Properties

Label 8880.2.a.s.1.1
Level $8880$
Weight $2$
Character 8880.1
Self dual yes
Analytic conductor $70.907$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 8880 = 2^{4} \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8880.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(70.9071569949\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1110)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 8880.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{3} -1.00000 q^{5} -1.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} -1.00000 q^{5} -1.00000 q^{7} +1.00000 q^{9} +1.00000 q^{11} +2.00000 q^{13} -1.00000 q^{15} -7.00000 q^{17} +2.00000 q^{19} -1.00000 q^{21} +1.00000 q^{25} +1.00000 q^{27} +9.00000 q^{29} -7.00000 q^{31} +1.00000 q^{33} +1.00000 q^{35} -1.00000 q^{37} +2.00000 q^{39} -11.0000 q^{41} +11.0000 q^{43} -1.00000 q^{45} -8.00000 q^{47} -6.00000 q^{49} -7.00000 q^{51} -11.0000 q^{53} -1.00000 q^{55} +2.00000 q^{57} +10.0000 q^{59} -1.00000 q^{61} -1.00000 q^{63} -2.00000 q^{65} +8.00000 q^{67} +4.00000 q^{73} +1.00000 q^{75} -1.00000 q^{77} -12.0000 q^{79} +1.00000 q^{81} +6.00000 q^{83} +7.00000 q^{85} +9.00000 q^{87} +6.00000 q^{89} -2.00000 q^{91} -7.00000 q^{93} -2.00000 q^{95} -19.0000 q^{97} +1.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −1.00000 −0.377964 −0.188982 0.981981i \(-0.560519\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 1.00000 0.301511 0.150756 0.988571i \(-0.451829\pi\)
0.150756 + 0.988571i \(0.451829\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) −7.00000 −1.69775 −0.848875 0.528594i \(-0.822719\pi\)
−0.848875 + 0.528594i \(0.822719\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 9.00000 1.67126 0.835629 0.549294i \(-0.185103\pi\)
0.835629 + 0.549294i \(0.185103\pi\)
\(30\) 0 0
\(31\) −7.00000 −1.25724 −0.628619 0.777714i \(-0.716379\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 0 0
\(33\) 1.00000 0.174078
\(34\) 0 0
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) −1.00000 −0.164399
\(38\) 0 0
\(39\) 2.00000 0.320256
\(40\) 0 0
\(41\) −11.0000 −1.71791 −0.858956 0.512050i \(-0.828886\pi\)
−0.858956 + 0.512050i \(0.828886\pi\)
\(42\) 0 0
\(43\) 11.0000 1.67748 0.838742 0.544529i \(-0.183292\pi\)
0.838742 + 0.544529i \(0.183292\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) −7.00000 −0.980196
\(52\) 0 0
\(53\) −11.0000 −1.51097 −0.755483 0.655168i \(-0.772598\pi\)
−0.755483 + 0.655168i \(0.772598\pi\)
\(54\) 0 0
\(55\) −1.00000 −0.134840
\(56\) 0 0
\(57\) 2.00000 0.264906
\(58\) 0 0
\(59\) 10.0000 1.30189 0.650945 0.759125i \(-0.274373\pi\)
0.650945 + 0.759125i \(0.274373\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.128037 −0.0640184 0.997949i \(-0.520392\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 0 0
\(63\) −1.00000 −0.125988
\(64\) 0 0
\(65\) −2.00000 −0.248069
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) −1.00000 −0.113961
\(78\) 0 0
\(79\) −12.0000 −1.35011 −0.675053 0.737769i \(-0.735879\pi\)
−0.675053 + 0.737769i \(0.735879\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) 7.00000 0.759257
\(86\) 0 0
\(87\) 9.00000 0.964901
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) 0 0
\(93\) −7.00000 −0.725866
\(94\) 0 0
\(95\) −2.00000 −0.205196
\(96\) 0 0
\(97\) −19.0000 −1.92916 −0.964579 0.263795i \(-0.915026\pi\)
−0.964579 + 0.263795i \(0.915026\pi\)
\(98\) 0 0
\(99\) 1.00000 0.100504
\(100\) 0 0
\(101\) −20.0000 −1.99007 −0.995037 0.0995037i \(-0.968274\pi\)
−0.995037 + 0.0995037i \(0.968274\pi\)
\(102\) 0 0
\(103\) 12.0000 1.18240 0.591198 0.806527i \(-0.298655\pi\)
0.591198 + 0.806527i \(0.298655\pi\)
\(104\) 0 0
\(105\) 1.00000 0.0975900
\(106\) 0 0
\(107\) 6.00000 0.580042 0.290021 0.957020i \(-0.406338\pi\)
