Properties

Label 882.6.a.z.1.2
Level $882$
Weight $6$
Character 882.1
Self dual yes
Analytic conductor $141.459$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,6,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.458529075\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 294)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 882.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +16.0000 q^{4} -46.9289 q^{5} -64.0000 q^{8} +O(q^{10})\) \(q-4.00000 q^{2} +16.0000 q^{4} -46.9289 q^{5} -64.0000 q^{8} +187.716 q^{10} +87.4558 q^{11} +754.566 q^{13} +256.000 q^{16} +1449.04 q^{17} +2540.24 q^{19} -750.863 q^{20} -349.823 q^{22} +912.248 q^{23} -922.675 q^{25} -3018.26 q^{26} -173.217 q^{29} +4531.13 q^{31} -1024.00 q^{32} -5796.16 q^{34} +6829.96 q^{37} -10161.0 q^{38} +3003.45 q^{40} -13069.3 q^{41} -12277.7 q^{43} +1399.29 q^{44} -3648.99 q^{46} -13492.8 q^{47} +3690.70 q^{50} +12073.0 q^{52} +9677.70 q^{53} -4104.21 q^{55} +692.868 q^{58} -30369.2 q^{59} +732.473 q^{61} -18124.5 q^{62} +4096.00 q^{64} -35411.0 q^{65} +46399.9 q^{67} +23184.6 q^{68} +3295.39 q^{71} +10238.2 q^{73} -27319.8 q^{74} +40643.8 q^{76} +98584.0 q^{79} -12013.8 q^{80} +52277.1 q^{82} -87792.7 q^{83} -68001.9 q^{85} +49110.8 q^{86} -5597.17 q^{88} +69099.8 q^{89} +14596.0 q^{92} +53971.2 q^{94} -119211. q^{95} -42181.4 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 32 q^{4} - 108 q^{5} - 128 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{2} + 32 q^{4} - 108 q^{5} - 128 q^{8} + 432 q^{10} + 124 q^{11} + 720 q^{13} + 512 q^{16} - 612 q^{17} + 2088 q^{19} - 1728 q^{20} - 496 q^{22} - 772 q^{23} - 318 q^{25} - 2880 q^{26} + 4592 q^{29} + 9792 q^{31} - 2048 q^{32} + 2448 q^{34} - 5992 q^{37} - 8352 q^{38} + 6912 q^{40} - 20196 q^{41} - 1136 q^{43} + 1984 q^{44} + 3088 q^{46} - 36936 q^{47} + 1272 q^{50} + 11520 q^{52} + 16708 q^{53} - 6336 q^{55} - 18368 q^{58} - 74592 q^{59} - 18648 q^{61} - 39168 q^{62} + 8192 q^{64} - 33300 q^{65} + 67344 q^{67} - 9792 q^{68} - 76548 q^{71} + 47304 q^{73} + 23968 q^{74} + 33408 q^{76} + 140656 q^{79} - 27648 q^{80} + 80784 q^{82} - 94104 q^{83} + 57868 q^{85} + 4544 q^{86} - 7936 q^{88} + 17604 q^{89} - 12352 q^{92} + 147744 q^{94} - 91592 q^{95} + 85176 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) −46.9289 −0.839490 −0.419745 0.907642i \(-0.637881\pi\)
−0.419745 + 0.907642i \(0.637881\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) 0 0
\(10\) 187.716 0.593609
\(11\) 87.4558 0.217925 0.108963 0.994046i \(-0.465247\pi\)
0.108963 + 0.994046i \(0.465247\pi\)
\(12\) 0 0
\(13\) 754.566 1.23834 0.619168 0.785258i \(-0.287470\pi\)
0.619168 + 0.785258i \(0.287470\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 1449.04 1.21607 0.608034 0.793911i \(-0.291958\pi\)
0.608034 + 0.793911i \(0.291958\pi\)
\(18\) 0 0
\(19\) 2540.24 1.61432 0.807161 0.590331i \(-0.201003\pi\)
0.807161 + 0.590331i \(0.201003\pi\)
\(20\) −750.863 −0.419745
\(21\) 0 0
\(22\) −349.823 −0.154096
\(23\) 912.248 0.359578 0.179789 0.983705i \(-0.442458\pi\)
0.179789 + 0.983705i \(0.442458\pi\)
\(24\) 0 0
\(25\) −922.675 −0.295256
\(26\) −3018.26 −0.875636
\(27\) 0 0
\(28\) 0 0
\(29\) −173.217 −0.0382468 −0.0191234 0.999817i \(-0.506088\pi\)
−0.0191234 + 0.999817i \(0.506088\pi\)
\(30\) 0 0
\(31\) 4531.13 0.846842 0.423421 0.905933i \(-0.360829\pi\)
0.423421 + 0.905933i \(0.360829\pi\)
\(32\) −1024.00 −0.176777
\(33\) 0 0
\(34\) −5796.16 −0.859890
\(35\) 0 0
\(36\) 0 0
\(37\) 6829.96 0.820188 0.410094 0.912043i \(-0.365496\pi\)
0.410094 + 0.912043i \(0.365496\pi\)
\(38\) −10161.0 −1.14150
\(39\) 0 0
\(40\) 3003.45 0.296805
\(41\) −13069.3 −1.21420 −0.607102 0.794624i \(-0.707668\pi\)
−0.607102 + 0.794624i \(0.707668\pi\)
\(42\) 0 0
\(43\) −12277.7 −1.01262 −0.506309 0.862352i \(-0.668990\pi\)
−0.506309 + 0.862352i \(0.668990\pi\)
\(44\) 1399.29 0.108963
\(45\) 0 0
\(46\) −3648.99 −0.254260
\(47\) −13492.8 −0.890958 −0.445479 0.895292i \(-0.646967\pi\)
−0.445479 + 0.895292i \(0.646967\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 3690.70 0.208778
\(51\) 0 0
\(52\) 12073.0 0.619168
\(53\) 9677.70 0.473241 0.236621 0.971602i \(-0.423960\pi\)
0.236621 + 0.971602i \(0.423960\pi\)
\(54\) 0 0
\(55\) −4104.21 −0.182946
\(56\) 0 0
\(57\) 0 0
\(58\) 692.868 0.0270446
\(59\) −30369.2 −1.13580 −0.567902 0.823096i \(-0.692245\pi\)
−0.567902 + 0.823096i \(0.692245\pi\)
\(60\) 0 0
\(61\) 732.473 0.0252038 0.0126019 0.999921i \(-0.495989\pi\)
0.0126019 + 0.999921i \(0.495989\pi\)
\(62\) −18124.5 −0.598808
