Properties

Label 882.6.a.n.1.1
Level $882$
Weight $6$
Character 882.1
Self dual yes
Analytic conductor $141.459$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,6,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.458529075\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 882.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +16.0000 q^{4} -72.0000 q^{5} +64.0000 q^{8} +O(q^{10})\) \(q+4.00000 q^{2} +16.0000 q^{4} -72.0000 q^{5} +64.0000 q^{8} -288.000 q^{10} +414.000 q^{11} +1054.00 q^{13} +256.000 q^{16} -1848.00 q^{17} -236.000 q^{19} -1152.00 q^{20} +1656.00 q^{22} -2898.00 q^{23} +2059.00 q^{25} +4216.00 q^{26} +6522.00 q^{29} -6200.00 q^{31} +1024.00 q^{32} -7392.00 q^{34} +9650.00 q^{37} -944.000 q^{38} -4608.00 q^{40} +8484.00 q^{41} -10804.0 q^{43} +6624.00 q^{44} -11592.0 q^{46} +60.0000 q^{47} +8236.00 q^{50} +16864.0 q^{52} -22506.0 q^{53} -29808.0 q^{55} +26088.0 q^{58} -28176.0 q^{59} +35194.0 q^{61} -24800.0 q^{62} +4096.00 q^{64} -75888.0 q^{65} -28216.0 q^{67} -29568.0 q^{68} +6642.00 q^{71} +52090.0 q^{73} +38600.0 q^{74} -3776.00 q^{76} +43340.0 q^{79} -18432.0 q^{80} +33936.0 q^{82} +25716.0 q^{83} +133056. q^{85} -43216.0 q^{86} +26496.0 q^{88} +98724.0 q^{89} -46368.0 q^{92} +240.000 q^{94} +16992.0 q^{95} +148954. q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) −72.0000 −1.28798 −0.643988 0.765036i \(-0.722721\pi\)
−0.643988 + 0.765036i \(0.722721\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 64.0000 0.353553
\(9\) 0 0
\(10\) −288.000 −0.910736
\(11\) 414.000 1.03162 0.515809 0.856704i \(-0.327492\pi\)
0.515809 + 0.856704i \(0.327492\pi\)
\(12\) 0 0
\(13\) 1054.00 1.72975 0.864873 0.501991i \(-0.167399\pi\)
0.864873 + 0.501991i \(0.167399\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −1848.00 −1.55089 −0.775443 0.631418i \(-0.782473\pi\)
−0.775443 + 0.631418i \(0.782473\pi\)
\(18\) 0 0
\(19\) −236.000 −0.149978 −0.0749891 0.997184i \(-0.523892\pi\)
−0.0749891 + 0.997184i \(0.523892\pi\)
\(20\) −1152.00 −0.643988
\(21\) 0 0
\(22\) 1656.00 0.729464
\(23\) −2898.00 −1.14230 −0.571148 0.820847i \(-0.693502\pi\)
−0.571148 + 0.820847i \(0.693502\pi\)
\(24\) 0 0
\(25\) 2059.00 0.658880
\(26\) 4216.00 1.22311
\(27\) 0 0
\(28\) 0 0
\(29\) 6522.00 1.44008 0.720039 0.693934i \(-0.244124\pi\)
0.720039 + 0.693934i \(0.244124\pi\)
\(30\) 0 0
\(31\) −6200.00 −1.15874 −0.579372 0.815063i \(-0.696702\pi\)
−0.579372 + 0.815063i \(0.696702\pi\)
\(32\) 1024.00 0.176777
\(33\) 0 0
\(34\) −7392.00 −1.09664
\(35\) 0 0
\(36\) 0 0
\(37\) 9650.00 1.15884 0.579419 0.815030i \(-0.303279\pi\)
0.579419 + 0.815030i \(0.303279\pi\)
\(38\) −944.000 −0.106051
\(39\) 0 0
\(40\) −4608.00 −0.455368
\(41\) 8484.00 0.788208 0.394104 0.919066i \(-0.371055\pi\)
0.394104 + 0.919066i \(0.371055\pi\)
\(42\) 0 0
\(43\) −10804.0 −0.891073 −0.445537 0.895264i \(-0.646987\pi\)
−0.445537 + 0.895264i \(0.646987\pi\)
\(44\) 6624.00 0.515809
\(45\) 0 0
\(46\) −11592.0 −0.807725
\(47\) 60.0000 0.00396193 0.00198096 0.999998i \(-0.499369\pi\)
0.00198096 + 0.999998i \(0.499369\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 8236.00 0.465899
\(51\) 0 0
\(52\) 16864.0 0.864873
\(53\) −22506.0 −1.10055 −0.550274 0.834984i \(-0.685477\pi\)
−0.550274 + 0.834984i \(0.685477\pi\)
\(54\) 0 0
\(55\) −29808.0 −1.32870
\(56\) 0 0
\(57\) 0 0
\(58\) 26088.0 1.01829
\(59\) −28176.0 −1.05378 −0.526889 0.849934i \(-0.676642\pi\)
−0.526889 + 0.849934i \(0.676642\pi\)
\(60\) 0 0
\(61\) 35194.0 1.21100 0.605500 0.795845i \(-0.292973\pi\)
0.605500 + 0.795845i \(0.292973\pi\)
\(62\) −24800.0 −0.819356
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −75888.0 −2.22787
\(66\) 0 0
\(67\) −28216.0 −0.767907 −0.383953 0.923352i \(-0.625438\pi\)
−0.383953 + 0.923352i \(0.625438\pi\)
\(68\) −29568.0 −0.775443
\(69\) 0 0
\(70\) 0 0
\(71\) 6642.00 0.156370 0.0781849 0.996939i \(-0.475088\pi\)
0.0781849 + 0.996939i \(0.475088\pi\)
\(72\) 0 0
\(73\) 52090.0 1.14406 0.572028 0.820234i \(-0.306157\pi\)
0.572028 + 0.820234i \(0.306157\pi\)
\(74\) 38600.0 0.819423
\(75\) 0 0
\(76\) −3776.00 −0.0749891
\(77\) 0 0
\(78\) 0 0
\(79\) 43340.0 0.781306 0.390653 0.920538i \(-0.372249\pi\)
0.390653 + 0.920538i \(0.372249\pi\)
\(80\) −18432.0 −0.321994
\(81\) 0 0
\(82\) 33936.0 0.557347
\(83\) 25716.0 0.409740 0.204870 0.978789i \(-0.434323\pi\)
0.204870 + 0.978789i \(0.434323\pi\)
\(84\) 0 0
\(85\) 133056. 1.99750
\(86\) −43216.0 −0.630084
\(87\) 0 0
