Properties

Label 8880.2.a.br.1.2
Level $8880$
Weight $2$
Character 8880.1
Self dual yes
Analytic conductor $70.907$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8880,2,Mod(1,8880)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8880.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8880, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8880 = 2^{4} \cdot 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8880.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,2,0,2,0,1,0,2,0,-3,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(70.9071569949\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1110)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.37228\) of defining polynomial
Character \(\chi\) \(=\) 8880.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +1.00000 q^{5} +3.37228 q^{7} +1.00000 q^{9} +1.37228 q^{11} +1.37228 q^{13} +1.00000 q^{15} -1.37228 q^{17} +1.37228 q^{19} +3.37228 q^{21} -3.37228 q^{23} +1.00000 q^{25} +1.00000 q^{27} +6.00000 q^{29} -2.74456 q^{31} +1.37228 q^{33} +3.37228 q^{35} -1.00000 q^{37} +1.37228 q^{39} +8.74456 q^{41} +4.00000 q^{43} +1.00000 q^{45} +4.74456 q^{47} +4.37228 q^{49} -1.37228 q^{51} +5.37228 q^{53} +1.37228 q^{55} +1.37228 q^{57} -14.7446 q^{59} -2.74456 q^{61} +3.37228 q^{63} +1.37228 q^{65} -2.74456 q^{67} -3.37228 q^{69} -1.25544 q^{71} -4.11684 q^{73} +1.00000 q^{75} +4.62772 q^{77} -4.00000 q^{79} +1.00000 q^{81} -0.627719 q^{83} -1.37228 q^{85} +6.00000 q^{87} +13.3723 q^{89} +4.62772 q^{91} -2.74456 q^{93} +1.37228 q^{95} +13.4891 q^{97} +1.37228 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 2 q^{5} + q^{7} + 2 q^{9} - 3 q^{11} - 3 q^{13} + 2 q^{15} + 3 q^{17} - 3 q^{19} + q^{21} - q^{23} + 2 q^{25} + 2 q^{27} + 12 q^{29} + 6 q^{31} - 3 q^{33} + q^{35} - 2 q^{37} - 3 q^{39}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 3.37228 1.27460 0.637301 0.770615i \(-0.280051\pi\)
0.637301 + 0.770615i \(0.280051\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 1.37228 0.413758 0.206879 0.978366i \(-0.433669\pi\)
0.206879 + 0.978366i \(0.433669\pi\)
\(12\) 0 0
\(13\) 1.37228 0.380602 0.190301 0.981726i \(-0.439054\pi\)
0.190301 + 0.981726i \(0.439054\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) −1.37228 −0.332827 −0.166414 0.986056i \(-0.553219\pi\)
−0.166414 + 0.986056i \(0.553219\pi\)
\(18\) 0 0
\(19\) 1.37228 0.314823 0.157411 0.987533i \(-0.449685\pi\)
0.157411 + 0.987533i \(0.449685\pi\)
\(20\) 0 0
\(21\) 3.37228 0.735892
\(22\) 0 0
\(23\) −3.37228 −0.703169 −0.351585 0.936156i \(-0.614357\pi\)
−0.351585 + 0.936156i \(0.614357\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −2.74456 −0.492938 −0.246469 0.969151i \(-0.579270\pi\)
−0.246469 + 0.969151i \(0.579270\pi\)
\(32\) 0 0
\(33\) 1.37228 0.238884
\(34\) 0 0
\(35\) 3.37228 0.570020
\(36\) 0 0
\(37\) −1.00000 −0.164399
\(38\) 0 0
\(39\) 1.37228 0.219741
\(40\) 0 0
\(41\) 8.74456 1.36567 0.682836 0.730572i \(-0.260747\pi\)
0.682836 + 0.730572i \(0.260747\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 4.74456 0.692066 0.346033 0.938222i \(-0.387529\pi\)
0.346033 + 0.938222i \(0.387529\pi\)
\(48\) 0 0
\(49\) 4.37228 0.624612
\(50\) 0 0
\(51\) −1.37228 −0.192158
\(52\) 0 0
\(53\) 5.37228 0.737940 0.368970 0.929441i \(-0.379711\pi\)
0.368970 + 0.929441i \(0.379711\pi\)
\(54\) 0 0
\(55\) 1.37228 0.185038
\(56\) 0 0
\(57\) 1.37228 0.181763
\(58\) 0 0
\(59\) −14.7446 −1.91958 −0.959789 0.280721i \(-0.909426\pi\)
−0.959789 + 0.280721i \(0.909426\pi\)
\(60\) 0 0
\(61\) −2.74456 −0.351405 −0.175703 0.984443i \(-0.556220\pi\)
−0.175703 + 0.984443i \(0.556220\pi\)
\(62\) 0 0
\(63\) 3.37228 0.424868
\(64\) 0 0
\(65\) 1.37228 0.170211
\(66\) 0 0
\(67\) −2.74456 −0.335302 −0.167651 0.985846i \(-0.553618\pi\)
−0.167651 + 0.985846i \(0.553618\pi\)
\(68\) 0 0
\(69\) −3.37228 −0.405975
\(70\) 0 0
\(71\) −1.25544 −0.148993 −0.0744965 0.997221i \(-0.523735\pi\)
−0.0744965 + 0.997221i \(0.523735\pi\)
\(72\) 0 0
\(73\) −4.11684 −0.481840 −0.240920 0.970545i \(-0.577449\pi\)
−0.240920 + 0.970545i \(0.577449\pi\)
\(74\) 0 0
