Properties

Label 888.2.a
Level $888$
Weight $2$
Character orbit 888.a
Rep. character $\chi_{888}(1,\cdot)$
Character field $\Q$
Dimension $18$
Newform subspaces $10$
Sturm bound $304$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 888 = 2^{3} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 888.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(304\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(888))\).

Total New Old
Modular forms 160 18 142
Cusp forms 145 18 127
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(37\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(12\)\(2\)\(10\)\(11\)\(2\)\(9\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(28\)\(3\)\(25\)\(26\)\(3\)\(23\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(23\)\(3\)\(20\)\(21\)\(3\)\(18\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(17\)\(1\)\(16\)\(15\)\(1\)\(14\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(20\)\(3\)\(17\)\(18\)\(3\)\(15\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(20\)\(1\)\(19\)\(18\)\(1\)\(17\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(25\)\(2\)\(23\)\(23\)\(2\)\(21\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(15\)\(3\)\(12\)\(13\)\(3\)\(10\)\(2\)\(0\)\(2\)
Plus space\(+\)\(74\)\(6\)\(68\)\(67\)\(6\)\(61\)\(7\)\(0\)\(7\)
Minus space\(-\)\(86\)\(12\)\(74\)\(78\)\(12\)\(66\)\(8\)\(0\)\(8\)

Trace form

\( 18 q - 4 q^{7} + 18 q^{9} - 4 q^{13} - 4 q^{15} - 8 q^{17} + 12 q^{19} + 16 q^{23} + 30 q^{25} - 8 q^{29} - 12 q^{31} + 12 q^{33} + 24 q^{35} - 2 q^{37} - 4 q^{41} + 4 q^{43} + 16 q^{47} + 22 q^{49} + 4 q^{51}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(888))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 37
888.2.a.a 888.a 1.a $1$ $7.091$ \(\Q\) None 888.2.a.a \(0\) \(-1\) \(-4\) \(-1\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-4q^{5}-q^{7}+q^{9}-3q^{11}-5q^{13}+\cdots\)
888.2.a.b 888.a 1.a $1$ $7.091$ \(\Q\) None 888.2.a.b \(0\) \(-1\) \(0\) \(0\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+q^{9}-6q^{13}-4q^{17}+4q^{19}+\cdots\)
888.2.a.c 888.a 1.a $1$ $7.091$ \(\Q\) None 888.2.a.c \(0\) \(1\) \(-2\) \(0\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{5}+q^{9}-4q^{11}-2q^{13}+\cdots\)
888.2.a.d 888.a 1.a $1$ $7.091$ \(\Q\) None 888.2.a.d \(0\) \(1\) \(4\) \(0\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+4q^{5}+q^{9}+2q^{13}+4q^{15}+\cdots\)
888.2.a.e 888.a 1.a $2$ $7.091$ \(\Q(\sqrt{3}) \) None 888.2.a.e \(0\) \(-2\) \(2\) \(-4\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+(1+\beta )q^{5}-2q^{7}+q^{9}+(-2+\cdots)q^{11}+\cdots\)
888.2.a.f 888.a 1.a $2$ $7.091$ \(\Q(\sqrt{5}) \) None 888.2.a.f \(0\) \(-2\) \(2\) \(8\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}+(1+\beta )q^{5}+4q^{7}+q^{9}+(2+2\beta )q^{11}+\cdots\)
888.2.a.g 888.a 1.a $2$ $7.091$ \(\Q(\sqrt{2}) \) None 888.2.a.g \(0\) \(2\) \(-4\) \(-4\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+(-2+\beta )q^{5}+(-2-2\beta )q^{7}+\cdots\)
888.2.a.h 888.a 1.a $2$ $7.091$ \(\Q(\sqrt{41}) \) None 888.2.a.h \(0\) \(2\) \(0\) \(3\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+(1+\beta )q^{7}+q^{9}+(1+\beta )q^{11}+\cdots\)
888.2.a.i 888.a 1.a $3$ $7.091$ 3.3.316.1 None 888.2.a.i \(0\) \(-3\) \(2\) \(-5\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+(1-\beta _{1}-\beta _{2})q^{5}+(-1-2\beta _{1}+\cdots)q^{7}+\cdots\)
888.2.a.j 888.a 1.a $3$ $7.091$ 3.3.568.1 None 888.2.a.j \(0\) \(3\) \(0\) \(-1\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}+(\beta _{1}+\beta _{2})q^{5}+\beta _{2}q^{7}+q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(888))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(888)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(37))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(74))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(111))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(148))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(222))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(296))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(444))\)\(^{\oplus 2}\)