\(88\) 26496.0 0.364732
\(89\) 98724.0 1.32114 0.660568 0.750766i \(-0.270315\pi\)
0.660568 + 0.750766i \(0.270315\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −46368.0 −0.571148
\(93\) 0 0
\(94\) 240.000 0.00280151
\(95\) 16992.0 0.193168
\(96\) 0 0
\(97\) 148954. 1.60740 0.803698 0.595038i \(-0.202863\pi\)
0.803698 + 0.595038i \(0.202863\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 32944.0 0.329440
\(101\) 48348.0 0.471601 0.235801 0.971801i \(-0.424229\pi\)
0.235801 + 0.971801i \(0.424229\pi\)
\(102\) 0 0
\(103\) 183592. 1.70514 0.852571 0.522611i \(-0.175042\pi\)
0.852571 + 0.522611i \(0.175042\pi\)
\(104\) 67456.0 0.611557
\(105\) 0 0
\(106\) −90024.0 −0.778204
\(107\) 2238.00 0.0188973 0.00944867 0.999955i \(-0.496992\pi\)
0.00944867 + 0.999955i \(0.496992\pi\)
\(108\) 0 0
\(109\) 60158.0 0.484984 0.242492 0.970153i \(-0.422035\pi\)
0.242492 + 0.970153i \(0.422035\pi\)
\(110\) −119232. −0.939531
\(111\) 0 0
\(112\) 0 0
\(113\) 7014.00 0.0516737 0.0258369 0.999666i \(-0.491775\pi\)
0.0258369 + 0.999666i \(0.491775\pi\)
\(114\) 0 0
\(115\) 208656. 1.47125
\(116\) 104352. 0.720039
\(117\) 0 0
\(118\) −112704. −0.745134
\(119\) 0 0
\(120\) 0 0
\(121\) 10345.0 0.0642343
\(122\) 140776. 0.856306
\(123\) 0 0
\(124\) −99200.0 −0.579372
\(125\) 76752.0 0.439354
\(126\) 0 0
\(127\) −1780.00 −0.00979289 −0.00489644 0.999988i \(-0.501559\pi\)
−0.00489644 + 0.999988i \(0.501559\pi\)
\(128\) 16384.0 0.0883883
\(129\) 0 0
\(130\) −303552. −1.57534
\(131\) −265140. −1.34989 −0.674943 0.737870i \(-0.735832\pi\)
−0.674943 + 0.737870i \(0.735832\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −112864. −0.542992
\(135\) 0 0
\(136\) −118272. −0.548321
\(137\) 206730. 0.941027 0.470514 0.882393i \(-0.344069\pi\)
0.470514 + 0.882393i \(0.344069\pi\)
\(138\) 0 0
\(139\) 236836. 1.03971 0.519853 0.854256i \(-0.325987\pi\)
0.519853 + 0.854256i \(0.325987\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 26568.0 0.110570
\(143\) 436356. 1.78444
\(144\) 0 0
\(145\) −469584. −1.85478
\(146\) 208360. 0.808970
\(147\) 0 0
\(148\) 154400. 0.579419
\(149\) −473706. −1.74801 −0.874004 0.485919i \(-0.838485\pi\)
−0.874004 + 0.485919i \(0.838485\pi\)
\(150\) 0 0
\(151\) 394952. 1.40962 0.704810 0.709396i \(-0.251032\pi\)
0.704810 + 0.709396i \(0.251032\pi\)
\(152\) −15104.0 −0.0530253
\(153\) 0 0
\(154\) 0 0
\(155\) 446400. 1.49243
\(156\) 0 0
\(157\) 145090. 0.469773 0.234887 0.972023i \(-0.424528\pi\)
0.234887 + 0.972023i \(0.424528\pi\)
\(158\) 173360. 0.552467
\(159\) 0 0
\(160\) −73728.0 −0.227684
\(161\) 0 0
\(162\) 0 0
\(163\) 530480. 1.56387 0.781934 0.623361i \(-0.214233\pi\)
0.781934 + 0.623361i \(0.214233\pi\)
\(164\) 135744. 0.394104
\(165\) 0 0
\(166\) 102864. 0.289730
\(167\) −312348. −0.866658 −0.433329 0.901236i \(-0.642661\pi\)
−0.433329 + 0.901236i \(0.642661\pi\)
\(168\) 0 0
\(169\) 739623. 1.99202
\(170\) 532224. 1.41245
\(171\) 0 0
\(172\) −172864. −0.445537
\(173\) −75108.0 −0.190797 −0.0953984 0.995439i \(-0.530412\pi\)
−0.0953984 + 0.995439i \(0.530412\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 105984. 0.257904
\(177\) 0 0
\(178\) 394896. 0.934185
\(179\) −386718. −0.902115 −0.451057 0.892495i \(-0.648953\pi\)
−0.451057 + 0.892495i \(0.648953\pi\)
\(180\) 0 0
\(181\) 417598. 0.947462 0.473731 0.880669i \(-0.342907\pi\)
0.473731 + 0.880669i \(0.342907\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −185472. −0.403863
\(185\) −694800. −1.49256
\(186\) 0 0
\(187\) −765072. −1.59992
\(188\) 960.000 0.00198096
\(189\) 0 0
\(190\) 67968.0 0.136590
\(191\) 988050. 1.95973 0.979863 0.199669i \(-0.0639868\pi\)
0.979863 + 0.199669i \(0.0639868\pi\)
\(192\) 0 0
\(193\) −409258. −0.790868 −0.395434 0.918494i \(-0.629406\pi\)
−0.395434 + 0.918494i \(0.629406\pi\)
\(194\) 595816. 1.13660
\(195\) 0 0
\(196\) 0 0
\(197\) 922230. 1.69307 0.846533 0.532337i \(-0.178686\pi\)
0.846533 + 0.532337i \(0.178686\pi\)
\(198\) 0 0
\(199\) −189488. −0.339195 −0.169597 0.985513i \(-0.554247\pi\)
−0.169597 + 0.985513i \(0.554247\pi\)
\(200\) 131776. 0.232949
\(201\) 0 0
\(202\) 193392. 0.333473
\(203\) 0 0
\(204\) 0 0
\(205\) −610848. −1.01519
\(206\) 734368. 1.20572
\(207\) 0 0
\(208\) 269824. 0.432436
\(209\) −97704.0 −0.154720
\(210\) 0 0
\(211\) −611380. −0.945377 −0.472689 0.881230i \(-0.656716\pi\)
−0.472689 + 0.881230i \(0.656716\pi\)
\(212\) −360096. −0.550274
\(213\) 0 0
\(214\) 8952.00 0.0133624
\(215\) 777888. 1.14768