0.290021 + 0.957020i \(0.406338\pi\)
\(108\) 0 0
\(109\) 7.00000 0.670478 0.335239 0.942133i \(-0.391183\pi\)
0.335239 + 0.942133i \(0.391183\pi\)
\(110\) 0 0
\(111\) −1.00000 −0.0949158
\(112\) 0 0
\(113\) −13.0000 −1.22294 −0.611469 0.791269i \(-0.709421\pi\)
−0.611469 + 0.791269i \(0.709421\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.00000 0.184900
\(118\) 0 0
\(119\) 7.00000 0.641689
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) 0 0
\(123\) −11.0000 −0.991837
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 16.0000 1.41977 0.709885 0.704317i \(-0.248747\pi\)
0.709885 + 0.704317i \(0.248747\pi\)
\(128\) 0 0
\(129\) 11.0000 0.968496
\(130\) 0 0
\(131\) 6.00000 0.524222 0.262111 0.965038i \(-0.415581\pi\)
0.262111 + 0.965038i \(0.415581\pi\)
\(132\) 0 0
\(133\) −2.00000 −0.173422
\(134\) 0 0
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0 0
\(139\) −21.0000 −1.78120 −0.890598 0.454791i \(-0.849714\pi\)
−0.890598 + 0.454791i \(0.849714\pi\)
\(140\) 0 0
\(141\) −8.00000 −0.673722
\(142\) 0 0
\(143\) 2.00000 0.167248
\(144\) 0 0
\(145\) −9.00000 −0.747409
\(146\) 0 0
\(147\) −6.00000 −0.494872
\(148\) 0 0
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 6.00000 0.488273 0.244137 0.969741i \(-0.421495\pi\)
0.244137 + 0.969741i \(0.421495\pi\)
\(152\) 0 0
\(153\) −7.00000 −0.565916
\(154\) 0 0
\(155\) 7.00000 0.562254
\(156\) 0 0
\(157\) 23.0000 1.83560 0.917800 0.397043i \(-0.129964\pi\)
0.917800 + 0.397043i \(0.129964\pi\)
\(158\) 0 0
\(159\) −11.0000 −0.872357
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −13.0000 −1.01824 −0.509119 0.860696i \(-0.670029\pi\)
−0.509119 + 0.860696i \(0.670029\pi\)
\(164\) 0 0
\(165\) −1.00000 −0.0778499
\(166\) 0 0
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 2.00000 0.152944
\(172\) 0 0
\(173\) −3.00000 −0.228086 −0.114043 0.993476i \(-0.536380\pi\)
−0.114043 + 0.993476i \(0.536380\pi\)
\(174\) 0 0
\(175\) −1.00000 −0.0755929
\(176\) 0 0
\(177\) 10.0000 0.751646
\(178\) 0 0
\(179\) −24.0000 −1.79384 −0.896922 0.442189i \(-0.854202\pi\)
−0.896922 + 0.442189i \(0.854202\pi\)
\(180\) 0 0
\(181\) −26.0000 −1.93256 −0.966282 0.257485i \(-0.917106\pi\)
−0.966282 + 0.257485i \(0.917106\pi\)
\(182\) 0 0
\(183\) −1.00000 −0.0739221
\(184\) 0 0
\(185\) 1.00000 0.0735215
\(186\) 0 0
\(187\) −7.00000 −0.511891
\(188\) 0 0
\(189\) −1.00000 −0.0727393
\(190\) 0 0
\(191\) −19.0000 −1.37479 −0.687396 0.726283i \(-0.741246\pi\)
−0.687396 + 0.726283i \(0.741246\pi\)
\(192\) 0 0
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) 0 0
\(195\) −2.00000 −0.143223
\(196\) 0 0
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 0 0
\(199\) 4.00000 0.283552 0.141776 0.989899i \(-0.454719\pi\)
0.141776 + 0.989899i \(0.454719\pi\)
\(200\) 0 0
\(201\) 8.00000 0.564276
\(202\) 0 0
\(203\) −9.00000 −0.631676
\(204\) 0 0
\(205\) 11.0000 0.768273
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.00000 0.138343
\(210\) 0 0
\(211\) 5.00000 0.344214 0.172107 0.985078i \(-0.444942\pi\)
0.172107 + 0.985078i \(0.444942\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −11.0000 −0.750194
\(216\) 0 0
\(217\) 7.00000 0.475191
\(218\) 0 0
\(219\) 4.00000 0.270295
\(220\) 0 0
\(221\) −14.0000 −0.941742
\(222\) 0 0
\(223\) −3.00000 −0.200895 −0.100447 0.994942i \(-0.532027\pi\)
−0.100447 + 0.994942i \(0.532027\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 23.0000 1.52656 0.763282 0.646066i \(-0.223587\pi\)
0.763282 + 0.646066i \(0.223587\pi\)
\(228\) 0 0
\(229\) −16.0000 −1.05731 −0.528655 0.848837i \(-0.677303\pi\)
−0.528655 + 0.848837i \(0.677303\pi\)
\(230\) 0 0
\(231\) −1.00000 −0.0657952
\(232\) 0 0
\(233\) 24.0000 1.57229 0.786146 0.618041i \(-0.212073\pi\)
0.786146 + 0.618041i \(0.212073\pi\)
