Properties

Label 882.6.a.o.1.1
Level $882$
Weight $6$
Character 882.1
Self dual yes
Analytic conductor $141.459$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,6,Mod(1,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,4,0,16,-54,0,0,64,0,-216,-216] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.458529075\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 882.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +16.0000 q^{4} -54.0000 q^{5} +64.0000 q^{8} -216.000 q^{10} -216.000 q^{11} -998.000 q^{13} +256.000 q^{16} +1302.00 q^{17} -884.000 q^{19} -864.000 q^{20} -864.000 q^{22} +2268.00 q^{23} -209.000 q^{25} -3992.00 q^{26} +1482.00 q^{29} -8360.00 q^{31} +1024.00 q^{32} +5208.00 q^{34} -4714.00 q^{37} -3536.00 q^{38} -3456.00 q^{40} -9786.00 q^{41} +19436.0 q^{43} -3456.00 q^{44} +9072.00 q^{46} +22200.0 q^{47} -836.000 q^{50} -15968.0 q^{52} -26790.0 q^{53} +11664.0 q^{55} +5928.00 q^{58} +28092.0 q^{59} +38866.0 q^{61} -33440.0 q^{62} +4096.00 q^{64} +53892.0 q^{65} +23948.0 q^{67} +20832.0 q^{68} +20628.0 q^{71} -290.000 q^{73} -18856.0 q^{74} -14144.0 q^{76} -99544.0 q^{79} -13824.0 q^{80} -39144.0 q^{82} +19308.0 q^{83} -70308.0 q^{85} +77744.0 q^{86} -13824.0 q^{88} +36390.0 q^{89} +36288.0 q^{92} +88800.0 q^{94} +47736.0 q^{95} +79078.0 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) −54.0000 −0.965981 −0.482991 0.875625i \(-0.660450\pi\)
−0.482991 + 0.875625i \(0.660450\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 64.0000 0.353553
\(9\) 0 0
\(10\) −216.000 −0.683052
\(11\) −216.000 −0.538235 −0.269118 0.963107i \(-0.586732\pi\)
−0.269118 + 0.963107i \(0.586732\pi\)
\(12\) 0 0
\(13\) −998.000 −1.63784 −0.818921 0.573906i \(-0.805428\pi\)
−0.818921 + 0.573906i \(0.805428\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 1302.00 1.09267 0.546335 0.837567i \(-0.316023\pi\)
0.546335 + 0.837567i \(0.316023\pi\)
\(18\) 0 0
\(19\) −884.000 −0.561783 −0.280891 0.959740i \(-0.590630\pi\)
−0.280891 + 0.959740i \(0.590630\pi\)
\(20\) −864.000 −0.482991
\(21\) 0 0
\(22\) −864.000 −0.380590
\(23\) 2268.00 0.893971 0.446986 0.894541i \(-0.352498\pi\)
0.446986 + 0.894541i \(0.352498\pi\)
\(24\) 0 0
\(25\) −209.000 −0.0668800
\(26\) −3992.00 −1.15813
\(27\) 0 0
\(28\) 0 0
\(29\) 1482.00 0.327230 0.163615 0.986524i \(-0.447685\pi\)
0.163615 + 0.986524i \(0.447685\pi\)
\(30\) 0 0
\(31\) −8360.00 −1.56244 −0.781218 0.624259i \(-0.785401\pi\)
−0.781218 + 0.624259i \(0.785401\pi\)
\(32\) 1024.00 0.176777
\(33\) 0 0
\(34\) 5208.00 0.772634
\(35\) 0 0
\(36\) 0 0
\(37\) −4714.00 −0.566090 −0.283045 0.959107i \(-0.591345\pi\)
−0.283045 + 0.959107i \(0.591345\pi\)
\(38\) −3536.00 −0.397240
\(39\) 0 0
\(40\) −3456.00 −0.341526
\(41\) −9786.00 −0.909171 −0.454585 0.890703i \(-0.650213\pi\)
−0.454585 + 0.890703i \(0.650213\pi\)
\(42\) 0 0
\(43\) 19436.0 1.60301 0.801504 0.597989i \(-0.204033\pi\)
0.801504 + 0.597989i \(0.204033\pi\)
\(44\) −3456.00 −0.269118
\(45\) 0 0
\(46\) 9072.00 0.632133
\(47\) 22200.0 1.46591 0.732957 0.680275i \(-0.238140\pi\)
0.732957 + 0.680275i \(0.238140\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −836.000 −0.0472913
\(51\) 0 0
\(52\) −15968.0 −0.818921
\(53\) −26790.0 −1.31004 −0.655018 0.755614i \(-0.727339\pi\)
−0.655018 + 0.755614i \(0.727339\pi\)
\(54\) 0 0
\(55\) 11664.0 0.519925
\(56\) 0 0
\(57\) 0 0
\(58\) 5928.00 0.231387
\(59\) 28092.0 1.05064 0.525318 0.850906i \(-0.323946\pi\)
0.525318 + 0.850906i \(0.323946\pi\)
\(60\) 0 0
\(61\) 38866.0 1.33735 0.668675 0.743555i \(-0.266862\pi\)
0.668675 + 0.743555i \(0.266862\pi\)
\(62\) −33440.0 −1.10481
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 53892.0 1.58213
\(66\) 0 0
\(67\) 23948.0 0.651752 0.325876 0.945413i \(-0.394341\pi\)
0.325876 + 0.945413i \(0.394341\pi\)
\(68\) 20832.0 0.546335
\(69\) 0 0
\(70\) 0 0
\(71\) 20628.0 0.485636 0.242818 0.970072i \(-0.421928\pi\)
0.242818 + 0.970072i \(0.421928\pi\)
\(72\) 0 0
\(73\) −290.000 −0.00636929 −0.00318464 0.999995i \(-0.501014\pi\)
−0.00318464 + 0.999995i \(0.501014\pi\)
\(74\) −18856.0 −0.400286
\(75\) 0 0
\(76\) −14144.0 −0.280891
\(77\) 0 0
\(78\) 0 0
\(79\) −99544.0 −1.79452 −0.897258 0.441506i \(-0.854444\pi\)
−0.897258 + 0.441506i \(0.854444\pi\)
\(80\) −13824.0 −0.241495
\(81\) 0 0
\(82\) −39144.0 −0.642881
\(83\) 19308.0 0.307639 0.153820 0.988099i \(-0.450842\pi\)
0.153820 + 0.988099i \(0.450842\pi\)
\(84\) 0 0
\(85\) −70308.0 −1.05550
\(86\) 77744.0 1.13350