\(75\) 1.00000 0.115470
\(76\) 0 0
\(77\) 4.62772 0.527377
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −0.627719 −0.0689011 −0.0344505 0.999406i \(-0.510968\pi\)
−0.0344505 + 0.999406i \(0.510968\pi\)
\(84\) 0 0
\(85\) −1.37228 −0.148845
\(86\) 0 0
\(87\) 6.00000 0.643268
\(88\) 0 0
\(89\) 13.3723 1.41746 0.708729 0.705480i \(-0.249269\pi\)
0.708729 + 0.705480i \(0.249269\pi\)
\(90\) 0 0
\(91\) 4.62772 0.485117
\(92\) 0 0
\(93\) −2.74456 −0.284598
\(94\) 0 0
\(95\) 1.37228 0.140793
\(96\) 0 0
\(97\) 13.4891 1.36961 0.684807 0.728725i \(-0.259887\pi\)
0.684807 + 0.728725i \(0.259887\pi\)
\(98\) 0 0
\(99\) 1.37228 0.137919
\(100\) 0 0
\(101\) 10.7446 1.06912 0.534562 0.845129i \(-0.320477\pi\)
0.534562 + 0.845129i \(0.320477\pi\)
\(102\) 0 0
\(103\) 0.744563 0.0733639 0.0366820 0.999327i \(-0.488321\pi\)
0.0366820 + 0.999327i \(0.488321\pi\)
\(104\) 0 0
\(105\) 3.37228 0.329101
\(106\) 0 0
\(107\) −3.37228 −0.326011 −0.163005 0.986625i \(-0.552119\pi\)
−0.163005 + 0.986625i \(0.552119\pi\)
\(108\) 0 0
\(109\) 4.62772 0.443255 0.221628 0.975131i \(-0.428863\pi\)
0.221628 + 0.975131i \(0.428863\pi\)
\(110\) 0 0
\(111\) −1.00000 −0.0949158
\(112\) 0 0
\(113\) 19.4891 1.83338 0.916691 0.399596i \(-0.130850\pi\)
0.916691 + 0.399596i \(0.130850\pi\)
\(114\) 0 0
\(115\) −3.37228 −0.314467
\(116\) 0 0
\(117\) 1.37228 0.126867
\(118\) 0 0
\(119\) −4.62772 −0.424222
\(120\) 0 0
\(121\) −9.11684 −0.828804
\(122\) 0 0
\(123\) 8.74456 0.788471
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −3.37228 −0.299242 −0.149621 0.988743i \(-0.547805\pi\)
−0.149621 + 0.988743i \(0.547805\pi\)
\(128\) 0 0
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 4.62772 0.401274
\(134\) 0 0
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) 10.7446 0.917970 0.458985 0.888444i \(-0.348213\pi\)
0.458985 + 0.888444i \(0.348213\pi\)
\(138\) 0 0
\(139\) −2.74456 −0.232791 −0.116395 0.993203i \(-0.537134\pi\)
−0.116395 + 0.993203i \(0.537134\pi\)
\(140\) 0 0
\(141\) 4.74456 0.399564
\(142\) 0 0
\(143\) 1.88316 0.157477
\(144\) 0 0
\(145\) 6.00000 0.498273
\(146\) 0 0
\(147\) 4.37228 0.360620
\(148\) 0 0
\(149\) 9.25544 0.758235 0.379117 0.925349i \(-0.376228\pi\)
0.379117 + 0.925349i \(0.376228\pi\)
\(150\) 0 0
\(151\) 3.37228 0.274432 0.137216 0.990541i \(-0.456184\pi\)
0.137216 + 0.990541i \(0.456184\pi\)
\(152\) 0 0
\(153\) −1.37228 −0.110942
\(154\) 0 0
\(155\) −2.74456 −0.220449
\(156\) 0 0
\(157\) 3.25544 0.259812 0.129906 0.991526i \(-0.458532\pi\)
0.129906 + 0.991526i \(0.458532\pi\)
\(158\) 0 0
\(159\) 5.37228 0.426050
\(160\) 0 0
\(161\) −11.3723 −0.896261
\(162\) 0 0
\(163\) −4.86141 −0.380775 −0.190387 0.981709i \(-0.560974\pi\)
−0.190387 + 0.981709i \(0.560974\pi\)
\(164\) 0 0
\(165\) 1.37228 0.106832
\(166\) 0 0
\(167\) 1.88316 0.145723 0.0728615 0.997342i \(-0.476787\pi\)
0.0728615 + 0.997342i \(0.476787\pi\)
\(168\) 0 0
\(169\) −11.1168 −0.855142
\(170\) 0 0
\(171\) 1.37228 0.104941
\(172\) 0 0
\(173\) −6.86141 −0.521663 −0.260832 0.965384i \(-0.583997\pi\)
−0.260832 + 0.965384i \(0.583997\pi\)
\(174\) 0 0
\(175\) 3.37228 0.254921
\(176\) 0 0
\(177\) −14.7446 −1.10827
\(178\) 0 0
\(179\) −5.48913 −0.410276 −0.205138 0.978733i \(-0.565764\pi\)
−0.205138 + 0.978733i \(0.565764\pi\)
\(180\) 0 0
\(181\) −20.9783 −1.55930 −0.779651 0.626215i \(-0.784603\pi\)
−0.779651 + 0.626215i \(0.784603\pi\)
\(182\) 0 0
\(183\) −2.74456 −0.202884
\(184\) 0 0
\(185\) −1.00000 −0.0735215
\(186\) 0 0
\(187\) −1.88316 −0.137710
\(188\) 0 0
\(189\) 3.37228 0.245297
\(190\) 0 0
\(191\) 19.3723 1.40173 0.700865 0.713294i \(-0.252798\pi\)
0.700865 + 0.713294i \(0.252798\pi\)
\(192\) 0 0
\(193\) −1.25544 −0.0903684 −0.0451842 0.998979i \(-0.514387\pi\)
−0.0451842 + 0.998979i \(0.514387\pi\)
\(194\) 0 0
\(195\) 1.37228 0.0982711
\(196\) 0 0
\(197\) −18.8614 −1.34382 −0.671910 0.740633i \(-0.734526\pi\)
−0.671910 + 0.740633i \(0.734526\pi\)
\(198\) 0 0
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) −2.74456 −0.193587
\(202\) 0 0
\(203\) 20.2337 1.42013
\(204\) 0 0
\(205\) 8.74456 0.610747
