Properties

Label 882.6.a.p.1.1
Level $882$
Weight $6$
Character 882.1
Self dual yes
Analytic conductor $141.459$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,6,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.458529075\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 294)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 882.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +16.0000 q^{4} -26.0000 q^{5} +64.0000 q^{8} +O(q^{10})\) \(q+4.00000 q^{2} +16.0000 q^{4} -26.0000 q^{5} +64.0000 q^{8} -104.000 q^{10} +358.000 q^{11} +332.000 q^{13} +256.000 q^{16} -126.000 q^{17} -2200.00 q^{19} -416.000 q^{20} +1432.00 q^{22} +2142.00 q^{23} -2449.00 q^{25} +1328.00 q^{26} +3610.00 q^{29} +5668.00 q^{31} +1024.00 q^{32} -504.000 q^{34} -2922.00 q^{37} -8800.00 q^{38} -1664.00 q^{40} +2142.00 q^{41} +6388.00 q^{43} +5728.00 q^{44} +8568.00 q^{46} +6520.00 q^{47} -9796.00 q^{50} +5312.00 q^{52} +10702.0 q^{53} -9308.00 q^{55} +14440.0 q^{58} -42524.0 q^{59} -44840.0 q^{61} +22672.0 q^{62} +4096.00 q^{64} -8632.00 q^{65} -1448.00 q^{67} -2016.00 q^{68} +4402.00 q^{71} +20500.0 q^{73} -11688.0 q^{74} -35200.0 q^{76} +65236.0 q^{79} -6656.00 q^{80} +8568.00 q^{82} +102804. q^{83} +3276.00 q^{85} +25552.0 q^{86} +22912.0 q^{88} +128006. q^{89} +34272.0 q^{92} +26080.0 q^{94} +57200.0 q^{95} -113324. q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) −26.0000 −0.465102 −0.232551 0.972584i \(-0.574707\pi\)
−0.232551 + 0.972584i \(0.574707\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 64.0000 0.353553
\(9\) 0 0
\(10\) −104.000 −0.328877
\(11\) 358.000 0.892075 0.446037 0.895014i \(-0.352835\pi\)
0.446037 + 0.895014i \(0.352835\pi\)
\(12\) 0 0
\(13\) 332.000 0.544853 0.272427 0.962177i \(-0.412174\pi\)
0.272427 + 0.962177i \(0.412174\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −126.000 −0.105742 −0.0528711 0.998601i \(-0.516837\pi\)
−0.0528711 + 0.998601i \(0.516837\pi\)
\(18\) 0 0
\(19\) −2200.00 −1.39810 −0.699051 0.715072i \(-0.746394\pi\)
−0.699051 + 0.715072i \(0.746394\pi\)
\(20\) −416.000 −0.232551
\(21\) 0 0
\(22\) 1432.00 0.630792
\(23\) 2142.00 0.844306 0.422153 0.906525i \(-0.361274\pi\)
0.422153 + 0.906525i \(0.361274\pi\)
\(24\) 0 0
\(25\) −2449.00 −0.783680
\(26\) 1328.00 0.385270
\(27\) 0 0
\(28\) 0 0
\(29\) 3610.00 0.797099 0.398549 0.917147i \(-0.369514\pi\)
0.398549 + 0.917147i \(0.369514\pi\)
\(30\) 0 0
\(31\) 5668.00 1.05932 0.529658 0.848211i \(-0.322320\pi\)
0.529658 + 0.848211i \(0.322320\pi\)
\(32\) 1024.00 0.176777
\(33\) 0 0
\(34\) −504.000 −0.0747710
\(35\) 0 0
\(36\) 0 0
\(37\) −2922.00 −0.350894 −0.175447 0.984489i \(-0.556137\pi\)
−0.175447 + 0.984489i \(0.556137\pi\)
\(38\) −8800.00 −0.988607
\(39\) 0 0
\(40\) −1664.00 −0.164438
\(41\) 2142.00 0.199003 0.0995015 0.995037i \(-0.468275\pi\)
0.0995015 + 0.995037i \(0.468275\pi\)
\(42\) 0 0
\(43\) 6388.00 0.526858 0.263429 0.964679i \(-0.415146\pi\)
0.263429 + 0.964679i \(0.415146\pi\)
\(44\) 5728.00 0.446037
\(45\) 0 0
\(46\) 8568.00 0.597014
\(47\) 6520.00 0.430530 0.215265 0.976556i \(-0.430939\pi\)
0.215265 + 0.976556i \(0.430939\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −9796.00 −0.554145
\(51\) 0 0
\(52\) 5312.00 0.272427
\(53\) 10702.0 0.523330 0.261665 0.965159i \(-0.415729\pi\)
0.261665 + 0.965159i \(0.415729\pi\)
\(54\) 0 0
\(55\) −9308.00 −0.414906
\(56\) 0 0
\(57\) 0 0
\(58\) 14440.0 0.563634
\(59\) −42524.0 −1.59039 −0.795196 0.606353i \(-0.792632\pi\)
−0.795196 + 0.606353i \(0.792632\pi\)
\(60\) 0 0
\(61\) −44840.0 −1.54291 −0.771456 0.636283i \(-0.780471\pi\)
−0.771456 + 0.636283i \(0.780471\pi\)
\(62\) 22672.0 0.749050
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −8632.00 −0.253413
\(66\) 0 0
\(67\) −1448.00 −0.0394077 −0.0197039 0.999806i \(-0.506272\pi\)
−0.0197039 + 0.999806i \(0.506272\pi\)
\(68\) −2016.00 −0.0528711
\(69\) 0 0
\(70\) 0 0
\(71\) 4402.00 0.103634 0.0518172 0.998657i \(-0.483499\pi\)
0.0518172 + 0.998657i \(0.483499\pi\)
\(72\) 0 0
\(73\) 20500.0 0.450243 0.225121 0.974331i \(-0.427722\pi\)
0.225121 + 0.974331i \(0.427722\pi\)
\(74\) −11688.0 −0.248120
\(75\) 0 0
\(76\) −35200.0 −0.699051
\(77\) 0 0
\(78\) 0 0
\(79\) 65236.0 1.17603 0.588017 0.808849i \(-0.299909\pi\)
0.588017 + 0.808849i \(0.299909\pi\)
\(80\) −6656.00 −0.116276
\(81\) 0 0
\(82\) 8568.00 0.140716
\(83\) 102804. 1.63800 0.819002 0.573791i \(-0.194528\pi\)
0.819002 + 0.573791i \(0.194528\pi\)