\(87\) 0 0
\(88\) −13824.0 −0.190295
\(89\) 36390.0 0.486975 0.243488 0.969904i \(-0.421708\pi\)
0.243488 + 0.969904i \(0.421708\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 36288.0 0.446986
\(93\) 0 0
\(94\) 88800.0 1.03656
\(95\) 47736.0 0.542671
\(96\) 0 0
\(97\) 79078.0 0.853348 0.426674 0.904405i \(-0.359685\pi\)
0.426674 + 0.904405i \(0.359685\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −3344.00 −0.0334400
\(101\) 184626. 1.80090 0.900450 0.434960i \(-0.143238\pi\)
0.900450 + 0.434960i \(0.143238\pi\)
\(102\) 0 0
\(103\) −64592.0 −0.599909 −0.299955 0.953953i \(-0.596972\pi\)
−0.299955 + 0.953953i \(0.596972\pi\)
\(104\) −63872.0 −0.579065
\(105\) 0 0
\(106\) −107160. −0.926335
\(107\) −149592. −1.26313 −0.631566 0.775322i \(-0.717588\pi\)
−0.631566 + 0.775322i \(0.717588\pi\)
\(108\) 0 0
\(109\) −63826.0 −0.514555 −0.257277 0.966338i \(-0.582825\pi\)
−0.257277 + 0.966338i \(0.582825\pi\)
\(110\) 46656.0 0.367643
\(111\) 0 0
\(112\) 0 0
\(113\) 71022.0 0.523235 0.261618 0.965172i \(-0.415744\pi\)
0.261618 + 0.965172i \(0.415744\pi\)
\(114\) 0 0
\(115\) −122472. −0.863559
\(116\) 23712.0 0.163615
\(117\) 0 0
\(118\) 112368. 0.742912
\(119\) 0 0
\(120\) 0 0
\(121\) −114395. −0.710303
\(122\) 155464. 0.945650
\(123\) 0 0
\(124\) −133760. −0.781218
\(125\) 180036. 1.03059
\(126\) 0 0
\(127\) 269624. 1.48337 0.741685 0.670749i \(-0.234027\pi\)
0.741685 + 0.670749i \(0.234027\pi\)
\(128\) 16384.0 0.0883883
\(129\) 0 0
\(130\) 215568. 1.11873
\(131\) 81180.0 0.413305 0.206653 0.978414i \(-0.433743\pi\)
0.206653 + 0.978414i \(0.433743\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 95792.0 0.460858
\(135\) 0 0
\(136\) 83328.0 0.386317
\(137\) 260910. 1.18765 0.593826 0.804593i \(-0.297617\pi\)
0.593826 + 0.804593i \(0.297617\pi\)
\(138\) 0 0
\(139\) 297964. 1.30806 0.654029 0.756470i \(-0.273078\pi\)
0.654029 + 0.756470i \(0.273078\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 82512.0 0.343397
\(143\) 215568. 0.881544
\(144\) 0 0
\(145\) −80028.0 −0.316098
\(146\) −1160.00 −0.00450377
\(147\) 0 0
\(148\) −75424.0 −0.283045
\(149\) 398970. 1.47223 0.736113 0.676859i \(-0.236659\pi\)
0.736113 + 0.676859i \(0.236659\pi\)
\(150\) 0 0
\(151\) −224968. −0.802931 −0.401466 0.915874i \(-0.631499\pi\)
−0.401466 + 0.915874i \(0.631499\pi\)
\(152\) −56576.0 −0.198620
\(153\) 0 0
\(154\) 0 0
\(155\) 451440. 1.50928
\(156\) 0 0
\(157\) 233218. 0.755115 0.377557 0.925986i \(-0.376764\pi\)
0.377557 + 0.925986i \(0.376764\pi\)
\(158\) −398176. −1.26891
\(159\) 0 0
\(160\) −55296.0 −0.170763
\(161\) 0 0
\(162\) 0 0
\(163\) 466220. 1.37443 0.687214 0.726455i \(-0.258834\pi\)
0.687214 + 0.726455i \(0.258834\pi\)
\(164\) −156576. −0.454585
\(165\) 0 0
\(166\) 77232.0 0.217534
\(167\) −100848. −0.279818 −0.139909 0.990164i \(-0.544681\pi\)
−0.139909 + 0.990164i \(0.544681\pi\)
\(168\) 0 0
\(169\) 624711. 1.68253
\(170\) −281232. −0.746350
\(171\) 0 0
\(172\) 310976. 0.801504
\(173\) −668838. −1.69905 −0.849524 0.527550i \(-0.823111\pi\)
−0.849524 + 0.527550i \(0.823111\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −55296.0 −0.134559
\(177\) 0 0
\(178\) 145560. 0.344344
\(179\) 614856. 1.43430 0.717151 0.696917i \(-0.245446\pi\)
0.717151 + 0.696917i \(0.245446\pi\)
\(180\) 0 0
\(181\) −540686. −1.22673 −0.613365 0.789800i \(-0.710184\pi\)
−0.613365 + 0.789800i \(0.710184\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 145152. 0.316066
\(185\) 254556. 0.546832
\(186\) 0 0
\(187\) −281232. −0.588113
\(188\) 355200. 0.732957
\(189\) 0 0
\(190\) 190944. 0.383727
\(191\) 41916.0 0.0831374 0.0415687 0.999136i \(-0.486764\pi\)
0.0415687 + 0.999136i \(0.486764\pi\)
\(192\) 0 0
\(193\) −533998. −1.03192 −0.515960 0.856612i \(-0.672565\pi\)
−0.515960 + 0.856612i \(0.672565\pi\)
\(194\) 316312. 0.603408
\(195\) 0 0
\(196\) 0 0
\(197\) −824886. −1.51436 −0.757179 0.653208i \(-0.773423\pi\)
−0.757179 + 0.653208i \(0.773423\pi\)
\(198\) 0 0
\(199\) 399544. 0.715207 0.357604 0.933873i \(-0.383594\pi\)
0.357604 + 0.933873i \(0.383594\pi\)
\(200\) −13376.0 −0.0236457
\(201\) 0 0
\(202\) 738504. 1.27343
\(203\) 0 0
\(204\) 0 0
\(205\) 528444. 0.878242
\(206\) −258368. −0.424200
\(207\) 0 0
\(208\) −255488. −0.409461
\(209\) 190944. 0.302371
\(210\) 0 0
\(211\) 868868. 1.34353 0.671765 0.740764i \(-0.265536\pi\)
0.671765 + 0.740764i \(0.265536\pi\)
\(212\) −428640. −0.655018
\(213\) 0 0
\(214\) −598368. −0.893170
\(215\) −1.04954e6 −1.54848
