Properties

Label 882.6.a.i.1.1
Level $882$
Weight $6$
Character 882.1
Self dual yes
Analytic conductor $141.459$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,6,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.458529075\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 882.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +16.0000 q^{4} +24.0000 q^{5} -64.0000 q^{8} +O(q^{10})\) \(q-4.00000 q^{2} +16.0000 q^{4} +24.0000 q^{5} -64.0000 q^{8} -96.0000 q^{10} -66.0000 q^{11} -98.0000 q^{13} +256.000 q^{16} -216.000 q^{17} +340.000 q^{19} +384.000 q^{20} +264.000 q^{22} +1038.00 q^{23} -2549.00 q^{25} +392.000 q^{26} +2490.00 q^{29} +7048.00 q^{31} -1024.00 q^{32} +864.000 q^{34} -12238.0 q^{37} -1360.00 q^{38} -1536.00 q^{40} +6468.00 q^{41} -15412.0 q^{43} -1056.00 q^{44} -4152.00 q^{46} +20604.0 q^{47} +10196.0 q^{50} -1568.00 q^{52} -32490.0 q^{53} -1584.00 q^{55} -9960.00 q^{58} +34224.0 q^{59} -35654.0 q^{61} -28192.0 q^{62} +4096.00 q^{64} -2352.00 q^{65} +12680.0 q^{67} -3456.00 q^{68} +42642.0 q^{71} -33734.0 q^{73} +48952.0 q^{74} +5440.00 q^{76} -85108.0 q^{79} +6144.00 q^{80} -25872.0 q^{82} -106764. q^{83} -5184.00 q^{85} +61648.0 q^{86} +4224.00 q^{88} +34884.0 q^{89} +16608.0 q^{92} -82416.0 q^{94} +8160.00 q^{95} -18662.0 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) 24.0000 0.429325 0.214663 0.976688i \(-0.431135\pi\)
0.214663 + 0.976688i \(0.431135\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) 0 0
\(10\) −96.0000 −0.303579
\(11\) −66.0000 −0.164461 −0.0822304 0.996613i \(-0.526204\pi\)
−0.0822304 + 0.996613i \(0.526204\pi\)
\(12\) 0 0
\(13\) −98.0000 −0.160830 −0.0804151 0.996761i \(-0.525625\pi\)
−0.0804151 + 0.996761i \(0.525625\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −216.000 −0.181272 −0.0906362 0.995884i \(-0.528890\pi\)
−0.0906362 + 0.995884i \(0.528890\pi\)
\(18\) 0 0
\(19\) 340.000 0.216070 0.108035 0.994147i \(-0.465544\pi\)
0.108035 + 0.994147i \(0.465544\pi\)
\(20\) 384.000 0.214663
\(21\) 0 0
\(22\) 264.000 0.116291
\(23\) 1038.00 0.409145 0.204573 0.978851i \(-0.434420\pi\)
0.204573 + 0.978851i \(0.434420\pi\)
\(24\) 0 0
\(25\) −2549.00 −0.815680
\(26\) 392.000 0.113724
\(27\) 0 0
\(28\) 0 0
\(29\) 2490.00 0.549800 0.274900 0.961473i \(-0.411355\pi\)
0.274900 + 0.961473i \(0.411355\pi\)
\(30\) 0 0
\(31\) 7048.00 1.31723 0.658615 0.752480i \(-0.271143\pi\)
0.658615 + 0.752480i \(0.271143\pi\)
\(32\) −1024.00 −0.176777
\(33\) 0 0
\(34\) 864.000 0.128179
\(35\) 0 0
\(36\) 0 0
\(37\) −12238.0 −1.46962 −0.734812 0.678271i \(-0.762730\pi\)
−0.734812 + 0.678271i \(0.762730\pi\)
\(38\) −1360.00 −0.152785
\(39\) 0 0
\(40\) −1536.00 −0.151789
\(41\) 6468.00 0.600911 0.300456 0.953796i \(-0.402861\pi\)
0.300456 + 0.953796i \(0.402861\pi\)
\(42\) 0 0
\(43\) −15412.0 −1.27112 −0.635562 0.772050i \(-0.719232\pi\)
−0.635562 + 0.772050i \(0.719232\pi\)
\(44\) −1056.00 −0.0822304
\(45\) 0 0
\(46\) −4152.00 −0.289310
\(47\) 20604.0 1.36053 0.680263 0.732968i \(-0.261866\pi\)
0.680263 + 0.732968i \(0.261866\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 10196.0 0.576773
\(51\) 0 0
\(52\) −1568.00 −0.0804151
\(53\) −32490.0 −1.58877 −0.794383 0.607417i \(-0.792206\pi\)
−0.794383 + 0.607417i \(0.792206\pi\)
\(54\) 0 0
\(55\) −1584.00 −0.0706071
\(56\) 0 0
\(57\) 0 0
