Properties

 Label 8880.2 Level 8880 Weight 2 Dimension 809516 Nonzero newspaces 156 Sturm bound 8404992

Defining parameters

 Level: $$N$$ = $$8880 = 2^{4} \cdot 3 \cdot 5 \cdot 37$$ Weight: $$k$$ = $$2$$ Nonzero newspaces: $$156$$ Sturm bound: $$8404992$$

Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(\Gamma_1(8880))$$.

Total New Old
Modular forms 2117376 813292 1304084
Cusp forms 2085121 809516 1275605
Eisenstein series 32255 3776 28479

Decomposition of $$S_{2}^{\mathrm{new}}(\Gamma_1(8880))$$

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space $$S_k^{\mathrm{new}}(N, \chi)$$ we list the newforms together with their dimension.

Label $$\chi$$ Newforms Dimension $$\chi$$ degree
8880.2.a $$\chi_{8880}(1, \cdot)$$ 8880.2.a.a 1 1
8880.2.a.b 1
8880.2.a.c 1
8880.2.a.d 1
8880.2.a.e 1
8880.2.a.f 1
8880.2.a.g 1
8880.2.a.h 1
8880.2.a.i 1
8880.2.a.j 1
8880.2.a.k 1
8880.2.a.l 1
8880.2.a.m 1
8880.2.a.n 1
8880.2.a.o 1
8880.2.a.p 1
8880.2.a.q 1
8880.2.a.r 1
8880.2.a.s 1
8880.2.a.t 1
8880.2.a.u 1
8880.2.a.v 1
8880.2.a.w 1
8880.2.a.x 1
8880.2.a.y 1
8880.2.a.z 1
8880.2.a.ba 1
8880.2.a.bb 1
8880.2.a.bc 1
8880.2.a.bd 2
8880.2.a.be 2
8880.2.a.bf 2
8880.2.a.bg 2
8880.2.a.bh 2
8880.2.a.bi 2
8880.2.a.bj 2
8880.2.a.bk 2
8880.2.a.bl 2
8880.2.a.bm 2
8880.2.a.bn 2
8880.2.a.bo 2
8880.2.a.bp 2
8880.2.a.bq 2
8880.2.a.br 2
8880.2.a.bs 2
8880.2.a.bt 2
8880.2.a.bu 3
8880.2.a.bv 3
8880.2.a.bw 3
8880.2.a.bx 3
8880.2.a.by 3
8880.2.a.bz 3
8880.2.a.ca 3
8880.2.a.cb 3
8880.2.a.cc 3
8880.2.a.cd 3
8880.2.a.ce 4
8880.2.a.cf 4
8880.2.a.cg 4
8880.2.a.ch 4
8880.2.a.ci 4
8880.2.a.cj 5
8880.2.a.ck 5
8880.2.a.cl 5
8880.2.a.cm 5
8880.2.a.cn 5
8880.2.a.co 6
8880.2.c $$\chi_{8880}(7031, \cdot)$$ None 0 1
8880.2.e $$\chi_{8880}(1849, \cdot)$$ None 0 1
8880.2.f $$\chi_{8880}(889, \cdot)$$ None 0 1
8880.2.h $$\chi_{8880}(7991, \cdot)$$ None 0 1
8880.2.k $$\chi_{8880}(5329, \cdot)$$ n/a 216 1
8880.2.m $$\chi_{8880}(3551, \cdot)$$ n/a 304 1
8880.2.n $$\chi_{8880}(2591, \cdot)$$ n/a 288 1
8880.2.p $$\chi_{8880}(6289, \cdot)$$ n/a 228 1
8880.2.r $$\chi_{8880}(4439, \cdot)$$ None 0 1
8880.2.t $$\chi_{8880}(4441, \cdot)$$ None 0 1
8880.2.w $$\chi_{8880}(5401, \cdot)$$ None 0 1
8880.2.y $$\chi_{8880}(3479, \cdot)$$ None 0 1
8880.2.z $$\chi_{8880}(961, \cdot)$$ n/a 152 1
8880.2.bb $$\chi_{8880}(7919, \cdot)$$ n/a 432 1
8880.2.be $$\chi_{8880}(8879, \cdot)$$ n/a 456 1