\(84\) 0 0
\(85\) 3276.00 0.0491809
\(86\) 25552.0 0.372545
\(87\) 0 0
\(88\) 22912.0 0.315396
\(89\) 128006. 1.71299 0.856496 0.516154i \(-0.172637\pi\)
0.856496 + 0.516154i \(0.172637\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 34272.0 0.422153
\(93\) 0 0
\(94\) 26080.0 0.304430
\(95\) 57200.0 0.650260
\(96\) 0 0
\(97\) −113324. −1.22290 −0.611452 0.791281i \(-0.709414\pi\)
−0.611452 + 0.791281i \(0.709414\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −39184.0 −0.391840
\(101\) 139714. 1.36281 0.681407 0.731905i \(-0.261368\pi\)
0.681407 + 0.731905i \(0.261368\pi\)
\(102\) 0 0
\(103\) −142180. −1.32052 −0.660261 0.751036i \(-0.729554\pi\)
−0.660261 + 0.751036i \(0.729554\pi\)
\(104\) 21248.0 0.192635
\(105\) 0 0
\(106\) 42808.0 0.370050
\(107\) 198518. 1.67626 0.838128 0.545473i \(-0.183650\pi\)
0.838128 + 0.545473i \(0.183650\pi\)
\(108\) 0 0
\(109\) 132538. 1.06850 0.534250 0.845327i \(-0.320594\pi\)
0.534250 + 0.845327i \(0.320594\pi\)
\(110\) −37232.0 −0.293383
\(111\) 0 0
\(112\) 0 0
\(113\) −47026.0 −0.346451 −0.173226 0.984882i \(-0.555419\pi\)
−0.173226 + 0.984882i \(0.555419\pi\)
\(114\) 0 0
\(115\) −55692.0 −0.392689
\(116\) 57760.0 0.398549
\(117\) 0 0
\(118\) −170096. −1.12458
\(119\) 0 0
\(120\) 0 0
\(121\) −32887.0 −0.204202
\(122\) −179360. −1.09100
\(123\) 0 0
\(124\) 90688.0 0.529658
\(125\) 144924. 0.829593
\(126\) 0 0
\(127\) 165548. 0.910782 0.455391 0.890291i \(-0.349499\pi\)
0.455391 + 0.890291i \(0.349499\pi\)
\(128\) 16384.0 0.0883883
\(129\) 0 0
\(130\) −34528.0 −0.179190
\(131\) 139308. 0.709248 0.354624 0.935009i \(-0.384609\pi\)
0.354624 + 0.935009i \(0.384609\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −5792.00 −0.0278655
\(135\) 0 0
\(136\) −8064.00 −0.0373855
\(137\) 332842. 1.51508 0.757542 0.652786i \(-0.226400\pi\)
0.757542 + 0.652786i \(0.226400\pi\)
\(138\) 0 0
\(139\) 8556.00 0.0375607 0.0187804 0.999824i \(-0.494022\pi\)
0.0187804 + 0.999824i \(0.494022\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 17608.0 0.0732806
\(143\) 118856. 0.486050
\(144\) 0 0
\(145\) −93860.0 −0.370732
\(146\) 82000.0 0.318370
\(147\) 0 0
\(148\) −46752.0 −0.175447
\(149\) −69554.0 −0.256659 −0.128329 0.991732i \(-0.540962\pi\)
−0.128329 + 0.991732i \(0.540962\pi\)
\(150\) 0 0
\(151\) 529240. 1.88891 0.944453 0.328647i \(-0.106593\pi\)
0.944453 + 0.328647i \(0.106593\pi\)
\(152\) −140800. −0.494303
\(153\) 0 0
\(154\) 0 0
\(155\) −147368. −0.492690
\(156\) 0 0
\(157\) 13040.0 0.0422210 0.0211105 0.999777i \(-0.493280\pi\)
0.0211105 + 0.999777i \(0.493280\pi\)
\(158\) 260944. 0.831581
\(159\) 0 0
\(160\) −26624.0 −0.0822192
\(161\) 0 0
\(162\) 0 0
\(163\) −351240. −1.03546 −0.517732 0.855543i \(-0.673224\pi\)
−0.517732 + 0.855543i \(0.673224\pi\)
\(164\) 34272.0 0.0995015
\(165\) 0 0
\(166\) 411216. 1.15824
\(167\) −626128. −1.73729 −0.868644 0.495436i \(-0.835008\pi\)
−0.868644 + 0.495436i \(0.835008\pi\)
\(168\) 0 0
\(169\) −261069. −0.703135
\(170\) 13104.0 0.0347762
\(171\) 0 0
\(172\) 102208. 0.263429
\(173\) 184826. 0.469513 0.234757 0.972054i \(-0.424571\pi\)
0.234757 + 0.972054i \(0.424571\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 91648.0 0.223019
\(177\) 0 0
\(178\) 512024. 1.21127
\(179\) 357522. 0.834008 0.417004 0.908905i \(-0.363080\pi\)
0.417004 + 0.908905i \(0.363080\pi\)
\(180\) 0 0
\(181\) 696508. 1.58026 0.790132 0.612937i \(-0.210012\pi\)
0.790132 + 0.612937i \(0.210012\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 137088. 0.298507
\(185\) 75972.0 0.163202
\(186\) 0 0
\(187\) −45108.0 −0.0943299
\(188\) 104320. 0.215265
\(189\) 0 0
\(190\) 228800. 0.459803
\(191\) −68670.0 −0.136202 −0.0681010 0.997678i \(-0.521694\pi\)
−0.0681010 + 0.997678i \(0.521694\pi\)
\(192\) 0 0
\(193\) 827222. 1.59856 0.799280 0.600959i \(-0.205215\pi\)
0.799280 + 0.600959i \(0.205215\pi\)
\(194\) −453296. −0.864724
\(195\) 0 0
\(196\) 0 0
\(197\) 143382. 0.263226 0.131613 0.991301i \(-0.457984\pi\)
0.131613 + 0.991301i \(0.457984\pi\)
\(198\) 0 0
\(199\) −542600. −0.971286 −0.485643 0.874157i \(-0.661414\pi\)
−0.485643 + 0.874157i \(0.661414\pi\)
\(200\) −156736. −0.277073
\(201\) 0 0
\(202\) 558856. 0.963655
\(203\) 0 0
\(204\) 0 0
\(205\) −55692.0 −0.0925568
\(206\) −568720. −0.933750
\(207\) 0 0
\(208\) 84992.0 0.136213
\(209\) −787600. −1.24721
\(210\) 0 0
\(211\) 1.12776e6 1.74385 0.871925 0.489640i \(-0.162872\pi\)