\(216\) 0 0
\(217\) 0 0
\(218\) 240632. 0.342935
\(219\) 0 0
\(220\) −476928. −0.664349
\(221\) −1.94779e6 −2.68264
\(222\) 0 0
\(223\) 783256. 1.05473 0.527365 0.849639i \(-0.323180\pi\)
0.527365 + 0.849639i \(0.323180\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 28056.0 0.0365388
\(227\) 80712.0 0.103962 0.0519809 0.998648i \(-0.483447\pi\)
0.0519809 + 0.998648i \(0.483447\pi\)
\(228\) 0 0
\(229\) −152738. −0.192468 −0.0962340 0.995359i \(-0.530680\pi\)
−0.0962340 + 0.995359i \(0.530680\pi\)
\(230\) 834624. 1.04033
\(231\) 0 0
\(232\) 417408. 0.509144
\(233\) 354282. 0.427523 0.213761 0.976886i \(-0.431428\pi\)
0.213761 + 0.976886i \(0.431428\pi\)
\(234\) 0 0
\(235\) −4320.00 −0.00510287
\(236\) −450816. −0.526889
\(237\) 0 0
\(238\) 0 0
\(239\) −275370. −0.311833 −0.155916 0.987770i \(-0.549833\pi\)
−0.155916 + 0.987770i \(0.549833\pi\)
\(240\) 0 0
\(241\) 584698. 0.648469 0.324234 0.945977i \(-0.394893\pi\)
0.324234 + 0.945977i \(0.394893\pi\)
\(242\) 41380.0 0.0454205
\(243\) 0 0
\(244\) 563104. 0.605500
\(245\) 0 0
\(246\) 0 0
\(247\) −248744. −0.259424
\(248\) −396800. −0.409678
\(249\) 0 0
\(250\) 307008. 0.310670
\(251\) −184752. −0.185099 −0.0925497 0.995708i \(-0.529502\pi\)
−0.0925497 + 0.995708i \(0.529502\pi\)
\(252\) 0 0
\(253\) −1.19977e6 −1.17841
\(254\) −7120.00 −0.00692462
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 235980. 0.222865 0.111433 0.993772i \(-0.464456\pi\)
0.111433 + 0.993772i \(0.464456\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −1.21421e6 −1.11393
\(261\) 0 0
\(262\) −1.06056e6 −0.954513
\(263\) 244494. 0.217961 0.108981 0.994044i \(-0.465241\pi\)
0.108981 + 0.994044i \(0.465241\pi\)
\(264\) 0 0
\(265\) 1.62043e6 1.41748
\(266\) 0 0
\(267\) 0 0
\(268\) −451456. −0.383953
\(269\) 1.52779e6 1.28731 0.643656 0.765315i \(-0.277417\pi\)
0.643656 + 0.765315i \(0.277417\pi\)
\(270\) 0 0
\(271\) −2.07056e6 −1.71263 −0.856317 0.516450i \(-0.827253\pi\)
−0.856317 + 0.516450i \(0.827253\pi\)
\(272\) −473088. −0.387721
\(273\) 0 0
\(274\) 826920. 0.665407
\(275\) 852426. 0.679712
\(276\) 0 0
\(277\) −2.40727e6 −1.88506 −0.942530 0.334120i \(-0.891561\pi\)
−0.942530 + 0.334120i \(0.891561\pi\)
\(278\) 947344. 0.735183
\(279\) 0 0
\(280\) 0 0
\(281\) −341886. −0.258295 −0.129147 0.991625i \(-0.541224\pi\)
−0.129147 + 0.991625i \(0.541224\pi\)
\(282\) 0 0
\(283\) −578564. −0.429423 −0.214712 0.976678i \(-0.568881\pi\)
−0.214712 + 0.976678i \(0.568881\pi\)
\(284\) 106272. 0.0781849
\(285\) 0 0
\(286\) 1.74542e6 1.26179
\(287\) 0 0
\(288\) 0 0
\(289\) 1.99525e6 1.40525
\(290\) −1.87834e6 −1.31153
\(291\) 0 0
\(292\) 833440. 0.572028
\(293\) 780540. 0.531161 0.265580 0.964089i \(-0.414436\pi\)
0.265580 + 0.964089i \(0.414436\pi\)
\(294\) 0 0
\(295\) 2.02867e6 1.35724
\(296\) 617600. 0.409711
\(297\) 0 0
\(298\) −1.89482e6 −1.23603
\(299\) −3.05449e6 −1.97588
\(300\) 0 0
\(301\) 0 0
\(302\) 1.57981e6 0.996752
\(303\) 0 0
\(304\) −60416.0 −0.0374945
\(305\) −2.53397e6 −1.55974
\(306\) 0 0
\(307\) 2.24825e6 1.36144 0.680721 0.732543i \(-0.261667\pi\)
0.680721 + 0.732543i \(0.261667\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 1.78560e6 1.05531
\(311\) 581412. 0.340865 0.170433 0.985369i \(-0.445483\pi\)
0.170433 + 0.985369i \(0.445483\pi\)
\(312\) 0 0
\(313\) 2.00407e6 1.15625 0.578125 0.815948i \(-0.303784\pi\)
0.578125 + 0.815948i \(0.303784\pi\)
\(314\) 580360. 0.332180
\(315\) 0 0
\(316\) 693440. 0.390653
\(317\) 1.27832e6 0.714481 0.357241 0.934012i \(-0.383718\pi\)
0.357241 + 0.934012i \(0.383718\pi\)
\(318\) 0 0
\(319\) 2.70011e6 1.48561
\(320\) −294912. −0.160997
\(321\) 0 0
\(322\) 0 0
\(323\) 436128. 0.232599
\(324\) 0 0
\(325\) 2.17019e6 1.13969
\(326\) 2.12192e6 1.10582
\(327\) 0 0
\(328\) 542976. 0.278674
\(329\) 0 0
\(330\) 0 0
\(331\) 2.59812e6 1.30343 0.651716 0.758463i \(-0.274049\pi\)
0.651716 + 0.758463i \(0.274049\pi\)
\(332\) 411456. 0.204870
\(333\) 0 0
\(334\) −1.24939e6 −0.612819
\(335\) 2.03155e6 0.989045
\(336\) 0 0
\(337\) 3.06190e6 1.46864 0.734321 0.678802i \(-0.237501\pi\)
0.734321 + 0.678802i \(0.237501\pi\)
\(338\) 2.95849e6 1.40857
\(339\) 0 0
\(340\) 2.12890e6 0.998751
\(341\) −2.56680e6 −1.19538
\(342\) 0 0
\(343\) 0 0
\(344\) −691456. −0.315042
\(345\) 0 0
\(346\) −300432. −0.134914
\(347\) 1.42550e6 0.635540 0.317770 0.948168i \(-0.397066\pi\)
0.317770 + 0.948168i \(0.397066\pi\)
\(348\) 0 0
\(349\) −2.93322e6 −1.28908 −0.644542 0.764569i \(-0.722952\pi\)
