Properties

Label 882.6.a.z
Level $882$
Weight $6$
Character orbit 882.a
Self dual yes
Analytic conductor $141.459$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,6,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.458529075\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 294)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{2} + 16 q^{4} + (5 \beta - 54) q^{5} - 64 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - 4 q^{2} + 16 q^{4} + (5 \beta - 54) q^{5} - 64 q^{8} + ( - 20 \beta + 216) q^{10} + (18 \beta + 62) q^{11} + (279 \beta + 360) q^{13} + 256 q^{16} + (1241 \beta - 306) q^{17} + (1058 \beta + 1044) q^{19} + (80 \beta - 864) q^{20} + ( - 72 \beta - 248) q^{22} + (918 \beta - 386) q^{23} + ( - 540 \beta - 159) q^{25} + ( - 1116 \beta - 1440) q^{26} + ( - 1746 \beta + 2296) q^{29} + ( - 258 \beta + 4896) q^{31} - 1024 q^{32} + ( - 4964 \beta + 1224) q^{34} + (6948 \beta - 2996) q^{37} + ( - 4232 \beta - 4176) q^{38} + ( - 320 \beta + 3456) q^{40} + ( - 2101 \beta - 10098) q^{41} + ( - 8280 \beta - 568) q^{43} + (288 \beta + 992) q^{44} + ( - 3672 \beta + 1544) q^{46} + (3518 \beta - 18468) q^{47} + (2160 \beta + 636) q^{50} + (4464 \beta + 5760) q^{52} + (936 \beta + 8354) q^{53} + ( - 662 \beta - 3168) q^{55} + (6984 \beta - 9184) q^{58} + (4898 \beta - 37296) q^{59} + (7111 \beta - 9324) q^{61} + (1032 \beta - 19584) q^{62} + 4096 q^{64} + ( - 13266 \beta - 16650) q^{65} + (9000 \beta + 33672) q^{67} + (19856 \beta - 4896) q^{68} + (29394 \beta - 38274) q^{71} + ( - 9485 \beta + 23652) q^{73} + ( - 27792 \beta + 11984) q^{74} + (16928 \beta + 16704) q^{76} + (19980 \beta + 70328) q^{79} + (1280 \beta - 13824) q^{80} + (8404 \beta + 40392) q^{82} + ( - 28808 \beta - 47052) q^{83} + ( - 68544 \beta + 28934) q^{85} + (33120 \beta + 2272) q^{86} + ( - 1152 \beta - 3968) q^{88} + (42637 \beta + 8802) q^{89} + (14688 \beta - 6176) q^{92} + ( - 14072 \beta + 73872) q^{94} + ( - 51912 \beta - 45796) q^{95} + ( - 59941 \beta + 42588) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{2} + 32 q^{4} - 108 q^{5} - 128 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 8 q^{2} + 32 q^{4} - 108 q^{5} - 128 q^{8} + 432 q^{10} + 124 q^{11} + 720 q^{13} + 512 q^{16} - 612 q^{17} + 2088 q^{19} - 1728 q^{20} - 496 q^{22} - 772 q^{23} - 318 q^{25} - 2880 q^{26} + 4592 q^{29} + 9792 q^{31} - 2048 q^{32} + 2448 q^{34} - 5992 q^{37} - 8352 q^{38} + 6912 q^{40} - 20196 q^{41} - 1136 q^{43} + 1984 q^{44} + 3088 q^{46} - 36936 q^{47} + 1272 q^{50} + 11520 q^{52} + 16708 q^{53} - 6336 q^{55} - 18368 q^{58} - 74592 q^{59} - 18648 q^{61} - 39168 q^{62} + 8192 q^{64} - 33300 q^{65} + 67344 q^{67} - 9792 q^{68} - 76548 q^{71} + 47304 q^{73} + 23968 q^{74} + 33408 q^{76} + 140656 q^{79} - 27648 q^{80} + 80784 q^{82} - 94104 q^{83} + 57868 q^{85} + 4544 q^{86} - 7936 q^{88} + 17604 q^{89} - 12352 q^{92} + 147744 q^{94} - 91592 q^{95} + 85176 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
−4.00000 0 16.0000 −61.0711 0 0 −64.0000 0 244.284
1.2 −4.00000 0 16.0000 −46.9289 0 0 −64.0000 0 187.716
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.6.a.z 2
3.b odd 2 1 294.6.a.t 2
7.b odd 2 1 882.6.a.bj 2
21.c even 2 1 294.6.a.u yes 2
21.g even 6 2 294.6.e.u 4
21.h odd 6 2 294.6.e.v 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
294.6.a.t 2 3.b odd 2 1
294.6.a.u yes 2 21.c even 2 1
294.6.e.u 4 21.g even 6 2
294.6.e.v 4 21.h odd 6 2
882.6.a.z 2 1.a even 1 1 trivial
882.6.a.bj 2 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(882))\):

\( T_{5}^{2} + 108T_{5} + 2866 \) Copy content Toggle raw display
\( T_{11}^{2} - 124T_{11} + 3196 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 108T + 2866 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 124T + 3196 \) Copy content Toggle raw display
$13$ \( T^{2} - 720T - 26082 \) Copy content Toggle raw display
$17$ \( T^{2} + 612 T - 2986526 \) Copy content Toggle raw display
$19$ \( T^{2} - 2088 T - 1148792 \) Copy content Toggle raw display
$23$ \( T^{2} + 772 T - 1536452 \) Copy content Toggle raw display
$29$ \( T^{2} - 4592 T - 825416 \) Copy content Toggle raw display
$31$ \( T^{2} - 9792 T + 23837688 \) Copy content Toggle raw display
$37$ \( T^{2} + 5992 T - 87573392 \) Copy content Toggle raw display
$41$ \( T^{2} + 20196 T + 93141202 \) Copy content Toggle raw display
$43$ \( T^{2} + 1136 T - 136794176 \) Copy content Toggle raw display
$47$ \( T^{2} + 36936 T + 316314376 \) Copy content Toggle raw display
$53$ \( T^{2} - 16708 T + 68037124 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 1343010808 \) Copy content Toggle raw display
$61$ \( T^{2} + 18648 T - 14195666 \) Copy content Toggle raw display
$67$ \( T^{2} - 67344 T + 971803584 \) Copy content Toggle raw display
$71$ \( T^{2} + 76548 T - 263115396 \) Copy content Toggle raw display
$73$ \( T^{2} - 47304 T + 379486654 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots + 4147626784 \) Copy content Toggle raw display
$83$ \( T^{2} + 94104 T + 554088976 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 3558352334 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 5372109218 \) Copy content Toggle raw display
show more
show less