} +(-0.957089 + 1.41894i) q^{58} +(3.20015 - 0.797887i) q^{59} +(-2.32705 - 0.0812623i) q^{61} +(-0.526124 + 5.00574i) q^{62} +(2.37798 + 2.64102i) q^{64} +(12.4695 - 10.4632i) q^{65} +(-0.546612 + 3.09999i) q^{67} +(6.32796 + 3.36463i) q^{68} +(11.4481 - 0.800529i) q^{70} +(-0.585658 + 2.75530i) q^{71} +(0.245902 + 0.0258453i) q^{73} +(8.15445 - 2.33825i) q^{74} +(-1.36513 + 1.62690i) q^{76} +(-13.8110 - 3.17813i) q^{77} +(-1.58209 + 11.2571i) q^{79} +(1.10129 + 1.51579i) q^{80} +(-1.33483 - 4.10819i) q^{82} +(-4.77438 + 2.53858i) q^{83} +(-14.6653 - 9.89186i) q^{85} +(-2.54433 - 4.07177i) q^{86} +(2.91162 + 8.43638i) q^{88} +(13.5062 - 7.79783i) q^{89} +(-2.16946 - 20.6410i) q^{91} +(-0.281257 - 4.02216i) q^{92} +(0.648594 + 4.61499i) q^{94} +(3.77076 - 3.64138i) q^{95} +(4.52262 + 11.1939i) q^{97} +(4.51127 - 7.81375i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 816 q + 30 q^{2} - 18 q^{4} + 21 q^{5} - 30 q^{7} + 45 q^{8} + 33 q^{11} - 30 q^{13} + 18 q^{14} - 30 q^{16} + 45 q^{17} - 15 q^{19} + 60 q^{20} - 15 q^{22} + 84 q^{23} - 27 q^{25} - 60 q^{28} - 60 q^{29}+ \cdots - 81 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{17}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.793594 + 0.111532i 0.561156 + 0.0788653i 0.414048 0.910255i \(-0.364115\pi\)
0.147108 + 0.989120i \(0.453003\pi\)
\(3\) 0 0
\(4\) −1.30517 0.374252i −0.652585 0.187126i
\(5\) 3.10727 + 1.25542i 1.38961 + 0.561440i 0.942852 0.333212i \(-0.108133\pi\)
0.446762 + 0.894653i \(0.352577\pi\)
\(6\) 0 0
\(7\) 3.54248 2.38943i 1.33893 0.903121i 0.339633 0.940558i \(-0.389697\pi\)
0.999299 + 0.0374370i \(0.0119194\pi\)
\(8\) −2.45825 1.09449i −0.869124 0.386959i
\(9\) 0 0
\(10\) 2.32589 + 1.34285i 0.735512 + 0.424648i
\(11\) −2.26366 2.42401i −0.682521 0.730866i
\(12\) 0 0
\(13\) 2.28030 4.28862i 0.632442 1.18945i −0.336388 0.941723i \(-0.609205\pi\)
0.968830 0.247727i \(-0.0796835\pi\)
\(14\) 3.07779 1.50114i 0.822575 0.401196i
\(15\) 0 0
\(16\) 0.474121 + 0.296263i 0.118530 + 0.0740659i
\(17\) −5.16306 1.09744i −1.25223 0.266169i −0.466376 0.884586i \(-0.654441\pi\)
−0.785850 + 0.618417i \(0.787774\pi\)
\(18\) 0 0
\(19\) 0.636201 1.42893i 0.145955 0.327819i −0.825743 0.564046i \(-0.809244\pi\)
0.971698 + 0.236227i \(0.0759108\pi\)
\(20\) −3.58568 2.80144i −0.801782 0.626421i
\(21\) 0 0
\(22\) −1.52608 2.17615i −0.325360 0.463957i
\(23\) 1.01565 + 2.79048i 0.211778 + 0.581855i 0.999412 0.0342882i \(-0.0109164\pi\)
−0.787634 + 0.616143i \(0.788694\pi\)
\(24\) 0 0
\(25\) 4.48236 + 4.32856i 0.896472 + 0.865713i
\(26\) 2.28795 3.14910i 0.448705 0.617589i
\(27\) 0 0
\(28\) −5.51779 + 1.79284i −1.04276 + 0.338815i
\(29\) −0.936240 + 1.91958i −0.173855 + 0.356456i −0.967873 0.251438i \(-0.919097\pi\)
0.794018 + 0.607894i \(0.207985\pi\)
\(30\) 0 0
\(31\) 0.219193 + 6.27687i 0.0393683 + 1.12736i 0.844940 + 0.534861i \(0.179636\pi\)
−0.805572 + 0.592499i \(0.798142\pi\)
\(32\) 4.46590 + 3.74734i 0.789468 + 0.662442i
\(33\) 0 0
\(34\) −3.97498 1.44677i −0.681703 0.248119i
\(35\) 14.0072 2.97732i 2.36765 0.503259i
\(36\) 0 0
\(37\) 9.67024 4.30547i 1.58978 0.707814i 0.594428 0.804149i \(-0.297378\pi\)
0.995349 + 0.0963341i \(0.0307117\pi\)
\(38\) 0.664258 1.06303i 0.107757 0.172447i
\(39\) 0 0
\(40\) −6.26442 6.48700i −0.990492 1.02568i
\(41\) −2.36287 4.84460i −0.369018 0.756600i 0.630794 0.775950i \(-0.282729\pi\)
−0.999813 + 0.0193503i \(0.993840\pi\)
\(42\) 0 0
\(43\) −3.85110 4.58956i −0.587287 0.699902i 0.387795 0.921746i \(-0.373237\pi\)
−0.975082 + 0.221844i \(0.928792\pi\)
\(44\) 2.04728 + 4.01093i 0.308639 + 0.604670i
\(45\) 0 0
\(46\) 0.494786 + 2.32779i 0.0729522 + 0.343213i
\(47\) 1.60291 + 5.59002i 0.233809 + 0.815389i 0.987427 + 0.158076i \(0.0505291\pi\)
−0.753618 + 0.657313i \(0.771693\pi\)
\(48\) 0 0
\(49\) 4.21753 10.4388i 0.602505 1.49125i
\(50\) 3.07440 + 3.93505i 0.434786 + 0.556500i
\(51\) 0 0
\(52\) −4.58121 + 4.74398i −0.635299 + 0.657872i
\(53\) 4.45134 + 1.44633i 0.611438 + 0.198668i 0.598335 0.801246i \(-0.295829\pi\)
0.0131030 + 0.999914i \(0.495829\pi\)
\(54\) 0 0
\(55\) −3.99067 10.3739i −0.538102 1.39882i
\(56\) −11.3235 + 1.99664i −1.51317 + 0.266812i
\(57\) 0 0
\(58\) −0.957089 + 1.41894i −0.125672 + 0.186316i
\(59\) 3.20015 0.797887i 0.416624 0.103876i −0.0279689 0.999609i \(-0.508904\pi\)
0.444593 + 0.895733i \(0.353348\pi\)
\(60\) 0 0
\(61\) −2.32705 0.0812623i −0.297948 0.0104046i −0.114464 0.993427i \(-0.536515\pi\)
−0.183484 + 0.983023i \(0.558737\pi\)
\(62\) −0.526124 + 5.00574i −0.0668179 + 0.635729i
\(63\) 0 0
\(64\) 2.37798 + 2.64102i 0.297248 + 0.330127i
\(65\) 12.4695 10.4632i 1.54666 1.29780i
\(66\) 0 0
\(67\) −0.546612 + 3.09999i −0.0667793 + 0.378724i 0.933041 + 0.359770i \(0.117145\pi\)
−0.999820 + 0.0189543i \(0.993966\pi\)
\(68\) 6.32796 + 3.36463i 0.767378 + 0.408022i
\(69\) 0 0
\(70\) 11.4481 0.800529i 1.36831 0.0956815i
\(71\) −0.585658 + 2.75530i −0.0695048 + 0.326994i −0.999139 0.0414896i \(-0.986790\pi\)
0.929634 + 0.368484i \(0.120123\pi\)
\(72\) 0 0
\(73\) 0.245902 + 0.0258453i 0.0287806 + 0.00302496i 0.118908 0.992905i \(-0.462061\pi\)
−0.0901272 + 0.995930i \(0.528727\pi\)
\(74\) 8.15445 2.33825i 0.947935 0.271816i
\(75\) 0 0
\(76\) −1.36513 + 1.62690i −0.156591 + 0.186618i
\(77\) −13.8110 3.17813i −1.57391 0.362182i
\(78\) 0 0
\(79\) −1.58209 + 11.2571i −0.177999 + 1.26653i 0.672321 + 0.740259i \(0.265297\pi\)
−0.850320 + 0.526266i \(0.823592\pi\)
\(80\) 1.10129 + 1.51579i 0.123128 + 0.169471i
\(81\) 0 0
\(82\) −1.33483 4.10819i −0.147407 0.453673i
\(83\) −4.77438 + 2.53858i −0.524056 + 0.278646i −0.710350 0.703848i \(-0.751463\pi\)
0.186294 + 0.982494i \(0.440352\pi\)
\(84\) 0 0
\(85\) −14.6653 9.89186i −1.59067 1.07292i
\(86\) −2.54433 4.07177i −0.274362 0.439071i
\(87\) 0 0
\(88\) 2.91162 + 8.43638i 0.310380 + 0.899321i
\(89\) 13.5062 7.79783i 1.43166 0.826569i 0.434412 0.900714i \(-0.356956\pi\)
0.997247 + 0.0741455i \(0.0236229\pi\)
\(90\) 0 0
\(91\) −2.16946 20.6410i −0.227421 2.16376i
\(92\) −0.281257 4.02216i −0.0293231 0.419339i
\(93\) 0 0
\(94\) 0.648594 + 4.61499i 0.0668974 + 0.476000i
\(95\) 3.77076 3.64138i 0.386871 0.373597i
\(96\) 0 0
\(97\) 4.52262 + 11.1939i 0.459203 + 1.13657i 0.962216 + 0.272288i \(0.0877803\pi\)