\(216\) 0 0
\(217\) 0 0
\(218\) −255304. −0.363845
\(219\) 0 0
\(220\) 186624. 0.259963
\(221\) −1.29940e6 −1.78962
\(222\) 0 0
\(223\) 626656. 0.843853 0.421927 0.906630i \(-0.361354\pi\)
0.421927 + 0.906630i \(0.361354\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 284088. 0.369983
\(227\) −450396. −0.580136 −0.290068 0.957006i \(-0.593678\pi\)
−0.290068 + 0.957006i \(0.593678\pi\)
\(228\) 0 0
\(229\) 1.06453e6 1.34143 0.670717 0.741714i \(-0.265987\pi\)
0.670717 + 0.741714i \(0.265987\pi\)
\(230\) −489888. −0.610629
\(231\) 0 0
\(232\) 94848.0 0.115693
\(233\) −1.43618e6 −1.73308 −0.866540 0.499108i \(-0.833661\pi\)
−0.866540 + 0.499108i \(0.833661\pi\)
\(234\) 0 0
\(235\) −1.19880e6 −1.41605
\(236\) 449472. 0.525318
\(237\) 0 0
\(238\) 0 0
\(239\) 997860. 1.12999 0.564995 0.825094i \(-0.308878\pi\)
0.564995 + 0.825094i \(0.308878\pi\)
\(240\) 0 0
\(241\) 227974. 0.252838 0.126419 0.991977i \(-0.459652\pi\)
0.126419 + 0.991977i \(0.459652\pi\)
\(242\) −457580. −0.502260
\(243\) 0 0
\(244\) 621856. 0.668675
\(245\) 0 0
\(246\) 0 0
\(247\) 882232. 0.920111
\(248\) −535040. −0.552404
\(249\) 0 0
\(250\) 720144. 0.728734
\(251\) 1.51657e6 1.51942 0.759712 0.650260i \(-0.225340\pi\)
0.759712 + 0.650260i \(0.225340\pi\)
\(252\) 0 0
\(253\) −489888. −0.481167
\(254\) 1.07850e6 1.04890
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 455886. 0.430550 0.215275 0.976553i \(-0.430935\pi\)
0.215275 + 0.976553i \(0.430935\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 862272. 0.791063
\(261\) 0 0
\(262\) 324720. 0.292251
\(263\) 752652. 0.670973 0.335486 0.942045i \(-0.391099\pi\)
0.335486 + 0.942045i \(0.391099\pi\)
\(264\) 0 0
\(265\) 1.44666e6 1.26547
\(266\) 0 0
\(267\) 0 0
\(268\) 383168. 0.325876
\(269\) 143682. 0.121066 0.0605329 0.998166i \(-0.480720\pi\)
0.0605329 + 0.998166i \(0.480720\pi\)
\(270\) 0 0
\(271\) −757496. −0.626552 −0.313276 0.949662i \(-0.601426\pi\)
−0.313276 + 0.949662i \(0.601426\pi\)
\(272\) 333312. 0.273167
\(273\) 0 0
\(274\) 1.04364e6 0.839797
\(275\) 45144.0 0.0359972
\(276\) 0 0
\(277\) −1.16214e6 −0.910035 −0.455018 0.890482i \(-0.650367\pi\)
−0.455018 + 0.890482i \(0.650367\pi\)
\(278\) 1.19186e6 0.924936
\(279\) 0 0
\(280\) 0 0
\(281\) 414366. 0.313053 0.156527 0.987674i \(-0.449970\pi\)
0.156527 + 0.987674i \(0.449970\pi\)
\(282\) 0 0
\(283\) −120428. −0.0893843 −0.0446922 0.999001i \(-0.514231\pi\)
−0.0446922 + 0.999001i \(0.514231\pi\)
\(284\) 330048. 0.242818
\(285\) 0 0
\(286\) 862272. 0.623346
\(287\) 0 0
\(288\) 0 0
\(289\) 275347. 0.193926
\(290\) −320112. −0.223515
\(291\) 0 0
\(292\) −4640.00 −0.00318464
\(293\) 2.20159e6 1.49819 0.749094 0.662463i \(-0.230489\pi\)
0.749094 + 0.662463i \(0.230489\pi\)
\(294\) 0 0
\(295\) −1.51697e6 −1.01490
\(296\) −301696. −0.200143
\(297\) 0 0
\(298\) 1.59588e6 1.04102
\(299\) −2.26346e6 −1.46418
\(300\) 0 0
\(301\) 0 0
\(302\) −899872. −0.567758
\(303\) 0 0
\(304\) −226304. −0.140446
\(305\) −2.09876e6 −1.29186
\(306\) 0 0
\(307\) −110900. −0.0671561 −0.0335781 0.999436i \(-0.510690\pi\)
−0.0335781 + 0.999436i \(0.510690\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 1.80576e6 1.06722
\(311\) −910608. −0.533864 −0.266932 0.963715i \(-0.586010\pi\)
−0.266932 + 0.963715i \(0.586010\pi\)
\(312\) 0 0
\(313\) −3.12247e6 −1.80152 −0.900758 0.434322i \(-0.856988\pi\)
−0.900758 + 0.434322i \(0.856988\pi\)
\(314\) 932872. 0.533947
\(315\) 0 0
\(316\) −1.59270e6 −0.897258
\(317\) 2.76688e6 1.54647 0.773237 0.634117i \(-0.218636\pi\)
0.773237 + 0.634117i \(0.218636\pi\)
\(318\) 0 0
\(319\) −320112. −0.176127
\(320\) −221184. −0.120748
\(321\) 0 0
\(322\) 0 0
\(323\) −1.15097e6 −0.613842
\(324\) 0 0
\(325\) 208582. 0.109539
\(326\) 1.86488e6 0.971867
\(327\) 0 0
\(328\) −626304. −0.321440
\(329\) 0 0
\(330\) 0 0
\(331\) 3.22257e6 1.61671 0.808356 0.588694i \(-0.200358\pi\)
0.808356 + 0.588694i \(0.200358\pi\)
\(332\) 308928. 0.153820
\(333\) 0 0
\(334\) −403392. −0.197861
\(335\) −1.29319e6 −0.629580
\(336\) 0 0
\(337\) 1.63306e6 0.783298 0.391649 0.920115i \(-0.371905\pi\)
0.391649 + 0.920115i \(0.371905\pi\)
\(338\) 2.49884e6 1.18973
\(339\) 0 0
\(340\) −1.12493e6 −0.527749
\(341\) 1.80576e6 0.840958
\(342\) 0 0
\(343\) 0 0
\(344\) 1.24390e6 0.566749
\(345\) 0 0
\(346\) −2.67535e6 −1.20141
\(347\) −1.03642e6 −0.462073 −0.231036 0.972945i \(-0.574212\pi\)
−0.231036 + 0.972945i \(0.574212\pi\)
\(348\) 0 0
\(349\) 4.22999e6 1.85898 0.929491 0.368844i \(-0.120246\pi\)