\(58\) −9960.00 −0.388767
\(59\) 34224.0 1.27997 0.639986 0.768386i \(-0.278940\pi\)
0.639986 + 0.768386i \(0.278940\pi\)
\(60\) 0 0
\(61\) −35654.0 −1.22683 −0.613414 0.789762i \(-0.710204\pi\)
−0.613414 + 0.789762i \(0.710204\pi\)
\(62\) −28192.0 −0.931422
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −2352.00 −0.0690484
\(66\) 0 0
\(67\) 12680.0 0.345090 0.172545 0.985002i \(-0.444801\pi\)
0.172545 + 0.985002i \(0.444801\pi\)
\(68\) −3456.00 −0.0906362
\(69\) 0 0
\(70\) 0 0
\(71\) 42642.0 1.00390 0.501951 0.864896i \(-0.332616\pi\)
0.501951 + 0.864896i \(0.332616\pi\)
\(72\) 0 0
\(73\) −33734.0 −0.740902 −0.370451 0.928852i \(-0.620797\pi\)
−0.370451 + 0.928852i \(0.620797\pi\)
\(74\) 48952.0 1.03918
\(75\) 0 0
\(76\) 5440.00 0.108035
\(77\) 0 0
\(78\) 0 0
\(79\) −85108.0 −1.53427 −0.767137 0.641484i \(-0.778319\pi\)
−0.767137 + 0.641484i \(0.778319\pi\)
\(80\) 6144.00 0.107331
\(81\) 0 0
\(82\) −25872.0 −0.424908
\(83\) −106764. −1.70110 −0.850550 0.525895i \(-0.823730\pi\)
−0.850550 + 0.525895i \(0.823730\pi\)
\(84\) 0 0
\(85\) −5184.00 −0.0778247
\(86\) 61648.0 0.898820
\(87\) 0 0
\(88\) 4224.00 0.0581456
\(89\) 34884.0 0.466822 0.233411 0.972378i \(-0.425011\pi\)
0.233411 + 0.972378i \(0.425011\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 16608.0 0.204573
\(93\) 0 0
\(94\) −82416.0 −0.962037
\(95\) 8160.00 0.0927644
\(96\) 0 0
\(97\) −18662.0 −0.201386 −0.100693 0.994918i \(-0.532106\pi\)
−0.100693 + 0.994918i \(0.532106\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −40784.0 −0.407840
\(101\) 153084. 1.49323 0.746614 0.665257i \(-0.231678\pi\)
0.746614 + 0.665257i \(0.231678\pi\)
\(102\) 0 0
\(103\) −35864.0 −0.333093 −0.166547 0.986034i \(-0.553262\pi\)
−0.166547 + 0.986034i \(0.553262\pi\)
\(104\) 6272.00 0.0568621
\(105\) 0 0
\(106\) 129960. 1.12343
\(107\) 95454.0 0.805999 0.403000 0.915200i \(-0.367968\pi\)
0.403000 + 0.915200i \(0.367968\pi\)
\(108\) 0 0
\(109\) 212222. 1.71090 0.855449 0.517887i \(-0.173281\pi\)
0.855449 + 0.517887i \(0.173281\pi\)
\(110\) 6336.00 0.0499268
\(111\) 0 0
\(112\) 0 0
\(113\) −62106.0 −0.457549 −0.228774 0.973479i \(-0.573472\pi\)
−0.228774 + 0.973479i \(0.573472\pi\)
\(114\) 0 0
\(115\) 24912.0 0.175656
\(116\) 39840.0 0.274900
\(117\) 0 0
\(118\) −136896. −0.905077
\(119\) 0 0
\(120\) 0 0
\(121\) −156695. −0.972953
\(122\) 142616. 0.867498
\(123\) 0 0
\(124\) 112768. 0.658615
\(125\) −136176. −0.779517
\(126\) 0 0
\(127\) −53044.0 −0.291828 −0.145914 0.989297i \(-0.546612\pi\)
−0.145914 + 0.989297i \(0.546612\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 0 0
\(130\) 9408.00 0.0488246
\(131\) 69324.0 0.352944 0.176472 0.984306i \(-0.443532\pi\)
0.176472 + 0.984306i \(0.443532\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −50720.0 −0.244015
\(135\) 0 0
\(136\) 13824.0 0.0640894
\(137\) −129846. −0.591054 −0.295527 0.955334i \(-0.595495\pi\)
−0.295527 + 0.955334i \(0.595495\pi\)
\(138\) 0 0
\(139\) 104356. 0.458121 0.229061 0.973412i \(-0.426435\pi\)
0.229061 + 0.973412i \(0.426435\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −170568. −0.709867
\(143\) 6468.00 0.0264503
\(144\) 0 0
\(145\) 59760.0 0.236043
\(146\) 134936. 0.523897
\(147\) 0 0
\(148\) −195808. −0.734812
\(149\) −217194. −0.801461 −0.400730 0.916196i \(-0.631244\pi\)
−0.400730 + 0.916196i \(0.631244\pi\)