−0.503013 + 0.864279i \(0.667775\pi\)
\(98\) 4.51127 7.81375i 0.455707 0.789308i
\(99\) 0 0
\(100\) −4.23027 7.32705i −0.423027 0.732705i
\(101\) −1.42438 + 1.82312i −0.141731 + 0.181407i −0.853639 0.520866i \(-0.825609\pi\)
0.711908 + 0.702273i \(0.247831\pi\)
\(102\) 0 0
\(103\) 3.27116 + 13.1199i 0.322317 + 1.29274i 0.884814 + 0.465944i \(0.154285\pi\)
−0.562497 + 0.826799i \(0.690159\pi\)
\(104\) −10.2994 + 8.04677i −1.00994 + 0.789050i
\(105\) 0 0
\(106\) 3.37124 + 1.64427i 0.327444 + 0.159705i
\(107\) −2.01203 + 1.46183i −0.194511 + 0.141320i −0.680778 0.732490i \(-0.738358\pi\)
0.486267 + 0.873810i \(0.338358\pi\)
\(108\) 0 0
\(109\) 2.16942i 0.207793i 0.994588 + 0.103896i \(0.0331311\pi\)
−0.994588 + 0.103896i \(0.966869\pi\)
\(110\) −2.00995 8.67776i −0.191641 0.827392i
\(111\) 0 0
\(112\) 2.38747 0.0833721i 0.225594 0.00787793i
\(113\) −0.586970 + 8.39407i −0.0552175 + 0.789647i 0.888496 + 0.458884i \(0.151751\pi\)
−0.943714 + 0.330763i \(0.892694\pi\)
\(114\) 0 0
\(115\) −0.347316 + 9.94584i −0.0323874 + 0.927455i
\(116\) 1.94036 2.15499i 0.180158 0.200085i
\(117\) 0 0
\(118\) 2.62861 0.276278i 0.241983 0.0254335i
\(119\) −20.9123 + 8.44912i −1.91703 + 0.774530i
\(120\) 0 0
\(121\) −0.751646 + 10.9743i −0.0683315 + 0.997663i
\(122\) −1.83767 0.324031i −0.166375 0.0293364i
\(123\) 0 0
\(124\) 2.06305 8.27443i 0.185267 0.743066i
\(125\) 1.67826 + 3.76943i 0.150108 + 0.337148i
\(126\) 0 0
\(127\) −2.28636 2.05865i −0.202882 0.182676i 0.561427 0.827527i \(-0.310253\pi\)
−0.764308 + 0.644851i \(0.776919\pi\)
\(128\) −4.92740 7.30517i −0.435525 0.645692i
\(129\) 0 0
\(130\) 11.0627 6.91276i 0.970266 0.606289i
\(131\) −10.8415 + 3.94597i −0.947224 + 0.344761i −0.769014 0.639231i \(-0.779253\pi\)
−0.178209 + 0.983993i \(0.557030\pi\)
\(132\) 0 0
\(133\) −1.16061 6.58212i −0.100637 0.570742i
\(134\) −0.779538 + 2.39917i −0.0673418 + 0.207257i
\(135\) 0 0
\(136\) 11.4910 + 8.34868i 0.985343 + 0.715894i
\(137\) 1.26767 + 2.38414i 0.108304 + 0.203691i 0.931206 0.364493i \(-0.118758\pi\)
−0.822902 + 0.568183i \(0.807646\pi\)
\(138\) 0 0
\(139\) −2.22081 + 7.74490i −0.188367 + 0.656913i 0.809221 + 0.587504i \(0.199889\pi\)
−0.997588 + 0.0694096i \(0.977888\pi\)
\(140\) −19.3960 1.35630i −1.63926 0.114629i
\(141\) 0 0
\(142\) −0.772080 + 2.12127i −0.0647915 + 0.178013i
\(143\) −15.5575 + 4.18053i −1.30098 + 0.349594i
\(144\) 0 0
\(145\) −5.31902 + 4.78927i −0.441721 + 0.397727i
\(146\) 0.192264 + 0.0479367i 0.0159118 + 0.00396727i
\(147\) 0 0
\(148\) −14.2326 + 2.00027i −1.16992 + 0.164421i
\(149\) 3.37115 0.473784i 0.276175 0.0388139i 0.000274308 1.00000i \(-0.499913\pi\)
0.275901 + 0.961186i \(0.411024\pi\)
\(150\) 0 0
\(151\) −21.5247 5.36671i −1.75166 0.436737i −0.771706 0.635979i \(-0.780596\pi\)
−0.979950 + 0.199242i \(0.936152\pi\)
\(152\) −3.12789 + 2.81636i −0.253705 + 0.228437i
\(153\) 0 0
\(154\) −10.6059 4.06252i −0.854645 0.327367i
\(155\) −7.19901 + 19.7791i −0.578239 + 1.58870i
\(156\) 0 0
\(157\) −14.1069 0.986447i −1.12585 0.0787271i −0.505336 0.862923i \(-0.668631\pi\)
−0.620514 + 0.784196i \(0.713076\pi\)
\(158\) −2.51107 + 8.75714i −0.199770 + 0.696680i
\(159\) 0 0
\(160\) 9.17230 + 17.2506i 0.725134 + 1.36378i
\(161\) 10.2656 + 7.45839i 0.809042 + 0.587803i
\(162\) 0 0
\(163\) −1.54220 + 4.74641i −0.120795 + 0.371767i −0.993111 0.117174i \(-0.962617\pi\)
0.872317 + 0.488941i \(0.162617\pi\)
\(164\) 1.27085 + 7.20734i 0.0992366 + 0.562799i
\(165\) 0 0
\(166\) −4.07205 + 1.48211i −0.316053 + 0.115034i
\(167\) 7.89422 4.93285i 0.610873 0.381716i −0.188919 0.981993i \(-0.560499\pi\)
0.799792 + 0.600277i \(0.204943\pi\)
\(168\) 0 0
\(169\) −5.92301 8.78122i −0.455616 0.675478i
\(170\) −10.5350 9.48577i −0.807999 0.727526i
\(171\) 0 0
\(172\) 3.30869 + 7.43144i 0.252285 + 0.566642i
\(173\) −3.85356 + 15.4558i −0.292981 + 1.17508i 0.625694 + 0.780069i \(0.284816\pi\)
−0.918675 + 0.395014i \(0.870740\pi\)
\(174\) 0 0
\(175\) 26.2215 + 4.62356i 1.98216 + 0.349508i
\(176\) −0.355105 1.81991i −0.0267670 0.137181i
\(177\) 0 0
\(178\) 11.5882 4.68193i 0.868572 0.350926i
\(179\) 9.71912 1.02152i 0.726441 0.0763520i 0.265913 0.963997i \(-0.414327\pi\)
0.460528 + 0.887645i \(0.347660\pi\)
\(180\) 0 0
\(181\) 9.55033 10.6067i 0.709871 0.788391i −0.275044 0.961432i \(-0.588692\pi\)
0.984915 + 0.173040i \(0.0553591\pi\)
\(182\) 0.580472 16.6225i 0.0430274 1.23214i
\(183\) 0 0
\(184\) 0.557409 7.97132i 0.0410927 0.587654i
\(185\) 35.4532 1.23805i 2.60657 0.0910235i
\(186\) 0 0
\(187\) 9.02723 + 14.9996i 0.660136 + 1.09688i
\(188\) 7.89583i 0.575863i
\(189\) 0 0
\(190\) 3.39858 2.46921i 0.246559 0.179136i
\(191\) −17.9977 8.77809i −1.30227 0.635160i −0.348956 0.937139i \(-0.613464\pi\)
−0.953315 + 0.301979i \(0.902353\pi\)
\(192\) 0 0
\(193\) 13.2562 10.3569i 0.954202 0.745504i −0.0128937 0.999917i \(-0.504104\pi\)
0.967096 + 0.254412i \(0.0818821\pi\)
\(194\) 2.34065 + 9.38782i 0.168049 + 0.674006i
\(195\) 0 0
\(196\) −9.41133 + 12.0459i −0.672238 + 0.860425i
\(197\) −2.45294 4.24861i −0.174765 0.302701i 0.765315 0.643656i \(-0.222583\pi\)
−0.940080 + 0.340955i \(0.889250\pi\)
\(198\) 0 0
\(199\) −3.27399 + 5.67071i −0.232087 + 0.401986i −0.958422 0.285354i \(-0.907889\pi\)
0.726335 + 0.687341i \(0.241222\pi\)
\(200\) −6.28123 15.5466i −0.444150 1.09931i
\(201\) 0 0
\(202\) −1.33372 + 1.28796i −0.0938400 + 0.0906202i
\(203\) 1.27009 + 9.03714i 0.0891427 + 0.634283i
\(204\) 0 0
\(205\) −1.26007 18.0199i −0.0880073 1.25856i
\(206\) 1.13268 + 10.7767i 0.0789176 + 0.750850i
\(207\) 0 0
\(208\) 2.35170 1.35775i 0.163061 0.0941434i
\(209\) −4.90389 + 1.69246i −0.339209 + 0.117070i
\(210\) 0 0
\(211\) −3.19206 5.10836i −0.219750 0.351674i 0.719743 0.694240i \(-0.244259\pi\)
−0.939494 + 0.342566i \(0.888704\pi\)
\(212\) −5.26847 3.55363i −0.361840 0.244064i
\(213\) 0 0
\(214\) −1.75978 + 0.935691i −0.120296 + 0.0639625i
\(215\) −6.20459 19.0958i −0.423149 1.30232i
\(216\) 0 0
\(217\) 15.7747 + 21.7120i 1.07085 + 1.47390i
\(218\) −0.241961 + 1.72164i −0.0163877 + 0.116604i
\(219\) 0 0
\(220\) 1.32606 + 15.0332i 0.0894027 + 1.01354i
\(221\) −16.4799 + 19.6399i −1.10855 + 1.32112i
\(222\) 0 0