0.929491 + 0.368844i \(0.120246\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −221184. −0.0951474
\(353\) 238806. 0.102002 0.0510010 0.998699i \(-0.483759\pi\)
0.0510010 + 0.998699i \(0.483759\pi\)
\(354\) 0 0
\(355\) −1.11391e6 −0.469116
\(356\) 582240. 0.243488
\(357\) 0 0
\(358\) 2.45942e6 1.01421
\(359\) 2.66428e6 1.09105 0.545523 0.838096i \(-0.316331\pi\)
0.545523 + 0.838096i \(0.316331\pi\)
\(360\) 0 0
\(361\) −1.69464e6 −0.684400
\(362\) −2.16274e6 −0.867429
\(363\) 0 0
\(364\) 0 0
\(365\) 15660.0 0.00615261
\(366\) 0 0
\(367\) 1.71083e6 0.663044 0.331522 0.943448i \(-0.392438\pi\)
0.331522 + 0.943448i \(0.392438\pi\)
\(368\) 580608. 0.223493
\(369\) 0 0
\(370\) 1.01822e6 0.386669
\(371\) 0 0
\(372\) 0 0
\(373\) −3.96649e6 −1.47616 −0.738081 0.674712i \(-0.764268\pi\)
−0.738081 + 0.674712i \(0.764268\pi\)
\(374\) −1.12493e6 −0.415859
\(375\) 0 0
\(376\) 1.42080e6 0.518279
\(377\) −1.47904e6 −0.535951
\(378\) 0 0
\(379\) 828668. 0.296335 0.148167 0.988962i \(-0.452663\pi\)
0.148167 + 0.988962i \(0.452663\pi\)
\(380\) 763776. 0.271336
\(381\) 0 0
\(382\) 167664. 0.0587870
\(383\) −2.55686e6 −0.890657 −0.445329 0.895367i \(-0.646913\pi\)
−0.445329 + 0.895367i \(0.646913\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −2.13599e6 −0.729678
\(387\) 0 0
\(388\) 1.26525e6 0.426674
\(389\) −2.91785e6 −0.977664 −0.488832 0.872378i \(-0.662577\pi\)
−0.488832 + 0.872378i \(0.662577\pi\)
\(390\) 0 0
\(391\) 2.95294e6 0.976815
\(392\) 0 0
\(393\) 0 0
\(394\) −3.29954e6 −1.07081
\(395\) 5.37538e6 1.73347
\(396\) 0 0
\(397\) −2.50715e6 −0.798370 −0.399185 0.916870i \(-0.630707\pi\)
−0.399185 + 0.916870i \(0.630707\pi\)
\(398\) 1.59818e6 0.505728
\(399\) 0 0
\(400\) −53504.0 −0.0167200
\(401\) −990666. −0.307657 −0.153828 0.988098i \(-0.549160\pi\)
−0.153828 + 0.988098i \(0.549160\pi\)
\(402\) 0 0
\(403\) 8.34328e6 2.55902
\(404\) 2.95402e6 0.900450
\(405\) 0 0
\(406\) 0 0
\(407\) 1.01822e6 0.304689
\(408\) 0 0
\(409\) −4.51824e6 −1.33555 −0.667777 0.744362i \(-0.732754\pi\)
−0.667777 + 0.744362i \(0.732754\pi\)
\(410\) 2.11378e6 0.621011
\(411\) 0 0
\(412\) −1.03347e6 −0.299955
\(413\) 0 0
\(414\) 0 0
\(415\) −1.04263e6 −0.297174
\(416\) −1.02195e6 −0.289532
\(417\) 0 0
\(418\) 763776. 0.213809
\(419\) 605220. 0.168414 0.0842070 0.996448i \(-0.473164\pi\)
0.0842070 + 0.996448i \(0.473164\pi\)
\(420\) 0 0
\(421\) 4.49893e6 1.23710 0.618549 0.785746i \(-0.287721\pi\)
0.618549 + 0.785746i \(0.287721\pi\)
\(422\) 3.47547e6 0.950020
\(423\) 0 0
\(424\) −1.71456e6 −0.463167
\(425\) −272118. −0.0730777
\(426\) 0 0
\(427\) 0 0
\(428\) −2.39347e6 −0.631566
\(429\) 0 0
\(430\) −4.19818e6 −1.09494
\(431\) −5.37594e6 −1.39400 −0.696998 0.717074i \(-0.745481\pi\)
−0.696998 + 0.717074i \(0.745481\pi\)
\(432\) 0 0
\(433\) 1.98561e6 0.508950 0.254475 0.967079i \(-0.418097\pi\)
0.254475 + 0.967079i \(0.418097\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.02122e6 −0.257277
\(437\) −2.00491e6 −0.502217
\(438\) 0 0
\(439\) −3.38727e6 −0.838859 −0.419429 0.907788i \(-0.637770\pi\)
−0.419429 + 0.907788i \(0.637770\pi\)
\(440\) 746496. 0.183821
\(441\) 0 0
\(442\) −5.19758e6 −1.26545
\(443\) −2.14094e6 −0.518318 −0.259159 0.965835i \(-0.583445\pi\)
−0.259159 + 0.965835i \(0.583445\pi\)
\(444\) 0 0
\(445\) −1.96506e6 −0.470409
\(446\) 2.50662e6 0.596695
\(447\) 0 0
\(448\) 0 0
\(449\) 6.97808e6 1.63350 0.816752 0.576990i \(-0.195773\pi\)
0.816752 + 0.576990i \(0.195773\pi\)
\(450\) 0 0
\(451\) 2.11378e6 0.489348
\(452\) 1.13635e6 0.261618
\(453\) 0 0
\(454\) −1.80158e6 −0.410218
\(455\) 0 0
\(456\) 0 0
\(457\) −5.17999e6 −1.16021 −0.580107 0.814540i \(-0.696989\pi\)
−0.580107 + 0.814540i \(0.696989\pi\)
\(458\) 4.25812e6 0.948537
\(459\) 0 0
\(460\) −1.95955e6 −0.431780
\(461\) −7.83001e6 −1.71597 −0.857985 0.513674i \(-0.828284\pi\)
−0.857985 + 0.513674i \(0.828284\pi\)
\(462\) 0 0
\(463\) 165320. 0.0358404 0.0179202 0.999839i \(-0.494296\pi\)
0.0179202 + 0.999839i \(0.494296\pi\)
\(464\) 379392. 0.0818075
\(465\) 0 0
\(466\) −5.74471e6 −1.22547
\(467\) −1.79329e6 −0.380504 −0.190252 0.981735i \(-0.560930\pi\)
−0.190252 + 0.981735i \(0.560930\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −4.79520e6 −1.00130
\(471\) 0 0
\(472\) 1.79789e6 0.371456
\(473\) −4.19818e6 −0.862795
\(474\) 0 0
\(475\) 184756. 0.0375720
\(476\) 0 0
\(477\) 0 0
\(478\) 3.99144e6 0.799024
\(479\) −6.59657e6 −1.31365 −0.656824 0.754044i \(-0.728101\pi\)