0.871925 + 0.489640i \(0.162872\pi\)
\(212\) 171232. 0.261665
\(213\) 0 0
\(214\) 794072. 1.18529
\(215\) −166088. −0.245043
\(216\) 0 0
\(217\) 0 0
\(218\) 530152. 0.755543
\(219\) 0 0
\(220\) −148928. −0.207453
\(221\) −41832.0 −0.0576140
\(222\) 0 0
\(223\) 897976. 1.20921 0.604606 0.796525i \(-0.293331\pi\)
0.604606 + 0.796525i \(0.293331\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −188104. −0.244978
\(227\) 467612. 0.602311 0.301156 0.953575i \(-0.402628\pi\)
0.301156 + 0.953575i \(0.402628\pi\)
\(228\) 0 0
\(229\) −446140. −0.562189 −0.281095 0.959680i \(-0.590697\pi\)
−0.281095 + 0.959680i \(0.590697\pi\)
\(230\) −222768. −0.277673
\(231\) 0 0
\(232\) 231040. 0.281817
\(233\) −701486. −0.846504 −0.423252 0.906012i \(-0.639112\pi\)
−0.423252 + 0.906012i \(0.639112\pi\)
\(234\) 0 0
\(235\) −169520. −0.200240
\(236\) −680384. −0.795196
\(237\) 0 0
\(238\) 0 0
\(239\) 384198. 0.435071 0.217536 0.976052i \(-0.430198\pi\)
0.217536 + 0.976052i \(0.430198\pi\)
\(240\) 0 0
\(241\) −953780. −1.05780 −0.528902 0.848683i \(-0.677396\pi\)
−0.528902 + 0.848683i \(0.677396\pi\)
\(242\) −131548. −0.144393
\(243\) 0 0
\(244\) −717440. −0.771456
\(245\) 0 0
\(246\) 0 0
\(247\) −730400. −0.761760
\(248\) 362752. 0.374525
\(249\) 0 0
\(250\) 579696. 0.586611
\(251\) −569540. −0.570611 −0.285305 0.958437i \(-0.592095\pi\)
−0.285305 + 0.958437i \(0.592095\pi\)
\(252\) 0 0
\(253\) 766836. 0.753184
\(254\) 662192. 0.644020
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −1.06664e6 −1.00736 −0.503681 0.863890i \(-0.668021\pi\)
−0.503681 + 0.863890i \(0.668021\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −138112. −0.126706
\(261\) 0 0
\(262\) 557232. 0.501514
\(263\) 1.48243e6 1.32155 0.660777 0.750582i \(-0.270227\pi\)
0.660777 + 0.750582i \(0.270227\pi\)
\(264\) 0 0
\(265\) −278252. −0.243402
\(266\) 0 0
\(267\) 0 0
\(268\) −23168.0 −0.0197039
\(269\) 215110. 0.181251 0.0906254 0.995885i \(-0.471113\pi\)
0.0906254 + 0.995885i \(0.471113\pi\)
\(270\) 0 0
\(271\) 1.93104e6 1.59723 0.798614 0.601843i \(-0.205567\pi\)
0.798614 + 0.601843i \(0.205567\pi\)
\(272\) −32256.0 −0.0264355
\(273\) 0 0
\(274\) 1.33137e6 1.07133
\(275\) −876742. −0.699101
\(276\) 0 0
\(277\) 2.03756e6 1.59555 0.797777 0.602953i \(-0.206009\pi\)
0.797777 + 0.602953i \(0.206009\pi\)
\(278\) 34224.0 0.0265594
\(279\) 0 0
\(280\) 0 0
\(281\) 639066. 0.482814 0.241407 0.970424i \(-0.422391\pi\)
0.241407 + 0.970424i \(0.422391\pi\)
\(282\) 0 0
\(283\) 37744.0 0.0280144 0.0140072 0.999902i \(-0.495541\pi\)
0.0140072 + 0.999902i \(0.495541\pi\)
\(284\) 70432.0 0.0518172
\(285\) 0 0
\(286\) 475424. 0.343689
\(287\) 0 0
\(288\) 0 0
\(289\) −1.40398e6 −0.988819
\(290\) −375440. −0.262147
\(291\) 0 0
\(292\) 328000. 0.225121
\(293\) 1.83921e6 1.25159 0.625795 0.779987i \(-0.284775\pi\)
0.625795 + 0.779987i \(0.284775\pi\)
\(294\) 0 0
\(295\) 1.10562e6 0.739695
\(296\) −187008. −0.124060
\(297\) 0 0
\(298\) −278216. −0.181485
\(299\) 711144. 0.460023
\(300\) 0 0
\(301\) 0 0
\(302\) 2.11696e6 1.33566
\(303\) 0 0
\(304\) −563200. −0.349525
\(305\) 1.16584e6 0.717611
\(306\) 0 0
\(307\) −1.06472e6 −0.644747 −0.322374 0.946613i \(-0.604481\pi\)
−0.322374 + 0.946613i \(0.604481\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −589472. −0.348385
\(311\) 1.00952e6 0.591853 0.295927 0.955211i \(-0.404372\pi\)
0.295927 + 0.955211i \(0.404372\pi\)
\(312\) 0 0
\(313\) −1.44910e6 −0.836058 −0.418029 0.908434i \(-0.637279\pi\)
−0.418029 + 0.908434i \(0.637279\pi\)
\(314\) 52160.0 0.0298548
\(315\) 0 0
\(316\) 1.04378e6 0.588017
\(317\) −2.72311e6 −1.52201 −0.761003 0.648748i \(-0.775293\pi\)
−0.761003 + 0.648748i \(0.775293\pi\)
\(318\) 0 0
\(319\) 1.29238e6 0.711072
\(320\) −106496. −0.0581378
\(321\) 0 0
\(322\) 0 0
\(323\) 277200. 0.147838
\(324\) 0 0
\(325\) −813068. −0.426991
\(326\) −1.40496e6 −0.732184
\(327\) 0 0
\(328\) 137088. 0.0703582
\(329\) 0 0
\(330\) 0 0
\(331\) −1.10040e6 −0.552055 −0.276027 0.961150i \(-0.589018\pi\)
−0.276027 + 0.961150i \(0.589018\pi\)
\(332\) 1.64486e6 0.819002
\(333\) 0 0
\(334\) −2.50451e6 −1.22845
\(335\) 37648.0 0.0183286
\(336\) 0 0
\(337\) 1.73512e6 0.832251 0.416125 0.909307i \(-0.363388\pi\)
0.416125 + 0.909307i \(0.363388\pi\)
\(338\) −1.04428e6 −0.497191
\(339\) 0 0
\(340\) 52416.0 0.0245905
\(341\) 2.02914e6 0.944989
\(342\) 0 0
\(343\) 0 0
\(344\) 408832. 0.186273
\(345\) 0 0
\(346\) 739304. 0.331996