\(223\) −0.981492 + 0.281438i −0.0657256 + 0.0188465i −0.308339 0.951277i \(-0.599773\pi\)
0.242613 + 0.970123i \(0.421995\pi\)
\(224\) 24.7744 + 2.60389i 1.65531 + 0.173980i
\(225\) 0 0
\(226\) −1.40203 + 6.59602i −0.0932614 + 0.438760i
\(227\) 11.5689 0.808978i 0.767856 0.0536937i 0.319545 0.947571i \(-0.396470\pi\)
0.448311 + 0.893877i \(0.352026\pi\)
\(228\) 0 0
\(229\) −14.6827 7.80694i −0.970261 0.515897i −0.0928729 0.995678i \(-0.529605\pi\)
−0.877388 + 0.479781i \(0.840716\pi\)
\(230\) −1.38491 + 7.85423i −0.0913184 + 0.517892i
\(231\) 0 0
\(232\) 4.40246 3.69410i 0.289036 0.242530i
\(233\) −9.74051 10.8179i −0.638122 0.708706i 0.334160 0.942516i \(-0.391547\pi\)
−0.972282 + 0.233810i \(0.924881\pi\)
\(234\) 0 0
\(235\) −2.03714 + 19.3820i −0.132888 + 1.26435i
\(236\) −4.47535 0.156283i −0.291321 0.0101731i
\(237\) 0 0
\(238\) −17.5382 + 4.37277i −1.13684 + 0.283445i
\(239\) 2.30258 3.41372i 0.148942 0.220815i −0.747182 0.664619i \(-0.768594\pi\)
0.896124 + 0.443804i \(0.146371\pi\)
\(240\) 0 0
\(241\) −15.4961 + 2.73237i −0.998189 + 0.176008i −0.648791 0.760967i \(-0.724725\pi\)
−0.349398 + 0.936974i \(0.613614\pi\)
\(242\) −1.82049 + 8.62530i −0.117026 + 0.554455i
\(243\) 0 0
\(244\) 3.00678 + 0.976963i 0.192490 + 0.0625437i
\(245\) 26.2100 27.1413i 1.67450 1.73399i
\(246\) 0 0
\(247\) −4.67742 5.98682i −0.297617 0.380932i
\(248\) 6.33111 15.6701i 0.402026 0.995049i
\(249\) 0 0
\(250\) 0.911444 + 3.17858i 0.0576448 + 0.201031i
\(251\) −1.87584 8.82512i −0.118402 0.557037i −0.996858 0.0792133i \(-0.974759\pi\)
0.878456 0.477824i \(-0.158574\pi\)
\(252\) 0 0
\(253\) 4.46505 8.77866i 0.280716 0.551909i
\(254\) −1.58484 1.88873i −0.0994415 0.118510i
\(255\) 0 0
\(256\) −6.21139 12.7352i −0.388212 0.795953i
\(257\) −2.23997 2.31956i −0.139725 0.144690i 0.645830 0.763481i \(-0.276512\pi\)
−0.785555 + 0.618791i \(0.787623\pi\)
\(258\) 0 0
\(259\) 23.9690 38.3584i 1.48936 2.38348i
\(260\) −20.1907 + 8.98950i −1.25218 + 0.557505i
\(261\) 0 0
\(262\) −9.04383 + 1.92233i −0.558730 + 0.118762i
\(263\) 9.60627 + 3.49640i 0.592348 + 0.215597i 0.620762 0.783999i \(-0.286823\pi\)
−0.0284137 + 0.999596i \(0.509046\pi\)
\(264\) 0 0
\(265\) 12.0158 + 10.0824i 0.738123 + 0.619359i
\(266\) −0.186930 5.35298i −0.0114614 0.328212i
\(267\) 0 0
\(268\) 1.87360 3.84145i 0.114448 0.234654i
\(269\) 15.0863 4.90185i 0.919830 0.298871i 0.189433 0.981894i \(-0.439335\pi\)
0.730397 + 0.683023i \(0.239335\pi\)
\(270\) 0 0
\(271\) −9.29765 + 12.7971i −0.564792 + 0.777369i −0.991926 0.126819i \(-0.959523\pi\)
0.427134 + 0.904188i \(0.359523\pi\)
\(272\) −2.12278 2.04995i −0.128713 0.124296i
\(273\) 0 0
\(274\) 0.740106 + 2.03343i 0.0447115 + 0.122844i
\(275\) 0.345924 20.6637i 0.0208600 1.24607i
\(276\) 0 0
\(277\) −1.91573 1.49673i −0.115105 0.0899300i 0.556465 0.830871i \(-0.312157\pi\)
−0.671570 + 0.740941i \(0.734380\pi\)
\(278\) −2.62623 + 5.89861i −0.157511 + 0.353775i
\(279\) 0 0
\(280\) −37.6919 8.01165i −2.25252 0.478788i
\(281\) −12.0155 7.50812i −0.716785 0.447897i 0.121880 0.992545i \(-0.461108\pi\)
−0.838665 + 0.544648i \(0.816663\pi\)
\(282\) 0 0
\(283\) 9.93980 4.84796i 0.590860 0.288181i −0.118584 0.992944i \(-0.537835\pi\)
0.709443 + 0.704763i \(0.248946\pi\)
\(284\) 1.79556 3.37696i 0.106547 0.200386i
\(285\) 0 0
\(286\) −12.8126 + 1.58248i −0.757625 + 0.0935740i
\(287\) −19.9463 11.5160i −1.17739 0.679767i
\(288\) 0 0
\(289\) 9.92254 + 4.41780i 0.583679 + 0.259871i
\(290\) −4.75530 + 3.20749i −0.279241 + 0.188350i
\(291\) 0 0
\(292\) −0.311271 0.125762i −0.0182158 0.00735964i
\(293\) 18.9301 + 5.42813i 1.10591 + 0.317115i 0.778422 0.627741i \(-0.216020\pi\)
0.327488 + 0.944855i \(0.393798\pi\)
\(294\) 0 0
\(295\) 10.9454 + 1.53828i 0.637267 + 0.0895620i
\(296\) −28.4842 −1.65561
\(297\) 0 0
\(298\) 2.72817 0.158038
\(299\) 14.2833 + 2.00739i 0.826025 + 0.116090i
\(300\) 0 0
\(301\) −24.6089 7.05649i −1.41843 0.406729i
\(302\) −16.4833 6.65970i −0.948509 0.383223i
\(303\) 0 0
\(304\) 0.724976 0.489002i 0.0415802 0.0280462i
\(305\) −7.12875 3.17393i −0.408191 0.181738i
\(306\) 0 0
\(307\) 20.5084 + 11.8405i 1.17048 + 0.675774i 0.953792 0.300468i \(-0.0971427\pi\)
0.216683 + 0.976242i \(0.430476\pi\)
\(308\) 16.8363 + 9.31680i 0.959337 + 0.530874i
\(309\) 0 0
\(310\) −7.91911 + 14.8937i −0.449775 + 0.845904i
\(311\) −21.3530 + 10.4146i −1.21082 + 0.590555i −0.929415 0.369035i \(-0.879688\pi\)
−0.281402 + 0.959590i \(0.590799\pi\)
\(312\) 0 0
\(313\) 17.7192 + 11.0722i 1.00155 + 0.625838i 0.928439 0.371486i \(-0.121152\pi\)
0.0731115 + 0.997324i \(0.476707\pi\)
\(314\) −11.0851 2.35621i −0.625568 0.132969i
\(315\) 0 0
\(316\) 6.27789 14.1004i 0.353159 0.793208i
\(317\) 10.9597 + 8.56263i 0.615556 + 0.480925i 0.874538 0.484957i \(-0.161165\pi\)
−0.258982 + 0.965882i \(0.583387\pi\)
\(318\) 0 0
\(319\) 6.77240 2.07582i 0.379182 0.116224i
\(320\) 4.07345 + 11.1917i 0.227713 + 0.625636i
\(321\) 0 0
\(322\) 7.31486 + 7.06388i 0.407641 + 0.393655i
\(323\) −4.85291 + 6.67946i −0.270023 + 0.371655i
\(324\) 0 0
\(325\) 28.7847 9.35272i 1.59669 0.518795i
\(326\) −1.75326 + 3.59472i −0.0971041 + 0.199093i
\(327\) 0 0
\(328\) 0.506190 + 14.4954i 0.0279497 + 0.800374i
\(329\) 19.0353 + 15.9725i 1.04945 + 0.880592i
\(330\) 0 0
\(331\) −29.1864 10.6230i −1.60423 0.583892i −0.623942 0.781470i \(-0.714470\pi\)
−0.980287 + 0.197579i \(0.936692\pi\)
\(332\) 7.18145 1.52646i 0.394133 0.0837756i
\(333\) 0 0
\(334\) 6.81498 3.03422i 0.372899 0.166025i
\(335\) −5.59026 + 8.94629i −0.305429 + 0.488788i
\(336\) 0 0
\(337\) −10.9669 11.3566i −0.597406 0.618632i 0.350737 0.936474i \(-0.385931\pi\)
−0.948144 + 0.317841i \(0.897042\pi\)
\(338\) −3.72107 7.62933i −0.202400 0.414981i
\(339\) 0 0
\(340\) 15.4387 + 18.3991i 0.837278 + 0.997830i
\(341\) 14.7190 14.7401i 0.797080 0.798219i
\(342\) 0 0
\(343\) −3.78334 17.7992i −0.204281 0.961068i
\(344\) 4.44377 + 15.4973i 0.239592 + 0.835557i
\(345\) 0 0
\(346\) −4.78199 + 11.8358i −0.257081 + 0.636299i
\(347\) 4.59256 + 5.87821i 0.246542 + 0.315559i 0.895324 0.445415i \(-0.146944\pi\)
−0.648783 + 0.760974i \(0.724722\pi\)
\(348\) 0 0
\(349\) −13.3433 + 13.8174i −0.714251 + 0.739628i −0.974124 0.226014i \(-0.927430\pi\)
0.259873 + 0.965643i \(0.416319\pi\)