\(234\) 0 0
\(235\) 8.00000 0.521862
\(236\) 0 0
\(237\) −12.0000 −0.779484
\(238\) 0 0
\(239\) −27.0000 −1.74648 −0.873242 0.487286i \(-0.837987\pi\)
−0.873242 + 0.487286i \(0.837987\pi\)
\(240\) 0 0
\(241\) 6.00000 0.386494 0.193247 0.981150i \(-0.438098\pi\)
0.193247 + 0.981150i \(0.438098\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 6.00000 0.383326
\(246\) 0 0
\(247\) 4.00000 0.254514
\(248\) 0 0
\(249\) 6.00000 0.380235
\(250\) 0 0
\(251\) 16.0000 1.00991 0.504956 0.863145i \(-0.331509\pi\)
0.504956 + 0.863145i \(0.331509\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 7.00000 0.438357
\(256\) 0 0
\(257\) 14.0000 0.873296 0.436648 0.899632i \(-0.356166\pi\)
0.436648 + 0.899632i \(0.356166\pi\)
\(258\) 0 0
\(259\) 1.00000 0.0621370
\(260\) 0 0
\(261\) 9.00000 0.557086
\(262\) 0 0
\(263\) −21.0000 −1.29492 −0.647458 0.762101i \(-0.724168\pi\)
−0.647458 + 0.762101i \(0.724168\pi\)
\(264\) 0 0
\(265\) 11.0000 0.675725
\(266\) 0 0
\(267\) 6.00000 0.367194
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 0 0
\(273\) −2.00000 −0.121046
\(274\) 0 0
\(275\) 1.00000 0.0603023
\(276\) 0 0
\(277\) 8.00000 0.480673 0.240337 0.970690i \(-0.422742\pi\)
0.240337 + 0.970690i \(0.422742\pi\)
\(278\) 0 0
\(279\) −7.00000 −0.419079
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) −12.0000 −0.713326 −0.356663 0.934233i \(-0.616086\pi\)
−0.356663 + 0.934233i \(0.616086\pi\)
\(284\) 0 0
\(285\) −2.00000 −0.118470
\(286\) 0 0
\(287\) 11.0000 0.649309
\(288\) 0 0
\(289\) 32.0000 1.88235
\(290\) 0 0
\(291\) −19.0000 −1.11380
\(292\) 0 0
\(293\) −9.00000 −0.525786 −0.262893 0.964825i \(-0.584677\pi\)
−0.262893 + 0.964825i \(0.584677\pi\)
\(294\) 0 0
\(295\) −10.0000 −0.582223
\(296\) 0 0
\(297\) 1.00000 0.0580259
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −11.0000 −0.634029
\(302\) 0 0
\(303\) −20.0000 −1.14897
\(304\) 0 0
\(305\) 1.00000 0.0572598
\(306\) 0 0
\(307\) −10.0000 −0.570730 −0.285365 0.958419i \(-0.592115\pi\)
−0.285365 + 0.958419i \(0.592115\pi\)
\(308\) 0 0
\(309\) 12.0000 0.682656
\(310\) 0 0
\(311\) 9.00000 0.510343 0.255172 0.966896i \(-0.417868\pi\)
0.255172 + 0.966896i \(0.417868\pi\)
\(312\) 0 0
\(313\) −18.0000 −1.01742 −0.508710 0.860938i \(-0.669877\pi\)
−0.508710 + 0.860938i \(0.669877\pi\)
\(314\) 0 0
\(315\) 1.00000 0.0563436
\(316\) 0 0
\(317\) 5.00000 0.280828 0.140414 0.990093i \(-0.455157\pi\)
0.140414 + 0.990093i \(0.455157\pi\)
\(318\) 0 0
\(319\) 9.00000 0.503903
\(320\) 0 0
\(321\) 6.00000 0.334887
\(322\) 0 0
\(323\) −14.0000 −0.778981
\(324\) 0 0
\(325\) 2.00000 0.110940
\(326\) 0 0
\(327\) 7.00000 0.387101
\(328\) 0 0
\(329\) 8.00000 0.441054
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) 0 0
\(333\) −1.00000 −0.0547997
\(334\) 0 0
\(335\) −8.00000 −0.437087
\(336\) 0 0
\(337\) 22.0000 1.19842 0.599208 0.800593i \(-0.295482\pi\)
0.599208 + 0.800593i \(0.295482\pi\)
\(338\) 0 0
\(339\) −13.0000 −0.706063
\(340\) 0 0
\(341\) −7.00000 −0.379071
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −28.0000 −1.50312 −0.751559 0.659665i \(-0.770698\pi\)
−0.751559 + 0.659665i \(0.770698\pi\)
\(348\) 0 0
\(349\) −32.0000 −1.71292 −0.856460 0.516213i \(-0.827341\pi\)
−0.856460 + 0.516213i \(0.827341\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) 0 0
\(353\) −31.0000 −1.64996 −0.824982 0.565159i \(-0.808815\pi\)
−0.824982 + 0.565159i \(0.808815\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 7.00000 0.370479
\(358\) 0 0
\(359\) −14.0000 −0.738892 −0.369446 0.929252i \(-0.620452\pi\)
−0.369446 + 0.929252i \(0.620452\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) −10.0000 −0.524864
\(364\) 0 0
\(365\) −4.00000 −0.209370
\(366\) 0 0
\(367\) −17.0000 −0.887393 −0.443696 0.896177i \(-0.646333\pi\)