\(150\) 0 0
\(151\) 221000. 0.788769 0.394385 0.918945i \(-0.370958\pi\)
0.394385 + 0.918945i \(0.370958\pi\)
\(152\) −21760.0 −0.0763924
\(153\) 0 0
\(154\) 0 0
\(155\) 169152. 0.565520
\(156\) 0 0
\(157\) 378370. 1.22509 0.612544 0.790436i \(-0.290146\pi\)
0.612544 + 0.790436i \(0.290146\pi\)
\(158\) 340432. 1.08489
\(159\) 0 0
\(160\) −24576.0 −0.0758947
\(161\) 0 0
\(162\) 0 0
\(163\) 104816. 0.309000 0.154500 0.987993i \(-0.450623\pi\)
0.154500 + 0.987993i \(0.450623\pi\)
\(164\) 103488. 0.300456
\(165\) 0 0
\(166\) 427056. 1.20286
\(167\) −426972. −1.18470 −0.592350 0.805681i \(-0.701800\pi\)
−0.592350 + 0.805681i \(0.701800\pi\)
\(168\) 0 0
\(169\) −361689. −0.974134
\(170\) 20736.0 0.0550304
\(171\) 0 0
\(172\) −246592. −0.635562
\(173\) 331068. 0.841012 0.420506 0.907290i \(-0.361853\pi\)
0.420506 + 0.907290i \(0.361853\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −16896.0 −0.0411152
\(177\) 0 0
\(178\) −139536. −0.330093
\(179\) 400194. 0.933551 0.466775 0.884376i \(-0.345416\pi\)
0.466775 + 0.884376i \(0.345416\pi\)
\(180\) 0 0
\(181\) −588098. −1.33430 −0.667150 0.744924i \(-0.732486\pi\)
−0.667150 + 0.744924i \(0.732486\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −66432.0 −0.144655
\(185\) −293712. −0.630946
\(186\) 0 0
\(187\) 14256.0 0.0298122
\(188\) 329664. 0.680263
\(189\) 0 0
\(190\) −32640.0 −0.0655943
\(191\) −939342. −1.86312 −0.931559 0.363590i \(-0.881551\pi\)
−0.931559 + 0.363590i \(0.881551\pi\)
\(192\) 0 0
\(193\) 338390. 0.653919 0.326960 0.945038i \(-0.393976\pi\)
0.326960 + 0.945038i \(0.393976\pi\)
\(194\) 74648.0 0.142401
\(195\) 0 0
\(196\) 0 0
\(197\) 237942. 0.436823 0.218412 0.975857i \(-0.429912\pi\)
0.218412 + 0.975857i \(0.429912\pi\)
\(198\) 0 0
\(199\) −204464. −0.366003 −0.183001 0.983113i \(-0.558581\pi\)
−0.183001 + 0.983113i \(0.558581\pi\)
\(200\) 163136. 0.288386
\(201\) 0 0
\(202\) −612336. −1.05587
\(203\) 0 0
\(204\) 0 0
\(205\) 155232. 0.257986
\(206\) 143456. 0.235532
\(207\) 0 0
\(208\) −25088.0 −0.0402076
\(209\) −22440.0 −0.0355351
\(210\) 0 0
\(211\) −348724. −0.539232 −0.269616 0.962968i \(-0.586897\pi\)
−0.269616 + 0.962968i \(0.586897\pi\)
\(212\) −519840. −0.794383
\(213\) 0 0
\(214\) −381816. −0.569928
\(215\) −369888. −0.545725
\(216\) 0 0
\(217\) 0 0
\(218\) −848888. −1.20979
\(219\) 0 0
\(220\) −25344.0 −0.0353036
\(221\) 21168.0 0.0291541
\(222\) 0 0
\(223\) −1.47006e6 −1.97957 −0.989787 0.142554i \(-0.954468\pi\)
−0.989787 + 0.142554i \(0.954468\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 248424. 0.323536
\(227\) −589560. −0.759387 −0.379694 0.925112i \(-0.623971\pi\)
−0.379694 + 0.925112i \(0.623971\pi\)
\(228\) 0 0
\(229\) 1.04534e6 1.31725 0.658627 0.752469i \(-0.271137\pi\)
0.658627 + 0.752469i \(0.271137\pi\)
\(230\) −99648.0 −0.124208
\(231\) 0 0
\(232\) −159360. −0.194383
\(233\) −651222. −0.785849 −0.392925 0.919571i \(-0.628537\pi\)
−0.392925 + 0.919571i \(0.628537\pi\)
\(234\) 0 0
\(235\) 494496. 0.584108
\(236\) 547584. 0.639986
\(237\) 0 0
\(238\) 0 0
\(239\) 513462. 0.581452 0.290726 0.956806i \(-0.406103\pi\)
0.290726 + 0.956806i \(0.406103\pi\)
\(240\) 0 0
\(241\) 694714. 0.770484 0.385242 0.922816i \(-0.374118\pi\)
0.385242 + 0.922816i \(0.374118\pi\)
\(242\) 626780. 0.687981
\(243\) 0 0
\(244\) −570464. −0.613414