\(350\) 20.2935 + 6.59377i 1.08474 + 0.352452i
\(351\) 0 0
\(352\) −1.02572 19.3081i −0.0546712 1.02913i
\(353\) 20.9219 3.68910i 1.11356 0.196351i 0.413549 0.910482i \(-0.364289\pi\)
0.700012 + 0.714131i \(0.253178\pi\)
\(354\) 0 0
\(355\) −5.27886 + 7.82623i −0.280173 + 0.415373i
\(356\) −20.5463 + 5.12277i −1.08895 + 0.271506i
\(357\) 0 0
\(358\) 7.82697 + 0.273324i 0.413668 + 0.0144456i
\(359\) −1.07257 + 10.2048i −0.0566079 + 0.538588i 0.929065 + 0.369918i \(0.120614\pi\)
−0.985672 + 0.168671i \(0.946053\pi\)
\(360\) 0 0
\(361\) 11.0764 + 12.3016i 0.582968 + 0.647451i
\(362\) 8.76208 7.35226i 0.460525 0.386426i
\(363\) 0 0
\(364\) −4.89342 + 27.7519i −0.256485 + 1.45460i
\(365\) 0.731636 + 0.389018i 0.0382956 + 0.0203621i
\(366\) 0 0
\(367\) −17.1252 + 1.19751i −0.893926 + 0.0625094i −0.509326 0.860574i \(-0.670105\pi\)
−0.384600 + 0.923083i \(0.625661\pi\)
\(368\) −0.345176 + 1.62392i −0.0179935 + 0.0846529i
\(369\) 0 0
\(370\) 28.2736 + 2.97167i 1.46987 + 0.154490i
\(371\) 19.2247 5.51259i 0.998096 0.286199i
\(372\) 0 0
\(373\) −7.09352 + 8.45373i −0.367289 + 0.437717i −0.917759 0.397137i \(-0.870004\pi\)
0.550471 + 0.834854i \(0.314448\pi\)
\(374\) 5.49102 + 12.9104i 0.283934 + 0.667580i
\(375\) 0 0
\(376\) 2.17783 15.4961i 0.112313 0.799148i
\(377\) 6.09743 + 8.39239i 0.314034 + 0.432230i
\(378\) 0 0
\(379\) −3.94107 12.1294i −0.202439 0.623044i −0.999809 0.0195526i \(-0.993776\pi\)
0.797370 0.603491i \(-0.206224\pi\)
\(380\) −6.28427 + 3.34141i −0.322376 + 0.171411i
\(381\) 0 0
\(382\) −13.3039 8.97357i −0.680685 0.459128i
\(383\) −2.53114 4.05068i −0.129335 0.206980i 0.777042 0.629449i \(-0.216719\pi\)
−0.906378 + 0.422469i \(0.861164\pi\)
\(384\) 0 0
\(385\) −38.9246 27.2139i −1.98378 1.38695i
\(386\) 11.6752 6.74066i 0.594251 0.343091i
\(387\) 0 0
\(388\) −1.71347 16.3025i −0.0869880 0.827636i
\(389\) 1.05873 + 15.1405i 0.0536796 + 0.767654i 0.947606 + 0.319441i \(0.103495\pi\)
−0.893927 + 0.448213i \(0.852061\pi\)
\(390\) 0 0
\(391\) −2.18148 15.5220i −0.110322 0.784983i
\(392\) −21.7928 + 21.0451i −1.10070 + 1.06294i
\(393\) 0 0
\(394\) −1.47278 3.64526i −0.0741975 0.183645i
\(395\) −19.0484 + 32.9928i −0.958428 + 1.66005i
\(396\) 0 0
\(397\) 8.39802 + 14.5458i 0.421485 + 0.730033i 0.996085 0.0884014i \(-0.0281758\pi\)
−0.574600 + 0.818434i \(0.694842\pi\)
\(398\) −3.23069 + 4.13509i −0.161940 + 0.207273i
\(399\) 0 0
\(400\) 0.842784 + 3.38022i 0.0421392 + 0.169011i
\(401\) −4.22107 + 3.29786i −0.210790 + 0.164687i −0.715525 0.698587i \(-0.753812\pi\)
0.504735 + 0.863274i \(0.331590\pi\)
\(402\) 0 0
\(403\) 27.4190 + 13.3731i 1.36584 + 0.666163i
\(404\) 2.54137 1.84641i 0.126438 0.0918623i
\(405\) 0 0
\(406\) 7.31348i 0.362962i
\(407\) −32.3267 13.6946i −1.60237 0.678817i
\(408\) 0 0
\(409\) 21.3100 0.744161i 1.05371 0.0367964i 0.497199 0.867636i \(-0.334362\pi\)
0.556511 + 0.830840i \(0.312140\pi\)
\(410\) 1.00981 14.4410i 0.0498712 0.713191i
\(411\) 0 0
\(412\) 0.640725 18.3480i 0.0315663 0.903940i
\(413\) 9.42997 10.4730i 0.464019 0.515345i
\(414\) 0 0
\(415\) −18.0223 + 1.89422i −0.884679 + 0.0929835i
\(416\) 26.2545 10.6075i 1.28723 0.520076i
\(417\) 0 0
\(418\) −4.08046 + 0.796186i −0.199582 + 0.0389427i
\(419\) 38.2083 + 6.73716i 1.86660 + 0.329132i 0.988723 0.149757i \(-0.0478492\pi\)
0.877876 + 0.478889i \(0.158960\pi\)
\(420\) 0 0
\(421\) −1.76306 + 7.07123i −0.0859261 + 0.344631i −0.997835 0.0657610i \(-0.979053\pi\)
0.911909 + 0.410392i \(0.134608\pi\)
\(422\) −1.96345 4.40998i −0.0955793 0.214675i
\(423\) 0 0
\(424\) −9.35954 8.42736i −0.454539 0.409269i
\(425\) −18.3923 27.2678i −0.892160 1.32268i
\(426\) 0 0
\(427\) −8.43770 + 5.27246i −0.408329 + 0.255152i
\(428\) 3.17314 1.15493i 0.153379 0.0558255i
\(429\) 0 0
\(430\) −2.79413 15.8463i −0.134745 0.764176i
\(431\) 4.51246 13.8879i 0.217358 0.668958i −0.781620 0.623755i \(-0.785606\pi\)
0.998978 0.0452032i \(-0.0143935\pi\)
\(432\) 0 0
\(433\) −30.8874 22.4410i −1.48435 1.07845i −0.976122 0.217225i \(-0.930300\pi\)
−0.508231 0.861221i \(-0.669700\pi\)
\(434\) 10.0971 + 18.9899i 0.484676 + 0.911543i
\(435\) 0 0
\(436\) 0.811910 2.83147i 0.0388834 0.135603i
\(437\) 4.63356 + 0.324010i 0.221653 + 0.0154995i
\(438\) 0 0
\(439\) −5.33306 + 14.6525i −0.254533 + 0.699324i 0.744948 + 0.667122i \(0.232474\pi\)
−0.999481 + 0.0322016i \(0.989748\pi\)
\(440\) −1.54400 + 29.8694i −0.0736073 + 1.42397i
\(441\) 0 0
\(442\) −15.2688 + 13.7481i −0.726263 + 0.653930i
\(443\) −19.6708 4.90449i −0.934590 0.233019i −0.255277 0.966868i \(-0.582167\pi\)
−0.679313 + 0.733849i \(0.737722\pi\)
\(444\) 0 0
\(445\) 51.7571 7.27399i 2.45352 0.344820i
\(446\) −0.810296 + 0.113880i −0.0383686 + 0.00539236i
\(447\) 0 0
\(448\) 14.7345 + 3.67372i 0.696139 + 0.173567i
\(449\) 18.8135 16.9398i 0.887864 0.799437i −0.0926880 0.995695i \(-0.529546\pi\)
0.980552 + 0.196259i \(0.0628792\pi\)
\(450\) 0 0
\(451\) −6.39462 + 16.6942i −0.301111 + 0.786098i
\(452\) 3.90759 10.7360i 0.183798 0.504980i
\(453\) 0 0
\(454\) 9.27126 + 0.648309i 0.435122 + 0.0304267i
\(455\) 19.1720 66.8607i 0.898798 3.13448i
\(456\) 0 0
\(457\) 2.03908 + 3.83496i 0.0953844 + 0.179392i 0.926072 0.377347i \(-0.123164\pi\)
−0.830688 + 0.556739i \(0.812052\pi\)
\(458\) −10.7814 7.83314i −0.503781 0.366019i
\(459\) 0 0
\(460\) 4.17556 12.8510i 0.194686 0.599183i
\(461\) 5.97615 + 33.8924i 0.278337 + 1.57853i 0.728158 + 0.685409i \(0.240377\pi\)
−0.449821 + 0.893119i \(0.648512\pi\)
\(462\) 0 0
\(463\) 36.1448 13.1556i 1.67979 0.611394i 0.686510 0.727120i \(-0.259142\pi\)
0.993281 + 0.115726i \(0.0369194\pi\)
\(464\) −1.01259 + 0.632737i −0.0470083 + 0.0293741i
\(465\) 0 0
\(466\) −6.52346 9.67143i −0.302194 0.448020i
\(467\) −12.2512 11.0310i −0.566919 0.510456i 0.335083 0.942189i \(-0.391236\pi\)
−0.902002 + 0.431733i \(0.857902\pi\)
\(468\) 0 0
\(469\) 5.47086 + 12.2878i 0.252621 + 0.567396i
\(470\) −3.77838 + 15.1543i −0.174284 + 0.699015i
\(471\) 0 0
\(472\) −8.74005 1.54111i −0.402294 0.0709352i
\(473\) −2.40755 + 19.7243i −0.110699 + 0.906926i
\(474\) 0 0
\(475\) 9.03690 3.65114i 0.414641 0.167526i
\(476\) 30.4562 3.20108i 1.39596 0.146721i
\(477\) 0 0
\(478\) 2.20806 2.45229i 0.100994 0.112165i
\(479\) 0.885987 25.3713i 0.0404818 1.15925i −0.793896 0.608053i \(-0.791951\pi\)
