Defining parameters
Level: | \( N \) | \(=\) | \( 888 = 2^{3} \cdot 3 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 888.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 10 \) | ||
Sturm bound: | \(304\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(888))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 160 | 18 | 142 |
Cusp forms | 145 | 18 | 127 |
Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(37\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | |||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(12\) | \(2\) | \(10\) | \(11\) | \(2\) | \(9\) | \(1\) | \(0\) | \(1\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(28\) | \(3\) | \(25\) | \(26\) | \(3\) | \(23\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(23\) | \(3\) | \(20\) | \(21\) | \(3\) | \(18\) | \(2\) | \(0\) | \(2\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(17\) | \(1\) | \(16\) | \(15\) | \(1\) | \(14\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(20\) | \(3\) | \(17\) | \(18\) | \(3\) | \(15\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(20\) | \(1\) | \(19\) | \(18\) | \(1\) | \(17\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(25\) | \(2\) | \(23\) | \(23\) | \(2\) | \(21\) | \(2\) | \(0\) | \(2\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(15\) | \(3\) | \(12\) | \(13\) | \(3\) | \(10\) | \(2\) | \(0\) | \(2\) | |||
Plus space | \(+\) | \(74\) | \(6\) | \(68\) | \(67\) | \(6\) | \(61\) | \(7\) | \(0\) | \(7\) | |||||
Minus space | \(-\) | \(86\) | \(12\) | \(74\) | \(78\) | \(12\) | \(66\) | \(8\) | \(0\) | \(8\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(888))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(888))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(888)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(37))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(74))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(111))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(148))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(222))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(296))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(444))\)\(^{\oplus 2}\)