\(245\) 0 0
\(246\) 0 0
\(247\) −33320.0 −0.0347506
\(248\) −451072. −0.465711
\(249\) 0 0
\(250\) 544704. 0.551202
\(251\) −1.39608e6 −1.39870 −0.699352 0.714777i \(-0.746528\pi\)
−0.699352 + 0.714777i \(0.746528\pi\)
\(252\) 0 0
\(253\) −68508.0 −0.0672884
\(254\) 212176. 0.206354
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −1.00520e6 −0.949339 −0.474670 0.880164i \(-0.657432\pi\)
−0.474670 + 0.880164i \(0.657432\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −37632.0 −0.0345242
\(261\) 0 0
\(262\) −277296. −0.249569
\(263\) −1.25301e6 −1.11703 −0.558515 0.829494i \(-0.688629\pi\)
−0.558515 + 0.829494i \(0.688629\pi\)
\(264\) 0 0
\(265\) −779760. −0.682097
\(266\) 0 0
\(267\) 0 0
\(268\) 202880. 0.172545
\(269\) −1.76069e6 −1.48355 −0.741774 0.670650i \(-0.766015\pi\)
−0.741774 + 0.670650i \(0.766015\pi\)
\(270\) 0 0
\(271\) −770528. −0.637331 −0.318666 0.947867i \(-0.603235\pi\)
−0.318666 + 0.947867i \(0.603235\pi\)
\(272\) −55296.0 −0.0453181
\(273\) 0 0
\(274\) 519384. 0.417938
\(275\) 168234. 0.134147
\(276\) 0 0
\(277\) 707738. 0.554208 0.277104 0.960840i \(-0.410625\pi\)
0.277104 + 0.960840i \(0.410625\pi\)
\(278\) −417424. −0.323941
\(279\) 0 0
\(280\) 0 0
\(281\) −2.30432e6 −1.74091 −0.870456 0.492247i \(-0.836176\pi\)
−0.870456 + 0.492247i \(0.836176\pi\)
\(282\) 0 0
\(283\) −1.60903e6 −1.19426 −0.597128 0.802146i \(-0.703692\pi\)
−0.597128 + 0.802146i \(0.703692\pi\)
\(284\) 682272. 0.501951
\(285\) 0 0
\(286\) −25872.0 −0.0187032
\(287\) 0 0
\(288\) 0 0
\(289\) −1.37320e6 −0.967140
\(290\) −239040. −0.166907
\(291\) 0 0
\(292\) −539744. −0.370451
\(293\) 517020. 0.351834 0.175917 0.984405i \(-0.443711\pi\)
0.175917 + 0.984405i \(0.443711\pi\)
\(294\) 0 0
\(295\) 821376. 0.549524
\(296\) 783232. 0.519590
\(297\) 0 0
\(298\) 868776. 0.566718
\(299\) −101724. −0.0658030
\(300\) 0 0
\(301\) 0 0
\(302\) −884000. −0.557744
\(303\) 0 0
\(304\) 87040.0 0.0540176
\(305\) −855696. −0.526708
\(306\) 0 0
\(307\) −1.35002e6 −0.817512 −0.408756 0.912644i \(-0.634037\pi\)
−0.408756 + 0.912644i \(0.634037\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −676608. −0.399883
\(311\) 1.34538e6 0.788758 0.394379 0.918948i \(-0.370960\pi\)
0.394379 + 0.918948i \(0.370960\pi\)
\(312\) 0 0
\(313\) −256154. −0.147788 −0.0738942 0.997266i \(-0.523543\pi\)
−0.0738942 + 0.997266i \(0.523543\pi\)
\(314\) −1.51348e6 −0.866269
\(315\) 0 0
\(316\) −1.36173e6 −0.767137
\(317\) −1.84629e6 −1.03193 −0.515967 0.856609i \(-0.672567\pi\)
−0.515967 + 0.856609i \(0.672567\pi\)
\(318\) 0 0
\(319\) −164340. −0.0904204
\(320\) 98304.0 0.0536656
\(321\) 0 0
\(322\) 0 0
\(323\) −73440.0 −0.0391675
\(324\) 0 0
\(325\) 249802. 0.131186
\(326\) −419264. −0.218496
\(327\) 0 0
\(328\) −413952. −0.212454
\(329\) 0 0
\(330\) 0 0
\(331\) −3.33238e6 −1.67180 −0.835900 0.548881i \(-0.815054\pi\)
−0.835900 + 0.548881i \(0.815054\pi\)
\(332\) −1.70822e6 −0.850550
\(333\) 0 0
\(334\) 1.70789e6 0.837709
\(335\) 304320. 0.148156
\(336\) 0 0
\(337\) −1.63481e6 −0.784136 −0.392068 0.919936i \(-0.628240\pi\)
−0.392068 + 0.919936i \(0.628240\pi\)
\(338\) 1.44676e6 0.688816
\(339\) 0 0
\(340\) −82944.0 −0.0389124
\(341\) −465168. −0.216633
\(342\) 0 0
\(343\) 0 0
\(344\) 986368. 0.449410
\(345\) 0 0
\(346\) −1.32427e6 −0.594685
\(347\) 841530. 0.375185 0.187593 0.982247i \(-0.439932\pi\)