\(206\) 0 0
\(207\) −3.37228 −0.234390
\(208\) 0 0
\(209\) 1.88316 0.130261
\(210\) 0 0
\(211\) 9.25544 0.637171 0.318585 0.947894i \(-0.396792\pi\)
0.318585 + 0.947894i \(0.396792\pi\)
\(212\) 0 0
\(213\) −1.25544 −0.0860212
\(214\) 0 0
\(215\) 4.00000 0.272798
\(216\) 0 0
\(217\) −9.25544 −0.628300
\(218\) 0 0
\(219\) −4.11684 −0.278191
\(220\) 0 0
\(221\) −1.88316 −0.126675
\(222\) 0 0
\(223\) −18.9783 −1.27088 −0.635439 0.772151i \(-0.719181\pi\)
−0.635439 + 0.772151i \(0.719181\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) −4.00000 −0.265489 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(228\) 0 0
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 0 0
\(231\) 4.62772 0.304482
\(232\) 0 0
\(233\) −22.7446 −1.49005 −0.745023 0.667039i \(-0.767561\pi\)
−0.745023 + 0.667039i \(0.767561\pi\)
\(234\) 0 0
\(235\) 4.74456 0.309501
\(236\) 0 0
\(237\) −4.00000 −0.259828
\(238\) 0 0
\(239\) 5.48913 0.355062 0.177531 0.984115i \(-0.443189\pi\)
0.177531 + 0.984115i \(0.443189\pi\)
\(240\) 0 0
\(241\) −0.510875 −0.0329083 −0.0164542 0.999865i \(-0.505238\pi\)
−0.0164542 + 0.999865i \(0.505238\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 4.37228 0.279335
\(246\) 0 0
\(247\) 1.88316 0.119822
\(248\) 0 0
\(249\) −0.627719 −0.0397801
\(250\) 0 0
\(251\) 26.7446 1.68810 0.844051 0.536263i \(-0.180164\pi\)
0.844051 + 0.536263i \(0.180164\pi\)
\(252\) 0 0
\(253\) −4.62772 −0.290942
\(254\) 0 0
\(255\) −1.37228 −0.0859356
\(256\) 0 0
\(257\) −5.37228 −0.335114 −0.167557 0.985862i \(-0.553588\pi\)
−0.167557 + 0.985862i \(0.553588\pi\)
\(258\) 0 0
\(259\) −3.37228 −0.209543
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 0 0
\(263\) −10.2337 −0.631036 −0.315518 0.948920i \(-0.602178\pi\)
−0.315518 + 0.948920i \(0.602178\pi\)
\(264\) 0 0
\(265\) 5.37228 0.330017
\(266\) 0 0
\(267\) 13.3723 0.818370
\(268\) 0 0
\(269\) 0.627719 0.0382727 0.0191363 0.999817i \(-0.493908\pi\)
0.0191363 + 0.999817i \(0.493908\pi\)
\(270\) 0 0
\(271\) −13.4891 −0.819406 −0.409703 0.912219i \(-0.634368\pi\)
−0.409703 + 0.912219i \(0.634368\pi\)
\(272\) 0 0
\(273\) 4.62772 0.280082
\(274\) 0 0
\(275\) 1.37228 0.0827517
\(276\) 0 0
\(277\) 25.6060 1.53851 0.769257 0.638940i \(-0.220627\pi\)
0.769257 + 0.638940i \(0.220627\pi\)
\(278\) 0 0
\(279\) −2.74456 −0.164313
\(280\) 0 0
\(281\) 1.37228 0.0818634 0.0409317 0.999162i \(-0.486967\pi\)
0.0409317 + 0.999162i \(0.486967\pi\)
\(282\) 0 0
\(283\) 11.6060 0.689903 0.344952 0.938620i \(-0.387895\pi\)
0.344952 + 0.938620i \(0.387895\pi\)
\(284\) 0 0
\(285\) 1.37228 0.0812869
\(286\) 0 0
\(287\) 29.4891 1.74069
\(288\) 0 0
\(289\) −15.1168 −0.889226
\(290\) 0 0
\(291\) 13.4891 0.790747
\(292\) 0 0
\(293\) −4.11684 −0.240509 −0.120254 0.992743i \(-0.538371\pi\)
−0.120254 + 0.992743i \(0.538371\pi\)
\(294\) 0 0
\(295\) −14.7446 −0.858462
\(296\) 0 0
\(297\) 1.37228 0.0796278
\(298\) 0 0
\(299\) −4.62772 −0.267628
\(300\) 0 0
\(301\) 13.4891 0.777500
\(302\) 0 0
\(303\) 10.7446 0.617259
\(304\) 0 0
\(305\) −2.74456 −0.157153
\(306\) 0 0
\(307\) 10.7446 0.613225 0.306612 0.951834i \(-0.400805\pi\)
0.306612 + 0.951834i \(0.400805\pi\)
\(308\) 0 0
\(309\) 0.744563 0.0423567
\(310\) 0 0
\(311\) 8.00000 0.453638 0.226819 0.973937i \(-0.427167\pi\)
0.226819 + 0.973937i \(0.427167\pi\)
\(312\) 0 0
\(313\) 8.00000 0.452187 0.226093 0.974106i \(-0.427405\pi\)
0.226093 + 0.974106i \(0.427405\pi\)
\(314\) 0 0
\(315\) 3.37228 0.190007
\(316\) 0 0
\(317\) −16.9783 −0.953594 −0.476797 0.879014i \(-0.658202\pi\)
−0.476797 + 0.879014i \(0.658202\pi\)
\(318\) 0 0
\(319\) 8.23369 0.460998
\(320\) 0 0
\(321\) −3.37228 −0.188222
\(322\) 0 0
\(323\) −1.88316 −0.104782
\(324\) 0 0
\(325\) 1.37228 0.0761205
\(326\) 0 0
\(327\) 4.62772 0.255913
\(328\) 0 0
\(329\) 16.0000 0.882109
\(330\) 0 0
\(331\) 8.74456 0.480645 0.240322 0.970693i \(-0.422747\pi\)
0.240322 + 0.970693i \(0.422747\pi\)
\(332\) 0 0
\(333\) −1.00000 −0.0547997
\(334\) 0 0
\(335\) −2.74456 −0.149951
\(336\) 0 0
\(337\) −4.11684 −0.224259 −0.112129 0.993694i \(-0.535767\pi\)
−0.112129 + 0.993694i \(0.535767\pi\)