8880.2.bg $$\chi_{8880}(4561, \cdot)$$ n/a 304 2
8880.2.bh $$\chi_{8880}(4471, \cdot)$$ None 0 2
8880.2.bj $$\chi_{8880}(1289, \cdot)$$ None 0 2
8880.2.bl $$\chi_{8880}(5741, \cdot)$$ n/a 2432 2
8880.2.bm $$\chi_{8880}(1819, \cdot)$$ n/a 1824 2
8880.2.bq $$\chi_{8880}(2219, \cdot)$$ n/a 3632 2
8880.2.br $$\chi_{8880}(3181, \cdot)$$ n/a 1216 2
8880.2.bu $$\chi_{8880}(2221, \cdot)$$ n/a 1152 2
8880.2.bv $$\chi_{8880}(1259, \cdot)$$ n/a 3456 2
8880.2.bz $$\chi_{8880}(1301, \cdot)$$ n/a 2432 2
8880.2.ca $$\chi_{8880}(6259, \cdot)$$ n/a 1824 2
8880.2.cc $$\chi_{8880}(31, \cdot)$$ n/a 304 2
8880.2.ce $$\chi_{8880}(5729, \cdot)$$ n/a 904 2
8880.2.cg $$\chi_{8880}(3743, \cdot)$$ n/a 912 2
8880.2.ch $$\chi_{8880}(1153, \cdot)$$ n/a 456 2
8880.2.cl $$\chi_{8880}(593, \cdot)$$ n/a 864 2
8880.2.cm $$\chi_{8880}(1183, \cdot)$$ n/a 456 2
8880.2.cn $$\chi_{8880}(1553, \cdot)$$ n/a 904 2
8880.2.co $$\chi_{8880}(223, \cdot)$$ n/a 432 2
8880.2.cr $$\chi_{8880}(6913, \cdot)$$ n/a 456 2
8880.2.cu $$\chi_{8880}(623, \cdot)$$ n/a 912 2
8880.2.cv $$\chi_{8880}(667, \cdot)$$ n/a 1728 2
8880.2.cy $$\chi_{8880}(1997, \cdot)$$ n/a 3632 2
8880.2.cz $$\chi_{8880}(3403, \cdot)$$ n/a 1824 2
8880.2.dc $$\chi_{8880}(2813, \cdot)$$ n/a 3456 2
8880.2.de $$\chi_{8880}(253, \cdot)$$ n/a 1824 2
8880.2.dg $$\chi_{8880}(1067, \cdot)$$ n/a 3632 2
8880.2.dh $$\chi_{8880}(1597, \cdot)$$ n/a 1824 2
8880.2.dj $$\chi_{8880}(5507, \cdot)$$ n/a 3632 2
8880.2.dm $$\chi_{8880}(2843, \cdot)$$ n/a 3632 2
8880.2.do $$\chi_{8880}(7357, \cdot)$$ n/a 1824 2
8880.2.dp $$\chi_{8880}(4187, \cdot)$$ n/a 3632 2
8880.2.dr $$\chi_{8880}(2917, \cdot)$$ n/a 1824 2
8880.2.du $$\chi_{8880}(2443, \cdot)$$ n/a 1728 2
8880.2.dv $$\chi_{8880}(3773, \cdot)$$ n/a 3632 2
8880.2.dy $$\chi_{8880}(1627, \cdot)$$ n/a 1824 2
8880.2.dz $$\chi_{8880}(1037, \cdot)$$ n/a 3456 2
8880.2.eb $$\chi_{8880}(2473, \cdot)$$ None 0 2
8880.2.ee $$\chi_{8880}(5063, \cdot)$$ None 0 2
8880.2.eh $$\chi_{8880}(4217, \cdot)$$ None 0 2
8880.2.ei $$\chi_{8880}(2887, \cdot)$$ None 0 2
8880.2.ej $$\chi_{8880}(3257, \cdot)$$ None 0 2
8880.2.ek $$\chi_{8880}(3847, \cdot)$$ None 0 2
8880.2.eo $$\chi_{8880}(3287, \cdot)$$ None 0 2
8880.2.ep $$\chi_{8880}(697, \cdot)$$ None 0 2
8880.2.es $$\chi_{8880}(919, \cdot)$$ None 0 2
8880.2.eu $$\chi_{8880}(4841, \cdot)$$ None 0 2
8880.2.ex $$\chi_{8880}(6629, \cdot)$$ n/a 3632 2
8880.2.ey $$\chi_{8880}(931, \cdot)$$ n/a 1216 2