\(347\) −1.59145e6 −0.709526 −0.354763 0.934956i \(-0.615438\pi\)
−0.354763 + 0.934956i \(0.615438\pi\)
\(348\) 0 0
\(349\) −2.33376e6 −1.02563 −0.512817 0.858498i \(-0.671398\pi\)
−0.512817 + 0.858498i \(0.671398\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 366592. 0.157698
\(353\) −2.81081e6 −1.20059 −0.600296 0.799778i \(-0.704951\pi\)
−0.600296 + 0.799778i \(0.704951\pi\)
\(354\) 0 0
\(355\) −114452. −0.0482006
\(356\) 2.04810e6 0.856496
\(357\) 0 0
\(358\) 1.43009e6 0.589733
\(359\) −939310. −0.384656 −0.192328 0.981331i \(-0.561604\pi\)
−0.192328 + 0.981331i \(0.561604\pi\)
\(360\) 0 0
\(361\) 2.36390e6 0.954688
\(362\) 2.78603e6 1.11742
\(363\) 0 0
\(364\) 0 0
\(365\) −533000. −0.209409
\(366\) 0 0
\(367\) 3.09851e6 1.20085 0.600424 0.799682i \(-0.294999\pi\)
0.600424 + 0.799682i \(0.294999\pi\)
\(368\) 548352. 0.211077
\(369\) 0 0
\(370\) 303888. 0.115401
\(371\) 0 0
\(372\) 0 0
\(373\) −228266. −0.0849511 −0.0424756 0.999098i \(-0.513524\pi\)
−0.0424756 + 0.999098i \(0.513524\pi\)
\(374\) −180432. −0.0667013
\(375\) 0 0
\(376\) 417280. 0.152215
\(377\) 1.19852e6 0.434302
\(378\) 0 0
\(379\) −1.03669e6 −0.370725 −0.185362 0.982670i \(-0.559346\pi\)
−0.185362 + 0.982670i \(0.559346\pi\)
\(380\) 915200. 0.325130
\(381\) 0 0
\(382\) −274680. −0.0963094
\(383\) 211776. 0.0737700 0.0368850 0.999320i \(-0.488256\pi\)
0.0368850 + 0.999320i \(0.488256\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 3.30889e6 1.13035
\(387\) 0 0
\(388\) −1.81318e6 −0.611452
\(389\) −1.41325e6 −0.473526 −0.236763 0.971567i \(-0.576086\pi\)
−0.236763 + 0.971567i \(0.576086\pi\)
\(390\) 0 0
\(391\) −269892. −0.0892788
\(392\) 0 0
\(393\) 0 0
\(394\) 573528. 0.186129
\(395\) −1.69614e6 −0.546976
\(396\) 0 0
\(397\) −1.09034e6 −0.347203 −0.173602 0.984816i \(-0.555541\pi\)
−0.173602 + 0.984816i \(0.555541\pi\)
\(398\) −2.17040e6 −0.686803
\(399\) 0 0
\(400\) −626944. −0.195920
\(401\) −2.64253e6 −0.820651 −0.410325 0.911939i \(-0.634585\pi\)
−0.410325 + 0.911939i \(0.634585\pi\)
\(402\) 0 0
\(403\) 1.88178e6 0.577172
\(404\) 2.23542e6 0.681407
\(405\) 0 0
\(406\) 0 0
\(407\) −1.04608e6 −0.313024
\(408\) 0 0
\(409\) 6.25427e6 1.84871 0.924354 0.381536i \(-0.124605\pi\)
0.924354 + 0.381536i \(0.124605\pi\)
\(410\) −222768. −0.0654475
\(411\) 0 0
\(412\) −2.27488e6 −0.660261
\(413\) 0 0
\(414\) 0 0
\(415\) −2.67290e6 −0.761839
\(416\) 339968. 0.0963174
\(417\) 0 0
\(418\) −3.15040e6 −0.881911
\(419\) 973924. 0.271013 0.135506 0.990776i \(-0.456734\pi\)
0.135506 + 0.990776i \(0.456734\pi\)
\(420\) 0 0
\(421\) 864618. 0.237749 0.118875 0.992909i \(-0.462071\pi\)
0.118875 + 0.992909i \(0.462071\pi\)
\(422\) 4.51102e6 1.23309
\(423\) 0 0
\(424\) 684928. 0.185025
\(425\) 308574. 0.0828680
\(426\) 0 0
\(427\) 0 0
\(428\) 3.17629e6 0.838128
\(429\) 0 0
\(430\) −664352. −0.173271
\(431\) 3.66046e6 0.949166 0.474583 0.880211i \(-0.342599\pi\)
0.474583 + 0.880211i \(0.342599\pi\)
\(432\) 0 0
\(433\) −4.93667e6 −1.26536 −0.632681 0.774413i \(-0.718045\pi\)
−0.632681 + 0.774413i \(0.718045\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 2.12061e6 0.534250
\(437\) −4.71240e6 −1.18043
\(438\) 0 0
\(439\) 731304. 0.181108 0.0905538 0.995892i \(-0.471136\pi\)
0.0905538 + 0.995892i \(0.471136\pi\)
\(440\) −595712. −0.146691
\(441\) 0 0
\(442\) −167328. −0.0407392
\(443\) −4.86620e6 −1.17810 −0.589048 0.808098i \(-0.700497\pi\)
−0.589048 + 0.808098i \(0.700497\pi\)
\(444\) 0 0
\(445\) −3.32816e6 −0.796716
\(446\) 3.59190e6 0.855042
\(447\) 0 0
\(448\) 0 0
\(449\) −5.71987e6 −1.33897 −0.669484 0.742827i \(-0.733485\pi\)
−0.669484 + 0.742827i \(0.733485\pi\)
\(450\) 0 0
\(451\) 766836. 0.177526
\(452\) −752416. −0.173226
\(453\) 0 0
\(454\) 1.87045e6 0.425898
\(455\) 0 0
\(456\) 0 0
\(457\) −6.82034e6 −1.52762 −0.763811 0.645440i \(-0.776674\pi\)
−0.763811 + 0.645440i \(0.776674\pi\)
\(458\) −1.78456e6 −0.397528
\(459\) 0 0
\(460\) −891072. −0.196344
\(461\) 7.45934e6 1.63474 0.817369 0.576115i \(-0.195432\pi\)
0.817369 + 0.576115i \(0.195432\pi\)
\(462\) 0 0
\(463\) −5.23848e6 −1.13567 −0.567836 0.823142i \(-0.692219\pi\)
−0.567836 + 0.823142i \(0.692219\pi\)
\(464\) 924160. 0.199275
\(465\) 0 0
\(466\) −2.80594e6 −0.598569
\(467\) −8.95995e6 −1.90114 −0.950568 0.310516i \(-0.899498\pi\)
−0.950568 + 0.310516i \(0.899498\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −678080. −0.141591
\(471\) 0 0
\(472\) −2.72154e6 −0.562288
\(473\) 2.28690e6 0.469997