\(338\) 0 0
\(339\) 19.4891 1.05850
\(340\) 0 0
\(341\) −3.76631 −0.203957
\(342\) 0 0
\(343\) −8.86141 −0.478471
\(344\) 0 0
\(345\) −3.37228 −0.181558
\(346\) 0 0
\(347\) −1.48913 −0.0799404 −0.0399702 0.999201i \(-0.512726\pi\)
−0.0399702 + 0.999201i \(0.512726\pi\)
\(348\) 0 0
\(349\) 16.7446 0.896316 0.448158 0.893954i \(-0.352080\pi\)
0.448158 + 0.893954i \(0.352080\pi\)
\(350\) 0 0
\(351\) 1.37228 0.0732470
\(352\) 0 0
\(353\) 3.48913 0.185707 0.0928537 0.995680i \(-0.470401\pi\)
0.0928537 + 0.995680i \(0.470401\pi\)
\(354\) 0 0
\(355\) −1.25544 −0.0666317
\(356\) 0 0
\(357\) −4.62772 −0.244925
\(358\) 0 0
\(359\) −32.4674 −1.71356 −0.856781 0.515680i \(-0.827539\pi\)
−0.856781 + 0.515680i \(0.827539\pi\)
\(360\) 0 0
\(361\) −17.1168 −0.900887
\(362\) 0 0
\(363\) −9.11684 −0.478510
\(364\) 0 0
\(365\) −4.11684 −0.215485
\(366\) 0 0
\(367\) −20.6277 −1.07676 −0.538379 0.842703i \(-0.680963\pi\)
−0.538379 + 0.842703i \(0.680963\pi\)
\(368\) 0 0
\(369\) 8.74456 0.455224
\(370\) 0 0
\(371\) 18.1168 0.940580
\(372\) 0 0
\(373\) 3.48913 0.180660 0.0903300 0.995912i \(-0.471208\pi\)
0.0903300 + 0.995912i \(0.471208\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) 8.23369 0.424057
\(378\) 0 0
\(379\) −24.2337 −1.24480 −0.622400 0.782699i \(-0.713842\pi\)
−0.622400 + 0.782699i \(0.713842\pi\)
\(380\) 0 0
\(381\) −3.37228 −0.172767
\(382\) 0 0
\(383\) −27.6060 −1.41060 −0.705300 0.708909i \(-0.749188\pi\)
−0.705300 + 0.708909i \(0.749188\pi\)
\(384\) 0 0
\(385\) 4.62772 0.235850
\(386\) 0 0
\(387\) 4.00000 0.203331
\(388\) 0 0
\(389\) 23.4891 1.19095 0.595473 0.803375i \(-0.296965\pi\)
0.595473 + 0.803375i \(0.296965\pi\)
\(390\) 0 0
\(391\) 4.62772 0.234034
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −4.00000 −0.201262
\(396\) 0 0
\(397\) 20.7446 1.04114 0.520570 0.853819i \(-0.325720\pi\)
0.520570 + 0.853819i \(0.325720\pi\)
\(398\) 0 0
\(399\) 4.62772 0.231676
\(400\) 0 0
\(401\) −36.1168 −1.80359 −0.901795 0.432165i \(-0.857750\pi\)
−0.901795 + 0.432165i \(0.857750\pi\)
\(402\) 0 0
\(403\) −3.76631 −0.187613
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) −1.37228 −0.0680215
\(408\) 0 0
\(409\) −8.74456 −0.432391 −0.216195 0.976350i \(-0.569365\pi\)
−0.216195 + 0.976350i \(0.569365\pi\)
\(410\) 0 0
\(411\) 10.7446 0.529990
\(412\) 0 0
\(413\) −49.7228 −2.44670
\(414\) 0 0
\(415\) −0.627719 −0.0308135
\(416\) 0 0
\(417\) −2.74456 −0.134402
\(418\) 0 0
\(419\) −7.88316 −0.385117 −0.192559 0.981285i \(-0.561679\pi\)
−0.192559 + 0.981285i \(0.561679\pi\)
\(420\) 0 0
\(421\) 24.2337 1.18108 0.590539 0.807009i \(-0.298915\pi\)
0.590539 + 0.807009i \(0.298915\pi\)
\(422\) 0 0
\(423\) 4.74456 0.230689
\(424\) 0 0
\(425\) −1.37228 −0.0665654
\(426\) 0 0
\(427\) −9.25544 −0.447902
\(428\) 0 0
\(429\) 1.88316 0.0909196
\(430\) 0 0
\(431\) 31.6060 1.52241 0.761203 0.648514i \(-0.224609\pi\)
0.761203 + 0.648514i \(0.224609\pi\)
\(432\) 0 0
\(433\) −10.8614 −0.521966 −0.260983 0.965343i \(-0.584047\pi\)
−0.260983 + 0.965343i \(0.584047\pi\)
\(434\) 0 0
\(435\) 6.00000 0.287678
\(436\) 0 0
\(437\) −4.62772 −0.221374
\(438\) 0 0
\(439\) 32.0000 1.52728 0.763638 0.645644i \(-0.223411\pi\)
0.763638 + 0.645644i \(0.223411\pi\)
\(440\) 0 0
\(441\) 4.37228 0.208204
\(442\) 0 0
\(443\) 4.00000 0.190046 0.0950229 0.995475i \(-0.469708\pi\)
0.0950229 + 0.995475i \(0.469708\pi\)
\(444\) 0 0
\(445\) 13.3723 0.633907
\(446\) 0 0
\(447\) 9.25544 0.437767
\(448\) 0 0
\(449\) 36.9783 1.74511 0.872556 0.488515i \(-0.162461\pi\)
0.872556 + 0.488515i \(0.162461\pi\)
\(450\) 0 0
\(451\) 12.0000 0.565058
\(452\) 0 0
\(453\) 3.37228 0.158444
\(454\) 0 0
\(455\) 4.62772 0.216951
\(456\) 0 0
\(457\) −40.4674 −1.89298 −0.946492 0.322727i \(-0.895400\pi\)
−0.946492 + 0.322727i \(0.895400\pi\)
\(458\) 0 0
\(459\) −1.37228 −0.0640526
\(460\) 0 0
\(461\) 7.48913 0.348803 0.174402 0.984675i \(-0.444201\pi\)
0.174402 + 0.984675i \(0.444201\pi\)
\(462\) 0 0
\(463\) 19.7228 0.916597 0.458298 0.888798i \(-0.348459\pi\)
0.458298 + 0.888798i \(0.348459\pi\)
\(464\) 0 0
\(465\) −2.74456 −0.127276