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −35411.0 −1.03957
\(66\) 0 0
\(67\) 46399.9 1.26279 0.631394 0.775462i \(-0.282483\pi\)
0.631394 + 0.775462i \(0.282483\pi\)
\(68\) 23184.6 0.608034
\(69\) 0 0
\(70\) 0 0
\(71\) 3295.39 0.0775821 0.0387910 0.999247i \(-0.487649\pi\)
0.0387910 + 0.999247i \(0.487649\pi\)
\(72\) 0 0
\(73\) 10238.2 0.224862 0.112431 0.993660i \(-0.464136\pi\)
0.112431 + 0.993660i \(0.464136\pi\)
\(74\) −27319.8 −0.579961
\(75\) 0 0
\(76\) 40643.8 0.807161
\(77\) 0 0
\(78\) 0 0
\(79\) 98584.0 1.77721 0.888605 0.458674i \(-0.151675\pi\)
0.888605 + 0.458674i \(0.151675\pi\)
\(80\) −12013.8 −0.209873
\(81\) 0 0
\(82\) 52277.1 0.858571
\(83\) −87792.7 −1.39882 −0.699412 0.714719i \(-0.746555\pi\)
−0.699412 + 0.714719i \(0.746555\pi\)
\(84\) 0 0
\(85\) −68001.9 −1.02088
\(86\) 49110.8 0.716029
\(87\) 0 0
\(88\) −5597.17 −0.0770481
\(89\) 69099.8 0.924702 0.462351 0.886697i \(-0.347006\pi\)
0.462351 + 0.886697i \(0.347006\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 14596.0 0.179789
\(93\) 0 0
\(94\) 53971.2 0.630003
\(95\) −119211. −1.35521
\(96\) 0 0
\(97\) −42181.4 −0.455189 −0.227594 0.973756i \(-0.573086\pi\)
−0.227594 + 0.973756i \(0.573086\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −14762.8 −0.147628
\(101\) −178474. −1.74089 −0.870445 0.492266i \(-0.836169\pi\)
−0.870445 + 0.492266i \(0.836169\pi\)
\(102\) 0 0
\(103\) 35226.2 0.327169 0.163585 0.986529i \(-0.447694\pi\)
0.163585 + 0.986529i \(0.447694\pi\)
\(104\) −48292.2 −0.437818
\(105\) 0 0
\(106\) −38710.8 −0.334632
\(107\) −89960.9 −0.759616 −0.379808 0.925065i \(-0.624010\pi\)
−0.379808 + 0.925065i \(0.624010\pi\)
\(108\) 0 0
\(109\) 185002. 1.49146 0.745729 0.666249i \(-0.232101\pi\)
0.745729 + 0.666249i \(0.232101\pi\)
\(110\) 16416.8 0.129362
\(111\) 0 0
\(112\) 0 0
\(113\) 228275. 1.68175 0.840877 0.541227i \(-0.182040\pi\)
0.840877 + 0.541227i \(0.182040\pi\)
\(114\) 0 0
\(115\) −42810.8 −0.301862
\(116\) −2771.47 −0.0191234
\(117\) 0 0
\(118\) 121477. 0.803134
\(119\) 0 0
\(120\) 0 0
\(121\) −153402. −0.952509
\(122\) −2929.89 −0.0178218
\(123\) 0 0
\(124\) 72498.1 0.423421
\(125\) 189953. 1.08735
\(126\) 0 0
\(127\) −343515. −1.88989 −0.944944 0.327232i \(-0.893884\pi\)
−0.944944 + 0.327232i \(0.893884\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 0 0
\(130\) 141644. 0.735088
\(131\) 361272. 1.83931 0.919657 0.392722i \(-0.128467\pi\)
0.919657 + 0.392722i \(0.128467\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −185600. −0.892926
\(135\) 0 0
\(136\) −92738.5 −0.429945
\(137\) 304627. 1.38665 0.693325 0.720625i \(-0.256145\pi\)
0.693325 + 0.720625i \(0.256145\pi\)
\(138\) 0 0
\(139\) 129737. 0.569543 0.284772 0.958595i \(-0.408082\pi\)
0.284772 + 0.958595i \(0.408082\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −13181.6 −0.0548588
\(143\) 65991.2 0.269864
\(144\) 0 0
\(145\) 8128.88 0.0321078
\(146\) −40952.7 −0.159001
\(147\) 0 0
\(148\) 109279. 0.410094
\(149\) −373908. −1.37975 −0.689873 0.723931i \(-0.742333\pi\)
−0.689873 + 0.723931i \(0.742333\pi\)
\(150\) 0 0
\(151\) −86639.8 −0.309225 −0.154613 0.987975i \(-0.549413\pi\)
−0.154613 + 0.987975i \(0.549413\pi\)
\(152\) −162575. −0.570749
\(153\) 0 0
\(154\) 0 0
\(155\) −212641. −0.710916
\(156\) 0 0
\(157\) −462173. −1.49643 −0.748214 0.663458i \(-0.769088\pi\)
−0.748214 + 0.663458i \(0.769088\pi\)
\(158\) −394336. −1.25668
\(159\) 0 0
\(160\) 48055.2 0.148402
\(161\) 0 0
\(162\) 0 0
\(163\) 609032. 1.79544 0.897721 0.440565i \(-0.145222\pi\)
0.897721 + 0.440565i \(0.145222\pi\)
\(164\) −209108. −0.607102
\(165\) 0 0
\(166\) 351171. 0.989118
\(167\) 127786. 0.354562 0.177281 0.984160i \(-0.443270\pi\)
0.177281 + 0.984160i \(0.443270\pi\)
\(168\) 0 0
\(169\) 198076. 0.533477
\(170\) 272007. 0.721869
\(171\) 0 0
\(172\) −196443. −0.506309
\(173\) 142539. 0.362092 0.181046 0.983475i \(-0.442052\pi\)
0.181046 + 0.983475i \(0.442052\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 22388.7 0.0544813
\(177\) 0 0
\(178\) −276399. −0.653863
\(179\) 296634. 0.691973 0.345986 0.938240i \(-0.387544\pi\)
0.345986 + 0.938240i \(0.387544\pi\)
\(180\) 0 0
\(181\) −277654. −0.629952 −0.314976 0.949100i \(-0.601996\pi\)
−0.314976 + 0.949100i \(0.601996\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −58383.9 −0.127130
\(185\) −320523. −0.688540
\(186\) 0 0
\(187\) 126727. 0.265012
\(188\) −215885. −0.445479
\(189\) 0 0
\(190\) 476843. 0.958277
\(191\) 242584. 0.481149 0.240574 0.970631i \(-0.422664\pi\)