0.834378 0.551193i \(-0.185827\pi\)
\(480\) 0 0
\(481\) 3.58653 51.2898i 0.163532 2.33861i
\(482\) −12.6023 + 0.440083i −0.574021 + 0.0200452i
\(483\) 0 0
\(484\) 5.08817 14.0420i 0.231281 0.638274i
\(485\) 40.4602i 1.83720i
\(486\) 0 0
\(487\) −25.6524 + 18.6376i −1.16242 + 0.844549i −0.990082 0.140489i \(-0.955133\pi\)
−0.172339 + 0.985038i \(0.555133\pi\)
\(488\) 5.63154 + 2.74668i 0.254928 + 0.124337i
\(489\) 0 0
\(490\) 23.8273 18.6159i 1.07641 0.840981i
\(491\) −3.39411 13.6130i −0.153174 0.614347i −0.996977 0.0776947i \(-0.975244\pi\)
0.843803 0.536653i \(-0.180311\pi\)
\(492\) 0 0
\(493\) 6.94049 8.88342i 0.312584 0.400089i
\(494\) −3.04425 5.27279i −0.136967 0.237234i
\(495\) 0 0
\(496\) −1.75568 + 3.04093i −0.0788326 + 0.136542i
\(497\) 4.50893 + 11.1600i 0.202253 + 0.500594i
\(498\) 0 0
\(499\) 21.6740 20.9303i 0.970260 0.936970i −0.0277755 0.999614i \(-0.508842\pi\)
0.998036 + 0.0626446i \(0.0199535\pi\)
\(500\) −0.779699 5.54785i −0.0348692 0.248107i
\(501\) 0 0
\(502\) −0.504367 7.21278i −0.0225110 0.321922i
\(503\) −1.84283 17.5333i −0.0821676 0.781773i −0.955568 0.294770i \(-0.904757\pi\)
0.873400 0.487003i \(-0.161910\pi\)
\(504\) 0 0
\(505\) −6.71472 + 3.87674i −0.298801 + 0.172513i
\(506\) 4.52255 6.46869i 0.201052 0.287568i
\(507\) 0 0
\(508\) 2.21364 + 3.54256i 0.0982143 + 0.157176i
\(509\) −25.9019 17.4711i −1.14808 0.774391i −0.170586 0.985343i \(-0.554566\pi\)
−0.977497 + 0.210952i \(0.932344\pi\)
\(510\) 0 0
\(511\) 0.932858 0.496009i 0.0412672 0.0219422i
\(512\) 1.93695 + 5.96132i 0.0856020 + 0.263456i
\(513\) 0 0
\(514\) −1.51892 2.09062i −0.0669967 0.0922131i
\(515\) −6.30660 + 44.8738i −0.277902 + 1.97738i
\(516\) 0 0
\(517\) 9.92181 16.5394i 0.436361 0.727403i
\(518\) 23.2999 27.7677i 1.02374 1.22004i
\(519\) 0 0
\(520\) −42.1051 + 12.0734i −1.84643 + 0.529455i
\(521\) −2.40815 0.253106i −0.105503 0.0110888i 0.0516299 0.998666i \(-0.483558\pi\)
−0.157133 + 0.987577i \(0.550225\pi\)
\(522\) 0 0
\(523\) 2.49227 11.7252i 0.108979 0.512707i −0.889468 0.456998i \(-0.848925\pi\)
0.998447 0.0557092i \(-0.0177420\pi\)
\(524\) 15.6268 1.09273i 0.682658 0.0477361i
\(525\) 0 0
\(526\) 7.23352 + 3.84613i 0.315397 + 0.167699i
\(527\) 5.75680 32.6484i 0.250770 1.42219i
\(528\) 0 0
\(529\) 10.8638 9.11581i 0.472339 0.396339i
\(530\) 8.41113 + 9.34150i 0.365356 + 0.405769i
\(531\) 0 0
\(532\) −0.948582 + 9.02515i −0.0411262 + 0.391290i
\(533\) −26.1647 0.913692i −1.13332 0.0395764i
\(534\) 0 0
\(535\) −8.08714 + 2.01635i −0.349637 + 0.0871744i
\(536\) 4.73661 7.02231i 0.204590 0.303317i
\(537\) 0 0
\(538\) 12.5191 2.20746i 0.539739 0.0951705i
\(539\) −34.8507 + 13.4065i −1.50113 + 0.577459i
\(540\) 0 0
\(541\) 38.8169 + 12.6124i 1.66887 + 0.542248i 0.982702 0.185196i \(-0.0592919\pi\)
0.686167 + 0.727444i \(0.259292\pi\)
\(542\) −8.80585 + 9.11873i −0.378244 + 0.391683i
\(543\) 0 0
\(544\) −18.9452 24.2488i −0.812271 1.03966i
\(545\) −2.72353 + 6.74098i −0.116663 + 0.288752i
\(546\) 0 0
\(547\) 1.07303 + 3.74211i 0.0458796 + 0.160001i 0.980867 0.194681i \(-0.0623670\pi\)
−0.934987 + 0.354682i \(0.884589\pi\)
\(548\) −0.762257 3.58614i −0.0325620 0.153192i
\(549\) 0 0
\(550\) 2.57919 16.3600i 0.109977 0.697593i
\(551\) 2.14730 + 2.55906i 0.0914782 + 0.109020i
\(552\) 0 0
\(553\) 21.2936 + 43.6584i 0.905498 + 1.85655i
\(554\) −1.35338 1.40146i −0.0574996 0.0595425i
\(555\) 0 0
\(556\) 5.79708 9.27727i 0.245851 0.393444i
\(557\) −18.6920 + 8.32223i −0.792007 + 0.352624i −0.762540 0.646942i \(-0.776048\pi\)
−0.0294673 + 0.999566i \(0.509381\pi\)
\(558\) 0 0
\(559\) −28.4646 + 6.05033i −1.20392 + 0.255902i
\(560\) 7.52317 + 2.73821i 0.317912 + 0.115710i
\(561\) 0 0
\(562\) −8.69803 7.29852i −0.366904 0.307869i
\(563\) −1.48760 42.5994i −0.0626950 1.79535i −0.470621 0.882336i \(-0.655970\pi\)
0.407926 0.913015i \(-0.366252\pi\)
\(564\) 0 0
\(565\) −12.3619 + 25.3457i −0.520071 + 1.06630i
\(566\) 8.42887 2.73871i 0.354292 0.115116i
\(567\) 0 0
\(568\) 4.45533 6.13224i 0.186942 0.257303i
\(569\) 11.8812 + 11.4735i 0.498085 + 0.480995i 0.900741 0.434357i \(-0.143024\pi\)
−0.402657 + 0.915351i \(0.631913\pi\)
\(570\) 0 0
\(571\) 11.1190 + 30.5493i 0.465316 + 1.27845i 0.921437 + 0.388528i \(0.127016\pi\)
−0.456120 + 0.889918i \(0.650761\pi\)
\(572\) 21.8698 + 0.366114i 0.914421 + 0.0153080i
\(573\) 0 0
\(574\) −14.5448 11.3637i −0.607090 0.474311i
\(575\) −7.52625 + 16.9042i −0.313866 + 0.704955i
\(576\) 0 0
\(577\) −27.8201 5.91333i −1.15816 0.246175i −0.411521 0.911400i \(-0.635002\pi\)
−0.746643 + 0.665225i \(0.768336\pi\)
\(578\) 7.38175 + 4.61263i 0.307040 + 0.191860i
\(579\) 0 0
\(580\) 8.73463 4.26016i 0.362686 0.176894i
\(581\) −10.8474 + 20.4009i −0.450025 + 0.846374i
\(582\) 0 0
\(583\) −6.57042 14.0641i −0.272119 0.582475i
\(584\) −0.576201 0.332670i −0.0238434 0.0137660i
\(585\) 0 0
\(586\) 14.4174 + 6.41905i 0.595579 + 0.265169i
\(587\) 14.4303 9.73334i 0.595601 0.401738i −0.224070 0.974573i \(-0.571934\pi\)
0.819670 + 0.572835i \(0.194157\pi\)
\(588\) 0 0
\(589\) 9.10867 + 3.68014i 0.375316 + 0.151638i
\(590\) 8.51465 + 2.44154i 0.350543 + 0.100516i
\(591\) 0 0
\(592\) 5.86041 + 0.823627i 0.240861 + 0.0338509i
\(593\) 35.7162 1.46669 0.733345 0.679856i \(-0.237958\pi\)
0.733345 + 0.679856i \(0.237958\pi\)
\(594\) 0 0
\(595\) −75.5874 −3.09878
\(596\) −4.57724 0.643289i −0.187491 0.0263502i
\(597\) 0 0
\(598\) 11.1113 + 3.18610i 0.454373 + 0.130289i
\(599\) −9.64510 3.89687i −0.394088 0.159222i 0.169005 0.985615i \(-0.445944\pi\)
−0.563093 + 0.826393i \(0.690389\pi\)
\(600\) 0 0
\(601\) 20.7338 13.9851i 0.845751 0.570466i −0.0581015 0.998311i \(-0.518505\pi\)
0.903852 + 0.427845i \(0.140727\pi\)
\(602\) −18.7425 8.34468i −0.763886 0.340104i
\(603\) 0 0
\(604\) 26.0849 + 15.0601i 1.06138 + 0.612788i
\(605\) −16.1129 + 33.1565i −0.655083 + 1.34800i
\(606\) 0 0
\(607\) −15.3250 + 28.8222i −0.622024 + 1.16986i 0.350392 + 0.936603i \(0.386048\pi\)
−0.972416 + 0.233254i \(0.925063\pi\)
\(608\) 8.19590 3.99741i 0.332388 0.162116i
\(609\) 0 0
\(610\) −5.30334 3.31390i −0.214726 0.134176i
\(611\) 27.6286 + 5.87265i 1.11773 + 0.237582i
\(612\) 0 0
\(613\) −19.0640 + 42.8184i −0.769987 + 1.72942i −0.0903037 + 0.995914i \(0.528784\pi\)