−0.644542 + 0.764569i \(0.722952\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 423936. 0.182366
\(353\) −2.01276e6 −0.859716 −0.429858 0.902896i \(-0.641436\pi\)
−0.429858 + 0.902896i \(0.641436\pi\)
\(354\) 0 0
\(355\) −478224. −0.201400
\(356\) 1.57958e6 0.660568
\(357\) 0 0
\(358\) −1.54687e6 −0.637891
\(359\) −4.07710e6 −1.66961 −0.834806 0.550545i \(-0.814420\pi\)
−0.834806 + 0.550545i \(0.814420\pi\)
\(360\) 0 0
\(361\) −2.42040e6 −0.977507
\(362\) 1.67039e6 0.669957
\(363\) 0 0
\(364\) 0 0
\(365\) −3.75048e6 −1.47352
\(366\) 0 0
\(367\) −594752. −0.230500 −0.115250 0.993337i \(-0.536767\pi\)
−0.115250 + 0.993337i \(0.536767\pi\)
\(368\) −741888. −0.285574
\(369\) 0 0
\(370\) −2.77920e6 −1.05540
\(371\) 0 0
\(372\) 0 0
\(373\) 2.04522e6 0.761147 0.380573 0.924751i \(-0.375727\pi\)
0.380573 + 0.924751i \(0.375727\pi\)
\(374\) −3.06029e6 −1.13131
\(375\) 0 0
\(376\) 3840.00 0.00140075
\(377\) 6.87419e6 2.49097
\(378\) 0 0
\(379\) −3.22198e6 −1.15219 −0.576096 0.817382i \(-0.695425\pi\)
−0.576096 + 0.817382i \(0.695425\pi\)
\(380\) 271872. 0.0965841
\(381\) 0 0
\(382\) 3.95220e6 1.38574
\(383\) −1.72966e6 −0.602508 −0.301254 0.953544i \(-0.597405\pi\)
−0.301254 + 0.953544i \(0.597405\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −1.63703e6 −0.559228
\(387\) 0 0
\(388\) 2.38326e6 0.803698
\(389\) 1.74919e6 0.586087 0.293043 0.956099i \(-0.405332\pi\)
0.293043 + 0.956099i \(0.405332\pi\)
\(390\) 0 0
\(391\) 5.35550e6 1.77157
\(392\) 0 0
\(393\) 0 0
\(394\) 3.68892e6 1.19718
\(395\) −3.12048e6 −1.00630
\(396\) 0 0
\(397\) −1.88205e6 −0.599313 −0.299657 0.954047i \(-0.596872\pi\)
−0.299657 + 0.954047i \(0.596872\pi\)
\(398\) −757952. −0.239847
\(399\) 0 0
\(400\) 527104. 0.164720
\(401\) −4.18124e6 −1.29851 −0.649253 0.760573i \(-0.724918\pi\)
−0.649253 + 0.760573i \(0.724918\pi\)
\(402\) 0 0
\(403\) −6.53480e6 −2.00433
\(404\) 773568. 0.235801
\(405\) 0 0
\(406\) 0 0
\(407\) 3.99510e6 1.19548
\(408\) 0 0
\(409\) 471682. 0.139425 0.0697126 0.997567i \(-0.477792\pi\)
0.0697126 + 0.997567i \(0.477792\pi\)
\(410\) −2.44339e6 −0.717850
\(411\) 0 0
\(412\) 2.93747e6 0.852571
\(413\) 0 0
\(414\) 0 0
\(415\) −1.85155e6 −0.527735
\(416\) 1.07930e6 0.305779
\(417\) 0 0
\(418\) −390816. −0.109404
\(419\) −3.54094e6 −0.985333 −0.492666 0.870218i \(-0.663978\pi\)
−0.492666 + 0.870218i \(0.663978\pi\)
\(420\) 0 0
\(421\) 2.72763e6 0.750032 0.375016 0.927018i \(-0.377637\pi\)
0.375016 + 0.927018i \(0.377637\pi\)
\(422\) −2.44552e6 −0.668483
\(423\) 0 0
\(424\) −1.44038e6 −0.389102
\(425\) −3.80503e6 −1.02185
\(426\) 0 0
\(427\) 0 0
\(428\) 35808.0 0.00944867
\(429\) 0 0
\(430\) 3.11155e6 0.811533
\(431\) 4.76517e6 1.23562 0.617810 0.786327i \(-0.288020\pi\)
0.617810 + 0.786327i \(0.288020\pi\)
\(432\) 0 0
\(433\) −6.90300e6 −1.76937 −0.884684 0.466191i \(-0.845626\pi\)
−0.884684 + 0.466191i \(0.845626\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 962528. 0.242492
\(437\) 683928. 0.171319
\(438\) 0 0
\(439\) −5.40126e6 −1.33762 −0.668811 0.743432i \(-0.733197\pi\)
−0.668811 + 0.743432i \(0.733197\pi\)
\(440\) −1.90771e6 −0.469766
\(441\) 0 0
\(442\) −7.79117e6 −1.89691
\(443\) 4.05863e6 0.982586 0.491293 0.870994i \(-0.336524\pi\)
0.491293 + 0.870994i \(0.336524\pi\)
\(444\) 0 0
\(445\) −7.10813e6 −1.70159
\(446\) 3.13302e6 0.745807
\(447\) 0 0
\(448\) 0 0
\(449\) −212994. −0.0498599 −0.0249300 0.999689i \(-0.507936\pi\)
−0.0249300 + 0.999689i \(0.507936\pi\)
\(450\) 0 0
\(451\) 3.51238e6 0.813129
\(452\) 112224. 0.0258369
\(453\) 0 0
\(454\) 322848. 0.0735120
\(455\) 0 0
\(456\) 0 0
\(457\) −916150. −0.205199 −0.102600 0.994723i \(-0.532716\pi\)
−0.102600 + 0.994723i \(0.532716\pi\)
\(458\) −610952. −0.136095
\(459\) 0 0
\(460\) 3.33850e6 0.735625
\(461\) −4.15835e6 −0.911315 −0.455657 0.890155i \(-0.650596\pi\)
−0.455657 + 0.890155i \(0.650596\pi\)
\(462\) 0 0
\(463\) 8.40799e6 1.82280 0.911401 0.411519i \(-0.135002\pi\)
0.911401 + 0.411519i \(0.135002\pi\)
\(464\) 1.66963e6 0.360019
\(465\) 0 0
\(466\) 1.41713e6 0.302304
\(467\) 72048.0 0.0152873 0.00764363 0.999971i \(-0.497567\pi\)
0.00764363 + 0.999971i \(0.497567\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −17280.0 −0.00360827
\(471\) 0 0
\(472\) −1.80326e6 −0.372567
\(473\) −4.47286e6 −0.919247
\(474\) 0 0
\(475\) −485924. −0.0988176
\(476\) 0 0
\(477\) 0 0
\(478\) −1.10148e6 −0.220499
\(479\) 4.80560e6 0.956994 0.478497 0.878089i \(-0.341182\pi\)