0.240574 + 0.970631i \(0.422664\pi\)
\(192\) 0 0
\(193\) −581525. −1.12376 −0.561882 0.827218i \(-0.689922\pi\)
−0.561882 + 0.827218i \(0.689922\pi\)
\(194\) 168726. 0.321867
\(195\) 0 0
\(196\) 0 0
\(197\) −748916. −1.37489 −0.687444 0.726237i \(-0.741267\pi\)
−0.687444 + 0.726237i \(0.741267\pi\)
\(198\) 0 0
\(199\) −725693. −1.29903 −0.649516 0.760348i \(-0.725029\pi\)
−0.649516 + 0.760348i \(0.725029\pi\)
\(200\) 59051.2 0.104389
\(201\) 0 0
\(202\) 713896. 1.23100
\(203\) 0 0
\(204\) 0 0
\(205\) 613327. 1.01931
\(206\) −140905. −0.231343
\(207\) 0 0
\(208\) 193169. 0.309584
\(209\) 222159. 0.351801
\(210\) 0 0
\(211\) 814718. 1.25980 0.629899 0.776677i \(-0.283096\pi\)
0.629899 + 0.776677i \(0.283096\pi\)
\(212\) 154843. 0.236621
\(213\) 0 0
\(214\) 359843. 0.537130
\(215\) 576179. 0.850083
\(216\) 0 0
\(217\) 0 0
\(218\) −740010. −1.05462
\(219\) 0 0
\(220\) −65667.4 −0.0914730
\(221\) 1.09339e6 1.50590
\(222\) 0 0
\(223\) −335874. −0.452288 −0.226144 0.974094i \(-0.572612\pi\)
−0.226144 + 0.974094i \(0.572612\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −913100. −1.18918
\(227\) 64721.2 0.0833647 0.0416823 0.999131i \(-0.486728\pi\)
0.0416823 + 0.999131i \(0.486728\pi\)
\(228\) 0 0
\(229\) 750789. 0.946083 0.473041 0.881040i \(-0.343156\pi\)
0.473041 + 0.881040i \(0.343156\pi\)
\(230\) 171243. 0.213449
\(231\) 0 0
\(232\) 11085.9 0.0135223
\(233\) 1.38718e6 1.67395 0.836974 0.547242i \(-0.184322\pi\)
0.836974 + 0.547242i \(0.184322\pi\)
\(234\) 0 0
\(235\) 633203. 0.747951
\(236\) −485907. −0.567902
\(237\) 0 0
\(238\) 0 0
\(239\) 160907. 0.182213 0.0911064 0.995841i \(-0.470960\pi\)
0.0911064 + 0.995841i \(0.470960\pi\)
\(240\) 0 0
\(241\) −1.28482e6 −1.42495 −0.712473 0.701699i \(-0.752425\pi\)
−0.712473 + 0.701699i \(0.752425\pi\)
\(242\) 613610. 0.673525
\(243\) 0 0
\(244\) 11719.6 0.0126019
\(245\) 0 0
\(246\) 0 0
\(247\) 1.91678e6 1.99907
\(248\) −289993. −0.299404
\(249\) 0 0
\(250\) −759812. −0.768876
\(251\) 481311. 0.482216 0.241108 0.970498i \(-0.422489\pi\)
0.241108 + 0.970498i \(0.422489\pi\)
\(252\) 0 0
\(253\) 79781.4 0.0783611
\(254\) 1.37406e6 1.33635
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −33088.7 −0.0312497 −0.0156249 0.999878i \(-0.504974\pi\)
−0.0156249 + 0.999878i \(0.504974\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −566575. −0.519786
\(261\) 0 0
\(262\) −1.44509e6 −1.30059
\(263\) −446200. −0.397778 −0.198889 0.980022i \(-0.563733\pi\)
−0.198889 + 0.980022i \(0.563733\pi\)
\(264\) 0 0
\(265\) −454164. −0.397281
\(266\) 0 0
\(267\) 0 0
\(268\) 742399. 0.631394
\(269\) 1.94854e6 1.64183 0.820915 0.571051i \(-0.193464\pi\)
0.820915 + 0.571051i \(0.193464\pi\)
\(270\) 0 0
\(271\) −96873.0 −0.0801271 −0.0400636 0.999197i \(-0.512756\pi\)
−0.0400636 + 0.999197i \(0.512756\pi\)
\(272\) 370954. 0.304017
\(273\) 0 0
\(274\) −1.21851e6 −0.980510
\(275\) −80693.3 −0.0643437
\(276\) 0 0
\(277\) 1.63679e6 1.28172 0.640859 0.767658i \(-0.278578\pi\)
0.640859 + 0.767658i \(0.278578\pi\)
\(278\) −518948. −0.402728
\(279\) 0 0
\(280\) 0 0
\(281\) 1.79558e6 1.35656 0.678281 0.734803i \(-0.262725\pi\)
0.678281 + 0.734803i \(0.262725\pi\)
\(282\) 0 0
\(283\) −1.28048e6 −0.950397 −0.475199 0.879879i \(-0.657624\pi\)
−0.475199 + 0.879879i \(0.657624\pi\)
\(284\) 52726.3 0.0387910
\(285\) 0 0
\(286\) −263965. −0.190823
\(287\) 0 0
\(288\) 0 0
\(289\) 679857. 0.478821
\(290\) −32515.5 −0.0227037
\(291\) 0 0
\(292\) 163811. 0.112431
\(293\) 330814. 0.225120 0.112560 0.993645i \(-0.464095\pi\)
0.112560 + 0.993645i \(0.464095\pi\)
\(294\) 0 0
\(295\) 1.42519e6 0.953496
\(296\) −437117. −0.289980
\(297\) 0 0
\(298\) 1.49563e6 0.975627
\(299\) 688351. 0.445279
\(300\) 0 0
\(301\) 0 0
\(302\) 346559. 0.218655
\(303\) 0 0
\(304\) 650301. 0.403581
\(305\) −34374.2 −0.0211584
\(306\) 0 0
\(307\) 554088. 0.335531 0.167766 0.985827i \(-0.446345\pi\)
0.167766 + 0.985827i \(0.446345\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 850565. 0.502693
\(311\) −1.75926e6 −1.03140 −0.515701 0.856769i \(-0.672469\pi\)
−0.515701 + 0.856769i \(0.672469\pi\)
\(312\) 0 0
\(313\) 2.33819e6 1.34902 0.674512 0.738264i \(-0.264354\pi\)
0.674512 + 0.738264i \(0.264354\pi\)
\(314\) 1.84869e6 1.05813
\(315\) 0 0
\(316\) 1.57734e6 0.888605
\(317\) 967392. 0.540697 0.270349 0.962762i \(-0.412861\pi\)
0.270349 + 0.962762i \(0.412861\pi\)
\(318\) 0 0
\(319\) −15148.8 −0.00833494
\(320\) −192221. −0.104936
\(321\) 0 0
\(322\) 0 0
\(323\) 3.68090e6 1.96313
\(324\) 0 0
\(325\) −696219. −0.365626
\(326\) −2.43613e6 −1.26957