−0.656824 + 0.754044i \(0.728101\pi\)
\(480\) 0 0
\(481\) 4.70457e6 0.927166
\(482\) 911896. 0.178784
\(483\) 0 0
\(484\) −1.83032e6 −0.355151
\(485\) −4.27021e6 −0.824319
\(486\) 0 0
\(487\) −5.97393e6 −1.14140 −0.570700 0.821159i \(-0.693328\pi\)
−0.570700 + 0.821159i \(0.693328\pi\)
\(488\) 2.48742e6 0.472825
\(489\) 0 0
\(490\) 0 0
\(491\) −381264. −0.0713710 −0.0356855 0.999363i \(-0.511361\pi\)
−0.0356855 + 0.999363i \(0.511361\pi\)
\(492\) 0 0
\(493\) 1.92956e6 0.357554
\(494\) 3.52893e6 0.650617
\(495\) 0 0
\(496\) −2.14016e6 −0.390609
\(497\) 0 0
\(498\) 0 0
\(499\) 1.54351e6 0.277497 0.138748 0.990328i \(-0.455692\pi\)
0.138748 + 0.990328i \(0.455692\pi\)
\(500\) 2.88058e6 0.515293
\(501\) 0 0
\(502\) 6.06629e6 1.07439
\(503\) −4.02300e6 −0.708974 −0.354487 0.935061i \(-0.615344\pi\)
−0.354487 + 0.935061i \(0.615344\pi\)
\(504\) 0 0
\(505\) −9.96980e6 −1.73964
\(506\) −1.95955e6 −0.340236
\(507\) 0 0
\(508\) 4.31398e6 0.741685
\(509\) −1.94715e6 −0.333123 −0.166562 0.986031i \(-0.553266\pi\)
−0.166562 + 0.986031i \(0.553266\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 262144. 0.0441942
\(513\) 0 0
\(514\) 1.82354e6 0.304445
\(515\) 3.48797e6 0.579501
\(516\) 0 0
\(517\) −4.79520e6 −0.789006
\(518\) 0 0
\(519\) 0 0
\(520\) 3.44909e6 0.559366
\(521\) 7.38569e6 1.19206 0.596028 0.802963i \(-0.296745\pi\)
0.596028 + 0.802963i \(0.296745\pi\)
\(522\) 0 0
\(523\) 329740. 0.0527130 0.0263565 0.999653i \(-0.491610\pi\)
0.0263565 + 0.999653i \(0.491610\pi\)
\(524\) 1.29888e6 0.206653
\(525\) 0 0
\(526\) 3.01061e6 0.474449
\(527\) −1.08847e7 −1.70722
\(528\) 0 0
\(529\) −1.29252e6 −0.200816
\(530\) 5.78664e6 0.894822
\(531\) 0 0
\(532\) 0 0
\(533\) 9.76643e6 1.48908
\(534\) 0 0
\(535\) 8.07797e6 1.22016
\(536\) 1.53267e6 0.230429
\(537\) 0 0
\(538\) 574728. 0.0856065
\(539\) 0 0
\(540\) 0 0
\(541\) 87086.0 0.0127925 0.00639625 0.999980i \(-0.497964\pi\)
0.00639625 + 0.999980i \(0.497964\pi\)
\(542\) −3.02998e6 −0.443039
\(543\) 0 0
\(544\) 1.33325e6 0.193158
\(545\) 3.44660e6 0.497050
\(546\) 0 0
\(547\) 6.91531e6 0.988196 0.494098 0.869406i \(-0.335498\pi\)
0.494098 + 0.869406i \(0.335498\pi\)
\(548\) 4.17456e6 0.593826
\(549\) 0 0
\(550\) 180576. 0.0254538
\(551\) −1.31009e6 −0.183832
\(552\) 0 0
\(553\) 0 0
\(554\) −4.64855e6 −0.643492
\(555\) 0 0
\(556\) 4.76742e6 0.654029
\(557\) 1.52258e6 0.207942 0.103971 0.994580i \(-0.466845\pi\)
0.103971 + 0.994580i \(0.466845\pi\)
\(558\) 0 0
\(559\) −1.93971e7 −2.62548
\(560\) 0 0
\(561\) 0 0
\(562\) 1.65746e6 0.221362
\(563\) −7.86462e6 −1.04570 −0.522850 0.852425i \(-0.675131\pi\)
−0.522850 + 0.852425i \(0.675131\pi\)
\(564\) 0 0
\(565\) −3.83519e6 −0.505435
\(566\) −481712. −0.0632043
\(567\) 0 0
\(568\) 1.32019e6 0.171698
\(569\) 1.46321e6 0.189464 0.0947321 0.995503i \(-0.469801\pi\)
0.0947321 + 0.995503i \(0.469801\pi\)
\(570\) 0 0
\(571\) 9.19855e6 1.18067 0.590336 0.807158i \(-0.298995\pi\)
0.590336 + 0.807158i \(0.298995\pi\)
\(572\) 3.44909e6 0.440772
\(573\) 0 0
\(574\) 0 0
\(575\) −474012. −0.0597888
\(576\) 0 0
\(577\) −3.28939e6 −0.411317 −0.205658 0.978624i \(-0.565934\pi\)
−0.205658 + 0.978624i \(0.565934\pi\)
\(578\) 1.10139e6 0.137126
\(579\) 0 0
\(580\) −1.28045e6 −0.158049
\(581\) 0 0
\(582\) 0 0
\(583\) 5.78664e6 0.705107
\(584\) −18560.0 −0.00225188
\(585\) 0 0
\(586\) 8.80634e6 1.05938
\(587\) 5.12929e6 0.614416 0.307208 0.951642i \(-0.400605\pi\)
0.307208 + 0.951642i \(0.400605\pi\)
\(588\) 0 0
\(589\) 7.39024e6 0.877749
\(590\) −6.06787e6 −0.717640
\(591\) 0 0
\(592\) −1.20678e6 −0.141522
\(593\) −2.75433e6 −0.321647 −0.160823 0.986983i \(-0.551415\pi\)
−0.160823 + 0.986983i \(0.551415\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.38352e6 0.736113
\(597\) 0 0
\(598\) −9.05386e6 −1.03533
\(599\) 9.88616e6 1.12580 0.562899 0.826525i \(-0.309686\pi\)
0.562899 + 0.826525i \(0.309686\pi\)
\(600\) 0 0
\(601\) −1.37039e7 −1.54760 −0.773798 0.633433i \(-0.781645\pi\)
−0.773798 + 0.633433i \(0.781645\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −3.59949e6 −0.401466
\(605\) 6.17733e6 0.686139
\(606\) 0 0
\(607\) 7.85310e6 0.865107 0.432553 0.901608i \(-0.357613\pi\)
0.432553 + 0.901608i \(0.357613\pi\)
\(608\) −905216. −0.0993101
\(609\) 0 0
\(610\) −8.39506e6 −0.913480
\(611\) −2.21556e7 −2.40094
\(612\) 0 0
\(613\) 1.46977e7 1.57978 0.789892 0.613246i \(-0.210136\pi\)
0.789892 + 0.613246i \(0.210136\pi\)
\(614\) −443600. −0.0474865
\(615\) 0 0
\(616\) 0 0