−0.679684 + 0.733505i \(0.737883\pi\)
\(614\) 14.9547 + 11.6839i 0.603524 + 0.471525i
\(615\) 0 0
\(616\) 30.4725 + 22.9286i 1.22777 + 0.923819i
\(617\) −1.00444 2.75968i −0.0404373 0.111101i 0.917831 0.396972i \(-0.129939\pi\)
−0.958268 + 0.285872i \(0.907717\pi\)
\(618\) 0 0
\(619\) 5.54492 + 5.35466i 0.222869 + 0.215222i 0.797707 0.603045i \(-0.206046\pi\)
−0.574838 + 0.818267i \(0.694935\pi\)
\(620\) 16.7983 23.1209i 0.674637 0.928558i
\(621\) 0 0
\(622\) −18.1072 + 5.88338i −0.726032 + 0.235902i
\(623\) 29.2132 59.8960i 1.17040 2.39968i
\(624\) 0 0
\(625\) −0.604741 17.3175i −0.0241896 0.692700i
\(626\) 12.8270 + 10.7631i 0.512669 + 0.430180i
\(627\) 0 0
\(628\) 18.0427 + 6.56700i 0.719981 + 0.262052i
\(629\) −54.6530 + 11.6169i −2.17916 + 0.463195i
\(630\) 0 0
\(631\) 26.2906 11.7053i 1.04661 0.465981i 0.189914 0.981801i \(-0.439179\pi\)
0.856697 + 0.515819i \(0.172512\pi\)
\(632\) 16.2099 25.9413i 0.644796 1.03189i
\(633\) 0 0
\(634\) 7.74252 + 8.01762i 0.307495 + 0.318420i
\(635\) −4.51988 9.26712i −0.179366 0.367754i
\(636\) 0 0
\(637\) −35.1507 41.8909i −1.39272 1.65978i
\(638\) 5.60606 0.892018i 0.221946 0.0353153i
\(639\) 0 0
\(640\) −6.13972 28.8851i −0.242694 1.14178i
\(641\) 9.63638 + 33.6061i 0.380614 + 1.32736i 0.885687 + 0.464283i \(0.153688\pi\)
−0.505073 + 0.863077i \(0.668534\pi\)
\(642\) 0 0
\(643\) −0.411091 + 1.01749i −0.0162118 + 0.0401257i −0.935073 0.354456i \(-0.884666\pi\)
0.918861 + 0.394582i \(0.129111\pi\)
\(644\) −10.6070 13.5764i −0.417976 0.534985i
\(645\) 0 0
\(646\) −4.59622 + 4.75953i −0.180836 + 0.187261i
\(647\) 14.8983 + 4.84076i 0.585714 + 0.190310i 0.586859 0.809689i \(-0.300364\pi\)
−0.00114459 + 0.999999i \(0.500364\pi\)
\(648\) 0 0
\(649\) −9.17815 5.95104i −0.360274 0.233599i
\(650\) 23.8865 4.21184i 0.936906 0.165202i
\(651\) 0 0
\(652\) 3.78919 5.61770i 0.148396 0.220006i
\(653\) 5.11019 1.27411i 0.199977 0.0498599i −0.140645 0.990060i \(-0.544918\pi\)
0.340623 + 0.940200i \(0.389362\pi\)
\(654\) 0 0
\(655\) −38.6412 1.34938i −1.50984 0.0527247i
\(656\) 0.314993 2.99696i 0.0122984 0.117012i
\(657\) 0 0
\(658\) 13.3248 + 14.7987i 0.519456 + 0.576915i
\(659\) 6.90159 5.79112i 0.268848 0.225590i −0.498390 0.866953i \(-0.666075\pi\)
0.767238 + 0.641363i \(0.221631\pi\)
\(660\) 0 0
\(661\) 7.14775 40.5369i 0.278015 1.57670i −0.451203 0.892421i \(-0.649005\pi\)
0.729219 0.684281i \(-0.239884\pi\)
\(662\) −21.9774 11.6856i −0.854174 0.454172i
\(663\) 0 0
\(664\) 14.5151 1.01499i 0.563294 0.0393894i
\(665\) 4.65700 21.9095i 0.180591 0.849613i
\(666\) 0 0
\(667\) −6.30743 0.662937i −0.244225 0.0256690i
\(668\) −12.1494 + 3.48379i −0.470076 + 0.134792i
\(669\) 0 0
\(670\) −5.43420 + 6.47623i −0.209941 + 0.250199i
\(671\) 5.07068 + 5.82474i 0.195751 + 0.224862i
\(672\) 0 0
\(673\) 5.76787 41.0405i 0.222335 1.58200i −0.484612 0.874729i \(-0.661039\pi\)
0.706947 0.707267i \(-0.250072\pi\)
\(674\) −7.43666 10.2357i −0.286450 0.394264i
\(675\) 0 0
\(676\) 4.44415 + 13.6777i 0.170929 + 0.526065i
\(677\) 23.3319 12.4058i 0.896719 0.476794i 0.0439209 0.999035i \(-0.486015\pi\)
0.852798 + 0.522241i \(0.174904\pi\)
\(678\) 0 0
\(679\) 42.7684 + 28.8476i 1.64130 + 1.10707i
\(680\) 25.2245 + 40.3676i 0.967315 + 1.54803i
\(681\) 0 0
\(682\) 13.3249 10.0560i 0.510238 0.385063i
\(683\) −40.8468 + 23.5829i −1.56296 + 0.902375i −0.566005 + 0.824402i \(0.691512\pi\)
−0.996955 + 0.0779734i \(0.975155\pi\)
\(684\) 0 0
\(685\) 0.945899 + 8.99962i 0.0361409 + 0.343858i
\(686\) −1.01725 14.5473i −0.0388387 0.555419i
\(687\) 0 0
\(688\) −0.466166 3.31695i −0.0177724 0.126457i
\(689\) 16.3531 15.7921i 0.623005 0.601629i
\(690\) 0 0
\(691\) 13.5950 + 33.6487i 0.517177 + 1.28006i 0.929434 + 0.368990i \(0.120296\pi\)
−0.412257 + 0.911068i \(0.635259\pi\)
\(692\) 10.8139 18.7303i 0.411084 0.712018i
\(693\) 0 0
\(694\) 2.98902 + 5.17713i 0.113462 + 0.196521i
\(695\) −16.6238 + 21.2774i −0.630575 + 0.807099i
\(696\) 0 0
\(697\) 6.88297 + 27.6061i 0.260711 + 1.04566i
\(698\) −12.1303 + 9.47720i −0.459137 + 0.358717i
\(699\) 0 0
\(700\) −32.4931 15.8480i −1.22813 0.598997i
\(701\) −20.3162 + 14.7606i −0.767333 + 0.557500i −0.901151 0.433506i \(-0.857276\pi\)
0.133818 + 0.991006i \(0.457276\pi\)
\(702\) 0 0
\(703\) 16.5572i 0.624468i
\(704\) 1.01890 11.7426i 0.0384011 0.442567i
\(705\) 0 0
\(706\) 17.0150 0.594176i 0.640367 0.0223621i
\(707\) −0.689607 + 9.86184i −0.0259353 + 0.370893i
\(708\) 0 0
\(709\) 0.0375991 1.07670i 0.00141206 0.0404362i −0.998480 0.0551105i \(-0.982449\pi\)
0.999892 + 0.0146743i \(0.00467113\pi\)
\(710\) −5.06215 + 5.62209i −0.189979 + 0.210993i
\(711\) 0 0
\(712\) −41.7364 + 4.38667i −1.56414 + 0.164397i
\(713\) −17.2929 + 6.98677i −0.647623 + 0.261657i
\(714\) 0 0
\(715\) −53.5897 6.54114i −2.00414 0.244625i
\(716\) −13.0674 2.30414i −0.488352 0.0861097i
\(717\) 0 0
\(718\) −1.98935 + 7.97884i −0.0742418 + 0.297768i
\(719\) 14.8900 + 33.4434i 0.555302 + 1.24723i 0.945237 + 0.326386i \(0.105831\pi\)
−0.389935 + 0.920843i \(0.627502\pi\)
\(720\) 0 0
\(721\) 42.9372 + 38.6608i 1.59906 + 1.43980i
\(722\) 7.41814 + 10.9978i 0.276074 + 0.409297i
\(723\) 0 0
\(724\) −16.4344 + 10.2694i −0.610780 + 0.381657i
\(725\) −12.5056 + 4.55165i −0.464445 + 0.169044i
\(726\) 0 0
\(727\) 6.01334 + 34.1033i 0.223022 + 1.26482i 0.866430 + 0.499299i \(0.166409\pi\)
−0.643407 + 0.765524i \(0.722480\pi\)
\(728\) −17.2582 + 53.1152i −0.639631 + 1.96858i
\(729\) 0 0
\(730\) 0.537234 + 0.390324i 0.0198839 + 0.0144465i
\(731\) 14.8467 + 27.9225i 0.549124 + 1.03275i
\(732\) 0 0
\(733\) −0.664723 + 2.31816i −0.0245521 + 0.0856233i −0.972584 0.232552i \(-0.925292\pi\)
0.948032 + 0.318176i \(0.103070\pi\)
\(734\) −13.7240 0.959674i −0.506561 0.0354222i
\(735\) 0 0
\(736\) −5.92107 + 16.2680i −0.218253 + 0.599647i
\(737\) 8.75176 5.69235i 0.322375 0.209680i
\(738\) 0 0
\(739\) 14.8113 13.3362i 0.544843 0.490579i −0.350129 0.936702i \(-0.613862\pi\)
0.894972 + 0.446123i \(0.147196\pi\)
\(740\) −46.7359 11.6526i −1.71804 0.428357i
\(741\) 0 0
\(742\) 15.8714 2.23058i 0.582659 0.0818873i
\(743\) −14.1662 + 1.99093i −0.519706 + 0.0730400i −0.394149 0.919046i \(-0.628961\pi\)
−0.125557 + 0.992086i \(0.540072\pi\)
\(744\) 0 0