−0.443696 + 0.896177i \(0.646333\pi\)
\(368\) 0 0
\(369\) −11.0000 −0.572637
\(370\) 0 0
\(371\) 11.0000 0.571092
\(372\) 0 0
\(373\) −6.00000 −0.310668 −0.155334 0.987862i \(-0.549645\pi\)
−0.155334 + 0.987862i \(0.549645\pi\)
\(374\) 0 0
\(375\) −1.00000 −0.0516398
\(376\) 0 0
\(377\) 18.0000 0.927047
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 0 0
\(381\) 16.0000 0.819705
\(382\) 0 0
\(383\) −24.0000 −1.22634 −0.613171 0.789950i \(-0.710106\pi\)
−0.613171 + 0.789950i \(0.710106\pi\)
\(384\) 0 0
\(385\) 1.00000 0.0509647
\(386\) 0 0
\(387\) 11.0000 0.559161
\(388\) 0 0
\(389\) −21.0000 −1.06474 −0.532371 0.846511i \(-0.678699\pi\)
−0.532371 + 0.846511i \(0.678699\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 6.00000 0.302660
\(394\) 0 0
\(395\) 12.0000 0.603786
\(396\) 0 0
\(397\) −14.0000 −0.702640 −0.351320 0.936255i \(-0.614267\pi\)
−0.351320 + 0.936255i \(0.614267\pi\)
\(398\) 0 0
\(399\) −2.00000 −0.100125
\(400\) 0 0
\(401\) −6.00000 −0.299626 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(402\) 0 0
\(403\) −14.0000 −0.697390
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) −1.00000 −0.0495682
\(408\) 0 0
\(409\) −18.0000 −0.890043 −0.445021 0.895520i \(-0.646804\pi\)
−0.445021 + 0.895520i \(0.646804\pi\)
\(410\) 0 0
\(411\) −6.00000 −0.295958
\(412\) 0 0
\(413\) −10.0000 −0.492068
\(414\) 0 0
\(415\) −6.00000 −0.294528
\(416\) 0 0
\(417\) −21.0000 −1.02837
\(418\) 0 0
\(419\) −28.0000 −1.36789 −0.683945 0.729534i \(-0.739737\pi\)
−0.683945 + 0.729534i \(0.739737\pi\)
\(420\) 0 0
\(421\) −2.00000 −0.0974740 −0.0487370 0.998812i \(-0.515520\pi\)
−0.0487370 + 0.998812i \(0.515520\pi\)
\(422\) 0 0
\(423\) −8.00000 −0.388973
\(424\) 0 0
\(425\) −7.00000 −0.339550
\(426\) 0 0
\(427\) 1.00000 0.0483934
\(428\) 0 0
\(429\) 2.00000 0.0965609
\(430\) 0 0
\(431\) 1.00000 0.0481683 0.0240842 0.999710i \(-0.492333\pi\)
0.0240842 + 0.999710i \(0.492333\pi\)
\(432\) 0 0
\(433\) 20.0000 0.961139 0.480569 0.876957i \(-0.340430\pi\)
0.480569 + 0.876957i \(0.340430\pi\)
\(434\) 0 0
\(435\) −9.00000 −0.431517
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −1.00000 −0.0477274 −0.0238637 0.999715i \(-0.507597\pi\)
−0.0238637 + 0.999715i \(0.507597\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) 0 0
\(443\) 30.0000 1.42534 0.712672 0.701498i \(-0.247485\pi\)
0.712672 + 0.701498i \(0.247485\pi\)
\(444\) 0 0
\(445\) −6.00000 −0.284427
\(446\) 0 0
\(447\) 6.00000 0.283790
\(448\) 0 0
\(449\) 8.00000 0.377543 0.188772 0.982021i \(-0.439549\pi\)
0.188772 + 0.982021i \(0.439549\pi\)
\(450\) 0 0
\(451\) −11.0000 −0.517970
\(452\) 0 0
\(453\) 6.00000 0.281905
\(454\) 0 0
\(455\) 2.00000 0.0937614
\(456\) 0 0
\(457\) −11.0000 −0.514558 −0.257279 0.966337i \(-0.582826\pi\)
−0.257279 + 0.966337i \(0.582826\pi\)
\(458\) 0 0
\(459\) −7.00000 −0.326732
\(460\) 0 0
\(461\) −13.0000 −0.605470 −0.302735 0.953075i \(-0.597900\pi\)
−0.302735 + 0.953075i \(0.597900\pi\)
\(462\) 0 0
\(463\) −2.00000 −0.0929479 −0.0464739 0.998920i \(-0.514798\pi\)
−0.0464739 + 0.998920i \(0.514798\pi\)
\(464\) 0 0
\(465\) 7.00000 0.324617
\(466\) 0 0
\(467\) −3.00000 −0.138823 −0.0694117 0.997588i \(-0.522112\pi\)
−0.0694117 + 0.997588i \(0.522112\pi\)
\(468\) 0 0
\(469\) −8.00000 −0.369406
\(470\) 0 0
\(471\) 23.0000 1.05978
\(472\) 0 0
\(473\) 11.0000 0.505781
\(474\) 0 0
\(475\) 2.00000 0.0917663
\(476\) 0 0
\(477\) −11.0000 −0.503655
\(478\) 0 0
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) −2.00000 −0.0911922
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 19.0000 0.862746
\(486\) 0 0
\(487\) −18.0000 −0.815658 −0.407829 0.913058i \(-0.633714\pi\)
−0.407829 + 0.913058i \(0.633714\pi\)
\(488\) 0 0
\(489\) −13.0000 −0.587880
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) −63.0000 −2.83738