\(617\) −6.28370e6 −0.664511 −0.332256 0.943189i \(-0.607810\pi\)
−0.332256 + 0.943189i \(0.607810\pi\)
\(618\) 0 0
\(619\) 2.26692e6 0.237799 0.118900 0.992906i \(-0.462063\pi\)
0.118900 + 0.992906i \(0.462063\pi\)
\(620\) 7.22304e6 0.754642
\(621\) 0 0
\(622\) −3.64243e6 −0.377499
\(623\) 0 0
\(624\) 0 0
\(625\) −9.06882e6 −0.928647
\(626\) −1.24899e7 −1.27386
\(627\) 0 0
\(628\) 3.73149e6 0.377557
\(629\) −6.13763e6 −0.618549
\(630\) 0 0
\(631\) −1.17477e7 −1.17457 −0.587285 0.809380i \(-0.699803\pi\)
−0.587285 + 0.809380i \(0.699803\pi\)
\(632\) −6.37082e6 −0.634457
\(633\) 0 0
\(634\) 1.10675e7 1.09352
\(635\) −1.45597e7 −1.43291
\(636\) 0 0
\(637\) 0 0
\(638\) −1.28045e6 −0.124540
\(639\) 0 0
\(640\) −884736. −0.0853815
\(641\) −5.93231e6 −0.570268 −0.285134 0.958488i \(-0.592038\pi\)
−0.285134 + 0.958488i \(0.592038\pi\)
\(642\) 0 0
\(643\) 6.94443e6 0.662383 0.331191 0.943564i \(-0.392549\pi\)
0.331191 + 0.943564i \(0.392549\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −4.60387e6 −0.434052
\(647\) −4.97050e6 −0.466809 −0.233404 0.972380i \(-0.574987\pi\)
−0.233404 + 0.972380i \(0.574987\pi\)
\(648\) 0 0
\(649\) −6.06787e6 −0.565490
\(650\) 834328. 0.0774557
\(651\) 0 0
\(652\) 7.45952e6 0.687214
\(653\) 1.83355e7 1.68271 0.841354 0.540484i \(-0.181759\pi\)
0.841354 + 0.540484i \(0.181759\pi\)
\(654\) 0 0
\(655\) −4.38372e6 −0.399245
\(656\) −2.50522e6 −0.227293
\(657\) 0 0
\(658\) 0 0
\(659\) −9.01402e6 −0.808546 −0.404273 0.914638i \(-0.632475\pi\)
−0.404273 + 0.914638i \(0.632475\pi\)
\(660\) 0 0
\(661\) −699398. −0.0622617 −0.0311308 0.999515i \(-0.509911\pi\)
−0.0311308 + 0.999515i \(0.509911\pi\)
\(662\) 1.28903e7 1.14319
\(663\) 0 0
\(664\) 1.23571e6 0.108767
\(665\) 0 0
\(666\) 0 0
\(667\) 3.36118e6 0.292534
\(668\) −1.61357e6 −0.139909
\(669\) 0 0
\(670\) −5.17277e6 −0.445180
\(671\) −8.39506e6 −0.719809
\(672\) 0 0
\(673\) −5.80603e6 −0.494130 −0.247065 0.968999i \(-0.579466\pi\)
−0.247065 + 0.968999i \(0.579466\pi\)
\(674\) 6.53223e6 0.553875
\(675\) 0 0
\(676\) 9.99538e6 0.841264
\(677\) 985074. 0.0826033 0.0413016 0.999147i \(-0.486850\pi\)
0.0413016 + 0.999147i \(0.486850\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −4.49971e6 −0.373175
\(681\) 0 0
\(682\) 7.22304e6 0.594647
\(683\) 1.88208e7 1.54379 0.771894 0.635752i \(-0.219310\pi\)
0.771894 + 0.635752i \(0.219310\pi\)
\(684\) 0 0
\(685\) −1.40891e7 −1.14725
\(686\) 0 0
\(687\) 0 0
\(688\) 4.97562e6 0.400752
\(689\) 2.67364e7 2.14563
\(690\) 0 0
\(691\) 1.93385e7 1.54073 0.770366 0.637601i \(-0.220073\pi\)
0.770366 + 0.637601i \(0.220073\pi\)
\(692\) −1.07014e7 −0.849524
\(693\) 0 0
\(694\) −4.14566e6 −0.326735
\(695\) −1.60901e7 −1.26356
\(696\) 0 0
\(697\) −1.27414e7 −0.993423
\(698\) 1.69199e7 1.31450
\(699\) 0 0
\(700\) 0 0
\(701\) 1.41489e6 0.108750 0.0543748 0.998521i \(-0.482683\pi\)
0.0543748 + 0.998521i \(0.482683\pi\)
\(702\) 0 0
\(703\) 4.16718e6 0.318019
\(704\) −884736. −0.0672794
\(705\) 0 0
\(706\) 955224. 0.0721263
\(707\) 0 0
\(708\) 0 0
\(709\) −754906. −0.0563998 −0.0281999 0.999602i \(-0.508977\pi\)
−0.0281999 + 0.999602i \(0.508977\pi\)
\(710\) −4.45565e6 −0.331715
\(711\) 0 0
\(712\) 2.32896e6 0.172172
\(713\) −1.89605e7 −1.39677
\(714\) 0 0
\(715\) −1.16407e7 −0.851555
\(716\) 9.83770e6 0.717151
\(717\) 0 0
\(718\) 1.06571e7 0.771486
\(719\) 1.08854e6 0.0785279 0.0392639 0.999229i \(-0.487499\pi\)
0.0392639 + 0.999229i \(0.487499\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −6.77857e6 −0.483944
\(723\) 0 0
\(724\) −8.65098e6 −0.613365
\(725\) −309738. −0.0218851
\(726\) 0 0
\(727\) 755392. 0.0530074 0.0265037 0.999649i \(-0.491563\pi\)
0.0265037 + 0.999649i \(0.491563\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 62640.0 0.00435055
\(731\) 2.53057e7 1.75156
\(732\) 0 0
\(733\) −1.56369e6 −0.107495 −0.0537477 0.998555i \(-0.517117\pi\)
−0.0537477 + 0.998555i \(0.517117\pi\)
\(734\) 6.84333e6 0.468843
\(735\) 0 0
\(736\) 2.32243e6 0.158033
\(737\) −5.17277e6 −0.350796
\(738\) 0 0
\(739\) −1.05544e7 −0.710922 −0.355461 0.934691i \(-0.615676\pi\)
−0.355461 + 0.934691i \(0.615676\pi\)
\(740\) 4.07290e6 0.273416
\(741\) 0 0
\(742\) 0 0
\(743\) −1.73678e7 −1.15418 −0.577088 0.816682i \(-0.695811\pi\)
−0.577088 + 0.816682i \(0.695811\pi\)
\(744\) 0 0
\(745\) −2.15444e7 −1.42214
\(746\) −1.58660e7 −1.04380
\(747\) 0 0
\(748\) −4.49971e6 −0.294056
\(749\) 0 0
\(750\) 0 0
\(751\) −2.80181e7 −1.81276 −0.906378 0.422467i \(-0.861164\pi\)