8880.2.ez $$\chi_{8880}(371, \cdot)$$ n/a 2304 2
8880.2.fc $$\chi_{8880}(3109, \cdot)$$ n/a 1728 2
8880.2.fd $$\chi_{8880}(4069, \cdot)$$ n/a 1824 2
8880.2.fg $$\chi_{8880}(1331, \cdot)$$ n/a 2432 2
8880.2.fh $$\chi_{8880}(2189, \cdot)$$ n/a 3632 2
8880.2.fi $$\chi_{8880}(5371, \cdot)$$ n/a 1216 2
8880.2.fl $$\chi_{8880}(5359, \cdot)$$ n/a 456 2
8880.2.fn $$\chi_{8880}(401, \cdot)$$ n/a 608 2
8880.2.fq $$\chi_{8880}(359, \cdot)$$ None 0 2
8880.2.fs $$\chi_{8880}(841, \cdot)$$ None 0 2
8880.2.ft $$\chi_{8880}(121, \cdot)$$ None 0 2
8880.2.fv $$\chi_{8880}(7559, \cdot)$$ None 0 2
8880.2.fz $$\chi_{8880}(3119, \cdot)$$ n/a 912 2
8880.2.ga $$\chi_{8880}(3599, \cdot)$$ n/a 912 2
8880.2.gc $$\chi_{8880}(4081, \cdot)$$ n/a 304 2
8880.2.ge $$\chi_{8880}(2231, \cdot)$$ None 0 2
8880.2.gg $$\chi_{8880}(5449, \cdot)$$ None 0 2
8880.2.gj $$\chi_{8880}(4969, \cdot)$$ None 0 2
8880.2.gl $$\chi_{8880}(2711, \cdot)$$ None 0 2
8880.2.gm $$\chi_{8880}(529, \cdot)$$ n/a 456 2
8880.2.go $$\chi_{8880}(7151, \cdot)$$ n/a 608 2
8880.2.gr $$\chi_{8880}(6671, \cdot)$$ n/a 608 2
8880.2.gt $$\chi_{8880}(1009, \cdot)$$ n/a 456 2
8880.2.gu $$\chi_{8880}(1681, \cdot)$$ n/a 912 6
8880.2.gv $$\chi_{8880}(4121, \cdot)$$ None 0 4
8880.2.gx $$\chi_{8880}(199, \cdot)$$ None 0 4
8880.2.gz $$\chi_{8880}(4411, \cdot)$$ n/a 2432 4
8880.2.ha $$\chi_{8880}(1229, \cdot)$$ n/a 7264 4
8880.2.hd $$\chi_{8880}(2749, \cdot)$$ n/a 3648 4
8880.2.hg $$\chi_{8880}(11, \cdot)$$ n/a 4864 4
8880.2.hh $$\chi_{8880}(491, \cdot)$$ n/a 4864 4
8880.2.hk $$\chi_{8880}(3229, \cdot)$$ n/a 3648 4
8880.2.hn $$\chi_{8880}(1531, \cdot)$$ n/a 2432 4
8880.2.ho $$\chi_{8880}(29, \cdot)$$ n/a 7264 4
8880.2.hq $$\chi_{8880}(1361, \cdot)$$ n/a 1216 4
8880.2.hs $$\chi_{8880}(319, \cdot)$$ n/a 912 4
8880.2.ht $$\chi_{8880}(1007, \cdot)$$ n/a 1824 4
8880.2.hw $$\chi_{8880}(97, \cdot)$$ n/a 912 4
8880.2.hx $$\chi_{8880}(3007, \cdot)$$ n/a 912 4
8880.2.hy $$\chi_{8880}(2897, \cdot)$$ n/a 1808 4
8880.2.id $$\chi_{8880}(2527, \cdot)$$ n/a 912 4
8880.2.ie $$\chi_{8880}(3377, \cdot)$$ n/a 1808 4
8880.2.ig $$\chi_{8880}(193, \cdot)$$ n/a 912 4
8880.2.ih $$\chi_{8880}(2783, \cdot)$$ n/a 1824 4
8880.2.ij $$\chi_{8880}(677, \cdot)$$ n/a 7264 4
8880.2.im $$\chi_{8880}(787, \cdot)$$ n/a 3648 4
8880.2.in $$\chi_{8880}(2933, \cdot)$$ n/a 7264 4
8880.2.iq $$\chi_{8880}(2083, \cdot)$$ n/a 3648 4
8880.2.ir $$\chi_{8880}(3227, \cdot)$$ n/a 7264 4