\(327\) 0 0
\(328\) 836433. 0.429286
\(329\) 0 0
\(330\) 0 0
\(331\) −327808. −0.164456 −0.0822281 0.996614i \(-0.526204\pi\)
−0.0822281 + 0.996614i \(0.526204\pi\)
\(332\) −1.40468e6 −0.699412
\(333\) 0 0
\(334\) −511144. −0.250713
\(335\) −2.17750e6 −1.06010
\(336\) 0 0
\(337\) 1.34052e6 0.642983 0.321491 0.946913i \(-0.395816\pi\)
0.321491 + 0.946913i \(0.395816\pi\)
\(338\) −792305. −0.377225
\(339\) 0 0
\(340\) −1.08803e6 −0.510439
\(341\) 396274. 0.184548
\(342\) 0 0
\(343\) 0 0
\(344\) 785772. 0.358014
\(345\) 0 0
\(346\) −570157. −0.256038
\(347\) 3.53374e6 1.57547 0.787736 0.616013i \(-0.211253\pi\)
0.787736 + 0.616013i \(0.211253\pi\)
\(348\) 0 0
\(349\) 3.98108e6 1.74959 0.874796 0.484491i \(-0.160995\pi\)
0.874796 + 0.484491i \(0.160995\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −89554.8 −0.0385241
\(353\) 44279.1 0.0189131 0.00945654 0.999955i \(-0.496990\pi\)
0.00945654 + 0.999955i \(0.496990\pi\)
\(354\) 0 0
\(355\) −154649. −0.0651294
\(356\) 1.10560e6 0.462351
\(357\) 0 0
\(358\) −1.18654e6 −0.489299
\(359\) 1.75114e6 0.717108 0.358554 0.933509i \(-0.383270\pi\)
0.358554 + 0.933509i \(0.383270\pi\)
\(360\) 0 0
\(361\) 3.97671e6 1.60604
\(362\) 1.11062e6 0.445443
\(363\) 0 0
\(364\) 0 0
\(365\) −480467. −0.188769
\(366\) 0 0
\(367\) 3.97114e6 1.53904 0.769521 0.638621i \(-0.220495\pi\)
0.769521 + 0.638621i \(0.220495\pi\)
\(368\) 233536. 0.0898945
\(369\) 0 0
\(370\) 1.28209e6 0.486871
\(371\) 0 0
\(372\) 0 0
\(373\) 2.23960e6 0.833486 0.416743 0.909024i \(-0.363172\pi\)
0.416743 + 0.909024i \(0.363172\pi\)
\(374\) −506908. −0.187392
\(375\) 0 0
\(376\) 863539. 0.315001
\(377\) −130703. −0.0473624
\(378\) 0 0
\(379\) −4.25421e6 −1.52132 −0.760661 0.649149i \(-0.775125\pi\)
−0.760661 + 0.649149i \(0.775125\pi\)
\(380\) −1.90737e6 −0.677604
\(381\) 0 0
\(382\) −970338. −0.340224
\(383\) −1.61883e6 −0.563904 −0.281952 0.959429i \(-0.590982\pi\)
−0.281952 + 0.959429i \(0.590982\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 2.32610e6 0.794621
\(387\) 0 0
\(388\) −674902. −0.227594
\(389\) 1.35315e6 0.453391 0.226696 0.973966i \(-0.427208\pi\)
0.226696 + 0.973966i \(0.427208\pi\)
\(390\) 0 0
\(391\) 1.32188e6 0.437271
\(392\) 0 0
\(393\) 0 0
\(394\) 2.99566e6 0.972193
\(395\) −4.62644e6 −1.49195
\(396\) 0 0
\(397\) −428056. −0.136309 −0.0681545 0.997675i \(-0.521711\pi\)
−0.0681545 + 0.997675i \(0.521711\pi\)
\(398\) 2.90277e6 0.918555
\(399\) 0 0
\(400\) −236205. −0.0738140
\(401\) 118228. 0.0367164 0.0183582 0.999831i \(-0.494156\pi\)
0.0183582 + 0.999831i \(0.494156\pi\)
\(402\) 0 0
\(403\) 3.41904e6 1.04868
\(404\) −2.85558e6 −0.870445
\(405\) 0 0
\(406\) 0 0
\(407\) 597320. 0.178740
\(408\) 0 0
\(409\) 1.20974e6 0.357589 0.178795 0.983886i \(-0.442780\pi\)
0.178795 + 0.983886i \(0.442780\pi\)
\(410\) −2.45331e6 −0.720762
\(411\) 0 0
\(412\) 563619. 0.163585
\(413\) 0 0
\(414\) 0 0
\(415\) 4.12002e6 1.17430
\(416\) −772675. −0.218909
\(417\) 0 0
\(418\) −888635. −0.248761
\(419\) −4.12593e6 −1.14812 −0.574059 0.818814i \(-0.694632\pi\)
−0.574059 + 0.818814i \(0.694632\pi\)
\(420\) 0 0
\(421\) 3.12374e6 0.858953 0.429477 0.903078i \(-0.358698\pi\)
0.429477 + 0.903078i \(0.358698\pi\)
\(422\) −3.25887e6 −0.890812
\(423\) 0 0
\(424\) −619373. −0.167316
\(425\) −1.33699e6 −0.359051
\(426\) 0 0
\(427\) 0 0
\(428\) −1.43937e6 −0.379808
\(429\) 0 0
\(430\) −2.30472e6 −0.601099
\(431\) −1.11459e6 −0.289015 −0.144507 0.989504i \(-0.546160\pi\)
−0.144507 + 0.989504i \(0.546160\pi\)
\(432\) 0 0
\(433\) 266138. 0.0682161 0.0341080 0.999418i \(-0.489141\pi\)
0.0341080 + 0.999418i \(0.489141\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 2.96004e6 0.745729
\(437\) 2.31733e6 0.580475
\(438\) 0 0
\(439\) 2.46047e6 0.609336 0.304668 0.952459i \(-0.401455\pi\)
0.304668 + 0.952459i \(0.401455\pi\)
\(440\) 262669. 0.0646812
\(441\) 0 0
\(442\) −4.37358e6 −1.06483
\(443\) 1.21081e6 0.293134 0.146567 0.989201i \(-0.453178\pi\)
0.146567 + 0.989201i \(0.453178\pi\)
\(444\) 0 0
\(445\) −3.24278e6 −0.776279
\(446\) 1.34350e6 0.319816
\(447\) 0 0
\(448\) 0 0
\(449\) 3.66337e6 0.857561 0.428781 0.903409i \(-0.358943\pi\)
0.428781 + 0.903409i \(0.358943\pi\)
\(450\) 0 0
\(451\) −1.14298e6 −0.264605
\(452\) 3.65240e6 0.840877
\(453\) 0 0
\(454\) −258885. −0.0589477
\(455\) 0 0
\(456\) 0 0
\(457\) −8.73868e6 −1.95729 −0.978645 0.205556i \(-0.934100\pi\)
−0.978645 + 0.205556i \(0.934100\pi\)
\(458\) −3.00316e6 −0.668982
\(459\) 0 0
\(460\) −684973. −0.150931
\(461\) −1.23476e6 −0.270602 −0.135301 0.990805i \(-0.543200\pi\)