0.478497 + 0.878089i \(0.341182\pi\)
\(480\) 0 0
\(481\) 1.01711e7 2.00450
\(482\) 2.33879e6 0.458537
\(483\) 0 0
\(484\) 165520. 0.0321172
\(485\) −1.07247e7 −2.07029
\(486\) 0 0
\(487\) 4.41805e6 0.844127 0.422064 0.906566i \(-0.361306\pi\)
0.422064 + 0.906566i \(0.361306\pi\)
\(488\) 2.25242e6 0.428153
\(489\) 0 0
\(490\) 0 0
\(491\) 5.64998e6 1.05765 0.528826 0.848730i \(-0.322632\pi\)
0.528826 + 0.848730i \(0.322632\pi\)
\(492\) 0 0
\(493\) −1.20527e7 −2.23339
\(494\) −994976. −0.183441
\(495\) 0 0
\(496\) −1.58720e6 −0.289686
\(497\) 0 0
\(498\) 0 0
\(499\) −9.22344e6 −1.65822 −0.829109 0.559087i \(-0.811152\pi\)
−0.829109 + 0.559087i \(0.811152\pi\)
\(500\) 1.22803e6 0.219677
\(501\) 0 0
\(502\) −739008. −0.130885
\(503\) 1.45562e6 0.256525 0.128262 0.991740i \(-0.459060\pi\)
0.128262 + 0.991740i \(0.459060\pi\)
\(504\) 0 0
\(505\) −3.48106e6 −0.607411
\(506\) −4.79909e6 −0.833264
\(507\) 0 0
\(508\) −28480.0 −0.00489644
\(509\) −367344. −0.0628461 −0.0314231 0.999506i \(-0.510004\pi\)
−0.0314231 + 0.999506i \(0.510004\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 262144. 0.0441942
\(513\) 0 0
\(514\) 943920. 0.157590
\(515\) −1.32186e7 −2.19618
\(516\) 0 0
\(517\) 24840.0 0.00408719
\(518\) 0 0
\(519\) 0 0
\(520\) −4.85683e6 −0.787671
\(521\) 5.76362e6 0.930254 0.465127 0.885244i \(-0.346009\pi\)
0.465127 + 0.885244i \(0.346009\pi\)
\(522\) 0 0
\(523\) −235100. −0.0375836 −0.0187918 0.999823i \(-0.505982\pi\)
−0.0187918 + 0.999823i \(0.505982\pi\)
\(524\) −4.24224e6 −0.674943
\(525\) 0 0
\(526\) 977976. 0.154122
\(527\) 1.14576e7 1.79708
\(528\) 0 0
\(529\) 1.96206e6 0.304841
\(530\) 6.48173e6 1.00231
\(531\) 0 0
\(532\) 0 0
\(533\) 8.94214e6 1.36340
\(534\) 0 0
\(535\) −161136. −0.0243393
\(536\) −1.80582e6 −0.271496
\(537\) 0 0
\(538\) 6.11117e6 0.910266
\(539\) 0 0
\(540\) 0 0
\(541\) 109010. 0.0160130 0.00800651 0.999968i \(-0.497451\pi\)
0.00800651 + 0.999968i \(0.497451\pi\)
\(542\) −8.28224e6 −1.21102
\(543\) 0 0
\(544\) −1.89235e6 −0.274160
\(545\) −4.33138e6 −0.624647
\(546\) 0 0
\(547\) 1.61953e6 0.231430 0.115715 0.993282i \(-0.463084\pi\)
0.115715 + 0.993282i \(0.463084\pi\)
\(548\) 3.30768e6 0.470514
\(549\) 0 0
\(550\) 3.40970e6 0.480629
\(551\) −1.53919e6 −0.215980
\(552\) 0 0
\(553\) 0 0
\(554\) −9.62908e6 −1.33294
\(555\) 0 0
\(556\) 3.78938e6 0.519853
\(557\) 6.62986e6 0.905454 0.452727 0.891649i \(-0.350451\pi\)
0.452727 + 0.891649i \(0.350451\pi\)
\(558\) 0 0
\(559\) −1.13874e7 −1.54133
\(560\) 0 0
\(561\) 0 0
\(562\) −1.36754e6 −0.182642
\(563\) 7.85294e6 1.04415 0.522073 0.852901i \(-0.325159\pi\)
0.522073 + 0.852901i \(0.325159\pi\)
\(564\) 0 0
\(565\) −505008. −0.0665545
\(566\) −2.31426e6 −0.303648
\(567\) 0 0
\(568\) 425088. 0.0552851
\(569\) 2.48155e6 0.321323 0.160661 0.987010i \(-0.448637\pi\)
0.160661 + 0.987010i \(0.448637\pi\)
\(570\) 0 0
\(571\) 1.13675e7 1.45907 0.729533 0.683945i \(-0.239737\pi\)
0.729533 + 0.683945i \(0.239737\pi\)
\(572\) 6.98170e6 0.892218
\(573\) 0 0
\(574\) 0 0
\(575\) −5.96698e6 −0.752636
\(576\) 0 0
\(577\) 8.20505e6 1.02599 0.512993 0.858393i \(-0.328537\pi\)
0.512993 + 0.858393i \(0.328537\pi\)
\(578\) 7.98099e6 0.993658
\(579\) 0 0
\(580\) −7.51334e6 −0.927392
\(581\) 0 0
\(582\) 0 0
\(583\) −9.31748e6 −1.13534
\(584\) 3.33376e6 0.404485
\(585\) 0 0
\(586\) 3.12216e6 0.375587
\(587\) −1.38400e7 −1.65783 −0.828917 0.559371i \(-0.811043\pi\)
−0.828917 + 0.559371i \(0.811043\pi\)
\(588\) 0 0
\(589\) 1.46320e6 0.173786
\(590\) 8.11469e6 0.959714
\(591\) 0 0
\(592\) 2.47040e6 0.289710
\(593\) −5.38951e6 −0.629380 −0.314690 0.949195i \(-0.601901\pi\)
−0.314690 + 0.949195i \(0.601901\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −7.57930e6 −0.874004
\(597\) 0 0
\(598\) −1.22180e7 −1.39716
\(599\) 1.14885e7 1.30827 0.654134 0.756379i \(-0.273033\pi\)
0.654134 + 0.756379i \(0.273033\pi\)
\(600\) 0 0
\(601\) 2.79225e6 0.315333 0.157666 0.987492i \(-0.449603\pi\)
0.157666 + 0.987492i \(0.449603\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 6.31923e6 0.704810
\(605\) −744840. −0.0827322
\(606\) 0 0
\(607\) −713888. −0.0786427 −0.0393213 0.999227i \(-0.512520\pi\)
−0.0393213 + 0.999227i \(0.512520\pi\)
\(608\) −241664. −0.0265126
\(609\) 0 0
\(610\) −1.01359e7 −1.10290
\(611\) 63240.0 0.00685313
\(612\) 0 0
\(613\) 3.10972e6 0.334249 0.167124 0.985936i \(-0.446552\pi\)
0.167124 + 0.985936i \(0.446552\pi\)
\(614\) 8.99301e6 0.962685
\(615\) 0 0
\(616\) 0 0