8880.2.it $$\chi_{8880}(2197, \cdot)$$ n/a 3648 4
8880.2.iw $$\chi_{8880}(467, \cdot)$$ n/a 7264 4
8880.2.iy $$\chi_{8880}(6637, \cdot)$$ n/a 3648 4
8880.2.iz $$\chi_{8880}(637, \cdot)$$ n/a 3648 4
8880.2.jb $$\chi_{8880}(4787, \cdot)$$ n/a 7264 4
8880.2.je $$\chi_{8880}(1213, \cdot)$$ n/a 3648 4
8880.2.jg $$\chi_{8880}(347, \cdot)$$ n/a 7264 4
8880.2.ji $$\chi_{8880}(2453, \cdot)$$ n/a 7264 4
8880.2.jj $$\chi_{8880}(2563, \cdot)$$ n/a 3648 4
8880.2.jm $$\chi_{8880}(1157, \cdot)$$ n/a 7264 4
8880.2.jn $$\chi_{8880}(307, \cdot)$$ n/a 3648 4
8880.2.jq $$\chi_{8880}(1657, \cdot)$$ None 0 4
8880.2.jr $$\chi_{8880}(23, \cdot)$$ None 0 4
8880.2.jt $$\chi_{8880}(1063, \cdot)$$ None 0 4
8880.2.ju $$\chi_{8880}(137, \cdot)$$ None 0 4
8880.2.jz $$\chi_{8880}(343, \cdot)$$ None 0 4
8880.2.ka $$\chi_{8880}(233, \cdot)$$ None 0 4
8880.2.kb $$\chi_{8880}(4343, \cdot)$$ None 0 4
8880.2.ke $$\chi_{8880}(1753, \cdot)$$ None 0 4
8880.2.kg $$\chi_{8880}(569, \cdot)$$ None 0 4
8880.2.ki $$\chi_{8880}(3751, \cdot)$$ None 0 4
8880.2.kl $$\chi_{8880}(5299, \cdot)$$ n/a 3648 4
8880.2.km $$\chi_{8880}(341, \cdot)$$ n/a 4864 4
8880.2.ko $$\chi_{8880}(2341, \cdot)$$ n/a 2432 4
8880.2.kp $$\chi_{8880}(1379, \cdot)$$ n/a 7264 4
8880.2.ks $$\chi_{8880}(899, \cdot)$$ n/a 7264 4
8880.2.kt $$\chi_{8880}(1861, \cdot)$$ n/a 2432 4
8880.2.kv $$\chi_{8880}(859, \cdot)$$ n/a 3648 4
8880.2.kw $$\chi_{8880}(4781, \cdot)$$ n/a 4864 4
8880.2.kz $$\chi_{8880}(689, \cdot)$$ n/a 1808 4
8880.2.lb $$\chi_{8880}(991, \cdot)$$ n/a 608 4
8880.2.ld $$\chi_{8880}(2879, \cdot)$$ n/a 2736 6
8880.2.lh $$\chi_{8880}(4271, \cdot)$$ n/a 1824 6
8880.2.li $$\chi_{8880}(289, \cdot)$$ n/a 1368 6
8880.2.lk $$\chi_{8880}(49, \cdot)$$ n/a 1368 6
8880.2.ln $$\chi_{8880}(1151, \cdot)$$ n/a 1824 6
8880.2.lp $$\chi_{8880}(3841, \cdot)$$ n/a 912 6
8880.2.lq $$\chi_{8880}(719, \cdot)$$ n/a 2736 6
8880.2.ls $$\chi_{8880}(169, \cdot)$$ None 0 6
8880.2.lv $$\chi_{8880}(71, \cdot)$$ None 0 6
8880.2.lx $$\chi_{8880}(601, \cdot)$$ None 0 6
8880.2.ly $$\chi_{8880}(839, \cdot)$$ None 0 6
8880.2.ma $$\chi_{8880}(599, \cdot)$$ None 0 6
8880.2.md $$\chi_{8880}(361, \cdot)$$ None 0 6
8880.2.mf $$\chi_{8880}(1991, \cdot)$$ None 0 6
8880.2.mg $$\chi_{8880}(2569, \cdot)$$ None 0 6
8880.2.mj $$\chi_{8880}(457, \cdot)$$ None 0 12
8880.2.ml $$\chi_{8880}(167, \cdot)$$ None 0 12
8880.2.mn $$\chi_{8880}(617, \cdot)$$ None 0 12