\(745\) 11.0699 + 2.76003i 0.405569 + 0.101120i
\(746\) −6.57224 + 5.91767i −0.240627 + 0.216661i
\(747\) 0 0
\(748\) −6.16846 22.9554i −0.225541 0.839334i
\(749\) −3.63465 + 9.98611i −0.132807 + 0.364885i
\(750\) 0 0
\(751\) −30.6557 2.14366i −1.11864 0.0782231i −0.501561 0.865122i \(-0.667241\pi\)
−0.617082 + 0.786899i \(0.711685\pi\)
\(752\) −0.896145 + 3.12523i −0.0326791 + 0.113965i
\(753\) 0 0
\(754\) 3.90286 + 7.34021i 0.142134 + 0.267315i
\(755\) −60.1457 43.6984i −2.18892 1.59035i
\(756\) 0 0
\(757\) 9.78964 30.1294i 0.355810 1.09507i −0.599728 0.800204i \(-0.704724\pi\)
0.955538 0.294868i \(-0.0952756\pi\)
\(758\) −1.77479 10.0654i −0.0644634 0.365590i
\(759\) 0 0
\(760\) −13.2549 + 4.82439i −0.480806 + 0.174999i
\(761\) 21.5345 13.4563i 0.780627 0.487790i −0.0801436 0.996783i \(-0.525538\pi\)
0.860770 + 0.508994i \(0.169982\pi\)
\(762\) 0 0
\(763\) 5.18369 + 7.68514i 0.187662 + 0.278221i
\(764\) 20.2049 + 18.1926i 0.730988 + 0.658185i
\(765\) 0 0
\(766\) −1.55692 3.49690i −0.0562538 0.126348i
\(767\) 3.87547 15.5437i 0.139935 0.561249i
\(768\) 0 0
\(769\) −19.0841 3.36505i −0.688191 0.121347i −0.181392 0.983411i \(-0.558060\pi\)
−0.506799 + 0.862064i \(0.669171\pi\)
\(770\) −27.8551 25.9382i −1.00383 0.934746i
\(771\) 0 0
\(772\) −21.1777 + 8.55634i −0.762202 + 0.307949i
\(773\) 20.0530 2.10766i 0.721256 0.0758071i 0.263214 0.964737i \(-0.415217\pi\)
0.458042 + 0.888930i \(0.348551\pi\)
\(774\) 0 0
\(775\) −26.1873 + 29.0840i −0.940677 + 1.04473i
\(776\) 1.13378 32.4674i 0.0407005 1.16551i
\(777\) 0 0
\(778\) −0.848457 + 12.1335i −0.0304186 + 0.435007i
\(779\) −8.42586 + 0.294238i −0.301888 + 0.0105422i
\(780\) 0 0
\(781\) 8.00461 4.81744i 0.286428 0.172382i
\(782\) 12.5615i 0.449198i
\(783\) 0 0
\(784\) 5.09224 3.69973i 0.181866 0.132133i
\(785\) −42.5954 20.7752i −1.52030 0.741498i
\(786\) 0 0
\(787\) −28.0600 + 21.9228i −1.00023 + 0.781465i −0.975895 0.218239i \(-0.929969\pi\)
−0.0243341 + 0.999704i \(0.507747\pi\)
\(788\) 1.61145 + 6.46318i 0.0574056 + 0.230241i
\(789\) 0 0
\(790\) −18.7964 + 24.0584i −0.668747 + 0.855958i
\(791\) 17.9777 + 31.1383i 0.639215 + 1.10715i
\(792\) 0 0
\(793\) −5.65488 + 9.79453i −0.200811 + 0.347814i
\(794\) 5.04229 + 12.4801i 0.178944 + 0.442903i
\(795\) 0 0
\(796\) 6.39539 6.17596i 0.226679 0.218901i
\(797\) −2.20122 15.6625i −0.0779713 0.554795i −0.989607 0.143796i \(-0.954069\pi\)
0.911636 0.410999i \(-0.134820\pi\)
\(798\) 0 0
\(799\) −2.14121 30.6207i −0.0757506 1.08328i
\(800\) 3.79719 + 36.1279i 0.134251 + 1.27731i
\(801\) 0 0
\(802\) −3.71764 + 2.14638i −0.131274 + 0.0757913i
\(803\) −0.493990 0.654573i −0.0174325 0.0230994i
\(804\) 0 0
\(805\) 22.5346 + 36.0628i 0.794239 + 1.27105i
\(806\) 20.2680 + 13.6709i 0.713910 + 0.481538i
\(807\) 0 0
\(808\) 5.49687 2.92274i 0.193379 0.102821i
\(809\) −9.57125 29.4573i −0.336507 1.03566i −0.965975 0.258636i \(-0.916727\pi\)
0.629468 0.777027i \(-0.283273\pi\)
\(810\) 0 0
\(811\) −12.8046 17.6240i −0.449630 0.618863i 0.522688 0.852524i \(-0.324929\pi\)
−0.972318 + 0.233661i \(0.924929\pi\)
\(812\) 1.72449 12.2703i 0.0605176 0.430605i
\(813\) 0 0
\(814\) −24.1269 14.4734i −0.845646 0.507294i
\(815\) −10.7508 + 12.8123i −0.376583 + 0.448794i
\(816\) 0 0
\(817\) −9.00824 + 2.58307i −0.315158 + 0.0903702i
\(818\) 16.9945 + 1.78619i 0.594198 + 0.0624527i
\(819\) 0 0
\(820\) −5.09936 + 23.9906i −0.178077 + 0.837789i
\(821\) 25.4204 1.77757i 0.887177 0.0620375i 0.381108 0.924530i \(-0.375543\pi\)
0.506069 + 0.862493i \(0.331098\pi\)
\(822\) 0 0
\(823\) −17.0773 9.08015i −0.595277 0.316514i 0.144355 0.989526i \(-0.453889\pi\)
−0.739632 + 0.673012i \(0.765000\pi\)
\(824\) 6.31820 35.8323i 0.220105 1.24828i
\(825\) 0 0
\(826\) 8.65165 7.25960i 0.301030 0.252594i
\(827\) 0.478091 + 0.530974i 0.0166249 + 0.0184638i 0.751400 0.659847i \(-0.229379\pi\)
−0.734775 + 0.678311i \(0.762712\pi\)
\(828\) 0 0
\(829\) 0.245297 2.33384i 0.00851951 0.0810577i −0.989436 0.144970i \(-0.953691\pi\)
0.997955 + 0.0639128i \(0.0203579\pi\)
\(830\) −14.5136 0.506828i −0.503776 0.0175922i
\(831\) 0 0
\(832\) 16.7488 4.17595i 0.580661 0.144775i
\(833\) −33.2313 + 49.2674i −1.15140 + 1.70702i
\(834\) 0 0
\(835\) 30.7223 5.41716i 1.06319 0.187469i
\(836\) 7.03382 0.373664i 0.243270 0.0129235i
\(837\) 0 0
\(838\) 29.5705 + 9.60804i 1.02150 + 0.331904i
\(839\) −10.7328 + 11.1141i −0.370536 + 0.383701i −0.878552 0.477646i \(-0.841490\pi\)
0.508016 + 0.861347i \(0.330379\pi\)
\(840\) 0 0
\(841\) 15.0460 + 19.2579i 0.518826 + 0.664067i
\(842\) −2.18782 + 5.41505i −0.0753974 + 0.186615i
\(843\) 0 0
\(844\) 2.25437 + 7.86192i 0.0775986 + 0.270618i
\(845\) −7.38028 34.7215i −0.253889 1.19446i
\(846\) 0 0
\(847\) 23.5596 + 40.6722i 0.809519 + 1.39751i
\(848\) 1.68198 + 2.00450i 0.0577593 + 0.0688349i
\(849\) 0 0
\(850\) −11.5548 23.6909i −0.396327 0.812591i
\(851\) 21.8359 + 22.6117i 0.748525 + 0.775121i
\(852\) 0 0
\(853\) −15.1323 + 24.2167i −0.518118 + 0.829163i −0.998862 0.0476985i \(-0.984811\pi\)
0.480743 + 0.876861i \(0.340367\pi\)
\(854\) −7.28416 + 3.24312i −0.249259 + 0.110977i
\(855\) 0 0
\(856\) 6.54603 1.39140i 0.223739 0.0475572i
\(857\) −48.2213 17.5511i −1.64721 0.599535i −0.658932 0.752202i \(-0.728992\pi\)
−0.988278 + 0.152667i \(0.951214\pi\)
\(858\) 0 0
\(859\) −12.6431 10.6088i −0.431378 0.361969i 0.401094 0.916037i \(-0.368630\pi\)
−0.832471 + 0.554068i \(0.813075\pi\)
\(860\) 0.951427 + 27.2453i 0.0324434 + 0.929057i
\(861\) 0 0
\(862\) 5.13002 10.5181i 0.174729 0.358248i
\(863\) −35.8278 + 11.6412i −1.21959 + 0.396270i −0.846934 0.531699i \(-0.821554\pi\)
−0.372659 + 0.927968i \(0.621554\pi\)
\(864\) 0 0
\(865\) −31.3776 + 43.1875i −1.06687 + 1.46842i
\(866\) −22.0091 21.2540i −0.747901 0.722240i
\(867\) 0 0
\(868\) −12.4629 34.2415i −0.423018 1.16223i
\(869\) 30.8687 21.6474i 1.04715 0.734336i
\(870\) 0 0
\(871\) 12.0483 + 9.41313i 0.408240 + 0.318952i
\(872\) 2.37440 5.33299i 0.0804073 0.180598i
\(873\) 0 0
\(874\) 3.64103 + 0.773925i 0.123160 + 0.0261784i
\(875\) 14.9520 + 9.34306i 0.505470 + 0.315853i
\(876\) 0 0
\(877\) −17.1187 + 8.34934i −0.578057 + 0.281937i −0.704115 0.710086i \(-0.748656\pi\)
0.126058 + 0.992023i \(0.459767\pi\)
\(878\) −5.86651 + 11.0333i −0.197985 + 0.372356i