−0.135301 + 0.990805i \(0.543200\pi\)
\(462\) 0 0
\(463\) −4.07764e6 −0.884008 −0.442004 0.897013i \(-0.645732\pi\)
−0.442004 + 0.897013i \(0.645732\pi\)
\(464\) −44343.5 −0.00956170
\(465\) 0 0
\(466\) −5.54871e6 −1.18366
\(467\) −5.25021e6 −1.11400 −0.556999 0.830513i \(-0.688047\pi\)
−0.556999 + 0.830513i \(0.688047\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −2.53281e6 −0.528881
\(471\) 0 0
\(472\) 1.94363e6 0.401567
\(473\) −1.07376e6 −0.220675
\(474\) 0 0
\(475\) −2.34381e6 −0.476639
\(476\) 0 0
\(477\) 0 0
\(478\) −643626. −0.128844
\(479\) −1.68707e6 −0.335965 −0.167982 0.985790i \(-0.553725\pi\)
−0.167982 + 0.985790i \(0.553725\pi\)
\(480\) 0 0
\(481\) 5.15365e6 1.01567
\(482\) 5.13927e6 1.00759
\(483\) 0 0
\(484\) −2.45444e6 −0.476254
\(485\) 1.97953e6 0.382126
\(486\) 0 0
\(487\) 4.39520e6 0.839762 0.419881 0.907579i \(-0.362072\pi\)
0.419881 + 0.907579i \(0.362072\pi\)
\(488\) −46878.2 −0.00891091
\(489\) 0 0
\(490\) 0 0
\(491\) −2.13582e6 −0.399817 −0.199909 0.979815i \(-0.564065\pi\)
−0.199909 + 0.979815i \(0.564065\pi\)
\(492\) 0 0
\(493\) −250998. −0.0465107
\(494\) −7.66710e6 −1.41356
\(495\) 0 0
\(496\) 1.15997e6 0.211711
\(497\) 0 0
\(498\) 0 0
\(499\) −1.93439e6 −0.347771 −0.173885 0.984766i \(-0.555632\pi\)
−0.173885 + 0.984766i \(0.555632\pi\)
\(500\) 3.03925e6 0.543677
\(501\) 0 0
\(502\) −1.92524e6 −0.340978
\(503\) −9.47334e6 −1.66949 −0.834744 0.550639i \(-0.814384\pi\)
−0.834744 + 0.550639i \(0.814384\pi\)
\(504\) 0 0
\(505\) 8.37559e6 1.46146
\(506\) −319126. −0.0554097
\(507\) 0 0
\(508\) −5.49624e6 −0.944944
\(509\) 1.05589e7 1.80645 0.903225 0.429167i \(-0.141193\pi\)
0.903225 + 0.429167i \(0.141193\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) 0 0
\(514\) 132355. 0.0220969
\(515\) −1.65313e6 −0.274655
\(516\) 0 0
\(517\) −1.18002e6 −0.194162
\(518\) 0 0
\(519\) 0 0
\(520\) 2.26630e6 0.367544
\(521\) 7.53190e6 1.21565 0.607827 0.794069i \(-0.292041\pi\)
0.607827 + 0.794069i \(0.292041\pi\)
\(522\) 0 0
\(523\) −7.33316e6 −1.17230 −0.586148 0.810204i \(-0.699356\pi\)
−0.586148 + 0.810204i \(0.699356\pi\)
\(524\) 5.78035e6 0.919657
\(525\) 0 0
\(526\) 1.78480e6 0.281271
\(527\) 6.56579e6 1.02982
\(528\) 0 0
\(529\) −5.60415e6 −0.870704
\(530\) 1.81666e6 0.280920
\(531\) 0 0
\(532\) 0 0
\(533\) −9.86162e6 −1.50359
\(534\) 0 0
\(535\) 4.22177e6 0.637690
\(536\) −2.96960e6 −0.446463
\(537\) 0 0
\(538\) −7.79415e6 −1.16095
\(539\) 0 0
\(540\) 0 0
\(541\) −1.25979e7 −1.85056 −0.925281 0.379282i \(-0.876171\pi\)
−0.925281 + 0.379282i \(0.876171\pi\)
\(542\) 387492. 0.0566584
\(543\) 0 0
\(544\) −1.48382e6 −0.214972
\(545\) −8.68197e6 −1.25206
\(546\) 0 0
\(547\) −4.21767e6 −0.602704 −0.301352 0.953513i \(-0.597438\pi\)
−0.301352 + 0.953513i \(0.597438\pi\)
\(548\) 4.87403e6 0.693325
\(549\) 0 0
\(550\) 322773. 0.0454979
\(551\) −440012. −0.0617427
\(552\) 0 0
\(553\) 0 0
\(554\) −6.54715e6 −0.906312
\(555\) 0 0
\(556\) 2.07579e6 0.284772
\(557\) 9.56529e6 1.30635 0.653176 0.757206i \(-0.273436\pi\)
0.653176 + 0.757206i \(0.273436\pi\)
\(558\) 0 0
\(559\) −9.26432e6 −1.25396
\(560\) 0 0
\(561\) 0 0
\(562\) −7.18233e6 −0.959234
\(563\) 9.39186e6 1.24876 0.624382 0.781119i \(-0.285351\pi\)
0.624382 + 0.781119i \(0.285351\pi\)
\(564\) 0 0
\(565\) −1.07127e7 −1.41182
\(566\) 5.12190e6 0.672032
\(567\) 0 0
\(568\) −210905. −0.0274294
\(569\) −1.03867e7 −1.34493 −0.672463 0.740131i \(-0.734763\pi\)
−0.672463 + 0.740131i \(0.734763\pi\)
\(570\) 0 0
\(571\) 4.42960e6 0.568557 0.284279 0.958742i \(-0.408246\pi\)
0.284279 + 0.958742i \(0.408246\pi\)
\(572\) 1.05586e6 0.134932
\(573\) 0 0
\(574\) 0 0
\(575\) −841709. −0.106168
\(576\) 0 0
\(577\) −1.20182e7 −1.50280 −0.751398 0.659849i \(-0.770620\pi\)
−0.751398 + 0.659849i \(0.770620\pi\)
\(578\) −2.71943e6 −0.338577
\(579\) 0 0
\(580\) 130062. 0.0160539
\(581\) 0 0
\(582\) 0 0
\(583\) 846372. 0.103131
\(584\) −655244. −0.0795007
\(585\) 0 0
\(586\) −1.32326e6 −0.159184
\(587\) −6.97624e6 −0.835653 −0.417826 0.908527i \(-0.637208\pi\)
−0.417826 + 0.908527i \(0.637208\pi\)
\(588\) 0 0
\(589\) 1.15102e7 1.36708
\(590\) −5.70077e6 −0.674223
\(591\) 0 0
\(592\) 1.74847e6 0.205047
\(593\) 1.78148e6 0.208038 0.104019 0.994575i \(-0.466830\pi\)
0.104019 + 0.994575i \(0.466830\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −5.98253e6 −0.689873
\(597\) 0 0
\(598\) −2.75340e6 −0.314860
\(599\) −1.60365e6 −0.182617 −0.0913085 0.995823i \(-0.529105\pi\)
−0.0913085 + 0.995823i \(0.529105\pi\)
\(600\) 0 0