\(474\) 0 0
\(475\) 5.38780e6 1.09566
\(476\) 0 0
\(477\) 0 0
\(478\) 1.53679e6 0.307642
\(479\) 1.75354e6 0.349201 0.174601 0.984639i \(-0.444137\pi\)
0.174601 + 0.984639i \(0.444137\pi\)
\(480\) 0 0
\(481\) −970104. −0.191186
\(482\) −3.81512e6 −0.747981
\(483\) 0 0
\(484\) −526192. −0.102101
\(485\) 2.94642e6 0.568776
\(486\) 0 0
\(487\) 927568. 0.177224 0.0886122 0.996066i \(-0.471757\pi\)
0.0886122 + 0.996066i \(0.471757\pi\)
\(488\) −2.86976e6 −0.545502
\(489\) 0 0
\(490\) 0 0
\(491\) −8.43733e6 −1.57943 −0.789716 0.613472i \(-0.789772\pi\)
−0.789716 + 0.613472i \(0.789772\pi\)
\(492\) 0 0
\(493\) −454860. −0.0842870
\(494\) −2.92160e6 −0.538646
\(495\) 0 0
\(496\) 1.45101e6 0.264829
\(497\) 0 0
\(498\) 0 0
\(499\) 1.33278e6 0.239611 0.119806 0.992797i \(-0.461773\pi\)
0.119806 + 0.992797i \(0.461773\pi\)
\(500\) 2.31878e6 0.414797
\(501\) 0 0
\(502\) −2.27816e6 −0.403483
\(503\) −3.64494e6 −0.642349 −0.321174 0.947020i \(-0.604078\pi\)
−0.321174 + 0.947020i \(0.604078\pi\)
\(504\) 0 0
\(505\) −3.63256e6 −0.633848
\(506\) 3.06734e6 0.532582
\(507\) 0 0
\(508\) 2.64877e6 0.455391
\(509\) 3.26166e6 0.558013 0.279007 0.960289i \(-0.409995\pi\)
0.279007 + 0.960289i \(0.409995\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 262144. 0.0441942
\(513\) 0 0
\(514\) −4.26657e6 −0.712313
\(515\) 3.69668e6 0.614177
\(516\) 0 0
\(517\) 2.33416e6 0.384065
\(518\) 0 0
\(519\) 0 0
\(520\) −552448. −0.0895948
\(521\) 2.18741e6 0.353050 0.176525 0.984296i \(-0.443514\pi\)
0.176525 + 0.984296i \(0.443514\pi\)
\(522\) 0 0
\(523\) 1.03890e7 1.66081 0.830406 0.557159i \(-0.188109\pi\)
0.830406 + 0.557159i \(0.188109\pi\)
\(524\) 2.22893e6 0.354624
\(525\) 0 0
\(526\) 5.92972e6 0.934480
\(527\) −714168. −0.112014
\(528\) 0 0
\(529\) −1.84818e6 −0.287147
\(530\) −1.11301e6 −0.172111
\(531\) 0 0
\(532\) 0 0
\(533\) 711144. 0.108428
\(534\) 0 0
\(535\) −5.16147e6 −0.779630
\(536\) −92672.0 −0.0139327
\(537\) 0 0
\(538\) 860440. 0.128164
\(539\) 0 0
\(540\) 0 0
\(541\) 1.27724e7 1.87620 0.938101 0.346363i \(-0.112583\pi\)
0.938101 + 0.346363i \(0.112583\pi\)
\(542\) 7.72414e6 1.12941
\(543\) 0 0
\(544\) −129024. −0.0186928
\(545\) −3.44599e6 −0.496961
\(546\) 0 0
\(547\) −5.22238e6 −0.746278 −0.373139 0.927776i \(-0.621719\pi\)
−0.373139 + 0.927776i \(0.621719\pi\)
\(548\) 5.32547e6 0.757542
\(549\) 0 0
\(550\) −3.50697e6 −0.494339
\(551\) −7.94200e6 −1.11443
\(552\) 0 0
\(553\) 0 0
\(554\) 8.15025e6 1.12823
\(555\) 0 0
\(556\) 136896. 0.0187804
\(557\) 5.74047e6 0.783988 0.391994 0.919968i \(-0.371785\pi\)
0.391994 + 0.919968i \(0.371785\pi\)
\(558\) 0 0
\(559\) 2.12082e6 0.287061
\(560\) 0 0
\(561\) 0 0
\(562\) 2.55626e6 0.341401
\(563\) 2.30448e6 0.306409 0.153204 0.988195i \(-0.451041\pi\)
0.153204 + 0.988195i \(0.451041\pi\)
\(564\) 0 0
\(565\) 1.22268e6 0.161135
\(566\) 150976. 0.0198092
\(567\) 0 0
\(568\) 281728. 0.0366403
\(569\) 5.12150e6 0.663157 0.331578 0.943428i \(-0.392419\pi\)
0.331578 + 0.943428i \(0.392419\pi\)
\(570\) 0 0
\(571\) −2.38637e6 −0.306300 −0.153150 0.988203i \(-0.548942\pi\)
−0.153150 + 0.988203i \(0.548942\pi\)
\(572\) 1.90170e6 0.243025
\(573\) 0 0
\(574\) 0 0
\(575\) −5.24576e6 −0.661666
\(576\) 0 0
\(577\) −5.24151e6 −0.655416 −0.327708 0.944779i \(-0.606276\pi\)
−0.327708 + 0.944779i \(0.606276\pi\)
\(578\) −5.61592e6 −0.699200
\(579\) 0 0
\(580\) −1.50176e6 −0.185366
\(581\) 0 0
\(582\) 0 0
\(583\) 3.83132e6 0.466849
\(584\) 1.31200e6 0.159185
\(585\) 0 0
\(586\) 7.35684e6 0.885008
\(587\) −9.11548e6 −1.09190 −0.545952 0.837816i \(-0.683832\pi\)
−0.545952 + 0.837816i \(0.683832\pi\)
\(588\) 0 0
\(589\) −1.24696e7 −1.48103
\(590\) 4.42250e6 0.523043
\(591\) 0 0
\(592\) −748032. −0.0877235
\(593\) −3.05043e6 −0.356225 −0.178112 0.984010i \(-0.556999\pi\)
−0.178112 + 0.984010i \(0.556999\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.11286e6 −0.128329
\(597\) 0 0
\(598\) 2.84458e6 0.325285
\(599\) −1.43408e7 −1.63308 −0.816539 0.577290i \(-0.804110\pi\)
−0.816539 + 0.577290i \(0.804110\pi\)
\(600\) 0 0
\(601\) −3.12662e6 −0.353092 −0.176546 0.984292i \(-0.556492\pi\)
−0.176546 + 0.984292i \(0.556492\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 8.46784e6 0.944453
\(605\) 855062. 0.0949750
\(606\) 0 0
\(607\) 1.15098e7 1.26794 0.633969 0.773359i \(-0.281425\pi\)
0.633969 + 0.773359i \(0.281425\pi\)
\(608\) −2.25280e6 −0.247152
\(609\) 0 0
\(610\) 4.66336e6 0.507428