\(466\) 0 0
\(467\) −1.48913 −0.0689085 −0.0344543 0.999406i \(-0.510969\pi\)
−0.0344543 + 0.999406i \(0.510969\pi\)
\(468\) 0 0
\(469\) −9.25544 −0.427376
\(470\) 0 0
\(471\) 3.25544 0.150003
\(472\) 0 0
\(473\) 5.48913 0.252390
\(474\) 0 0
\(475\) 1.37228 0.0629646
\(476\) 0 0
\(477\) 5.37228 0.245980
\(478\) 0 0
\(479\) 18.1168 0.827780 0.413890 0.910327i \(-0.364170\pi\)
0.413890 + 0.910327i \(0.364170\pi\)
\(480\) 0 0
\(481\) −1.37228 −0.0625706
\(482\) 0 0
\(483\) −11.3723 −0.517457
\(484\) 0 0
\(485\) 13.4891 0.612510
\(486\) 0 0
\(487\) 30.4674 1.38061 0.690304 0.723519i \(-0.257477\pi\)
0.690304 + 0.723519i \(0.257477\pi\)
\(488\) 0 0
\(489\) −4.86141 −0.219840
\(490\) 0 0
\(491\) −2.62772 −0.118587 −0.0592936 0.998241i \(-0.518885\pi\)
−0.0592936 + 0.998241i \(0.518885\pi\)
\(492\) 0 0
\(493\) −8.23369 −0.370827
\(494\) 0 0
\(495\) 1.37228 0.0616795
\(496\) 0 0
\(497\) −4.23369 −0.189907
\(498\) 0 0
\(499\) −20.3505 −0.911015 −0.455507 0.890232i \(-0.650542\pi\)
−0.455507 + 0.890232i \(0.650542\pi\)
\(500\) 0 0
\(501\) 1.88316 0.0841332
\(502\) 0 0
\(503\) −5.48913 −0.244748 −0.122374 0.992484i \(-0.539051\pi\)
−0.122374 + 0.992484i \(0.539051\pi\)
\(504\) 0 0
\(505\) 10.7446 0.478127
\(506\) 0 0
\(507\) −11.1168 −0.493716
\(508\) 0 0
\(509\) 18.3505 0.813373 0.406687 0.913568i \(-0.366684\pi\)
0.406687 + 0.913568i \(0.366684\pi\)
\(510\) 0 0
\(511\) −13.8832 −0.614155
\(512\) 0 0
\(513\) 1.37228 0.0605877
\(514\) 0 0
\(515\) 0.744563 0.0328094
\(516\) 0 0
\(517\) 6.51087 0.286348
\(518\) 0 0
\(519\) −6.86141 −0.301182
\(520\) 0 0
\(521\) −5.76631 −0.252627 −0.126313 0.991990i \(-0.540314\pi\)
−0.126313 + 0.991990i \(0.540314\pi\)
\(522\) 0 0
\(523\) 6.97825 0.305138 0.152569 0.988293i \(-0.451245\pi\)
0.152569 + 0.988293i \(0.451245\pi\)
\(524\) 0 0
\(525\) 3.37228 0.147178
\(526\) 0 0
\(527\) 3.76631 0.164063
\(528\) 0 0
\(529\) −11.6277 −0.505553
\(530\) 0 0
\(531\) −14.7446 −0.639860
\(532\) 0 0
\(533\) 12.0000 0.519778
\(534\) 0 0
\(535\) −3.37228 −0.145796
\(536\) 0 0
\(537\) −5.48913 −0.236873
\(538\) 0 0
\(539\) 6.00000 0.258438
\(540\) 0 0
\(541\) 4.86141 0.209008 0.104504 0.994524i \(-0.466674\pi\)
0.104504 + 0.994524i \(0.466674\pi\)
\(542\) 0 0
\(543\) −20.9783 −0.900263
\(544\) 0 0
\(545\) 4.62772 0.198230
\(546\) 0 0
\(547\) 2.11684 0.0905097 0.0452549 0.998975i \(-0.485590\pi\)
0.0452549 + 0.998975i \(0.485590\pi\)
\(548\) 0 0
\(549\) −2.74456 −0.117135
\(550\) 0 0
\(551\) 8.23369 0.350767
\(552\) 0 0
\(553\) −13.4891 −0.573616
\(554\) 0 0
\(555\) −1.00000 −0.0424476
\(556\) 0 0
\(557\) 40.7446 1.72640 0.863201 0.504860i \(-0.168456\pi\)
0.863201 + 0.504860i \(0.168456\pi\)
\(558\) 0 0
\(559\) 5.48913 0.232165
\(560\) 0 0
\(561\) −1.88316 −0.0795069
\(562\) 0 0
\(563\) −13.2554 −0.558650 −0.279325 0.960197i \(-0.590111\pi\)
−0.279325 + 0.960197i \(0.590111\pi\)
\(564\) 0 0
\(565\) 19.4891 0.819914
\(566\) 0 0
\(567\) 3.37228 0.141623
\(568\) 0 0
\(569\) −32.3505 −1.35620 −0.678102 0.734967i \(-0.737197\pi\)
−0.678102 + 0.734967i \(0.737197\pi\)
\(570\) 0 0
\(571\) 1.25544 0.0525384 0.0262692 0.999655i \(-0.491637\pi\)
0.0262692 + 0.999655i \(0.491637\pi\)
\(572\) 0 0
\(573\) 19.3723 0.809289
\(574\) 0 0
\(575\) −3.37228 −0.140634
\(576\) 0 0
\(577\) 26.7446 1.11339 0.556695 0.830717i \(-0.312069\pi\)
0.556695 + 0.830717i \(0.312069\pi\)
\(578\) 0 0
\(579\) −1.25544 −0.0521742
\(580\) 0 0
\(581\) −2.11684 −0.0878215
\(582\) 0 0
\(583\) 7.37228 0.305329
\(584\) 0 0
\(585\) 1.37228 0.0567368
\(586\) 0 0
\(587\) −1.48913 −0.0614628 −0.0307314 0.999528i \(-0.509784\pi\)
−0.0307314 + 0.999528i \(0.509784\pi\)
\(588\) 0 0
\(589\) −3.76631 −0.155188
\(590\) 0 0
\(591\) −18.8614 −0.775855
\(592\) 0 0
\(593\) −22.9783 −0.943604 −0.471802 0.881705i \(-0.656396\pi\)
−0.471802 + 0.881705i \(0.656396\pi\)
\(594\) 0 0
\(595\) −4.62772 −0.189718
\(596\) 0 0
\(597\) −8.00000 −0.327418
\(598\) 0 0
\(599\) 22.9783 0.938866 0.469433 0.882968i \(-0.344458\pi\)
0.469433 + 0.882968i \(0.344458\pi\)
\(600\) 0 0
\(601\) 30.8614 1.25886 0.629432 0.777056i \(-0.283288\pi\)