\(494\) 0 0
\(495\) −1.00000 −0.0449467
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 28.0000 1.25345 0.626726 0.779240i \(-0.284395\pi\)
0.626726 + 0.779240i \(0.284395\pi\)
\(500\) 0 0
\(501\) −12.0000 −0.536120
\(502\) 0 0
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) 0 0
\(505\) 20.0000 0.889988
\(506\) 0 0
\(507\) −9.00000 −0.399704
\(508\) 0 0
\(509\) 24.0000 1.06378 0.531891 0.846813i \(-0.321482\pi\)
0.531891 + 0.846813i \(0.321482\pi\)
\(510\) 0 0
\(511\) −4.00000 −0.176950
\(512\) 0 0
\(513\) 2.00000 0.0883022
\(514\) 0 0
\(515\) −12.0000 −0.528783
\(516\) 0 0
\(517\) −8.00000 −0.351840
\(518\) 0 0
\(519\) −3.00000 −0.131685
\(520\) 0 0
\(521\) 15.0000 0.657162 0.328581 0.944476i \(-0.393430\pi\)
0.328581 + 0.944476i \(0.393430\pi\)
\(522\) 0 0
\(523\) 24.0000 1.04945 0.524723 0.851273i \(-0.324169\pi\)
0.524723 + 0.851273i \(0.324169\pi\)
\(524\) 0 0
\(525\) −1.00000 −0.0436436
\(526\) 0 0
\(527\) 49.0000 2.13447
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 10.0000 0.433963
\(532\) 0 0
\(533\) −22.0000 −0.952926
\(534\) 0 0
\(535\) −6.00000 −0.259403
\(536\) 0 0
\(537\) −24.0000 −1.03568
\(538\) 0 0
\(539\) −6.00000 −0.258438
\(540\) 0 0
\(541\) −10.0000 −0.429934 −0.214967 0.976621i \(-0.568964\pi\)
−0.214967 + 0.976621i \(0.568964\pi\)
\(542\) 0 0
\(543\) −26.0000 −1.11577
\(544\) 0 0
\(545\) −7.00000 −0.299847
\(546\) 0 0
\(547\) 11.0000 0.470326 0.235163 0.971956i \(-0.424438\pi\)
0.235163 + 0.971956i \(0.424438\pi\)
\(548\) 0 0
\(549\) −1.00000 −0.0426790
\(550\) 0 0
\(551\) 18.0000 0.766826
\(552\) 0 0
\(553\) 12.0000 0.510292
\(554\) 0 0
\(555\) 1.00000 0.0424476
\(556\) 0 0
\(557\) 2.00000 0.0847427 0.0423714 0.999102i \(-0.486509\pi\)
0.0423714 + 0.999102i \(0.486509\pi\)
\(558\) 0 0
\(559\) 22.0000 0.930501
\(560\) 0 0
\(561\) −7.00000 −0.295540
\(562\) 0 0
\(563\) −13.0000 −0.547885 −0.273942 0.961746i \(-0.588328\pi\)
−0.273942 + 0.961746i \(0.588328\pi\)
\(564\) 0 0
\(565\) 13.0000 0.546914
\(566\) 0 0
\(567\) −1.00000 −0.0419961
\(568\) 0 0
\(569\) 30.0000 1.25767 0.628833 0.777541i \(-0.283533\pi\)
0.628833 + 0.777541i \(0.283533\pi\)
\(570\) 0 0
\(571\) −11.0000 −0.460336 −0.230168 0.973151i \(-0.573928\pi\)
−0.230168 + 0.973151i \(0.573928\pi\)
\(572\) 0 0
\(573\) −19.0000 −0.793736
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 0 0
\(579\) 14.0000 0.581820
\(580\) 0 0
\(581\) −6.00000 −0.248922
\(582\) 0 0
\(583\) −11.0000 −0.455573
\(584\) 0 0
\(585\) −2.00000 −0.0826898
\(586\) 0 0
\(587\) −43.0000 −1.77480 −0.887400 0.461000i \(-0.847491\pi\)
−0.887400 + 0.461000i \(0.847491\pi\)
\(588\) 0 0
\(589\) −14.0000 −0.576860
\(590\) 0 0
\(591\) −18.0000 −0.740421
\(592\) 0 0
\(593\) 42.0000 1.72473 0.862367 0.506284i \(-0.168981\pi\)
0.862367 + 0.506284i \(0.168981\pi\)
\(594\) 0 0
\(595\) −7.00000 −0.286972
\(596\) 0 0
\(597\) 4.00000 0.163709
\(598\) 0 0
\(599\) −4.00000 −0.163436 −0.0817178 0.996656i \(-0.526041\pi\)
−0.0817178 + 0.996656i \(0.526041\pi\)
\(600\) 0 0
\(601\) −23.0000 −0.938190 −0.469095 0.883148i \(-0.655420\pi\)
−0.469095 + 0.883148i \(0.655420\pi\)
\(602\) 0 0
\(603\) 8.00000 0.325785
\(604\) 0 0
\(605\) 10.0000 0.406558
\(606\) 0 0
\(607\) 10.0000 0.405887 0.202944 0.979190i \(-0.434949\pi\)
0.202944 + 0.979190i \(0.434949\pi\)
\(608\) 0 0
\(609\) −9.00000 −0.364698
\(610\) 0 0
\(611\) −16.0000 −0.647291
\(612\) 0 0
\(613\) 33.0000 1.33286 0.666429 0.745569i \(-0.267822\pi\)
0.666429 + 0.745569i \(0.267822\pi\)
\(614\) 0 0
\(615\) 11.0000 0.443563
\(616\) 0 0
\(617\) −2.00000 −0.0805170 −0.0402585 0.999189i \(-0.512818\pi\)
−0.0402585 + 0.999189i \(0.512818\pi\)
\(618\) 0 0
\(619\) 19.0000 0.763674 0.381837 0.924230i \(-0.375291\pi\)