\(611\) 2.16464e6 0.234576
\(612\) 0 0
\(613\) −1.21782e7 −1.30898 −0.654488 0.756072i \(-0.727116\pi\)
−0.654488 + 0.756072i \(0.727116\pi\)
\(614\) −4.25888e6 −0.455905
\(615\) 0 0
\(616\) 0 0
\(617\) −1.77629e6 −0.187845 −0.0939226 0.995580i \(-0.529941\pi\)
−0.0939226 + 0.995580i \(0.529941\pi\)
\(618\) 0 0
\(619\) −5.95516e6 −0.624694 −0.312347 0.949968i \(-0.601115\pi\)
−0.312347 + 0.949968i \(0.601115\pi\)
\(620\) −2.35789e6 −0.246345
\(621\) 0 0
\(622\) 4.03808e6 0.418503
\(623\) 0 0
\(624\) 0 0
\(625\) 3.88510e6 0.397834
\(626\) −5.79638e6 −0.591182
\(627\) 0 0
\(628\) 208640. 0.0211105
\(629\) 368172. 0.0371043
\(630\) 0 0
\(631\) −1.45351e7 −1.45327 −0.726633 0.687026i \(-0.758916\pi\)
−0.726633 + 0.687026i \(0.758916\pi\)
\(632\) 4.17510e6 0.415791
\(633\) 0 0
\(634\) −1.08924e7 −1.07622
\(635\) −4.30425e6 −0.423607
\(636\) 0 0
\(637\) 0 0
\(638\) 5.16952e6 0.502804
\(639\) 0 0
\(640\) −425984. −0.0411096
\(641\) 1.07349e7 1.03194 0.515970 0.856607i \(-0.327432\pi\)
0.515970 + 0.856607i \(0.327432\pi\)
\(642\) 0 0
\(643\) 1.62815e7 1.55298 0.776492 0.630127i \(-0.216997\pi\)
0.776492 + 0.630127i \(0.216997\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 1.10880e6 0.104537
\(647\) 7.91947e6 0.743765 0.371882 0.928280i \(-0.378712\pi\)
0.371882 + 0.928280i \(0.378712\pi\)
\(648\) 0 0
\(649\) −1.52236e7 −1.41875
\(650\) −3.25227e6 −0.301928
\(651\) 0 0
\(652\) −5.61984e6 −0.517732
\(653\) −1.34478e6 −0.123415 −0.0617076 0.998094i \(-0.519655\pi\)
−0.0617076 + 0.998094i \(0.519655\pi\)
\(654\) 0 0
\(655\) −3.62201e6 −0.329873
\(656\) 548352. 0.0497508
\(657\) 0 0
\(658\) 0 0
\(659\) −2.02235e7 −1.81402 −0.907010 0.421109i \(-0.861641\pi\)
−0.907010 + 0.421109i \(0.861641\pi\)
\(660\) 0 0
\(661\) 7.17802e6 0.639001 0.319500 0.947586i \(-0.396485\pi\)
0.319500 + 0.947586i \(0.396485\pi\)
\(662\) −4.40162e6 −0.390362
\(663\) 0 0
\(664\) 6.57946e6 0.579122
\(665\) 0 0
\(666\) 0 0
\(667\) 7.73262e6 0.672995
\(668\) −1.00180e7 −0.868644
\(669\) 0 0
\(670\) 150592. 0.0129603
\(671\) −1.60527e7 −1.37639
\(672\) 0 0
\(673\) 9.61217e6 0.818057 0.409029 0.912522i \(-0.365868\pi\)
0.409029 + 0.912522i \(0.365868\pi\)
\(674\) 6.94047e6 0.588490
\(675\) 0 0
\(676\) −4.17710e6 −0.351567
\(677\) 9.66815e6 0.810722 0.405361 0.914157i \(-0.367146\pi\)
0.405361 + 0.914157i \(0.367146\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 209664. 0.0173881
\(681\) 0 0
\(682\) 8.11658e6 0.668208
\(683\) −389854. −0.0319779 −0.0159890 0.999872i \(-0.505090\pi\)
−0.0159890 + 0.999872i \(0.505090\pi\)
\(684\) 0 0
\(685\) −8.65389e6 −0.704669
\(686\) 0 0
\(687\) 0 0
\(688\) 1.63533e6 0.131715
\(689\) 3.55306e6 0.285138
\(690\) 0 0
\(691\) 3.73985e6 0.297961 0.148980 0.988840i \(-0.452401\pi\)
0.148980 + 0.988840i \(0.452401\pi\)
\(692\) 2.95722e6 0.234757
\(693\) 0 0
\(694\) −6.36578e6 −0.501711
\(695\) −222456. −0.0174696
\(696\) 0 0
\(697\) −269892. −0.0210430
\(698\) −9.33504e6 −0.725233
\(699\) 0 0
\(700\) 0 0
\(701\) −2.49886e7 −1.92064 −0.960322 0.278893i \(-0.910033\pi\)
−0.960322 + 0.278893i \(0.910033\pi\)
\(702\) 0 0
\(703\) 6.42840e6 0.490585
\(704\) 1.46637e6 0.111509
\(705\) 0 0
\(706\) −1.12433e7 −0.848947
\(707\) 0 0
\(708\) 0 0
\(709\) −9.83584e6 −0.734845 −0.367423 0.930054i \(-0.619760\pi\)
−0.367423 + 0.930054i \(0.619760\pi\)
\(710\) −457808. −0.0340830
\(711\) 0 0
\(712\) 8.19238e6 0.605634
\(713\) 1.21409e7 0.894387
\(714\) 0 0
\(715\) −3.09026e6 −0.226063
\(716\) 5.72035e6 0.417004
\(717\) 0 0
\(718\) −3.75724e6 −0.271993
\(719\) 2.13624e7 1.54109 0.770546 0.637384i \(-0.219983\pi\)
0.770546 + 0.637384i \(0.219983\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 9.45560e6 0.675066
\(723\) 0 0
\(724\) 1.11441e7 0.790132
\(725\) −8.84089e6 −0.624670
\(726\) 0 0
\(727\) 6.53025e6 0.458241 0.229120 0.973398i \(-0.426415\pi\)
0.229120 + 0.973398i \(0.426415\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −2.13200e6 −0.148074
\(731\) −804888. −0.0557111
\(732\) 0 0
\(733\) −1.66571e7 −1.14509 −0.572545 0.819873i \(-0.694044\pi\)
−0.572545 + 0.819873i \(0.694044\pi\)
\(734\) 1.23940e7 0.849128
\(735\) 0 0
\(736\) 2.19341e6 0.149254
\(737\) −518384. −0.0351547
\(738\) 0 0
\(739\) −2.39536e7 −1.61347 −0.806733 0.590917i \(-0.798766\pi\)
−0.806733 + 0.590917i \(0.798766\pi\)
\(740\) 1.21555e6 0.0816008
\(741\) 0 0
\(742\) 0 0
\(743\) 7.48982e6 0.497736 0.248868 0.968537i \(-0.419941\pi\)