0.629432 + 0.777056i \(0.283288\pi\)
\(602\) 0 0
\(603\) −2.74456 −0.111767
\(604\) 0 0
\(605\) −9.11684 −0.370652
\(606\) 0 0
\(607\) −38.4674 −1.56134 −0.780671 0.624942i \(-0.785123\pi\)
−0.780671 + 0.624942i \(0.785123\pi\)
\(608\) 0 0
\(609\) 20.2337 0.819910
\(610\) 0 0
\(611\) 6.51087 0.263402
\(612\) 0 0
\(613\) 30.4674 1.23057 0.615283 0.788306i \(-0.289042\pi\)
0.615283 + 0.788306i \(0.289042\pi\)
\(614\) 0 0
\(615\) 8.74456 0.352615
\(616\) 0 0
\(617\) 32.2337 1.29768 0.648840 0.760925i \(-0.275255\pi\)
0.648840 + 0.760925i \(0.275255\pi\)
\(618\) 0 0
\(619\) 26.9783 1.08435 0.542174 0.840266i \(-0.317601\pi\)
0.542174 + 0.840266i \(0.317601\pi\)
\(620\) 0 0
\(621\) −3.37228 −0.135325
\(622\) 0 0
\(623\) 45.0951 1.80670
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 1.88316 0.0752060
\(628\) 0 0
\(629\) 1.37228 0.0547164
\(630\) 0 0
\(631\) −40.0000 −1.59237 −0.796187 0.605050i \(-0.793153\pi\)
−0.796187 + 0.605050i \(0.793153\pi\)
\(632\) 0 0
\(633\) 9.25544 0.367871
\(634\) 0 0
\(635\) −3.37228 −0.133825
\(636\) 0 0
\(637\) 6.00000 0.237729
\(638\) 0 0
\(639\) −1.25544 −0.0496643
\(640\) 0 0
\(641\) 43.7228 1.72695 0.863474 0.504394i \(-0.168284\pi\)
0.863474 + 0.504394i \(0.168284\pi\)
\(642\) 0 0
\(643\) −23.6060 −0.930929 −0.465464 0.885067i \(-0.654113\pi\)
−0.465464 + 0.885067i \(0.654113\pi\)
\(644\) 0 0
\(645\) 4.00000 0.157500
\(646\) 0 0
\(647\) 39.6060 1.55707 0.778536 0.627600i \(-0.215963\pi\)
0.778536 + 0.627600i \(0.215963\pi\)
\(648\) 0 0
\(649\) −20.2337 −0.794242
\(650\) 0 0
\(651\) −9.25544 −0.362749
\(652\) 0 0
\(653\) 19.7228 0.771813 0.385907 0.922538i \(-0.373889\pi\)
0.385907 + 0.922538i \(0.373889\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −4.11684 −0.160613
\(658\) 0 0
\(659\) 2.23369 0.0870121 0.0435061 0.999053i \(-0.486147\pi\)
0.0435061 + 0.999053i \(0.486147\pi\)
\(660\) 0 0
\(661\) −26.1168 −1.01583 −0.507914 0.861408i \(-0.669583\pi\)
−0.507914 + 0.861408i \(0.669583\pi\)
\(662\) 0 0
\(663\) −1.88316 −0.0731357
\(664\) 0 0
\(665\) 4.62772 0.179455
\(666\) 0 0
\(667\) −20.2337 −0.783452
\(668\) 0 0
\(669\) −18.9783 −0.733742
\(670\) 0 0
\(671\) −3.76631 −0.145397
\(672\) 0 0
\(673\) 2.86141 0.110299 0.0551496 0.998478i \(-0.482436\pi\)
0.0551496 + 0.998478i \(0.482436\pi\)
\(674\) 0 0
\(675\) 1.00000 0.0384900
\(676\) 0 0
\(677\) −2.86141 −0.109973 −0.0549864 0.998487i \(-0.517512\pi\)
−0.0549864 + 0.998487i \(0.517512\pi\)
\(678\) 0 0
\(679\) 45.4891 1.74571
\(680\) 0 0
\(681\) −4.00000 −0.153280
\(682\) 0 0
\(683\) −30.9783 −1.18535 −0.592675 0.805442i \(-0.701928\pi\)
−0.592675 + 0.805442i \(0.701928\pi\)
\(684\) 0 0
\(685\) 10.7446 0.410529
\(686\) 0 0
\(687\) −6.00000 −0.228914
\(688\) 0 0
\(689\) 7.37228 0.280862
\(690\) 0 0
\(691\) −22.7446 −0.865244 −0.432622 0.901575i \(-0.642412\pi\)
−0.432622 + 0.901575i \(0.642412\pi\)
\(692\) 0 0
\(693\) 4.62772 0.175792
\(694\) 0 0
\(695\) −2.74456 −0.104107
\(696\) 0 0
\(697\) −12.0000 −0.454532
\(698\) 0 0
\(699\) −22.7446 −0.860278
\(700\) 0 0
\(701\) −47.7228 −1.80247 −0.901233 0.433335i \(-0.857337\pi\)
−0.901233 + 0.433335i \(0.857337\pi\)
\(702\) 0 0
\(703\) −1.37228 −0.0517566
\(704\) 0 0
\(705\) 4.74456 0.178691
\(706\) 0 0
\(707\) 36.2337 1.36271
\(708\) 0 0
\(709\) −20.6277 −0.774690 −0.387345 0.921935i \(-0.626608\pi\)
−0.387345 + 0.921935i \(0.626608\pi\)
\(710\) 0 0
\(711\) −4.00000 −0.150012
\(712\) 0 0
\(713\) 9.25544 0.346619
\(714\) 0 0
\(715\) 1.88316 0.0704260
\(716\) 0 0
\(717\) 5.48913 0.204995
\(718\) 0 0
\(719\) 13.7228 0.511775 0.255887 0.966707i \(-0.417632\pi\)
0.255887 + 0.966707i \(0.417632\pi\)
\(720\) 0 0
\(721\) 2.51087 0.0935099
\(722\) 0 0
\(723\) −0.510875 −0.0189996
\(724\) 0 0
\(725\) 6.00000 0.222834
\(726\) 0 0
\(727\) −8.97825 −0.332985 −0.166492 0.986043i \(-0.553244\pi\)
−0.166492 + 0.986043i \(0.553244\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −5.48913 −0.203023
\(732\) 0 0
\(733\) 3.48913 0.128874 0.0644369 0.997922i \(-0.479475\pi\)
0.0644369 + 0.997922i \(0.479475\pi\)
\(734\) 0 0
\(735\) 4.37228 0.161274