8880.2.mo $$\chi_{8880}(7, \cdot)$$ None 0 12
8880.2.ms $$\chi_{8880}(209, \cdot)$$ n/a 5424 12
8880.2.mt $$\chi_{8880}(79, \cdot)$$ n/a 2736 12
8880.2.mu $$\chi_{8880}(161, \cdot)$$ n/a 3648 12
8880.2.mv $$\chi_{8880}(3391, \cdot)$$ n/a 1824 12
8880.2.my $$\chi_{8880}(377, \cdot)$$ None 0 12
8880.2.nb $$\chi_{8880}(247, \cdot)$$ None 0 12
8880.2.nc $$\chi_{8880}(503, \cdot)$$ None 0 12
8880.2.ne $$\chi_{8880}(217, \cdot)$$ None 0 12
8880.2.ng $$\chi_{8880}(587, \cdot)$$ n/a 21792 12
8880.2.nh $$\chi_{8880}(133, \cdot)$$ n/a 10944 12
8880.2.nk $$\chi_{8880}(781, \cdot)$$ n/a 7296 12
8880.2.nn $$\chi_{8880}(419, \cdot)$$ n/a 21792 12
8880.2.no $$\chi_{8880}(731, \cdot)$$ n/a 14592 12
8880.2.nr $$\chi_{8880}(229, \cdot)$$ n/a 10944 12
8880.2.ns $$\chi_{8880}(683, \cdot)$$ n/a 21792 12
8880.2.nt $$\chi_{8880}(13, \cdot)$$ n/a 10944 12
8880.2.ny $$\chi_{8880}(1421, \cdot)$$ n/a 14592 12
8880.2.nz $$\chi_{8880}(1051, \cdot)$$ n/a 7296 12
8880.2.oa $$\chi_{8880}(19, \cdot)$$ n/a 10944 12
8880.2.ob $$\chi_{8880}(389, \cdot)$$ n/a 21792 12
8880.2.of $$\chi_{8880}(173, \cdot)$$ n/a 21792 12
8880.2.og $$\chi_{8880}(403, \cdot)$$ n/a 10944 12
8880.2.oi $$\chi_{8880}(77, \cdot)$$ n/a 21792 12
8880.2.ol $$\chi_{8880}(1267, \cdot)$$ n/a 10944 12
8880.2.om $$\chi_{8880}(67, \cdot)$$ n/a 10944 12
8880.2.op $$\chi_{8880}(53, \cdot)$$ n/a 21792 12
8880.2.or $$\chi_{8880}(1843, \cdot)$$ n/a 10944 12
8880.2.os $$\chi_{8880}(197, \cdot)$$ n/a 21792 12
8880.2.ou $$\chi_{8880}(499, \cdot)$$ n/a 10944 12
8880.2.ov $$\chi_{8880}(869, \cdot)$$ n/a 21792 12
8880.2.pa $$\chi_{8880}(461, \cdot)$$ n/a 14592 12
8880.2.pb $$\chi_{8880}(91, \cdot)$$ n/a 7296 12
8880.2.pe $$\chi_{8880}(757, \cdot)$$ n/a 10944 12
8880.2.pf $$\chi_{8880}(203, \cdot)$$ n/a 21792 12
8880.2.pg $$\chi_{8880}(971, \cdot)$$ n/a 14592 12
8880.2.pj $$\chi_{8880}(469, \cdot)$$ n/a 10944 12
8880.2.pk $$\chi_{8880}(181, \cdot)$$ n/a 7296 12
8880.2.pn $$\chi_{8880}(299, \cdot)$$ n/a 21792 12
8880.2.pq $$\chi_{8880}(853, \cdot)$$ n/a 10944 12
8880.2.pr $$\chi_{8880}(827, \cdot)$$ n/a 21792 12
8880.2.pt $$\chi_{8880}(143, \cdot)$$ n/a 5472 12
8880.2.pv $$\chi_{8880}(577, \cdot)$$ n/a 2736 12
8880.2.px $$\chi_{8880}(2287, \cdot)$$ n/a 2736 12
8880.2.py $$\chi_{8880}(497, \cdot)$$ n/a 5424 12
8880.2.qc $$\chi_{8880}(439, \cdot)$$ None 0 12
8880.2.qd $$\chi_{8880}(89, \cdot)$$ None 0 12