\(879\) 0 0
\(880\) 1.18135 6.10077i 0.0398233 0.205657i
\(881\) −48.0662 27.7510i −1.61939 0.934956i −0.987078 0.160242i \(-0.948772\pi\)
−0.632313 0.774713i \(-0.717894\pi\)
\(882\) 0 0
\(883\) 31.0192 + 13.8106i 1.04388 + 0.464765i 0.855755 0.517381i \(-0.173093\pi\)
0.188123 + 0.982145i \(0.439760\pi\)
\(884\) 28.8593 19.4658i 0.970643 0.654707i
\(885\) 0 0
\(886\) −15.0637 6.08611i −0.506074 0.204467i
\(887\) −48.6214 13.9419i −1.63255 0.468125i −0.670702 0.741727i \(-0.734007\pi\)
−0.961843 + 0.273602i \(0.911785\pi\)
\(888\) 0 0
\(889\) −13.0184 1.82962i −0.436623 0.0613633i
\(890\) 41.8854 1.40400
\(891\) 0 0
\(892\) 1.38634 0.0464182
\(893\) 9.00753 + 1.26593i 0.301426 + 0.0423626i
\(894\) 0 0
\(895\) 31.4824 + 9.02742i 1.05234 + 0.301753i
\(896\) −34.9104 14.1047i −1.16628 0.471206i
\(897\) 0 0
\(898\) 16.8196 11.3450i 0.561278 0.378587i
\(899\) −12.2542 5.45590i −0.408699 0.181964i
\(900\) 0 0
\(901\) −21.3953 12.3526i −0.712780 0.411524i
\(902\) −6.93667 + 12.5352i −0.230966 + 0.417376i
\(903\) 0 0
\(904\) 10.6301 19.9923i 0.353552 0.664934i
\(905\) 42.9914 20.9683i 1.42908 0.697009i
\(906\) 0 0
\(907\) 18.4542 + 11.5315i 0.612763 + 0.382897i 0.800509 0.599321i \(-0.204563\pi\)
−0.187746 + 0.982218i \(0.560118\pi\)
\(908\) −15.4022 3.27383i −0.511139 0.108646i
\(909\) 0 0
\(910\) 22.6719 50.9220i 0.751567 1.68805i
\(911\) −27.8417 21.7523i −0.922438 0.720688i 0.0379718 0.999279i \(-0.487910\pi\)
−0.960410 + 0.278591i \(0.910133\pi\)
\(912\) 0 0
\(913\) 16.9611 + 5.82664i 0.561332 + 0.192834i
\(914\) 1.19048 + 3.27083i 0.0393777 + 0.108189i
\(915\) 0 0
\(916\) 16.2417 + 15.6844i 0.536641 + 0.518228i
\(917\) −28.9771 + 39.8835i −0.956907 + 1.31707i
\(918\) 0 0
\(919\) 37.1192 12.0608i 1.22445 0.397848i 0.375750 0.926721i \(-0.377385\pi\)
0.848701 + 0.528873i \(0.177385\pi\)
\(920\) 11.7394 24.0693i 0.387036 0.793540i
\(921\) 0 0
\(922\) 0.962534 + 27.5634i 0.0316994 + 0.907751i
\(923\) 10.4810 + 8.79458i 0.344986 + 0.289477i
\(924\) 0 0
\(925\) 61.9820 + 22.5596i 2.03795 + 0.741755i
\(926\) 30.1516 6.40892i 0.990843 0.210610i
\(927\) 0 0
\(928\) −11.3745 + 5.06423i −0.373385 + 0.166242i
\(929\) −2.65434 + 4.24784i −0.0870861 + 0.139367i −0.888723 0.458444i \(-0.848407\pi\)
0.801637 + 0.597811i \(0.203963\pi\)
\(930\) 0 0
\(931\) −12.2331 12.6677i −0.400923 0.415167i
\(932\) 8.66440 + 17.7646i 0.283812 + 0.581900i
\(933\) 0 0
\(934\) −8.49218 10.1206i −0.277873 0.331156i
\(935\) 9.21932 + 57.9406i 0.301504 + 1.89486i
\(936\) 0 0
\(937\) −11.2227 52.7989i −0.366631 1.72486i −0.644817 0.764337i \(-0.723067\pi\)
0.278186 0.960527i \(-0.410267\pi\)
\(938\) 2.97116 + 10.3617i 0.0970119 + 0.338321i
\(939\) 0 0
\(940\) 9.91257 24.5345i 0.323313 0.800227i
\(941\) 16.1213 + 20.6344i 0.525540 + 0.672661i 0.975401 0.220438i \(-0.0707486\pi\)
−0.449861 + 0.893099i \(0.648526\pi\)
\(942\) 0 0
\(943\) 11.1189 11.5140i 0.362081 0.374946i
\(944\) 1.75364 + 0.569793i 0.0570762 + 0.0185452i
\(945\) 0 0
\(946\) −4.11052 + 15.3846i −0.133644 + 0.500196i
\(947\) 2.07383 0.365673i 0.0673906 0.0118828i −0.139851 0.990173i \(-0.544662\pi\)
0.207242 + 0.978290i \(0.433551\pi\)
\(948\) 0 0
\(949\) 0.671571 0.995644i 0.0218001 0.0323200i
\(950\) 7.57885 1.88962i 0.245890 0.0613074i
\(951\) 0 0
\(952\) 60.6552 + 2.11813i 1.96585 + 0.0686489i
\(953\) −1.62794 + 15.4888i −0.0527341 + 0.501732i 0.935995 + 0.352014i \(0.114503\pi\)
−0.988729 + 0.149717i \(0.952164\pi\)
\(954\) 0 0
\(955\) −44.9037 49.8706i −1.45305 1.61377i
\(956\) −4.28285 + 3.59374i −0.138517 + 0.116230i
\(957\) 0 0
\(958\) 3.53284 20.0357i 0.114141 0.647325i
\(959\) 10.1874 + 5.41676i 0.328969 + 0.174916i
\(960\) 0 0
\(961\) −8.42662 + 0.589247i −0.271826 + 0.0190080i
\(962\) 8.56672 40.3033i 0.276202 1.29943i
\(963\) 0 0
\(964\) 21.2476 + 2.23321i 0.684339 + 0.0719270i
\(965\) 54.1928 15.5395i 1.74453 0.500236i
\(966\) 0 0
\(967\) 10.8180 12.8924i 0.347884 0.414592i −0.563521 0.826102i \(-0.690554\pi\)
0.911406 + 0.411509i \(0.134998\pi\)
\(968\) 13.8589 26.1549i 0.445443 0.840651i
\(969\) 0 0
\(970\) −4.51263 + 32.1090i −0.144892 + 1.03096i
\(971\) −13.8868 19.1136i −0.445649 0.613384i 0.525806 0.850604i \(-0.323764\pi\)
−0.971456 + 0.237220i \(0.923764\pi\)
\(972\) 0 0
\(973\) 10.6387 + 32.7426i 0.341062 + 1.04968i
\(974\) −22.4363 + 11.9296i −0.718905 + 0.382249i
\(975\) 0 0
\(976\) −1.07923 0.727948i −0.0345452 0.0233010i
\(977\) −6.13825 9.82325i −0.196380 0.314273i 0.735173 0.677880i \(-0.237101\pi\)
−0.931553 + 0.363606i \(0.881545\pi\)
\(978\) 0 0
\(979\) −49.4756 15.0876i −1.58125 0.482201i
\(980\) −44.3663 + 25.6149i −1.41723 + 0.818237i
\(981\) 0 0
\(982\) −1.17525 11.1818i −0.0375038 0.356825i
\(983\) 1.67195 + 23.9100i 0.0533269 + 0.762610i 0.948477 + 0.316846i \(0.102624\pi\)
−0.895150 + 0.445765i \(0.852932\pi\)
\(984\) 0 0
\(985\) −2.28815 16.2811i −0.0729066 0.518757i
\(986\) 6.49872 6.27574i 0.206961 0.199860i
\(987\) 0 0
\(988\) 3.86425 + 9.56435i 0.122938 + 0.304283i
\(989\) 8.89570 15.4078i 0.282867 0.489940i
\(990\) 0 0
\(991\) 11.7763 + 20.3971i 0.374086 + 0.647935i 0.990190 0.139730i \(-0.0446233\pi\)
−0.616104 + 0.787665i \(0.711290\pi\)
\(992\) −22.5427 + 28.8533i −0.715731 + 0.916094i
\(993\) 0 0
\(994\) 2.33356 + 9.35940i 0.0740161 + 0.296862i
\(995\) −17.2923 + 13.5102i −0.548203 + 0.428303i
\(996\) 0 0
\(997\) −26.2718 12.8136i −0.832036 0.405811i −0.0274329 0.999624i \(-0.508733\pi\)
−0.804604 + 0.593812i \(0.797622\pi\)
\(998\) 19.5348 14.1928i 0.618362 0.449266i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.bb.a.233.22 816
3.2 odd 2 297.2.x.a.68.13 yes 816
11.6 odd 10 inner 891.2.bb.a.314.22 816
27.2 odd 18 inner 891.2.bb.a.332.22 816
27.25 even 9 297.2.x.a.2.13 816
33.17 even 10 297.2.x.a.149.13 yes 816
297.83 even 90 inner 891.2.bb.a.413.22 816
297.160 odd 90 297.2.x.a.83.13 yes 816
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
297.2.x.a.2.13 816 27.25 even 9
297.2.x.a.68.13 yes 816 3.2 odd 2
297.2.x.a.83.13 yes 816 297.160 odd 90
297.2.x.a.149.13 yes 816 33.17 even 10
891.2.bb.a.233.22 816 1.1 even 1 trivial
891.2.bb.a.314.22 816 11.6 odd 10 inner
891.2.bb.a.332.22 816 27.2 odd 18 inner
891.2.bb.a.413.22 816 297.83 even 90 inner