−0.906378 + 0.422467i \(0.861164\pi\)
\(752\) 5.68320e6 0.366478
\(753\) 0 0
\(754\) −5.91614e6 −0.378975
\(755\) 1.21483e7 0.775617
\(756\) 0 0
\(757\) −1.01979e7 −0.646801 −0.323401 0.946262i \(-0.604826\pi\)
−0.323401 + 0.946262i \(0.604826\pi\)
\(758\) 3.31467e6 0.209540
\(759\) 0 0
\(760\) 3.05510e6 0.191863
\(761\) 2.57535e6 0.161204 0.0806018 0.996746i \(-0.474316\pi\)
0.0806018 + 0.996746i \(0.474316\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 670656. 0.0415687
\(765\) 0 0
\(766\) −1.02275e7 −0.629790
\(767\) −2.80358e7 −1.72078
\(768\) 0 0
\(769\) −971234. −0.0592254 −0.0296127 0.999561i \(-0.509427\pi\)
−0.0296127 + 0.999561i \(0.509427\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −8.54397e6 −0.515960
\(773\) −1.72921e7 −1.04088 −0.520439 0.853899i \(-0.674232\pi\)
−0.520439 + 0.853899i \(0.674232\pi\)
\(774\) 0 0
\(775\) 1.74724e6 0.104496
\(776\) 5.06099e6 0.301704
\(777\) 0 0
\(778\) −1.16714e7 −0.691313
\(779\) 8.65082e6 0.510756
\(780\) 0 0
\(781\) −4.45565e6 −0.261387
\(782\) 1.18117e7 0.690712
\(783\) 0 0
\(784\) 0 0
\(785\) −1.25938e7 −0.729427
\(786\) 0 0
\(787\) 1.65515e7 0.952576 0.476288 0.879289i \(-0.341982\pi\)
0.476288 + 0.879289i \(0.341982\pi\)
\(788\) −1.31982e7 −0.757179
\(789\) 0 0
\(790\) 2.15015e7 1.22575
\(791\) 0 0
\(792\) 0 0
\(793\) −3.87883e7 −2.19037
\(794\) −1.00286e7 −0.564533
\(795\) 0 0
\(796\) 6.39270e6 0.357604
\(797\) 2.91057e6 0.162305 0.0811526 0.996702i \(-0.474140\pi\)
0.0811526 + 0.996702i \(0.474140\pi\)
\(798\) 0 0
\(799\) 2.89044e7 1.60176
\(800\) −214016. −0.0118228
\(801\) 0 0
\(802\) −3.96266e6 −0.217546
\(803\) 62640.0 0.00342817
\(804\) 0 0
\(805\) 0 0
\(806\) 3.33731e7 1.80950
\(807\) 0 0
\(808\) 1.18161e7 0.636714
\(809\) 1.16252e7 0.624496 0.312248 0.950001i \(-0.398918\pi\)
0.312248 + 0.950001i \(0.398918\pi\)
\(810\) 0 0
\(811\) −3.09020e7 −1.64981 −0.824906 0.565270i \(-0.808772\pi\)
−0.824906 + 0.565270i \(0.808772\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 4.07290e6 0.215448
\(815\) −2.51759e7 −1.32767
\(816\) 0 0
\(817\) −1.71814e7 −0.900542
\(818\) −1.80730e7 −0.944379
\(819\) 0 0
\(820\) 8.45510e6 0.439121
\(821\) 2.22870e7 1.15397 0.576984 0.816755i \(-0.304229\pi\)
0.576984 + 0.816755i \(0.304229\pi\)
\(822\) 0 0
\(823\) −1.64895e7 −0.848610 −0.424305 0.905519i \(-0.639482\pi\)
−0.424305 + 0.905519i \(0.639482\pi\)
\(824\) −4.13389e6 −0.212100
\(825\) 0 0
\(826\) 0 0
\(827\) 2.37457e7 1.20732 0.603658 0.797244i \(-0.293709\pi\)
0.603658 + 0.797244i \(0.293709\pi\)
\(828\) 0 0
\(829\) −2.60865e7 −1.31835 −0.659173 0.751991i \(-0.729094\pi\)
−0.659173 + 0.751991i \(0.729094\pi\)
\(830\) −4.17053e6 −0.210134
\(831\) 0 0
\(832\) −4.08781e6 −0.204730
\(833\) 0 0
\(834\) 0 0
\(835\) 5.44579e6 0.270299
\(836\) 3.05510e6 0.151186
\(837\) 0 0
\(838\) 2.42088e6 0.119087
\(839\) 1.00872e7 0.494729 0.247365 0.968922i \(-0.420435\pi\)
0.247365 + 0.968922i \(0.420435\pi\)
\(840\) 0 0
\(841\) −1.83148e7 −0.892920
\(842\) 1.79957e7 0.874761
\(843\) 0 0
\(844\) 1.39019e7 0.671765
\(845\) −3.37344e7 −1.62529
\(846\) 0 0
\(847\) 0 0
\(848\) −6.85824e6 −0.327509
\(849\) 0 0
\(850\) −1.08847e6 −0.0516737
\(851\) −1.06914e7 −0.506068
\(852\) 0 0
\(853\) 2.43630e7 1.14646 0.573229 0.819395i \(-0.305691\pi\)
0.573229 + 0.819395i \(0.305691\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −9.57389e6 −0.446585
\(857\) 2.45612e6 0.114234 0.0571172 0.998367i \(-0.481809\pi\)
0.0571172 + 0.998367i \(0.481809\pi\)
\(858\) 0 0
\(859\) −8.62982e6 −0.399042 −0.199521 0.979894i \(-0.563939\pi\)
−0.199521 + 0.979894i \(0.563939\pi\)
\(860\) −1.67927e7 −0.774238
\(861\) 0 0
\(862\) −2.15038e7 −0.985703
\(863\) −1.05199e7 −0.480824 −0.240412 0.970671i \(-0.577283\pi\)
−0.240412 + 0.970671i \(0.577283\pi\)
\(864\) 0 0
\(865\) 3.61173e7 1.64125
\(866\) 7.94246e6 0.359882
\(867\) 0 0
\(868\) 0 0
\(869\) 2.15015e7 0.965872
\(870\) 0 0
\(871\) −2.39001e7 −1.06747
\(872\) −4.08486e6 −0.181922
\(873\) 0 0
\(874\) −8.01965e6 −0.355121
\(875\) 0 0
\(876\) 0 0
\(877\) −1.14540e7 −0.502872 −0.251436 0.967874i \(-0.580903\pi\)
−0.251436 + 0.967874i \(0.580903\pi\)
\(878\) −1.35491e7 −0.593163
\(879\) 0 0
\(880\) 2.98598e6 0.129981
\(881\) −1.18134e7 −0.512786 −0.256393 0.966573i \(-0.582534\pi\)
−0.256393 + 0.966573i \(0.582534\pi\)
\(882\) 0 0
\(883\) 4.63221e6 0.199934 0.0999670 0.994991i \(-0.468126\pi\)
0.0999670 + 0.994991i \(0.468126\pi\)
\(884\) −2.07903e7 −0.894810