0.381837 + 0.924230i \(0.375291\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 2.00000 0.0798723
\(628\) 0 0
\(629\) 7.00000 0.279108
\(630\) 0 0
\(631\) 25.0000 0.995234 0.497617 0.867397i \(-0.334208\pi\)
0.497617 + 0.867397i \(0.334208\pi\)
\(632\) 0 0
\(633\) 5.00000 0.198732
\(634\) 0 0
\(635\) −16.0000 −0.634941
\(636\) 0 0
\(637\) −12.0000 −0.475457
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −27.0000 −1.06644 −0.533218 0.845978i \(-0.679017\pi\)
−0.533218 + 0.845978i \(0.679017\pi\)
\(642\) 0 0
\(643\) 7.00000 0.276053 0.138027 0.990429i \(-0.455924\pi\)
0.138027 + 0.990429i \(0.455924\pi\)
\(644\) 0 0
\(645\) −11.0000 −0.433125
\(646\) 0 0
\(647\) −32.0000 −1.25805 −0.629025 0.777385i \(-0.716546\pi\)
−0.629025 + 0.777385i \(0.716546\pi\)
\(648\) 0 0
\(649\) 10.0000 0.392534
\(650\) 0 0
\(651\) 7.00000 0.274352
\(652\) 0 0
\(653\) 4.00000 0.156532 0.0782660 0.996933i \(-0.475062\pi\)
0.0782660 + 0.996933i \(0.475062\pi\)
\(654\) 0 0
\(655\) −6.00000 −0.234439
\(656\) 0 0
\(657\) 4.00000 0.156055
\(658\) 0 0
\(659\) 24.0000 0.934907 0.467454 0.884018i \(-0.345171\pi\)
0.467454 + 0.884018i \(0.345171\pi\)
\(660\) 0 0
\(661\) 41.0000 1.59472 0.797358 0.603507i \(-0.206231\pi\)
0.797358 + 0.603507i \(0.206231\pi\)
\(662\) 0 0
\(663\) −14.0000 −0.543715
\(664\) 0 0
\(665\) 2.00000 0.0775567
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −3.00000 −0.115987
\(670\) 0 0
\(671\) −1.00000 −0.0386046
\(672\) 0 0
\(673\) 4.00000 0.154189 0.0770943 0.997024i \(-0.475436\pi\)
0.0770943 + 0.997024i \(0.475436\pi\)
\(674\) 0 0
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) −6.00000 −0.230599 −0.115299 0.993331i \(-0.536783\pi\)
−0.115299 + 0.993331i \(0.536783\pi\)
\(678\) 0 0
\(679\) 19.0000 0.729153
\(680\) 0 0
\(681\) 23.0000 0.881362
\(682\) 0 0
\(683\) 15.0000 0.573959 0.286980 0.957937i \(-0.407349\pi\)
0.286980 + 0.957937i \(0.407349\pi\)
\(684\) 0 0
\(685\) 6.00000 0.229248
\(686\) 0 0
\(687\) −16.0000 −0.610438
\(688\) 0 0
\(689\) −22.0000 −0.838133
\(690\) 0 0
\(691\) 33.0000 1.25538 0.627690 0.778464i \(-0.284001\pi\)
0.627690 + 0.778464i \(0.284001\pi\)
\(692\) 0 0
\(693\) −1.00000 −0.0379869
\(694\) 0 0
\(695\) 21.0000 0.796575
\(696\) 0 0
\(697\) 77.0000 2.91658
\(698\) 0 0
\(699\) 24.0000 0.907763
\(700\) 0 0
\(701\) −6.00000 −0.226617 −0.113308 0.993560i \(-0.536145\pi\)
−0.113308 + 0.993560i \(0.536145\pi\)
\(702\) 0 0
\(703\) −2.00000 −0.0754314
\(704\) 0 0
\(705\) 8.00000 0.301297
\(706\) 0 0
\(707\) 20.0000 0.752177
\(708\) 0 0
\(709\) 35.0000 1.31445 0.657226 0.753693i \(-0.271730\pi\)
0.657226 + 0.753693i \(0.271730\pi\)
\(710\) 0 0
\(711\) −12.0000 −0.450035
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −2.00000 −0.0747958
\(716\) 0 0
\(717\) −27.0000 −1.00833
\(718\) 0 0
\(719\) −26.0000 −0.969636 −0.484818 0.874615i \(-0.661114\pi\)
−0.484818 + 0.874615i \(0.661114\pi\)
\(720\) 0 0
\(721\) −12.0000 −0.446903
\(722\) 0 0
\(723\) 6.00000 0.223142
\(724\) 0 0
\(725\) 9.00000 0.334252
\(726\) 0 0
\(727\) −14.0000 −0.519231 −0.259616 0.965712i \(-0.583596\pi\)
−0.259616 + 0.965712i \(0.583596\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −77.0000 −2.84795
\(732\) 0 0
\(733\) −15.0000 −0.554038 −0.277019 0.960864i \(-0.589346\pi\)
−0.277019 + 0.960864i \(0.589346\pi\)
\(734\) 0 0
\(735\) 6.00000 0.221313
\(736\) 0 0
\(737\) 8.00000 0.294684
\(738\) 0 0
\(739\) 31.0000 1.14035 0.570177 0.821522i \(-0.306875\pi\)
0.570177 + 0.821522i \(0.306875\pi\)
\(740\) 0 0
\(741\) 4.00000 0.146944
\(742\) 0 0
\(743\) −21.0000 −0.770415 −0.385208 0.922830i \(-0.625870\pi\)
−0.385208 + 0.922830i \(0.625870\pi\)
\(744\) 0 0
\(745\) −6.00000 −0.219823
\(746\) 0 0
\(747\) 6.00000 0.219529
\(748\) 0 0
\(749\) −6.00000 −0.219235
\(750\) 0 0