\(617\) −3.62384e6 −0.383227 −0.191613 0.981470i \(-0.561372\pi\)
−0.191613 + 0.981470i \(0.561372\pi\)
\(618\) 0 0
\(619\) −4.25196e6 −0.446028 −0.223014 0.974815i \(-0.571590\pi\)
−0.223014 + 0.974815i \(0.571590\pi\)
\(620\) 7.14240e6 0.746217
\(621\) 0 0
\(622\) 2.32565e6 0.241028
\(623\) 0 0
\(624\) 0 0
\(625\) −1.19605e7 −1.22476
\(626\) 8.01628e6 0.817593
\(627\) 0 0
\(628\) 2.32144e6 0.234887
\(629\) −1.78332e7 −1.79723
\(630\) 0 0
\(631\) −1.70299e7 −1.70270 −0.851349 0.524600i \(-0.824215\pi\)
−0.851349 + 0.524600i \(0.824215\pi\)
\(632\) 2.77376e6 0.276233
\(633\) 0 0
\(634\) 5.11327e6 0.505214
\(635\) 128160. 0.0126130
\(636\) 0 0
\(637\) 0 0
\(638\) 1.08004e7 1.05048
\(639\) 0 0
\(640\) −1.17965e6 −0.113842
\(641\) 1.80938e6 0.173934 0.0869669 0.996211i \(-0.472283\pi\)
0.0869669 + 0.996211i \(0.472283\pi\)
\(642\) 0 0
\(643\) −1.53012e7 −1.45948 −0.729740 0.683725i \(-0.760359\pi\)
−0.729740 + 0.683725i \(0.760359\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 1.74451e6 0.164472
\(647\) 1.67546e7 1.57352 0.786762 0.617256i \(-0.211756\pi\)
0.786762 + 0.617256i \(0.211756\pi\)
\(648\) 0 0
\(649\) −1.16649e7 −1.08710
\(650\) 8.68074e6 0.805886
\(651\) 0 0
\(652\) 8.48768e6 0.781934
\(653\) −1.47859e7 −1.35695 −0.678477 0.734622i \(-0.737360\pi\)
−0.678477 + 0.734622i \(0.737360\pi\)
\(654\) 0 0
\(655\) 1.90901e7 1.73862
\(656\) 2.17190e6 0.197052
\(657\) 0 0
\(658\) 0 0
\(659\) −933762. −0.0837573 −0.0418786 0.999123i \(-0.513334\pi\)
−0.0418786 + 0.999123i \(0.513334\pi\)
\(660\) 0 0
\(661\) −6.09724e6 −0.542787 −0.271394 0.962468i \(-0.587484\pi\)
−0.271394 + 0.962468i \(0.587484\pi\)
\(662\) 1.03925e7 0.921666
\(663\) 0 0
\(664\) 1.64582e6 0.144865
\(665\) 0 0
\(666\) 0 0
\(667\) −1.89008e7 −1.64500
\(668\) −4.99757e6 −0.433329
\(669\) 0 0
\(670\) 8.12621e6 0.699360
\(671\) 1.45703e7 1.24929
\(672\) 0 0
\(673\) 2.09190e6 0.178034 0.0890171 0.996030i \(-0.471627\pi\)
0.0890171 + 0.996030i \(0.471627\pi\)
\(674\) 1.22476e7 1.03849
\(675\) 0 0
\(676\) 1.18340e7 0.996010
\(677\) 1.36453e6 0.114423 0.0572113 0.998362i \(-0.481779\pi\)
0.0572113 + 0.998362i \(0.481779\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 8.51558e6 0.706223
\(681\) 0 0
\(682\) −1.02672e7 −0.845261
\(683\) −1.15483e7 −0.947254 −0.473627 0.880726i \(-0.657055\pi\)
−0.473627 + 0.880726i \(0.657055\pi\)
\(684\) 0 0
\(685\) −1.48846e7 −1.21202
\(686\) 0 0
\(687\) 0 0
\(688\) −2.76582e6 −0.222768
\(689\) −2.37213e7 −1.90367
\(690\) 0 0
\(691\) −4.17744e6 −0.332824 −0.166412 0.986056i \(-0.553218\pi\)
−0.166412 + 0.986056i \(0.553218\pi\)
\(692\) −1.20173e6 −0.0953984
\(693\) 0 0
\(694\) 5.70199e6 0.449395
\(695\) −1.70522e7 −1.33912
\(696\) 0 0
\(697\) −1.56784e7 −1.22242
\(698\) −1.17329e7 −0.911520
\(699\) 0 0
\(700\) 0 0
\(701\) 1.70278e7 1.30877 0.654385 0.756161i \(-0.272927\pi\)
0.654385 + 0.756161i \(0.272927\pi\)
\(702\) 0 0
\(703\) −2.27740e6 −0.173800
\(704\) 1.69574e6 0.128952
\(705\) 0 0
\(706\) −8.05104e6 −0.607911
\(707\) 0 0
\(708\) 0 0
\(709\) 2.26932e7 1.69543 0.847715 0.530452i \(-0.177978\pi\)
0.847715 + 0.530452i \(0.177978\pi\)
\(710\) −1.91290e6 −0.142412
\(711\) 0 0
\(712\) 6.31834e6 0.467092
\(713\) 1.79676e7 1.32363
\(714\) 0 0
\(715\) −3.14176e7 −2.29831
\(716\) −6.18749e6 −0.451057
\(717\) 0 0
\(718\) −1.63084e7 −1.18059
\(719\) 5.12544e6 0.369751 0.184875 0.982762i \(-0.440812\pi\)
0.184875 + 0.982762i \(0.440812\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −9.68161e6 −0.691202
\(723\) 0 0
\(724\) 6.68157e6 0.473731
\(725\) 1.34288e7 0.948838
\(726\) 0 0
\(727\) 1.54328e7 1.08295 0.541476 0.840716i \(-0.317866\pi\)
0.541476 + 0.840716i \(0.317866\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −1.50019e7 −1.04193
\(731\) 1.99658e7 1.38195
\(732\) 0 0
\(733\) 6.84465e6 0.470535 0.235267 0.971931i \(-0.424403\pi\)
0.235267 + 0.971931i \(0.424403\pi\)
\(734\) −2.37901e6 −0.162988
\(735\) 0 0
\(736\) −2.96755e6 −0.201931
\(737\) −1.16814e7 −0.792186
\(738\) 0 0
\(739\) 2.99389e6 0.201662 0.100831 0.994904i \(-0.467850\pi\)
0.100831 + 0.994904i \(0.467850\pi\)
\(740\) −1.11168e7 −0.746278
\(741\) 0 0
\(742\) 0 0
\(743\) −2.23250e7 −1.48361 −0.741804 0.670617i \(-0.766029\pi\)
−0.741804 + 0.670617i \(0.766029\pi\)
\(744\) 0 0
\(745\) 3.41068e7 2.25139
\(746\) 8.18089e6 0.538212
\(747\) 0 0
\(748\) −1.22412e7 −0.799960
\(749\) 0 0
\(750\) 0 0
\(751\) −1.41440e7 −0.915110 −0.457555 0.889181i \(-0.651275\pi\)