\(736\) 0 0
\(737\) −3.76631 −0.138734
\(738\) 0 0
\(739\) −25.7228 −0.946229 −0.473114 0.881001i \(-0.656870\pi\)
−0.473114 + 0.881001i \(0.656870\pi\)
\(740\) 0 0
\(741\) 1.88316 0.0691795
\(742\) 0 0
\(743\) −22.4674 −0.824248 −0.412124 0.911128i \(-0.635213\pi\)
−0.412124 + 0.911128i \(0.635213\pi\)
\(744\) 0 0
\(745\) 9.25544 0.339093
\(746\) 0 0
\(747\) −0.627719 −0.0229670
\(748\) 0 0
\(749\) −11.3723 −0.415534
\(750\) 0 0
\(751\) 10.5109 0.383547 0.191774 0.981439i \(-0.438576\pi\)
0.191774 + 0.981439i \(0.438576\pi\)
\(752\) 0 0
\(753\) 26.7446 0.974626
\(754\) 0 0
\(755\) 3.37228 0.122730
\(756\) 0 0
\(757\) 44.1168 1.60345 0.801727 0.597690i \(-0.203915\pi\)
0.801727 + 0.597690i \(0.203915\pi\)
\(758\) 0 0
\(759\) −4.62772 −0.167976
\(760\) 0 0
\(761\) −12.5109 −0.453519 −0.226759 0.973951i \(-0.572813\pi\)
−0.226759 + 0.973951i \(0.572813\pi\)
\(762\) 0 0
\(763\) 15.6060 0.564974
\(764\) 0 0
\(765\) −1.37228 −0.0496149
\(766\) 0 0
\(767\) −20.2337 −0.730596
\(768\) 0 0
\(769\) −51.4891 −1.85675 −0.928373 0.371651i \(-0.878792\pi\)
−0.928373 + 0.371651i \(0.878792\pi\)
\(770\) 0 0
\(771\) −5.37228 −0.193478
\(772\) 0 0
\(773\) 20.1168 0.723553 0.361776 0.932265i \(-0.382170\pi\)
0.361776 + 0.932265i \(0.382170\pi\)
\(774\) 0 0
\(775\) −2.74456 −0.0985876
\(776\) 0 0
\(777\) −3.37228 −0.120980
\(778\) 0 0
\(779\) 12.0000 0.429945
\(780\) 0 0
\(781\) −1.72281 −0.0616471
\(782\) 0 0
\(783\) 6.00000 0.214423
\(784\) 0 0
\(785\) 3.25544 0.116192
\(786\) 0 0
\(787\) −10.7446 −0.383002 −0.191501 0.981492i \(-0.561336\pi\)
−0.191501 + 0.981492i \(0.561336\pi\)
\(788\) 0 0
\(789\) −10.2337 −0.364329
\(790\) 0 0
\(791\) 65.7228 2.33683
\(792\) 0 0
\(793\) −3.76631 −0.133746
\(794\) 0 0
\(795\) 5.37228 0.190535
\(796\) 0 0
\(797\) 4.51087 0.159783 0.0798917 0.996804i \(-0.474543\pi\)
0.0798917 + 0.996804i \(0.474543\pi\)
\(798\) 0 0
\(799\) −6.51087 −0.230338
\(800\) 0 0
\(801\) 13.3723 0.472486
\(802\) 0 0
\(803\) −5.64947 −0.199365
\(804\) 0 0
\(805\) −11.3723 −0.400820
\(806\) 0 0
\(807\) 0.627719 0.0220967
\(808\) 0 0
\(809\) −24.1168 −0.847903 −0.423952 0.905685i \(-0.639357\pi\)
−0.423952 + 0.905685i \(0.639357\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 0 0
\(813\) −13.4891 −0.473084
\(814\) 0 0
\(815\) −4.86141 −0.170288
\(816\) 0 0
\(817\) 5.48913 0.192040
\(818\) 0 0
\(819\) 4.62772 0.161706
\(820\) 0 0
\(821\) 26.3505 0.919640 0.459820 0.888012i \(-0.347914\pi\)
0.459820 + 0.888012i \(0.347914\pi\)
\(822\) 0 0
\(823\) −25.8832 −0.902230 −0.451115 0.892466i \(-0.648974\pi\)
−0.451115 + 0.892466i \(0.648974\pi\)
\(824\) 0 0
\(825\) 1.37228 0.0477767
\(826\) 0 0
\(827\) 20.0000 0.695468 0.347734 0.937593i \(-0.386951\pi\)
0.347734 + 0.937593i \(0.386951\pi\)
\(828\) 0 0
\(829\) −35.8397 −1.24476 −0.622381 0.782714i \(-0.713835\pi\)
−0.622381 + 0.782714i \(0.713835\pi\)
\(830\) 0 0
\(831\) 25.6060 0.888261
\(832\) 0 0
\(833\) −6.00000 −0.207888
\(834\) 0 0
\(835\) 1.88316 0.0651693
\(836\) 0 0
\(837\) −2.74456 −0.0948660
\(838\) 0 0
\(839\) 9.25544 0.319533 0.159767 0.987155i \(-0.448926\pi\)
0.159767 + 0.987155i \(0.448926\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 1.37228 0.0472639
\(844\) 0 0
\(845\) −11.1168 −0.382431
\(846\) 0 0
\(847\) −30.7446 −1.05640
\(848\) 0 0
\(849\) 11.6060 0.398316
\(850\) 0 0
\(851\) 3.37228 0.115600
\(852\) 0 0
\(853\) 40.3505 1.38158 0.690788 0.723057i \(-0.257264\pi\)
0.690788 + 0.723057i \(0.257264\pi\)
\(854\) 0 0
\(855\) 1.37228 0.0469310
\(856\) 0 0
\(857\) 17.8397 0.609391 0.304696 0.952450i \(-0.401445\pi\)
0.304696 + 0.952450i \(0.401445\pi\)
\(858\) 0 0
\(859\) −17.8397 −0.608681 −0.304341 0.952563i \(-0.598436\pi\)
−0.304341 + 0.952563i \(0.598436\pi\)
\(860\) 0 0
\(861\) 29.4891 1.00499
\(862\) 0 0
\(863\) −3.25544 −0.110816 −0.0554082 0.998464i \(-0.517646\pi\)
−0.0554082 + 0.998464i \(0.517646\pi\)
\(864\) 0 0
\(865\) −6.86141 −0.233295
\(866\) 0 0
\(867\) −15.1168 −0.513395
\(868\) 0 0
\(869\) −5.48913 −0.186206
\(870\) 0 0
\(871\) −3.76631 −0.127617
\(872\) 0 0
\(873\) 13.4891 0.456538
\(874\) 0 0