\(751\) −8.00000 −0.291924 −0.145962 0.989290i \(-0.546628\pi\)
−0.145962 + 0.989290i \(0.546628\pi\)
\(752\) 0 0
\(753\) 16.0000 0.583072
\(754\) 0 0
\(755\) −6.00000 −0.218362
\(756\) 0 0
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −43.0000 −1.55875 −0.779374 0.626559i \(-0.784463\pi\)
−0.779374 + 0.626559i \(0.784463\pi\)
\(762\) 0 0
\(763\) −7.00000 −0.253417
\(764\) 0 0
\(765\) 7.00000 0.253086
\(766\) 0 0
\(767\) 20.0000 0.722158
\(768\) 0 0
\(769\) −2.00000 −0.0721218 −0.0360609 0.999350i \(-0.511481\pi\)
−0.0360609 + 0.999350i \(0.511481\pi\)
\(770\) 0 0
\(771\) 14.0000 0.504198
\(772\) 0 0
\(773\) −9.00000 −0.323708 −0.161854 0.986815i \(-0.551747\pi\)
−0.161854 + 0.986815i \(0.551747\pi\)
\(774\) 0 0
\(775\) −7.00000 −0.251447
\(776\) 0 0
\(777\) 1.00000 0.0358748
\(778\) 0 0
\(779\) −22.0000 −0.788232
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 9.00000 0.321634
\(784\) 0 0
\(785\) −23.0000 −0.820905
\(786\) 0 0
\(787\) 12.0000 0.427754 0.213877 0.976861i \(-0.431391\pi\)
0.213877 + 0.976861i \(0.431391\pi\)
\(788\) 0 0
\(789\) −21.0000 −0.747620
\(790\) 0 0
\(791\) 13.0000 0.462227
\(792\) 0 0
\(793\) −2.00000 −0.0710221
\(794\) 0 0
\(795\) 11.0000 0.390130
\(796\) 0 0
\(797\) −48.0000 −1.70025 −0.850124 0.526583i \(-0.823473\pi\)
−0.850124 + 0.526583i \(0.823473\pi\)
\(798\) 0 0
\(799\) 56.0000 1.98114
\(800\) 0 0
\(801\) 6.00000 0.212000
\(802\) 0 0
\(803\) 4.00000 0.141157
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −24.0000 −0.843795 −0.421898 0.906644i \(-0.638636\pi\)
−0.421898 + 0.906644i \(0.638636\pi\)
\(810\) 0 0
\(811\) 44.0000 1.54505 0.772524 0.634985i \(-0.218994\pi\)
0.772524 + 0.634985i \(0.218994\pi\)
\(812\) 0 0
\(813\) −8.00000 −0.280572
\(814\) 0 0
\(815\) 13.0000 0.455370
\(816\) 0 0
\(817\) 22.0000 0.769683
\(818\) 0 0
\(819\) −2.00000 −0.0698857
\(820\) 0 0
\(821\) 46.0000 1.60541 0.802706 0.596376i \(-0.203393\pi\)
0.802706 + 0.596376i \(0.203393\pi\)
\(822\) 0 0
\(823\) 40.0000 1.39431 0.697156 0.716919i \(-0.254448\pi\)
0.697156 + 0.716919i \(0.254448\pi\)
\(824\) 0 0
\(825\) 1.00000 0.0348155
\(826\) 0 0
\(827\) −21.0000 −0.730242 −0.365121 0.930960i \(-0.618972\pi\)
−0.365121 + 0.930960i \(0.618972\pi\)
\(828\) 0 0
\(829\) 19.0000 0.659897 0.329949 0.943999i \(-0.392969\pi\)
0.329949 + 0.943999i \(0.392969\pi\)
\(830\) 0 0
\(831\) 8.00000 0.277517
\(832\) 0 0
\(833\) 42.0000 1.45521
\(834\) 0 0
\(835\) 12.0000 0.415277
\(836\) 0 0
\(837\) −7.00000 −0.241955
\(838\) 0 0
\(839\) 26.0000 0.897620 0.448810 0.893627i \(-0.351848\pi\)
0.448810 + 0.893627i \(0.351848\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) 0 0
\(843\) 6.00000 0.206651
\(844\) 0 0
\(845\) 9.00000 0.309609
\(846\) 0 0
\(847\) 10.0000 0.343604
\(848\) 0 0
\(849\) −12.0000 −0.411839
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −50.0000 −1.71197 −0.855984 0.517003i \(-0.827048\pi\)
−0.855984 + 0.517003i \(0.827048\pi\)
\(854\) 0 0
\(855\) −2.00000 −0.0683986
\(856\) 0 0
\(857\) 31.0000 1.05894 0.529470 0.848329i \(-0.322391\pi\)
0.529470 + 0.848329i \(0.322391\pi\)
\(858\) 0 0
\(859\) −18.0000 −0.614152 −0.307076 0.951685i \(-0.599351\pi\)
−0.307076 + 0.951685i \(0.599351\pi\)
\(860\) 0 0
\(861\) 11.0000 0.374879
\(862\) 0 0
\(863\) −27.0000 −0.919091 −0.459545 0.888154i \(-0.651988\pi\)
−0.459545 + 0.888154i \(0.651988\pi\)
\(864\) 0 0
\(865\) 3.00000 0.102003
\(866\) 0 0
\(867\) 32.0000 1.08678
\(868\) 0 0
\(869\) −12.0000 −0.407072
\(870\) 0 0
\(871\) 16.0000 0.542139
\(872\) 0 0
\(873\) −19.0000 −0.643053
\(874\) 0 0
\(875\) 1.00000 0.0338062
\(876\) 0 0
\(877\) 23.0000 0.776655 0.388327 0.921521i \(-0.373053\pi\)
0.388327 + 0.921521i \(0.373053\pi\)
\(878\) 0 0
\(879\) −9.00000 −0.303562
\(880\) 0 0