0.248868 + 0.968537i \(0.419941\pi\)
\(744\) 0 0
\(745\) 1.80840e6 0.119373
\(746\) −913064. −0.0600695
\(747\) 0 0
\(748\) −721728. −0.0471650
\(749\) 0 0
\(750\) 0 0
\(751\) −4.71845e6 −0.305281 −0.152640 0.988282i \(-0.548778\pi\)
−0.152640 + 0.988282i \(0.548778\pi\)
\(752\) 1.66912e6 0.107632
\(753\) 0 0
\(754\) 4.79408e6 0.307098
\(755\) −1.37602e7 −0.878534
\(756\) 0 0
\(757\) −2.67397e7 −1.69597 −0.847983 0.530024i \(-0.822183\pi\)
−0.847983 + 0.530024i \(0.822183\pi\)
\(758\) −4.14677e6 −0.262142
\(759\) 0 0
\(760\) 3.66080e6 0.229902
\(761\) 1.44331e7 0.903435 0.451718 0.892161i \(-0.350811\pi\)
0.451718 + 0.892161i \(0.350811\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −1.09872e6 −0.0681010
\(765\) 0 0
\(766\) 847104. 0.0521633
\(767\) −1.41180e7 −0.866530
\(768\) 0 0
\(769\) −8.55510e6 −0.521686 −0.260843 0.965381i \(-0.584001\pi\)
−0.260843 + 0.965381i \(0.584001\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.32356e7 0.799280
\(773\) −1.92272e7 −1.15735 −0.578677 0.815557i \(-0.696431\pi\)
−0.578677 + 0.815557i \(0.696431\pi\)
\(774\) 0 0
\(775\) −1.38809e7 −0.830165
\(776\) −7.25274e6 −0.432362
\(777\) 0 0
\(778\) −5.65298e6 −0.334833
\(779\) −4.71240e6 −0.278227
\(780\) 0 0
\(781\) 1.57592e6 0.0924497
\(782\) −1.07957e6 −0.0631296
\(783\) 0 0
\(784\) 0 0
\(785\) −339040. −0.0196371
\(786\) 0 0
\(787\) −2.53316e7 −1.45789 −0.728947 0.684570i \(-0.759990\pi\)
−0.728947 + 0.684570i \(0.759990\pi\)
\(788\) 2.29411e6 0.131613
\(789\) 0 0
\(790\) −6.78454e6 −0.386770
\(791\) 0 0
\(792\) 0 0
\(793\) −1.48869e7 −0.840661
\(794\) −4.36134e6 −0.245510
\(795\) 0 0
\(796\) −8.68160e6 −0.485643
\(797\) 3.13162e7 1.74632 0.873158 0.487437i \(-0.162068\pi\)
0.873158 + 0.487437i \(0.162068\pi\)
\(798\) 0 0
\(799\) −821520. −0.0455251
\(800\) −2.50778e6 −0.138536
\(801\) 0 0
\(802\) −1.05701e7 −0.580288
\(803\) 7.33900e6 0.401650
\(804\) 0 0
\(805\) 0 0
\(806\) 7.52710e6 0.408122
\(807\) 0 0
\(808\) 8.94170e6 0.481827
\(809\) −484890. −0.0260479 −0.0130239 0.999915i \(-0.504146\pi\)
−0.0130239 + 0.999915i \(0.504146\pi\)
\(810\) 0 0
\(811\) −5.32623e6 −0.284359 −0.142180 0.989841i \(-0.545411\pi\)
−0.142180 + 0.989841i \(0.545411\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −4.18430e6 −0.221341
\(815\) 9.13224e6 0.481596
\(816\) 0 0
\(817\) −1.40536e7 −0.736601
\(818\) 2.50171e7 1.30723
\(819\) 0 0
\(820\) −891072. −0.0462784
\(821\) −3.21777e7 −1.66609 −0.833043 0.553209i \(-0.813403\pi\)
−0.833043 + 0.553209i \(0.813403\pi\)
\(822\) 0 0
\(823\) −8.07408e6 −0.415521 −0.207761 0.978180i \(-0.566618\pi\)
−0.207761 + 0.978180i \(0.566618\pi\)
\(824\) −9.09952e6 −0.466875
\(825\) 0 0
\(826\) 0 0
\(827\) 8.04922e6 0.409251 0.204626 0.978840i \(-0.434402\pi\)
0.204626 + 0.978840i \(0.434402\pi\)
\(828\) 0 0
\(829\) −1.35889e7 −0.686751 −0.343375 0.939198i \(-0.611570\pi\)
−0.343375 + 0.939198i \(0.611570\pi\)
\(830\) −1.06916e7 −0.538701
\(831\) 0 0
\(832\) 1.35987e6 0.0681067
\(833\) 0 0
\(834\) 0 0
\(835\) 1.62793e7 0.808017
\(836\) −1.26016e7 −0.623606
\(837\) 0 0
\(838\) 3.89570e6 0.191635
\(839\) 3.67721e6 0.180349 0.0901744 0.995926i \(-0.471258\pi\)
0.0901744 + 0.995926i \(0.471258\pi\)
\(840\) 0 0
\(841\) −7.47905e6 −0.364633
\(842\) 3.45847e6 0.168114
\(843\) 0 0
\(844\) 1.80441e7 0.871925
\(845\) 6.78779e6 0.327029
\(846\) 0 0
\(847\) 0 0
\(848\) 2.73971e6 0.130832
\(849\) 0 0
\(850\) 1.23430e6 0.0585965
\(851\) −6.25892e6 −0.296262
\(852\) 0 0
\(853\) −3.25379e7 −1.53115 −0.765573 0.643349i \(-0.777544\pi\)
−0.765573 + 0.643349i \(0.777544\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 1.27052e7 0.592646
\(857\) −1.12723e7 −0.524278 −0.262139 0.965030i \(-0.584428\pi\)
−0.262139 + 0.965030i \(0.584428\pi\)
\(858\) 0 0
\(859\) −7.69694e6 −0.355906 −0.177953 0.984039i \(-0.556948\pi\)
−0.177953 + 0.984039i \(0.556948\pi\)
\(860\) −2.65741e6 −0.122521
\(861\) 0 0
\(862\) 1.46418e7 0.671162
\(863\) 4.58785e6 0.209692 0.104846 0.994488i \(-0.466565\pi\)
0.104846 + 0.994488i \(0.466565\pi\)
\(864\) 0 0
\(865\) −4.80548e6 −0.218372
\(866\) −1.97467e7 −0.894746
\(867\) 0 0
\(868\) 0 0
\(869\) 2.33545e7 1.04911
\(870\) 0 0
\(871\) −480736. −0.0214714
\(872\) 8.48243e6 0.377771
\(873\) 0 0
\(874\) −1.88496e7 −0.834687
\(875\) 0 0
\(876\) 0 0
\(877\) −1.14666e7 −0.503424 −0.251712 0.967802i \(-0.580994\pi\)
−0.251712 + 0.967802i \(0.580994\pi\)
\(878\) 2.92522e6 0.128062
\(879\) 0 0