\(875\) 3.37228 0.114004
\(876\) 0 0
\(877\) −54.2337 −1.83134 −0.915671 0.401929i \(-0.868340\pi\)
−0.915671 + 0.401929i \(0.868340\pi\)
\(878\) 0 0
\(879\) −4.11684 −0.138858
\(880\) 0 0
\(881\) −14.2337 −0.479545 −0.239773 0.970829i \(-0.577073\pi\)
−0.239773 + 0.970829i \(0.577073\pi\)
\(882\) 0 0
\(883\) 50.1168 1.68657 0.843283 0.537470i \(-0.180620\pi\)
0.843283 + 0.537470i \(0.180620\pi\)
\(884\) 0 0
\(885\) −14.7446 −0.495633
\(886\) 0 0
\(887\) 42.0000 1.41022 0.705111 0.709097i \(-0.250897\pi\)
0.705111 + 0.709097i \(0.250897\pi\)
\(888\) 0 0
\(889\) −11.3723 −0.381414
\(890\) 0 0
\(891\) 1.37228 0.0459732
\(892\) 0 0
\(893\) 6.51087 0.217878
\(894\) 0 0
\(895\) −5.48913 −0.183481
\(896\) 0 0
\(897\) −4.62772 −0.154515
\(898\) 0 0
\(899\) −16.4674 −0.549218
\(900\) 0 0
\(901\) −7.37228 −0.245606
\(902\) 0 0
\(903\) 13.4891 0.448890
\(904\) 0 0
\(905\) −20.9783 −0.697341
\(906\) 0 0
\(907\) 3.60597 0.119734 0.0598671 0.998206i \(-0.480932\pi\)
0.0598671 + 0.998206i \(0.480932\pi\)
\(908\) 0 0
\(909\) 10.7446 0.356375
\(910\) 0 0
\(911\) −34.9783 −1.15888 −0.579441 0.815014i \(-0.696729\pi\)
−0.579441 + 0.815014i \(0.696729\pi\)
\(912\) 0 0
\(913\) −0.861407 −0.0285084
\(914\) 0 0
\(915\) −2.74456 −0.0907324
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 34.5109 1.13841 0.569204 0.822196i \(-0.307251\pi\)
0.569204 + 0.822196i \(0.307251\pi\)
\(920\) 0 0
\(921\) 10.7446 0.354045
\(922\) 0 0
\(923\) −1.72281 −0.0567071
\(924\) 0 0
\(925\) −1.00000 −0.0328798
\(926\) 0 0
\(927\) 0.744563 0.0244546
\(928\) 0 0
\(929\) −12.5109 −0.410468 −0.205234 0.978713i \(-0.565796\pi\)
−0.205234 + 0.978713i \(0.565796\pi\)
\(930\) 0 0
\(931\) 6.00000 0.196642
\(932\) 0 0
\(933\) 8.00000 0.261908
\(934\) 0 0
\(935\) −1.88316 −0.0615858
\(936\) 0 0
\(937\) 22.0000 0.718709 0.359354 0.933201i \(-0.382997\pi\)
0.359354 + 0.933201i \(0.382997\pi\)
\(938\) 0 0
\(939\) 8.00000 0.261070
\(940\) 0 0
\(941\) 15.7663 0.513967 0.256984 0.966416i \(-0.417271\pi\)
0.256984 + 0.966416i \(0.417271\pi\)
\(942\) 0 0
\(943\) −29.4891 −0.960298
\(944\) 0 0
\(945\) 3.37228 0.109700
\(946\) 0 0
\(947\) 28.4674 0.925065 0.462533 0.886602i \(-0.346941\pi\)
0.462533 + 0.886602i \(0.346941\pi\)
\(948\) 0 0
\(949\) −5.64947 −0.183389
\(950\) 0 0
\(951\) −16.9783 −0.550557
\(952\) 0 0
\(953\) −50.7446 −1.64378 −0.821889 0.569648i \(-0.807080\pi\)
−0.821889 + 0.569648i \(0.807080\pi\)
\(954\) 0 0
\(955\) 19.3723 0.626872
\(956\) 0 0
\(957\) 8.23369 0.266157
\(958\) 0 0
\(959\) 36.2337 1.17005
\(960\) 0 0
\(961\) −23.4674 −0.757012
\(962\) 0 0
\(963\) −3.37228 −0.108670
\(964\) 0 0
\(965\) −1.25544 −0.0404140
\(966\) 0 0
\(967\) 16.9783 0.545984 0.272992 0.962016i \(-0.411987\pi\)
0.272992 + 0.962016i \(0.411987\pi\)
\(968\) 0 0
\(969\) −1.88316 −0.0604957
\(970\) 0 0
\(971\) −50.2337 −1.61208 −0.806038 0.591864i \(-0.798392\pi\)
−0.806038 + 0.591864i \(0.798392\pi\)
\(972\) 0 0
\(973\) −9.25544 −0.296716
\(974\) 0 0
\(975\) 1.37228 0.0439482
\(976\) 0 0
\(977\) 25.1386 0.804255 0.402127 0.915584i \(-0.368271\pi\)
0.402127 + 0.915584i \(0.368271\pi\)
\(978\) 0 0
\(979\) 18.3505 0.586486
\(980\) 0 0
\(981\) 4.62772 0.147752
\(982\) 0 0
\(983\) 12.5109 0.399035 0.199517 0.979894i \(-0.436063\pi\)
0.199517 + 0.979894i \(0.436063\pi\)
\(984\) 0 0
\(985\) −18.8614 −0.600974
\(986\) 0 0
\(987\) 16.0000 0.509286
\(988\) 0 0
\(989\) −13.4891 −0.428929
\(990\) 0 0
\(991\) −22.9783 −0.729928 −0.364964 0.931022i \(-0.618919\pi\)
−0.364964 + 0.931022i \(0.618919\pi\)
\(992\) 0 0
\(993\) 8.74456 0.277500
\(994\) 0 0
\(995\) −8.00000 −0.253617
\(996\) 0 0
\(997\) 16.1168 0.510426 0.255213 0.966885i \(-0.417854\pi\)
0.255213 + 0.966885i \(0.417854\pi\)
\(998\) 0 0
\(999\) −1.00000 −0.0316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8880.2.a.br.1.2 2
4.3 odd 2 1110.2.a.p.1.1 2
12.11 even 2 3330.2.a.be.1.1 2
20.19 odd 2 5550.2.a.ca.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1110.2.a.p.1.1 2 4.3 odd 2
3330.2.a.be.1.1 2 12.11 even 2
5550.2.a.ca.1.2 2 20.19 odd 2
8880.2.a.br.1.2 2 1.1 even 1 trivial