0.187593 + 0.982247i \(0.439932\pi\)
\(348\) 0 0
\(349\) 977242. 0.429476 0.214738 0.976672i \(-0.431110\pi\)
0.214738 + 0.976672i \(0.431110\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 67584.0 0.0290728
\(353\) 3.45857e6 1.47727 0.738634 0.674106i \(-0.235471\pi\)
0.738634 + 0.674106i \(0.235471\pi\)
\(354\) 0 0
\(355\) 1.02341e6 0.431001
\(356\) 558144. 0.233411
\(357\) 0 0
\(358\) −1.60078e6 −0.660120
\(359\) 3.47301e6 1.42223 0.711115 0.703076i \(-0.248190\pi\)
0.711115 + 0.703076i \(0.248190\pi\)
\(360\) 0 0
\(361\) −2.36050e6 −0.953314
\(362\) 2.35239e6 0.943492
\(363\) 0 0
\(364\) 0 0
\(365\) −809616. −0.318088
\(366\) 0 0
\(367\) −3.11994e6 −1.20915 −0.604575 0.796548i \(-0.706657\pi\)
−0.604575 + 0.796548i \(0.706657\pi\)
\(368\) 265728. 0.102286
\(369\) 0 0
\(370\) 1.17485e6 0.446146
\(371\) 0 0
\(372\) 0 0
\(373\) −2.01673e6 −0.750543 −0.375272 0.926915i \(-0.622451\pi\)
−0.375272 + 0.926915i \(0.622451\pi\)
\(374\) −57024.0 −0.0210804
\(375\) 0 0
\(376\) −1.31866e6 −0.481019
\(377\) −244020. −0.0884244
\(378\) 0 0
\(379\) −5.38083e6 −1.92420 −0.962102 0.272690i \(-0.912087\pi\)
−0.962102 + 0.272690i \(0.912087\pi\)
\(380\) 130560. 0.0463822
\(381\) 0 0
\(382\) 3.75737e6 1.31742
\(383\) 807432. 0.281261 0.140630 0.990062i \(-0.455087\pi\)
0.140630 + 0.990062i \(0.455087\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −1.35356e6 −0.462391
\(387\) 0 0
\(388\) −298592. −0.100693
\(389\) −891390. −0.298671 −0.149336 0.988787i \(-0.547714\pi\)
−0.149336 + 0.988787i \(0.547714\pi\)
\(390\) 0 0
\(391\) −224208. −0.0741667
\(392\) 0 0
\(393\) 0 0
\(394\) −951768. −0.308881
\(395\) −2.04259e6 −0.658702
\(396\) 0 0
\(397\) −1.12345e6 −0.357749 −0.178875 0.983872i \(-0.557246\pi\)
−0.178875 + 0.983872i \(0.557246\pi\)
\(398\) 817856. 0.258803
\(399\) 0 0
\(400\) −652544. −0.203920
\(401\) −1.72037e6 −0.534271 −0.267136 0.963659i \(-0.586077\pi\)
−0.267136 + 0.963659i \(0.586077\pi\)
\(402\) 0 0
\(403\) −690704. −0.211850
\(404\) 2.44934e6 0.746614
\(405\) 0 0
\(406\) 0 0
\(407\) 807708. 0.241695
\(408\) 0 0
\(409\) −77246.0 −0.0228332 −0.0114166 0.999935i \(-0.503634\pi\)
−0.0114166 + 0.999935i \(0.503634\pi\)
\(410\) −620928. −0.182424
\(411\) 0 0
\(412\) −573824. −0.166547
\(413\) 0 0
\(414\) 0 0
\(415\) −2.56234e6 −0.730324
\(416\) 100352. 0.0284310
\(417\) 0 0
\(418\) 89760.0 0.0251271
\(419\) −5.20615e6 −1.44871 −0.724356 0.689427i \(-0.757863\pi\)
−0.724356 + 0.689427i \(0.757863\pi\)
\(420\) 0 0
\(421\) 1.71847e6 0.472539 0.236270 0.971688i \(-0.424075\pi\)
0.236270 + 0.971688i \(0.424075\pi\)
\(422\) 1.39490e6 0.381295
\(423\) 0 0
\(424\) 2.07936e6 0.561714
\(425\) 550584. 0.147860
\(426\) 0 0
\(427\) 0 0
\(428\) 1.52726e6 0.403000
\(429\) 0 0
\(430\) 1.47955e6 0.385886
\(431\) 580626. 0.150558 0.0752789 0.997163i \(-0.476015\pi\)
0.0752789 + 0.997163i \(0.476015\pi\)
\(432\) 0 0
\(433\) −4.15087e6 −1.06395 −0.531973 0.846761i \(-0.678549\pi\)
−0.531973 + 0.846761i \(0.678549\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 3.39555e6 0.855449
\(437\) 352920. 0.0884042
\(438\) 0 0
\(439\) −3.88407e6 −0.961891 −0.480946 0.876750i \(-0.659707\pi\)
−0.480946 + 0.876750i \(0.659707\pi\)
\(440\) 101376. 0.0249634
\(441\) 0 0
\(442\) −84672.0 −0.0206150
\(443\) 2.31499e6 0.560453 0.280226 0.959934i \(-0.409590\pi\)