−0.457555 + 0.889181i \(0.651275\pi\)
\(752\) 15360.0 0.000990482 0
\(753\) 0 0
\(754\) 2.74968e7 1.76138
\(755\) −2.84365e7 −1.81556
\(756\) 0 0
\(757\) −8.15367e6 −0.517147 −0.258573 0.965992i \(-0.583252\pi\)
−0.258573 + 0.965992i \(0.583252\pi\)
\(758\) −1.28879e7 −0.814723
\(759\) 0 0
\(760\) 1.08749e6 0.0682952
\(761\) −2.25745e6 −0.141305 −0.0706524 0.997501i \(-0.522508\pi\)
−0.0706524 + 0.997501i \(0.522508\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 1.58088e7 0.979863
\(765\) 0 0
\(766\) −6.91862e6 −0.426037
\(767\) −2.96975e7 −1.82277
\(768\) 0 0
\(769\) 748774. 0.0456599 0.0228299 0.999739i \(-0.492732\pi\)
0.0228299 + 0.999739i \(0.492732\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −6.54813e6 −0.395434
\(773\) −9.46225e6 −0.569568 −0.284784 0.958592i \(-0.591922\pi\)
−0.284784 + 0.958592i \(0.591922\pi\)
\(774\) 0 0
\(775\) −1.27658e7 −0.763473
\(776\) 9.53306e6 0.568300
\(777\) 0 0
\(778\) 6.99674e6 0.414426
\(779\) −2.00222e6 −0.118214
\(780\) 0 0
\(781\) 2.74979e6 0.161314
\(782\) 2.14220e7 1.25269
\(783\) 0 0
\(784\) 0 0
\(785\) −1.04465e7 −0.605056
\(786\) 0 0
\(787\) 1.99634e7 1.14894 0.574470 0.818525i \(-0.305208\pi\)
0.574470 + 0.818525i \(0.305208\pi\)
\(788\) 1.47557e7 0.846533
\(789\) 0 0
\(790\) −1.24819e7 −0.711564
\(791\) 0 0
\(792\) 0 0
\(793\) 3.70945e7 2.09472
\(794\) −7.52818e6 −0.423779
\(795\) 0 0
\(796\) −3.03181e6 −0.169597
\(797\) −4.05368e6 −0.226050 −0.113025 0.993592i \(-0.536054\pi\)
−0.113025 + 0.993592i \(0.536054\pi\)
\(798\) 0 0
\(799\) −110880. −0.00614450
\(800\) 2.10842e6 0.116475
\(801\) 0 0
\(802\) −1.67250e7 −0.918182
\(803\) 2.15653e7 1.18023
\(804\) 0 0
\(805\) 0 0
\(806\) −2.61392e7 −1.41728
\(807\) 0 0
\(808\) 3.09427e6 0.166736
\(809\) −1.85432e7 −0.996124 −0.498062 0.867141i \(-0.665955\pi\)
−0.498062 + 0.867141i \(0.665955\pi\)
\(810\) 0 0
\(811\) −1.63648e7 −0.873690 −0.436845 0.899537i \(-0.643904\pi\)
−0.436845 + 0.899537i \(0.643904\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 1.59804e7 0.845331
\(815\) −3.81946e7 −2.01422
\(816\) 0 0
\(817\) 2.54974e6 0.133642
\(818\) 1.88673e6 0.0985884
\(819\) 0 0
\(820\) −9.77357e6 −0.507596
\(821\) 5.45014e6 0.282195 0.141098 0.989996i \(-0.454937\pi\)
0.141098 + 0.989996i \(0.454937\pi\)
\(822\) 0 0
\(823\) −2.19153e7 −1.12784 −0.563921 0.825829i \(-0.690708\pi\)
−0.563921 + 0.825829i \(0.690708\pi\)
\(824\) 1.17499e7 0.602859
\(825\) 0 0
\(826\) 0 0
\(827\) −8.11859e6 −0.412778 −0.206389 0.978470i \(-0.566171\pi\)
−0.206389 + 0.978470i \(0.566171\pi\)
\(828\) 0 0
\(829\) −1.60662e7 −0.811943 −0.405972 0.913886i \(-0.633067\pi\)
−0.405972 + 0.913886i \(0.633067\pi\)
\(830\) −7.40621e6 −0.373165
\(831\) 0 0
\(832\) 4.31718e6 0.216218
\(833\) 0 0
\(834\) 0 0
\(835\) 2.24891e7 1.11623
\(836\) −1.56326e6 −0.0773600
\(837\) 0 0
\(838\) −1.41637e7 −0.696736
\(839\) −2.63504e7 −1.29236 −0.646178 0.763186i \(-0.723634\pi\)
−0.646178 + 0.763186i \(0.723634\pi\)
\(840\) 0 0
\(841\) 2.20253e7 1.07382
\(842\) 1.09105e7 0.530352
\(843\) 0 0
\(844\) −9.78208e6 −0.472689
\(845\) −5.32529e7 −2.56567
\(846\) 0 0
\(847\) 0 0
\(848\) −5.76154e6 −0.275137
\(849\) 0 0
\(850\) −1.52201e7 −0.722555
\(851\) −2.79657e7 −1.32374
\(852\) 0 0
\(853\) −2.78129e7 −1.30880 −0.654400 0.756148i \(-0.727079\pi\)
−0.654400 + 0.756148i \(0.727079\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 143232. 0.00668122
\(857\) −2.69363e6 −0.125281 −0.0626406 0.998036i \(-0.519952\pi\)
−0.0626406 + 0.998036i \(0.519952\pi\)
\(858\) 0 0
\(859\) 1.88389e7 0.871109 0.435555 0.900162i \(-0.356552\pi\)
0.435555 + 0.900162i \(0.356552\pi\)
\(860\) 1.24462e7 0.573840
\(861\) 0 0
\(862\) 1.90607e7 0.873716
\(863\) 1.28630e7 0.587917 0.293959 0.955818i \(-0.405027\pi\)
0.293959 + 0.955818i \(0.405027\pi\)
\(864\) 0 0
\(865\) 5.40778e6 0.245741
\(866\) −2.76120e7 −1.25113
\(867\) 0 0
\(868\) 0 0
\(869\) 1.79428e7 0.806009
\(870\) 0 0
\(871\) −2.97397e7 −1.32828
\(872\) 3.85011e6 0.171468
\(873\) 0 0
\(874\) 2.73571e6 0.121141
\(875\) 0 0
\(876\) 0 0
\(877\) −1.58811e7 −0.697240 −0.348620 0.937264i \(-0.613350\pi\)
−0.348620 + 0.937264i \(0.613350\pi\)
\(878\) −2.16050e7 −0.945842
\(879\) 0 0
\(880\) −7.63085e6 −0.332174
\(881\) 1.73681e7 0.753899 0.376950 0.926234i \(-0.376973\pi\)
0.376950 + 0.926234i \(0.376973\pi\)
\(882\) 0 0
\(883\) 2.23513e7 0.964721 0.482361 0.875973i \(-0.339780\pi\)
0.482361 + 0.875973i \(0.339780\pi\)
\(884\) −3.11647e7 −1.34132