\(601\) −1.51165e7 −1.70712 −0.853562 0.520991i \(-0.825562\pi\)
−0.853562 + 0.520991i \(0.825562\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −1.38624e6 −0.154613
\(605\) 7.19901e6 0.799622
\(606\) 0 0
\(607\) 1.05167e7 1.15853 0.579263 0.815141i \(-0.303340\pi\)
0.579263 + 0.815141i \(0.303340\pi\)
\(608\) −2.60120e6 −0.285375
\(609\) 0 0
\(610\) 137497. 0.0149612
\(611\) −1.01812e7 −1.10331
\(612\) 0 0
\(613\) 2.71298e6 0.291605 0.145802 0.989314i \(-0.453424\pi\)
0.145802 + 0.989314i \(0.453424\pi\)
\(614\) −2.21635e6 −0.237256
\(615\) 0 0
\(616\) 0 0
\(617\) −1.14961e7 −1.21573 −0.607864 0.794041i \(-0.707974\pi\)
−0.607864 + 0.794041i \(0.707974\pi\)
\(618\) 0 0
\(619\) 1.09950e7 1.15337 0.576684 0.816967i \(-0.304346\pi\)
0.576684 + 0.816967i \(0.304346\pi\)
\(620\) −3.40226e6 −0.355458
\(621\) 0 0
\(622\) 7.03702e6 0.729312
\(623\) 0 0
\(624\) 0 0
\(625\) −6.03093e6 −0.617568
\(626\) −9.35277e6 −0.953904
\(627\) 0 0
\(628\) −7.39477e6 −0.748214
\(629\) 9.89687e6 0.997405
\(630\) 0 0
\(631\) −4.19503e6 −0.419432 −0.209716 0.977762i \(-0.567254\pi\)
−0.209716 + 0.977762i \(0.567254\pi\)
\(632\) −6.30938e6 −0.628338
\(633\) 0 0
\(634\) −3.86957e6 −0.382331
\(635\) 1.61208e7 1.58654
\(636\) 0 0
\(637\) 0 0
\(638\) 60595.3 0.00589369
\(639\) 0 0
\(640\) 768884. 0.0742012
\(641\) 1.06270e7 1.02157 0.510784 0.859709i \(-0.329355\pi\)
0.510784 + 0.859709i \(0.329355\pi\)
\(642\) 0 0
\(643\) 1.54228e6 0.147108 0.0735538 0.997291i \(-0.476566\pi\)
0.0735538 + 0.997291i \(0.476566\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −1.47236e7 −1.38814
\(647\) 1.28170e7 1.20372 0.601861 0.798601i \(-0.294426\pi\)
0.601861 + 0.798601i \(0.294426\pi\)
\(648\) 0 0
\(649\) −2.65596e6 −0.247520
\(650\) 2.78488e6 0.258537
\(651\) 0 0
\(652\) 9.74452e6 0.897721
\(653\) 2.84549e6 0.261141 0.130570 0.991439i \(-0.458319\pi\)
0.130570 + 0.991439i \(0.458319\pi\)
\(654\) 0 0
\(655\) −1.69541e7 −1.54409
\(656\) −3.34573e6 −0.303551
\(657\) 0 0
\(658\) 0 0
\(659\) 2.04185e7 1.83151 0.915755 0.401736i \(-0.131593\pi\)
0.915755 + 0.401736i \(0.131593\pi\)
\(660\) 0 0
\(661\) 2.18928e7 1.94893 0.974467 0.224529i \(-0.0720843\pi\)
0.974467 + 0.224529i \(0.0720843\pi\)
\(662\) 1.31123e6 0.116288
\(663\) 0 0
\(664\) 5.61873e6 0.494559
\(665\) 0 0
\(666\) 0 0
\(667\) −158017. −0.0137527
\(668\) 2.04458e6 0.177281
\(669\) 0 0
\(670\) 8.71000e6 0.749602
\(671\) 64059.0 0.00549255
\(672\) 0 0
\(673\) −992084. −0.0844327 −0.0422164 0.999108i \(-0.513442\pi\)
−0.0422164 + 0.999108i \(0.513442\pi\)
\(674\) −5.36209e6 −0.454657
\(675\) 0 0
\(676\) 3.16922e6 0.266738
\(677\) 7.83497e6 0.657000 0.328500 0.944504i \(-0.393457\pi\)
0.328500 + 0.944504i \(0.393457\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 4.35212e6 0.360935
\(681\) 0 0
\(682\) −1.58510e6 −0.130495
\(683\) 7.41182e6 0.607957 0.303979 0.952679i \(-0.401685\pi\)
0.303979 + 0.952679i \(0.401685\pi\)
\(684\) 0 0
\(685\) −1.42958e7 −1.16408
\(686\) 0 0
\(687\) 0 0
\(688\) −3.14309e6 −0.253154
\(689\) 7.30246e6 0.586032
\(690\) 0 0
\(691\) 1.00517e7 0.800836 0.400418 0.916333i \(-0.368865\pi\)
0.400418 + 0.916333i \(0.368865\pi\)
\(692\) 2.28063e6 0.181046
\(693\) 0 0
\(694\) −1.41350e7 −1.11403
\(695\) −6.08841e6 −0.478126
\(696\) 0 0
\(697\) −1.89379e7 −1.47655
\(698\) −1.59243e7 −1.23715
\(699\) 0 0
\(700\) 0 0
\(701\) −1.59518e7 −1.22607 −0.613034 0.790057i \(-0.710051\pi\)
−0.613034 + 0.790057i \(0.710051\pi\)
\(702\) 0 0
\(703\) 1.73497e7 1.32405
\(704\) 358219. 0.0272406
\(705\) 0 0
\(706\) −177116. −0.0133736
\(707\) 0 0
\(708\) 0 0
\(709\) −3.82623e6 −0.285862 −0.142931 0.989733i \(-0.545653\pi\)
−0.142931 + 0.989733i \(0.545653\pi\)
\(710\) 618597. 0.0460534
\(711\) 0 0
\(712\) −4.42239e6 −0.326932
\(713\) 4.13352e6 0.304506
\(714\) 0 0
\(715\) −3.09690e6 −0.226549
\(716\) 4.74615e6 0.345986
\(717\) 0 0
\(718\) −7.00456e6 −0.507072
\(719\) −7.92731e6 −0.571878 −0.285939 0.958248i \(-0.592306\pi\)
−0.285939 + 0.958248i \(0.592306\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −1.59068e7 −1.13564
\(723\) 0 0
\(724\) −4.44246e6 −0.314976
\(725\) 159823. 0.0112926
\(726\) 0 0
\(727\) −3.24519e6 −0.227722 −0.113861 0.993497i \(-0.536322\pi\)
−0.113861 + 0.993497i \(0.536322\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 1.92187e6 0.133480
\(731\) −1.77908e7 −1.23141
\(732\) 0 0
\(733\) −5.97679e6 −0.410874 −0.205437 0.978670i \(-0.565862\pi\)
−0.205437 + 0.978670i \(0.565862\pi\)
\(734\) −1.58846e7 −1.08827
\(735\) 0 0
\(736\) −934142. −0.0635650