0.280226 + 0.959934i \(0.409590\pi\)
\(444\) 0 0
\(445\) 837216. 0.200418
\(446\) 5.88022e6 1.39977
\(447\) 0 0
\(448\) 0 0
\(449\) 1.92281e6 0.450113 0.225056 0.974346i \(-0.427743\pi\)
0.225056 + 0.974346i \(0.427743\pi\)
\(450\) 0 0
\(451\) −426888. −0.0988263
\(452\) −993696. −0.228774
\(453\) 0 0
\(454\) 2.35824e6 0.536968
\(455\) 0 0
\(456\) 0 0
\(457\) 6.86215e6 1.53699 0.768493 0.639858i \(-0.221007\pi\)
0.768493 + 0.639858i \(0.221007\pi\)
\(458\) −4.18137e6 −0.931440
\(459\) 0 0
\(460\) 398592. 0.0878282
\(461\) 2.97167e6 0.651250 0.325625 0.945499i \(-0.394425\pi\)
0.325625 + 0.945499i \(0.394425\pi\)
\(462\) 0 0
\(463\) 4.87423e6 1.05670 0.528352 0.849025i \(-0.322810\pi\)
0.528352 + 0.849025i \(0.322810\pi\)
\(464\) 637440. 0.137450
\(465\) 0 0
\(466\) 2.60489e6 0.555679
\(467\) −8.17301e6 −1.73416 −0.867081 0.498167i \(-0.834007\pi\)
−0.867081 + 0.498167i \(0.834007\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −1.97798e6 −0.413027
\(471\) 0 0
\(472\) −2.19034e6 −0.452539
\(473\) 1.01719e6 0.209050
\(474\) 0 0
\(475\) −866660. −0.176244
\(476\) 0 0
\(477\) 0 0
\(478\) −2.05385e6 −0.411148
\(479\) 2.34397e6 0.466782 0.233391 0.972383i \(-0.425018\pi\)
0.233391 + 0.972383i \(0.425018\pi\)
\(480\) 0 0
\(481\) 1.19932e6 0.236360
\(482\) −2.77886e6 −0.544814
\(483\) 0 0
\(484\) −2.50712e6 −0.486476
\(485\) −447888. −0.0864600
\(486\) 0 0
\(487\) 316928. 0.0605534 0.0302767 0.999542i \(-0.490361\pi\)
0.0302767 + 0.999542i \(0.490361\pi\)
\(488\) 2.28186e6 0.433749
\(489\) 0 0
\(490\) 0 0
\(491\) 5.20041e6 0.973495 0.486748 0.873543i \(-0.338183\pi\)
0.486748 + 0.873543i \(0.338183\pi\)
\(492\) 0 0
\(493\) −537840. −0.0996634
\(494\) 133280. 0.0245724
\(495\) 0 0
\(496\) 1.80429e6 0.329308
\(497\) 0 0
\(498\) 0 0
\(499\) −4.86773e6 −0.875135 −0.437568 0.899185i \(-0.644160\pi\)
−0.437568 + 0.899185i \(0.644160\pi\)
\(500\) −2.17882e6 −0.389758
\(501\) 0 0
\(502\) 5.58432e6 0.989034
\(503\) 426888. 0.0752305 0.0376153 0.999292i \(-0.488024\pi\)
0.0376153 + 0.999292i \(0.488024\pi\)
\(504\) 0 0
\(505\) 3.67402e6 0.641081
\(506\) 274032. 0.0475801
\(507\) 0 0
\(508\) −848704. −0.145914
\(509\) −9.41621e6 −1.61095 −0.805474 0.592631i \(-0.798089\pi\)
−0.805474 + 0.592631i \(0.798089\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) 0 0
\(514\) 4.02082e6 0.671284
\(515\) −860736. −0.143005
\(516\) 0 0
\(517\) −1.35986e6 −0.223753
\(518\) 0 0
\(519\) 0 0
\(520\) 150528. 0.0244123
\(521\) 1.84039e6 0.297041 0.148520 0.988909i \(-0.452549\pi\)
0.148520 + 0.988909i \(0.452549\pi\)
\(522\) 0 0
\(523\) 979108. 0.156522 0.0782612 0.996933i \(-0.475063\pi\)
0.0782612 + 0.996933i \(0.475063\pi\)
\(524\) 1.10918e6 0.176472
\(525\) 0 0
\(526\) 5.01204e6 0.789860
\(527\) −1.52237e6 −0.238777
\(528\) 0 0
\(529\) −5.35890e6 −0.832600
\(530\) 3.11904e6 0.482316
\(531\) 0 0
\(532\) 0 0
\(533\) −633864. −0.0966447
\(534\) 0 0
\(535\) 2.29090e6 0.346036
\(536\) −811520. −0.122008
\(537\) 0 0
\(538\) 7.04275e6 1.04903
\(539\) 0 0
\(540\) 0 0
\(541\) 5.96117e6 0.875666 0.437833 0.899056i \(-0.355746\pi\)
0.437833 + 0.899056i \(0.355746\pi\)
\(542\) 3.08211e6 0.450661
\(543\) 0 0
\(544\) 221184. 0.0320447
\(545\) 5.09333e6 0.734531
\(546\) 0 0
\(547\) 8.73025e6 1.24755 0.623775 0.781604i \(-0.285598\pi\)