\(881\) 21.0000 0.707508 0.353754 0.935339i \(-0.384905\pi\)
0.353754 + 0.935339i \(0.384905\pi\)
\(882\) 0 0
\(883\) −19.0000 −0.639401 −0.319700 0.947519i \(-0.603582\pi\)
−0.319700 + 0.947519i \(0.603582\pi\)
\(884\) 0 0
\(885\) −10.0000 −0.336146
\(886\) 0 0
\(887\) 47.0000 1.57811 0.789053 0.614325i \(-0.210572\pi\)
0.789053 + 0.614325i \(0.210572\pi\)
\(888\) 0 0
\(889\) −16.0000 −0.536623
\(890\) 0 0
\(891\) 1.00000 0.0335013
\(892\) 0 0
\(893\) −16.0000 −0.535420
\(894\) 0 0
\(895\) 24.0000 0.802232
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −63.0000 −2.10117
\(900\) 0 0
\(901\) 77.0000 2.56524
\(902\) 0 0
\(903\) −11.0000 −0.366057
\(904\) 0 0
\(905\) 26.0000 0.864269
\(906\) 0 0
\(907\) 20.0000 0.664089 0.332045 0.943264i \(-0.392262\pi\)
0.332045 + 0.943264i \(0.392262\pi\)
\(908\) 0 0
\(909\) −20.0000 −0.663358
\(910\) 0 0
\(911\) −24.0000 −0.795155 −0.397578 0.917568i \(-0.630149\pi\)
−0.397578 + 0.917568i \(0.630149\pi\)
\(912\) 0 0
\(913\) 6.00000 0.198571
\(914\) 0 0
\(915\) 1.00000 0.0330590
\(916\) 0 0
\(917\) −6.00000 −0.198137
\(918\) 0 0
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 0 0
\(921\) −10.0000 −0.329511
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −1.00000 −0.0328798
\(926\) 0 0
\(927\) 12.0000 0.394132
\(928\) 0 0
\(929\) −21.0000 −0.688988 −0.344494 0.938789i \(-0.611949\pi\)
−0.344494 + 0.938789i \(0.611949\pi\)
\(930\) 0 0
\(931\) −12.0000 −0.393284
\(932\) 0 0
\(933\) 9.00000 0.294647
\(934\) 0 0
\(935\) 7.00000 0.228924
\(936\) 0 0
\(937\) 32.0000 1.04539 0.522697 0.852518i \(-0.324926\pi\)
0.522697 + 0.852518i \(0.324926\pi\)
\(938\) 0 0
\(939\) −18.0000 −0.587408
\(940\) 0 0
\(941\) −22.0000 −0.717180 −0.358590 0.933495i \(-0.616742\pi\)
−0.358590 + 0.933495i \(0.616742\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 1.00000 0.0325300
\(946\) 0 0
\(947\) 47.0000 1.52729 0.763647 0.645634i \(-0.223407\pi\)
0.763647 + 0.645634i \(0.223407\pi\)
\(948\) 0 0
\(949\) 8.00000 0.259691
\(950\) 0 0
\(951\) 5.00000 0.162136
\(952\) 0 0
\(953\) 36.0000 1.16615 0.583077 0.812417i \(-0.301849\pi\)
0.583077 + 0.812417i \(0.301849\pi\)
\(954\) 0 0
\(955\) 19.0000 0.614826
\(956\) 0 0
\(957\) 9.00000 0.290929
\(958\) 0 0
\(959\) 6.00000 0.193750
\(960\) 0 0
\(961\) 18.0000 0.580645
\(962\) 0 0
\(963\) 6.00000 0.193347
\(964\) 0 0
\(965\) −14.0000 −0.450676
\(966\) 0 0
\(967\) −28.0000 −0.900419 −0.450210 0.892923i \(-0.648651\pi\)
−0.450210 + 0.892923i \(0.648651\pi\)
\(968\) 0 0
\(969\) −14.0000 −0.449745
\(970\) 0 0
\(971\) −49.0000 −1.57248 −0.786242 0.617918i \(-0.787976\pi\)
−0.786242 + 0.617918i \(0.787976\pi\)
\(972\) 0 0
\(973\) 21.0000 0.673229
\(974\) 0 0
\(975\) 2.00000 0.0640513
\(976\) 0 0
\(977\) 5.00000 0.159964 0.0799821 0.996796i \(-0.474514\pi\)
0.0799821 + 0.996796i \(0.474514\pi\)
\(978\) 0 0
\(979\) 6.00000 0.191761
\(980\) 0 0
\(981\) 7.00000 0.223493
\(982\) 0 0
\(983\) −51.0000 −1.62665 −0.813324 0.581811i \(-0.802344\pi\)
−0.813324 + 0.581811i \(0.802344\pi\)
\(984\) 0 0
\(985\) 18.0000 0.573528
\(986\) 0 0
\(987\) 8.00000 0.254643
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −37.0000 −1.17534 −0.587672 0.809099i \(-0.699955\pi\)
−0.587672 + 0.809099i \(0.699955\pi\)
\(992\) 0 0
\(993\) 8.00000 0.253872
\(994\) 0 0
\(995\) −4.00000 −0.126809
\(996\) 0 0
\(997\) −18.0000 −0.570066 −0.285033 0.958518i \(-0.592005\pi\)
−0.285033 + 0.958518i \(0.592005\pi\)
\(998\) 0 0
\(999\) −1.00000 −0.0316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8880.2.a.s.1.1 1
4.3 odd 2 1110.2.a.b.1.1 1
12.11 even 2 3330.2.a.x.1.1 1
20.19 odd 2 5550.2.a.bk.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1110.2.a.b.1.1 1 4.3 odd 2
3330.2.a.x.1.1 1 12.11 even 2
5550.2.a.bk.1.1 1 20.19 odd 2
8880.2.a.s.1.1 1 1.1 even 1 trivial