# Properties

 Label 8820.2.a.bl Level $8820$ Weight $2$ Character orbit 8820.a Self dual yes Analytic conductor $70.428$ Analytic rank $0$ Dimension $2$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$8820 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 8820.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$70.4280545828$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{2})$$ Defining polynomial: $$x^{2} - 2$$ Coefficient ring: $$\Z[a_1, \ldots, a_{13}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 980) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \sqrt{2}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + q^{5} +O(q^{10})$$ $$q + q^{5} + ( 1 + 2 \beta ) q^{11} + ( 5 - \beta ) q^{13} + ( -5 - \beta ) q^{17} + ( -2 + 4 \beta ) q^{19} + ( -2 + \beta ) q^{23} + q^{25} + ( -1 - 4 \beta ) q^{29} + ( 6 - \beta ) q^{31} + ( -2 - \beta ) q^{37} + ( -2 + \beta ) q^{41} + ( 6 + 4 \beta ) q^{43} + ( -1 + 7 \beta ) q^{47} + ( 8 - 3 \beta ) q^{53} + ( 1 + 2 \beta ) q^{55} + ( -2 - \beta ) q^{59} + ( 8 - 2 \beta ) q^{61} + ( 5 - \beta ) q^{65} + ( -4 - 5 \beta ) q^{67} + ( 2 - 6 \beta ) q^{71} + ( 8 - 2 \beta ) q^{73} + ( -1 + 10 \beta ) q^{79} + 8 q^{83} + ( -5 - \beta ) q^{85} -12 \beta q^{89} + ( -2 + 4 \beta ) q^{95} + ( 3 + 9 \beta ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 2 q^{5} + O(q^{10})$$ $$2 q + 2 q^{5} + 2 q^{11} + 10 q^{13} - 10 q^{17} - 4 q^{19} - 4 q^{23} + 2 q^{25} - 2 q^{29} + 12 q^{31} - 4 q^{37} - 4 q^{41} + 12 q^{43} - 2 q^{47} + 16 q^{53} + 2 q^{55} - 4 q^{59} + 16 q^{61} + 10 q^{65} - 8 q^{67} + 4 q^{71} + 16 q^{73} - 2 q^{79} + 16 q^{83} - 10 q^{85} - 4 q^{95} + 6 q^{97} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.41421 1.41421
0 0 0 1.00000 0 0 0 0 0
1.2 0 0 0 1.00000 0 0 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$-1$$
$$7$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8820.2.a.bl 2
3.b odd 2 1 980.2.a.k yes 2
7.b odd 2 1 8820.2.a.bg 2
12.b even 2 1 3920.2.a.bo 2
15.d odd 2 1 4900.2.a.x 2
15.e even 4 2 4900.2.e.r 4
21.c even 2 1 980.2.a.j 2
21.g even 6 2 980.2.i.l 4
21.h odd 6 2 980.2.i.k 4
84.h odd 2 1 3920.2.a.bx 2
105.g even 2 1 4900.2.a.z 2
105.k odd 4 2 4900.2.e.q 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
980.2.a.j 2 21.c even 2 1
980.2.a.k yes 2 3.b odd 2 1
980.2.i.k 4 21.h odd 6 2
980.2.i.l 4 21.g even 6 2
3920.2.a.bo 2 12.b even 2 1
3920.2.a.bx 2 84.h odd 2 1
4900.2.a.x 2 15.d odd 2 1
4900.2.a.z 2 105.g even 2 1
4900.2.e.q 4 105.k odd 4 2
4900.2.e.r 4 15.e even 4 2
8820.2.a.bg 2 7.b odd 2 1
8820.2.a.bl 2 1.a even 1 1 trivial

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(8820))$$:

 $$T_{11}^{2} - 2 T_{11} - 7$$ $$T_{13}^{2} - 10 T_{13} + 23$$ $$T_{17}^{2} + 10 T_{17} + 23$$ $$T_{31}^{2} - 12 T_{31} + 34$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$( -1 + T )^{2}$$
$7$ $$T^{2}$$
$11$ $$-7 - 2 T + T^{2}$$
$13$ $$23 - 10 T + T^{2}$$
$17$ $$23 + 10 T + T^{2}$$
$19$ $$-28 + 4 T + T^{2}$$
$23$ $$2 + 4 T + T^{2}$$
$29$ $$-31 + 2 T + T^{2}$$
$31$ $$34 - 12 T + T^{2}$$
$37$ $$2 + 4 T + T^{2}$$
$41$ $$2 + 4 T + T^{2}$$
$43$ $$4 - 12 T + T^{2}$$
$47$ $$-97 + 2 T + T^{2}$$
$53$ $$46 - 16 T + T^{2}$$
$59$ $$2 + 4 T + T^{2}$$
$61$ $$56 - 16 T + T^{2}$$
$67$ $$-34 + 8 T + T^{2}$$
$71$ $$-68 - 4 T + T^{2}$$
$73$ $$56 - 16 T + T^{2}$$
$79$ $$-199 + 2 T + T^{2}$$
$83$ $$( -8 + T )^{2}$$
$89$ $$-288 + T^{2}$$
$97$ $$-153 - 6 T + T^{2}$$