0.623775 + 0.781604i \(0.285598\pi\)
\(548\) −2.07754e6 −0.295527
\(549\) 0 0
\(550\) −672936. −0.0948565
\(551\) 846600. 0.118795
\(552\) 0 0
\(553\) 0 0
\(554\) −2.83095e6 −0.391885
\(555\) 0 0
\(556\) 1.66970e6 0.229061
\(557\) 3.01066e6 0.411172 0.205586 0.978639i \(-0.434090\pi\)
0.205586 + 0.978639i \(0.434090\pi\)
\(558\) 0 0
\(559\) 1.51038e6 0.204435
\(560\) 0 0
\(561\) 0 0
\(562\) 9.21727e6 1.23101
\(563\) 1.17573e7 1.56327 0.781637 0.623733i \(-0.214385\pi\)
0.781637 + 0.623733i \(0.214385\pi\)
\(564\) 0 0
\(565\) −1.49054e6 −0.196437
\(566\) 6.43611e6 0.844467
\(567\) 0 0
\(568\) −2.72909e6 −0.354933
\(569\) −1.31578e7 −1.70374 −0.851870 0.523754i \(-0.824531\pi\)
−0.851870 + 0.523754i \(0.824531\pi\)
\(570\) 0 0
\(571\) −1.03344e7 −1.32647 −0.663234 0.748412i \(-0.730817\pi\)
−0.663234 + 0.748412i \(0.730817\pi\)
\(572\) 103488. 0.0132251
\(573\) 0 0
\(574\) 0 0
\(575\) −2.64586e6 −0.333732
\(576\) 0 0
\(577\) 7.88133e6 0.985508 0.492754 0.870169i \(-0.335990\pi\)
0.492754 + 0.870169i \(0.335990\pi\)
\(578\) 5.49280e6 0.683872
\(579\) 0 0
\(580\) 956160. 0.118021
\(581\) 0 0
\(582\) 0 0
\(583\) 2.14434e6 0.261290
\(584\) 2.15898e6 0.261948
\(585\) 0 0
\(586\) −2.06808e6 −0.248784
\(587\) −554568. −0.0664293 −0.0332146 0.999448i \(-0.510574\pi\)
−0.0332146 + 0.999448i \(0.510574\pi\)
\(588\) 0 0
\(589\) 2.39632e6 0.284614
\(590\) −3.28550e6 −0.388572
\(591\) 0 0
\(592\) −3.13293e6 −0.367406
\(593\) −9.20369e6 −1.07479 −0.537397 0.843329i \(-0.680592\pi\)
−0.537397 + 0.843329i \(0.680592\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −3.47510e6 −0.400730
\(597\) 0 0
\(598\) 406896. 0.0465297
\(599\) −8.54295e6 −0.972839 −0.486419 0.873725i \(-0.661697\pi\)
−0.486419 + 0.873725i \(0.661697\pi\)
\(600\) 0 0
\(601\) 9.61555e6 1.08590 0.542948 0.839767i \(-0.317308\pi\)
0.542948 + 0.839767i \(0.317308\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 3.53600e6 0.394385
\(605\) −3.76068e6 −0.417713
\(606\) 0 0
\(607\) −2.21264e6 −0.243747 −0.121873 0.992546i \(-0.538890\pi\)
−0.121873 + 0.992546i \(0.538890\pi\)
\(608\) −348160. −0.0381962
\(609\) 0 0
\(610\) 3.42278e6 0.372439
\(611\) −2.01919e6 −0.218814
\(612\) 0 0
\(613\) −7.96215e6 −0.855814 −0.427907 0.903823i \(-0.640749\pi\)
−0.427907 + 0.903823i \(0.640749\pi\)
\(614\) 5.40008e6 0.578068
\(615\) 0 0
\(616\) 0 0
\(617\) 1.37397e7 1.45299 0.726497 0.687170i \(-0.241147\pi\)
0.726497 + 0.687170i \(0.241147\pi\)
\(618\) 0 0
\(619\) 8.70113e6 0.912744 0.456372 0.889789i \(-0.349149\pi\)
0.456372 + 0.889789i \(0.349149\pi\)
\(620\) 2.70643e6 0.282760
\(621\) 0 0
\(622\) −5.38152e6 −0.557736
\(623\) 0 0
\(624\) 0 0
\(625\) 4.69740e6 0.481014
\(626\) 1.02462e6 0.104502
\(627\) 0 0
\(628\) 6.05392e6 0.612544
\(629\) 2.64341e6 0.266402
\(630\) 0 0
\(631\) 445412. 0.0445337 0.0222668 0.999752i \(-0.492912\pi\)
0.0222668 + 0.999752i \(0.492912\pi\)
\(632\) 5.44691e6 0.542447
\(633\) 0 0
\(634\) 7.38516e6 0.729687
\(635\) −1.27306e6 −0.125289
\(636\) 0 0
\(637\) 0 0
\(638\) 657360. 0.0639369
\(639\) 0 0
\(640\) −393216. −0.0379473
\(641\) 8.00119e6 0.769147 0.384573 0.923094i \(-0.374349\pi\)
0.384573 + 0.923094i \(0.374349\pi\)
\(642\) 0 0
\(643\) 1.58402e7 1.51090 0.755448 0.655209i \(-0.227419\pi\)
0.755448 + 0.655209i \(0.227419\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 293760. 0.0276956