\(885\) 0 0
\(886\) −8.56378e6 −0.366506
\(887\) 4.47728e7 1.91075 0.955377 0.295388i \(-0.0954490\pi\)
0.955377 + 0.295388i \(0.0954490\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −7.86024e6 −0.332630
\(891\) 0 0
\(892\) 1.00265e7 0.421927
\(893\) −1.96248e7 −0.823525
\(894\) 0 0
\(895\) −3.32022e7 −1.38551
\(896\) 0 0
\(897\) 0 0
\(898\) 2.79123e7 1.15506
\(899\) −1.23895e7 −0.511276
\(900\) 0 0
\(901\) −3.48806e7 −1.43144
\(902\) 8.45510e6 0.346021
\(903\) 0 0
\(904\) 4.54541e6 0.184992
\(905\) 2.91970e7 1.18500
\(906\) 0 0
\(907\) −2.08357e7 −0.840986 −0.420493 0.907296i \(-0.638143\pi\)
−0.420493 + 0.907296i \(0.638143\pi\)
\(908\) −7.20634e6 −0.290068
\(909\) 0 0
\(910\) 0 0
\(911\) −5.27869e6 −0.210732 −0.105366 0.994434i \(-0.533601\pi\)
−0.105366 + 0.994434i \(0.533601\pi\)
\(912\) 0 0
\(913\) −4.17053e6 −0.165582
\(914\) −2.07200e7 −0.820396
\(915\) 0 0
\(916\) 1.70325e7 0.670717
\(917\) 0 0
\(918\) 0 0
\(919\) 2.51286e7 0.981477 0.490738 0.871307i \(-0.336727\pi\)
0.490738 + 0.871307i \(0.336727\pi\)
\(920\) −7.83821e6 −0.305314
\(921\) 0 0
\(922\) −3.13200e7 −1.21337
\(923\) −2.05867e7 −0.795396
\(924\) 0 0
\(925\) 985226. 0.0378601
\(926\) 661280. 0.0253430
\(927\) 0 0
\(928\) 1.51757e6 0.0578467
\(929\) 1.38042e7 0.524774 0.262387 0.964963i \(-0.415490\pi\)
0.262387 + 0.964963i \(0.415490\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −2.29788e7 −0.866540
\(933\) 0 0
\(934\) −7.17317e6 −0.269057
\(935\) 1.51865e7 0.568106
\(936\) 0 0
\(937\) 4.73307e7 1.76114 0.880570 0.473915i \(-0.157160\pi\)
0.880570 + 0.473915i \(0.157160\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −1.91808e7 −0.708023
\(941\) −3.25570e7 −1.19859 −0.599295 0.800528i \(-0.704552\pi\)
−0.599295 + 0.800528i \(0.704552\pi\)
\(942\) 0 0
\(943\) −2.21946e7 −0.812773
\(944\) 7.19155e6 0.262659
\(945\) 0 0
\(946\) −1.67927e7 −0.610088
\(947\) 5.27117e6 0.190999 0.0954997 0.995429i \(-0.469555\pi\)
0.0954997 + 0.995429i \(0.469555\pi\)
\(948\) 0 0
\(949\) 289420. 0.0104319
\(950\) 739024. 0.0265674
\(951\) 0 0
\(952\) 0 0
\(953\) −8.20579e6 −0.292677 −0.146338 0.989235i \(-0.546749\pi\)
−0.146338 + 0.989235i \(0.546749\pi\)
\(954\) 0 0
\(955\) −2.26346e6 −0.0803092
\(956\) 1.59658e7 0.564995
\(957\) 0 0
\(958\) −2.63863e7 −0.928890
\(959\) 0 0
\(960\) 0 0
\(961\) 4.12604e7 1.44120
\(962\) 1.88183e7 0.655605
\(963\) 0 0
\(964\) 3.64758e6 0.126419
\(965\) 2.88359e7 0.996816
\(966\) 0 0
\(967\) −1.18118e7 −0.406210 −0.203105 0.979157i \(-0.565103\pi\)
−0.203105 + 0.979157i \(0.565103\pi\)
\(968\) −7.32128e6 −0.251130
\(969\) 0 0
\(970\) −1.70808e7 −0.582881
\(971\) −3.67702e7 −1.25155 −0.625774 0.780004i \(-0.715217\pi\)
−0.625774 + 0.780004i \(0.715217\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −2.38957e7 −0.807091
\(975\) 0 0
\(976\) 9.94970e6 0.334338
\(977\) 1.85183e7 0.620674 0.310337 0.950627i \(-0.399558\pi\)
0.310337 + 0.950627i \(0.399558\pi\)
\(978\) 0 0
\(979\) −7.86024e6 −0.262107
\(980\) 0 0
\(981\) 0 0
\(982\) −1.52506e6 −0.0504670
\(983\) 2.72169e7 0.898370 0.449185 0.893439i \(-0.351714\pi\)
0.449185 + 0.893439i \(0.351714\pi\)
\(984\) 0 0
\(985\) 4.45438e7 1.46284
\(986\) 7.71826e6 0.252829
\(987\) 0 0
\(988\) 1.41157e7 0.460056
\(989\) 4.40808e7 1.43304
\(990\) 0 0
\(991\) 1.63398e7 0.528522 0.264261 0.964451i \(-0.414872\pi\)
0.264261 + 0.964451i \(0.414872\pi\)
\(992\) −8.56064e6 −0.276202
\(993\) 0 0
\(994\) 0 0
\(995\) −2.15754e7 −0.690877
\(996\) 0 0
\(997\) 3.02062e7 0.962406 0.481203 0.876609i \(-0.340200\pi\)
0.481203 + 0.876609i \(0.340200\pi\)
\(998\) 6.17403e6 0.196220
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.6.a.o.1.1 1
3.2 odd 2 294.6.a.h.1.1 1
7.6 odd 2 126.6.a.k.1.1 1
21.2 odd 6 294.6.e.h.67.1 2
21.5 even 6 294.6.e.r.67.1 2
21.11 odd 6 294.6.e.h.79.1 2
21.17 even 6 294.6.e.r.79.1 2
21.20 even 2 42.6.a.a.1.1 1
28.27 even 2 1008.6.a.x.1.1 1
84.83 odd 2 336.6.a.j.1.1 1
105.62 odd 4 1050.6.g.o.799.1 2
105.83 odd 4 1050.6.g.o.799.2 2
105.104 even 2 1050.6.a.n.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.a.a.1.1 1 21.20 even 2
126.6.a.k.1.1 1 7.6 odd 2
294.6.a.h.1.1 1 3.2 odd 2
294.6.e.h.67.1 2 21.2 odd 6
294.6.e.h.79.1 2 21.11 odd 6
294.6.e.r.67.1 2 21.5 even 6
294.6.e.r.79.1 2 21.17 even 6
336.6.a.j.1.1 1 84.83 odd 2
882.6.a.o.1.1 1 1.1 even 1 trivial
1008.6.a.x.1.1 1 28.27 even 2
1050.6.a.n.1.1 1 105.104 even 2
1050.6.g.o.799.1 2 105.62 odd 4
1050.6.g.o.799.2 2 105.83 odd 4