\(737\) 4.05794e6 0.275193
\(738\) 0 0
\(739\) −2.60064e6 −0.175174 −0.0875870 0.996157i \(-0.527916\pi\)
−0.0875870 + 0.996157i \(0.527916\pi\)
\(740\) −5.12836e6 −0.344270
\(741\) 0 0
\(742\) 0 0
\(743\) 2.29585e7 1.52571 0.762854 0.646571i \(-0.223797\pi\)
0.762854 + 0.646571i \(0.223797\pi\)
\(744\) 0 0
\(745\) 1.75471e7 1.15828
\(746\) −8.95839e6 −0.589363
\(747\) 0 0
\(748\) 2.02763e6 0.132506
\(749\) 0 0
\(750\) 0 0
\(751\) 4.60318e6 0.297823 0.148911 0.988851i \(-0.452423\pi\)
0.148911 + 0.988851i \(0.452423\pi\)
\(752\) −3.45416e6 −0.222740
\(753\) 0 0
\(754\) 522814. 0.0334903
\(755\) 4.06591e6 0.259592
\(756\) 0 0
\(757\) 4.78695e6 0.303612 0.151806 0.988410i \(-0.451491\pi\)
0.151806 + 0.988410i \(0.451491\pi\)
\(758\) 1.70169e7 1.07574
\(759\) 0 0
\(760\) 7.62948e6 0.479138
\(761\) −2.28441e7 −1.42992 −0.714962 0.699164i \(-0.753556\pi\)
−0.714962 + 0.699164i \(0.753556\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 3.88135e6 0.240574
\(765\) 0 0
\(766\) 6.47533e6 0.398740
\(767\) −2.29155e7 −1.40651
\(768\) 0 0
\(769\) −1.02787e7 −0.626793 −0.313397 0.949622i \(-0.601467\pi\)
−0.313397 + 0.949622i \(0.601467\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −9.30439e6 −0.561882
\(773\) 1.38227e7 0.832038 0.416019 0.909356i \(-0.363425\pi\)
0.416019 + 0.909356i \(0.363425\pi\)
\(774\) 0 0
\(775\) −4.18076e6 −0.250035
\(776\) 2.69961e6 0.160933
\(777\) 0 0
\(778\) −5.41262e6 −0.320596
\(779\) −3.31990e7 −1.96012
\(780\) 0 0
\(781\) 288201. 0.0169071
\(782\) −5.28753e6 −0.309198
\(783\) 0 0
\(784\) 0 0
\(785\) 2.16893e7 1.25624
\(786\) 0 0
\(787\) −736248. −0.0423728 −0.0211864 0.999776i \(-0.506744\pi\)
−0.0211864 + 0.999776i \(0.506744\pi\)
\(788\) −1.19827e7 −0.687444
\(789\) 0 0
\(790\) 1.85058e7 1.05497
\(791\) 0 0
\(792\) 0 0
\(793\) 552699. 0.0312108
\(794\) 1.71222e6 0.0963850
\(795\) 0 0
\(796\) −1.16111e7 −0.649516
\(797\) −3.29571e7 −1.83782 −0.918912 0.394464i \(-0.870930\pi\)
−0.918912 + 0.394464i \(0.870930\pi\)
\(798\) 0 0
\(799\) −1.95516e7 −1.08347
\(800\) 944820. 0.0521944
\(801\) 0 0
\(802\) −472913. −0.0259624
\(803\) 895389. 0.0490030
\(804\) 0 0
\(805\) 0 0
\(806\) −1.36761e7 −0.741526
\(807\) 0 0
\(808\) 1.14223e7 0.615498
\(809\) 1.09629e7 0.588918 0.294459 0.955664i \(-0.404861\pi\)
0.294459 + 0.955664i \(0.404861\pi\)
\(810\) 0 0
\(811\) 2.77365e7 1.48081 0.740406 0.672160i \(-0.234633\pi\)
0.740406 + 0.672160i \(0.234633\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −2.38928e6 −0.126388
\(815\) −2.85812e7 −1.50726
\(816\) 0 0
\(817\) −3.11882e7 −1.63469
\(818\) −4.83897e6 −0.252854
\(819\) 0 0
\(820\) 9.81322e6 0.509656
\(821\) −1.25487e7 −0.649743 −0.324872 0.945758i \(-0.605321\pi\)
−0.324872 + 0.945758i \(0.605321\pi\)
\(822\) 0 0
\(823\) 2.88571e7 1.48509 0.742545 0.669796i \(-0.233618\pi\)
0.742545 + 0.669796i \(0.233618\pi\)
\(824\) −2.25447e6 −0.115672
\(825\) 0 0
\(826\) 0 0
\(827\) 2.83888e7 1.44339 0.721694 0.692213i \(-0.243364\pi\)
0.721694 + 0.692213i \(0.243364\pi\)
\(828\) 0 0
\(829\) −2.40584e7 −1.21585 −0.607926 0.793994i \(-0.707998\pi\)
−0.607926 + 0.793994i \(0.707998\pi\)
\(830\) −1.64801e7 −0.830355
\(831\) 0 0
\(832\) 3.09070e6 0.154792
\(833\) 0 0
\(834\) 0 0
\(835\) −5.99686e6 −0.297651
\(836\) 3.55454e6 0.175901
\(837\) 0 0
\(838\) 1.65037e7 0.811842
\(839\) −2.99511e6 −0.146895 −0.0734477 0.997299i \(-0.523400\pi\)
−0.0734477 + 0.997299i \(0.523400\pi\)
\(840\) 0 0
\(841\) −2.04811e7 −0.998537
\(842\) −1.24950e7 −0.607372
\(843\) 0 0
\(844\) 1.30355e7 0.629899
\(845\) −9.29551e6 −0.447849
\(846\) 0 0
\(847\) 0 0
\(848\) 2.47749e6 0.118310
\(849\) 0 0
\(850\) 5.34797e6 0.253888
\(851\) 6.23061e6 0.294922
\(852\) 0 0
\(853\) −1.46234e6 −0.0688137 −0.0344069 0.999408i \(-0.510954\pi\)
−0.0344069 + 0.999408i \(0.510954\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 5.75750e6 0.268565
\(857\) 1.66909e7 0.776295 0.388148 0.921597i \(-0.373115\pi\)
0.388148 + 0.921597i \(0.373115\pi\)
\(858\) 0 0
\(859\) −3.01647e7 −1.39481 −0.697406 0.716676i \(-0.745663\pi\)
−0.697406 + 0.716676i \(0.745663\pi\)
\(860\) 9.21886e6 0.425041
\(861\) 0 0
\(862\) 4.45834e6 0.204364
\(863\) 2.88352e7 1.31794 0.658970 0.752169i \(-0.270992\pi\)
0.658970 + 0.752169i \(0.270992\pi\)
\(864\) 0 0
\(865\) −6.68921e6 −0.303973
\(866\) −1.06455e6 −0.0482361
\(867\) 0 0
\(868\) 0 0
\(869\) 8.62175e6 0.387298
\(870\) 0 0
\(871\) 3.50118e7 1.56376
\(872\) −1.18402e7 −0.527310
\(873\) 0 0
\(874\) −9.26931e6 −0.410458
\(875\) 0 0
\(876\) 0 0
\(877\) 3.15732e7 1.38618 0.693090 0.720851i \(-0.256249\pi\)