\(880\) −2.38285e6 −0.103726
\(881\) 3.02550e7 1.31328 0.656640 0.754204i \(-0.271977\pi\)
0.656640 + 0.754204i \(0.271977\pi\)
\(882\) 0 0
\(883\) 9.83052e6 0.424302 0.212151 0.977237i \(-0.431953\pi\)
0.212151 + 0.977237i \(0.431953\pi\)
\(884\) −669312. −0.0288070
\(885\) 0 0
\(886\) −1.94648e7 −0.833039
\(887\) −2.32272e7 −0.991263 −0.495631 0.868533i \(-0.665063\pi\)
−0.495631 + 0.868533i \(0.665063\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −1.33126e7 −0.563363
\(891\) 0 0
\(892\) 1.43676e7 0.604606
\(893\) −1.43440e7 −0.601924
\(894\) 0 0
\(895\) −9.29557e6 −0.387899
\(896\) 0 0
\(897\) 0 0
\(898\) −2.28795e7 −0.946793
\(899\) 2.04615e7 0.844380
\(900\) 0 0
\(901\) −1.34845e6 −0.0553380
\(902\) 3.06734e6 0.125530
\(903\) 0 0
\(904\) −3.00966e6 −0.122489
\(905\) −1.81092e7 −0.734984
\(906\) 0 0
\(907\) 3.05501e7 1.23309 0.616544 0.787321i \(-0.288532\pi\)
0.616544 + 0.787321i \(0.288532\pi\)
\(908\) 7.48179e6 0.301156
\(909\) 0 0
\(910\) 0 0
\(911\) −2.21502e7 −0.884265 −0.442133 0.896950i \(-0.645778\pi\)
−0.442133 + 0.896950i \(0.645778\pi\)
\(912\) 0 0
\(913\) 3.68038e7 1.46122
\(914\) −2.72814e7 −1.08019
\(915\) 0 0
\(916\) −7.13824e6 −0.281095
\(917\) 0 0
\(918\) 0 0
\(919\) −1.26723e7 −0.494955 −0.247477 0.968894i \(-0.579602\pi\)
−0.247477 + 0.968894i \(0.579602\pi\)
\(920\) −3.56429e6 −0.138836
\(921\) 0 0
\(922\) 2.98374e7 1.15593
\(923\) 1.46146e6 0.0564656
\(924\) 0 0
\(925\) 7.15598e6 0.274989
\(926\) −2.09539e7 −0.803042
\(927\) 0 0
\(928\) 3.69664e6 0.140909
\(929\) 4.02840e7 1.53142 0.765709 0.643187i \(-0.222388\pi\)
0.765709 + 0.643187i \(0.222388\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −1.12238e7 −0.423252
\(933\) 0 0
\(934\) −3.58398e7 −1.34431
\(935\) 1.17281e6 0.0438731
\(936\) 0 0
\(937\) 1.34104e7 0.498992 0.249496 0.968376i \(-0.419735\pi\)
0.249496 + 0.968376i \(0.419735\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −2.71232e6 −0.100120
\(941\) 2.73213e7 1.00584 0.502918 0.864334i \(-0.332260\pi\)
0.502918 + 0.864334i \(0.332260\pi\)
\(942\) 0 0
\(943\) 4.58816e6 0.168020
\(944\) −1.08861e7 −0.397598
\(945\) 0 0
\(946\) 9.14762e6 0.332338
\(947\) −8.71745e6 −0.315874 −0.157937 0.987449i \(-0.550484\pi\)
−0.157937 + 0.987449i \(0.550484\pi\)
\(948\) 0 0
\(949\) 6.80600e6 0.245316
\(950\) 2.15512e7 0.774752
\(951\) 0 0
\(952\) 0 0
\(953\) 1.62984e7 0.581315 0.290658 0.956827i \(-0.406126\pi\)
0.290658 + 0.956827i \(0.406126\pi\)
\(954\) 0 0
\(955\) 1.78542e6 0.0633479
\(956\) 6.14717e6 0.217536
\(957\) 0 0
\(958\) 7.01414e6 0.246923
\(959\) 0 0
\(960\) 0 0
\(961\) 3.49707e6 0.122151
\(962\) −3.88042e6 −0.135189
\(963\) 0 0
\(964\) −1.52605e7 −0.528902
\(965\) −2.15078e7 −0.743493
\(966\) 0 0
\(967\) −5.49067e6 −0.188825 −0.0944124 0.995533i \(-0.530097\pi\)
−0.0944124 + 0.995533i \(0.530097\pi\)
\(968\) −2.10477e6 −0.0721964
\(969\) 0 0
\(970\) 1.17857e7 0.402185
\(971\) −4.51675e7 −1.53737 −0.768685 0.639628i \(-0.779089\pi\)
−0.768685 + 0.639628i \(0.779089\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 3.71027e6 0.125317
\(975\) 0 0
\(976\) −1.14790e7 −0.385728
\(977\) 2.38010e7 0.797737 0.398868 0.917008i \(-0.369403\pi\)
0.398868 + 0.917008i \(0.369403\pi\)
\(978\) 0 0
\(979\) 4.58261e7 1.52812
\(980\) 0 0
\(981\) 0 0
\(982\) −3.37493e7 −1.11683
\(983\) −9.36478e6 −0.309111 −0.154555 0.987984i \(-0.549394\pi\)
−0.154555 + 0.987984i \(0.549394\pi\)
\(984\) 0 0
\(985\) −3.72793e6 −0.122427
\(986\) −1.81944e6 −0.0595999
\(987\) 0 0
\(988\) −1.16864e7 −0.380880
\(989\) 1.36831e7 0.444830
\(990\) 0 0
\(991\) −4.33916e7 −1.40353 −0.701764 0.712409i \(-0.747604\pi\)
−0.701764 + 0.712409i \(0.747604\pi\)
\(992\) 5.80403e6 0.187262
\(993\) 0 0
\(994\) 0 0
\(995\) 1.41076e7 0.451747
\(996\) 0 0
\(997\) 4.35294e6 0.138690 0.0693449 0.997593i \(-0.477909\pi\)
0.0693449 + 0.997593i \(0.477909\pi\)
\(998\) 5.33112e6 0.169431
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.6.a.p.1.1 1
3.2 odd 2 294.6.a.g.1.1 yes 1
7.6 odd 2 882.6.a.t.1.1 1
21.2 odd 6 294.6.e.j.67.1 2
21.5 even 6 294.6.e.q.67.1 2
21.11 odd 6 294.6.e.j.79.1 2
21.17 even 6 294.6.e.q.79.1 2
21.20 even 2 294.6.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
294.6.a.a.1.1 1 21.20 even 2
294.6.a.g.1.1 yes 1 3.2 odd 2
294.6.e.j.67.1 2 21.2 odd 6
294.6.e.j.79.1 2 21.11 odd 6
294.6.e.q.67.1 2 21.5 even 6
294.6.e.q.79.1 2 21.17 even 6
882.6.a.p.1.1 1 1.1 even 1 trivial
882.6.a.t.1.1 1 7.6 odd 2