\(885\) 0 0
\(886\) 1.62345e7 0.694793
\(887\) −8.91140e6 −0.380309 −0.190155 0.981754i \(-0.560899\pi\)
−0.190155 + 0.981754i \(0.560899\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −2.84325e7 −1.20321
\(891\) 0 0
\(892\) 1.25321e7 0.527365
\(893\) −14160.0 −0.000594203 0
\(894\) 0 0
\(895\) 2.78437e7 1.16190
\(896\) 0 0
\(897\) 0 0
\(898\) −851976. −0.0352563
\(899\) −4.04364e7 −1.66868
\(900\) 0 0
\(901\) 4.15911e7 1.70682
\(902\) 1.40495e7 0.574969
\(903\) 0 0
\(904\) 448896. 0.0182694
\(905\) −3.00671e7 −1.22031
\(906\) 0 0
\(907\) −4.53327e6 −0.182976 −0.0914878 0.995806i \(-0.529162\pi\)
−0.0914878 + 0.995806i \(0.529162\pi\)
\(908\) 1.29139e6 0.0519809
\(909\) 0 0
\(910\) 0 0
\(911\) 9.83085e6 0.392460 0.196230 0.980558i \(-0.437130\pi\)
0.196230 + 0.980558i \(0.437130\pi\)
\(912\) 0 0
\(913\) 1.06464e7 0.422695
\(914\) −3.66460e6 −0.145098
\(915\) 0 0
\(916\) −2.44381e6 −0.0962340
\(917\) 0 0
\(918\) 0 0
\(919\) −4.82049e7 −1.88279 −0.941396 0.337304i \(-0.890485\pi\)
−0.941396 + 0.337304i \(0.890485\pi\)
\(920\) 1.33540e7 0.520165
\(921\) 0 0
\(922\) −1.66334e7 −0.644397
\(923\) 7.00067e6 0.270480
\(924\) 0 0
\(925\) 1.98694e7 0.763536
\(926\) 3.36320e7 1.28892
\(927\) 0 0
\(928\) 6.67853e6 0.254572
\(929\) −6.77017e6 −0.257371 −0.128686 0.991685i \(-0.541076\pi\)
−0.128686 + 0.991685i \(0.541076\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 5.66851e6 0.213761
\(933\) 0 0
\(934\) 288192. 0.0108097
\(935\) 5.50852e7 2.06066
\(936\) 0 0
\(937\) −1.25127e7 −0.465590 −0.232795 0.972526i \(-0.574787\pi\)
−0.232795 + 0.972526i \(0.574787\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −69120.0 −0.00255143
\(941\) −1.38659e7 −0.510473 −0.255236 0.966879i \(-0.582153\pi\)
−0.255236 + 0.966879i \(0.582153\pi\)
\(942\) 0 0
\(943\) −2.45866e7 −0.900367
\(944\) −7.21306e6 −0.263445
\(945\) 0 0
\(946\) −1.78914e7 −0.650006
\(947\) −4.89287e6 −0.177292 −0.0886460 0.996063i \(-0.528254\pi\)
−0.0886460 + 0.996063i \(0.528254\pi\)
\(948\) 0 0
\(949\) 5.49029e7 1.97893
\(950\) −1.94370e6 −0.0698746
\(951\) 0 0
\(952\) 0 0
\(953\) 1.40055e7 0.499535 0.249768 0.968306i \(-0.419646\pi\)
0.249768 + 0.968306i \(0.419646\pi\)
\(954\) 0 0
\(955\) −7.11396e7 −2.52408
\(956\) −4.40592e6 −0.155916
\(957\) 0 0
\(958\) 1.92224e7 0.676697
\(959\) 0 0
\(960\) 0 0
\(961\) 9.81085e6 0.342687
\(962\) 4.06844e7 1.41739
\(963\) 0 0
\(964\) 9.35517e6 0.324234
\(965\) 2.94666e7 1.01862
\(966\) 0 0
\(967\) −1.02386e7 −0.352106 −0.176053 0.984381i \(-0.556333\pi\)
−0.176053 + 0.984381i \(0.556333\pi\)
\(968\) 662080. 0.0227103
\(969\) 0 0
\(970\) −4.28988e7 −1.46391
\(971\) 1.17452e7 0.399773 0.199886 0.979819i \(-0.435943\pi\)
0.199886 + 0.979819i \(0.435943\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 1.76722e7 0.596888
\(975\) 0 0
\(976\) 9.00966e6 0.302750
\(977\) −2.26195e7 −0.758134 −0.379067 0.925369i \(-0.623755\pi\)
−0.379067 + 0.925369i \(0.623755\pi\)
\(978\) 0 0
\(979\) 4.08717e7 1.36291
\(980\) 0 0
\(981\) 0 0
\(982\) 2.25999e7 0.747873
\(983\) 2.79575e7 0.922813 0.461407 0.887189i \(-0.347345\pi\)
0.461407 + 0.887189i \(0.347345\pi\)
\(984\) 0 0
\(985\) −6.64006e7 −2.18063
\(986\) −4.82106e7 −1.57925
\(987\) 0 0
\(988\) −3.97990e6 −0.129712
\(989\) 3.13100e7 1.01787
\(990\) 0 0
\(991\) −1.66475e7 −0.538474 −0.269237 0.963074i \(-0.586772\pi\)
−0.269237 + 0.963074i \(0.586772\pi\)
\(992\) −6.34880e6 −0.204839
\(993\) 0 0
\(994\) 0 0
\(995\) 1.36431e7 0.436874
\(996\) 0 0
\(997\) 5.17280e7 1.64812 0.824058 0.566505i \(-0.191705\pi\)
0.824058 + 0.566505i \(0.191705\pi\)
\(998\) −3.68938e7 −1.17254
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.6.a.n.1.1 1
3.2 odd 2 294.6.a.c.1.1 1
7.6 odd 2 126.6.a.l.1.1 1
21.2 odd 6 294.6.e.n.67.1 2
21.5 even 6 294.6.e.l.67.1 2
21.11 odd 6 294.6.e.n.79.1 2
21.17 even 6 294.6.e.l.79.1 2
21.20 even 2 42.6.a.c.1.1 1
28.27 even 2 1008.6.a.ba.1.1 1
84.83 odd 2 336.6.a.b.1.1 1
105.62 odd 4 1050.6.g.b.799.1 2
105.83 odd 4 1050.6.g.b.799.2 2
105.104 even 2 1050.6.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.a.c.1.1 1 21.20 even 2
126.6.a.l.1.1 1 7.6 odd 2
294.6.a.c.1.1 1 3.2 odd 2
294.6.e.l.67.1 2 21.5 even 6
294.6.e.l.79.1 2 21.17 even 6
294.6.e.n.67.1 2 21.2 odd 6
294.6.e.n.79.1 2 21.11 odd 6
336.6.a.b.1.1 1 84.83 odd 2
882.6.a.n.1.1 1 1.1 even 1 trivial
1008.6.a.ba.1.1 1 28.27 even 2
1050.6.a.g.1.1 1 105.104 even 2
1050.6.g.b.799.1 2 105.62 odd 4
1050.6.g.b.799.2 2 105.83 odd 4