8880.2.qe $$\chi_{8880}(631, \cdot)$$ None 0 12
8880.2.qf $$\chi_{8880}(281, \cdot)$$ None 0 12
8880.2.qi $$\chi_{8880}(127, \cdot)$$ n/a 2736 12
8880.2.ql $$\chi_{8880}(2657, \cdot)$$ n/a 5424 12
8880.2.qm $$\chi_{8880}(1297, \cdot)$$ n/a 2736 12
8880.2.qo $$\chi_{8880}(383, \cdot)$$ n/a 5472 12

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of $$S_{2}^{\mathrm{old}}(\Gamma_1(8880))$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(\Gamma_1(8880)) \cong$$ $$S_{2}^{\mathrm{new}}(\Gamma_1(15))$$$$^{\oplus 10}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(16))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(20))$$$$^{\oplus 12}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(24))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(30))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(37))$$$$^{\oplus 20}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(40))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(48))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(60))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(74))$$$$^{\oplus 16}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(80))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(111))$$$$^{\oplus 10}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(120))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(148))$$$$^{\oplus 12}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(185))$$$$^{\oplus 10}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(222))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(240))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(296))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(370))$$$$^{\oplus 8}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(444))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(555))$$$$^{\oplus 5}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(592))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(740))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(888))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(1110))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(1480))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(1776))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(2220))$$$$^{\oplus 3}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(2960))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(4440))$$$$^{\oplus 2}$$