0.693090 + 0.720851i \(0.256249\pi\)
\(878\) −9.84188e6 −0.430865
\(879\) 0 0
\(880\) −1.05068e6 −0.0457365
\(881\) 1.42247e7 0.617452 0.308726 0.951151i \(-0.400097\pi\)
0.308726 + 0.951151i \(0.400097\pi\)
\(882\) 0 0
\(883\) −9.42179e6 −0.406660 −0.203330 0.979110i \(-0.565176\pi\)
−0.203330 + 0.979110i \(0.565176\pi\)
\(884\) 1.74943e7 0.752950
\(885\) 0 0
\(886\) −4.84323e6 −0.207277
\(887\) 1.50474e7 0.642174 0.321087 0.947050i \(-0.395952\pi\)
0.321087 + 0.947050i \(0.395952\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 1.29711e7 0.548912
\(891\) 0 0
\(892\) −5.37399e6 −0.226144
\(893\) −3.42749e7 −1.43829
\(894\) 0 0
\(895\) −1.39207e7 −0.580904
\(896\) 0 0
\(897\) 0 0
\(898\) −1.46535e7 −0.606388
\(899\) −784869. −0.0323890
\(900\) 0 0
\(901\) 1.40234e7 0.575494
\(902\) 4.57193e6 0.187104
\(903\) 0 0
\(904\) −1.46096e7 −0.594589
\(905\) 1.30300e7 0.528838
\(906\) 0 0
\(907\) −1.87480e7 −0.756725 −0.378362 0.925658i \(-0.623513\pi\)
−0.378362 + 0.925658i \(0.623513\pi\)
\(908\) 1.03554e6 0.0416823
\(909\) 0 0
\(910\) 0 0
\(911\) −1.49384e7 −0.596358 −0.298179 0.954510i \(-0.596379\pi\)
−0.298179 + 0.954510i \(0.596379\pi\)
\(912\) 0 0
\(913\) −7.67798e6 −0.304839
\(914\) 3.49547e7 1.38401
\(915\) 0 0
\(916\) 1.20126e7 0.473041
\(917\) 0 0
\(918\) 0 0
\(919\) 4.21133e7 1.64487 0.822434 0.568861i \(-0.192616\pi\)
0.822434 + 0.568861i \(0.192616\pi\)
\(920\) 2.73989e6 0.106724
\(921\) 0 0
\(922\) 4.93905e6 0.191345
\(923\) 2.48659e6 0.0960727
\(924\) 0 0
\(925\) −6.30183e6 −0.242166
\(926\) 1.63106e7 0.625088
\(927\) 0 0
\(928\) 177374. 0.00676114
\(929\) −5.87883e6 −0.223487 −0.111743 0.993737i \(-0.535643\pi\)
−0.111743 + 0.993737i \(0.535643\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 2.21948e7 0.836974
\(933\) 0 0
\(934\) 2.10008e7 0.787715
\(935\) −5.94716e6 −0.222475
\(936\) 0 0
\(937\) 1.42337e7 0.529625 0.264813 0.964300i \(-0.414690\pi\)
0.264813 + 0.964300i \(0.414690\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 1.01312e7 0.373975
\(941\) 3.24512e7 1.19469 0.597347 0.801983i \(-0.296222\pi\)
0.597347 + 0.801983i \(0.296222\pi\)
\(942\) 0 0
\(943\) −1.19224e7 −0.436601
\(944\) −7.77451e6 −0.283951
\(945\) 0 0
\(946\) 4.29502e6 0.156041
\(947\) 2.60957e7 0.945570 0.472785 0.881178i \(-0.343249\pi\)
0.472785 + 0.881178i \(0.343249\pi\)
\(948\) 0 0
\(949\) 7.72538e6 0.278455
\(950\) 9.37526e6 0.337034
\(951\) 0 0
\(952\) 0 0
\(953\) −2.98631e7 −1.06513 −0.532565 0.846389i \(-0.678772\pi\)
−0.532565 + 0.846389i \(0.678772\pi\)
\(954\) 0 0
\(955\) −1.13842e7 −0.403920
\(956\) 2.57451e6 0.0911064
\(957\) 0 0
\(958\) 6.74827e6 0.237563
\(959\) 0 0
\(960\) 0 0
\(961\) −8.09799e6 −0.282858
\(962\) −2.06146e7 −0.718186
\(963\) 0 0
\(964\) −2.05571e7 −0.712473
\(965\) 2.72903e7 0.943388
\(966\) 0 0
\(967\) 6.83038e6 0.234898 0.117449 0.993079i \(-0.462528\pi\)
0.117449 + 0.993079i \(0.462528\pi\)
\(968\) 9.81776e6 0.336763
\(969\) 0 0
\(970\) −7.91811e6 −0.270204
\(971\) −8.99328e6 −0.306105 −0.153052 0.988218i \(-0.548910\pi\)
−0.153052 + 0.988218i \(0.548910\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −1.75808e7 −0.593801
\(975\) 0 0
\(976\) 187513. 0.00630096
\(977\) 2.94394e7 0.986718 0.493359 0.869826i \(-0.335769\pi\)
0.493359 + 0.869826i \(0.335769\pi\)
\(978\) 0 0
\(979\) 6.04318e6 0.201516
\(980\) 0 0
\(981\) 0 0
\(982\) 8.54329e6 0.282713
\(983\) −3.96261e7 −1.30797 −0.653984 0.756508i \(-0.726904\pi\)
−0.653984 + 0.756508i \(0.726904\pi\)
\(984\) 0 0
\(985\) 3.51458e7 1.15421
\(986\) 1.00399e6 0.0328880
\(987\) 0 0
\(988\) 3.06684e7 0.999537
\(989\) −1.12003e7 −0.364115
\(990\) 0 0
\(991\) 5.34988e7 1.73045 0.865226 0.501382i \(-0.167175\pi\)
0.865226 + 0.501382i \(0.167175\pi\)
\(992\) −4.63988e6 −0.149702
\(993\) 0 0
\(994\) 0 0
\(995\) 3.40560e7 1.09053
\(996\) 0 0
\(997\) −3.76239e7 −1.19874 −0.599371 0.800471i \(-0.704583\pi\)
−0.599371 + 0.800471i \(0.704583\pi\)
\(998\) 7.73756e6 0.245911
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.6.a.z.1.2 2
3.2 odd 2 294.6.a.t.1.1 2
7.6 odd 2 882.6.a.bj.1.1 2
21.2 odd 6 294.6.e.v.67.2 4
21.5 even 6 294.6.e.u.67.1 4
21.11 odd 6 294.6.e.v.79.2 4
21.17 even 6 294.6.e.u.79.1 4
21.20 even 2 294.6.a.u.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
294.6.a.t.1.1 2 3.2 odd 2
294.6.a.u.1.2 yes 2 21.20 even 2
294.6.e.u.67.1 4 21.5 even 6
294.6.e.u.79.1 4 21.17 even 6
294.6.e.v.67.2 4 21.2 odd 6
294.6.e.v.79.2 4 21.11 odd 6
882.6.a.z.1.2 2 1.1 even 1 trivial
882.6.a.bj.1.1 2 7.6 odd 2