\(647\) 1.30187e6 0.122266 0.0611331 0.998130i \(-0.480529\pi\)
0.0611331 + 0.998130i \(0.480529\pi\)
\(648\) 0 0
\(649\) −2.25878e6 −0.210505
\(650\) −999208. −0.0927625
\(651\) 0 0
\(652\) 1.67706e6 0.154500
\(653\) −7.34149e6 −0.673753 −0.336877 0.941549i \(-0.609371\pi\)
−0.336877 + 0.941549i \(0.609371\pi\)
\(654\) 0 0
\(655\) 1.66378e6 0.151528
\(656\) 1.65581e6 0.150228
\(657\) 0 0
\(658\) 0 0
\(659\) 6.18934e6 0.555176 0.277588 0.960700i \(-0.410465\pi\)
0.277588 + 0.960700i \(0.410465\pi\)
\(660\) 0 0
\(661\) 1.96690e7 1.75097 0.875484 0.483248i \(-0.160543\pi\)
0.875484 + 0.483248i \(0.160543\pi\)
\(662\) 1.33295e7 1.18214
\(663\) 0 0
\(664\) 6.83290e6 0.601429
\(665\) 0 0
\(666\) 0 0
\(667\) 2.58462e6 0.224948
\(668\) −6.83155e6 −0.592350
\(669\) 0 0
\(670\) −1.21728e6 −0.104762
\(671\) 2.35316e6 0.201765
\(672\) 0 0
\(673\) 7.18259e6 0.611285 0.305642 0.952146i \(-0.401129\pi\)
0.305642 + 0.952146i \(0.401129\pi\)
\(674\) 6.53922e6 0.554468
\(675\) 0 0
\(676\) −5.78702e6 −0.487067
\(677\) −1.89192e7 −1.58647 −0.793234 0.608917i \(-0.791604\pi\)
−0.793234 + 0.608917i \(0.791604\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 331776. 0.0275152
\(681\) 0 0
\(682\) 1.86067e6 0.153182
\(683\) −2.12204e7 −1.74061 −0.870306 0.492512i \(-0.836079\pi\)
−0.870306 + 0.492512i \(0.836079\pi\)
\(684\) 0 0
\(685\) −3.11630e6 −0.253754
\(686\) 0 0
\(687\) 0 0
\(688\) −3.94547e6 −0.317781
\(689\) 3.18402e6 0.255522
\(690\) 0 0
\(691\) −1.63276e7 −1.30085 −0.650424 0.759571i \(-0.725409\pi\)
−0.650424 + 0.759571i \(0.725409\pi\)
\(692\) 5.29709e6 0.420506
\(693\) 0 0
\(694\) −3.36612e6 −0.265296
\(695\) 2.50454e6 0.196683
\(696\) 0 0
\(697\) −1.39709e6 −0.108929
\(698\) −3.90897e6 −0.303685
\(699\) 0 0
\(700\) 0 0
\(701\) 5.40470e6 0.415409 0.207705 0.978192i \(-0.433401\pi\)
0.207705 + 0.978192i \(0.433401\pi\)
\(702\) 0 0
\(703\) −4.16092e6 −0.317542
\(704\) −270336. −0.0205576
\(705\) 0 0
\(706\) −1.38343e7 −1.04459
\(707\) 0 0
\(708\) 0 0
\(709\) 2.21195e7 1.65257 0.826284 0.563253i \(-0.190450\pi\)
0.826284 + 0.563253i \(0.190450\pi\)
\(710\) −4.09363e6 −0.304763
\(711\) 0 0
\(712\) −2.23258e6 −0.165046
\(713\) 7.31582e6 0.538939
\(714\) 0 0
\(715\) 155232. 0.0113558
\(716\) 6.40310e6 0.466775
\(717\) 0 0
\(718\) −1.38920e7 −1.00567
\(719\) 2.55819e7 1.84548 0.922742 0.385418i \(-0.125943\pi\)
0.922742 + 0.385418i \(0.125943\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 9.44200e6 0.674095
\(723\) 0 0
\(724\) −9.40957e6 −0.667150
\(725\) −6.34701e6 −0.448460
\(726\) 0 0
\(727\) 9.29438e6 0.652205 0.326103 0.945334i \(-0.394265\pi\)
0.326103 + 0.945334i \(0.394265\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 3.23846e6 0.224922
\(731\) 3.32899e6 0.230420
\(732\) 0 0
\(733\) −3.40699e6 −0.234213 −0.117107 0.993119i \(-0.537362\pi\)
−0.117107 + 0.993119i \(0.537362\pi\)
\(734\) 1.24797e7 0.854999
\(735\) 0 0
\(736\) −1.06291e6 −0.0723274
\(737\) −836880. −0.0567537
\(738\) 0 0
\(739\) 2.18135e7 1.46932 0.734658 0.678438i \(-0.237343\pi\)
0.734658 + 0.678438i \(0.237343\pi\)
\(740\) −4.69939e6 −0.315473
\(741\) 0 0
\(742\) 0 0
\(743\) −3.79246e6 −0.252028 −0.126014 0.992028i \(-0.540218\pi\)
−0.126014 + 0.992028i \(0.540218\pi\)
\(744\) 0 0
\(745\) −5.21266e6 −0.344087
\(746\) 8.06692e6 0.530714
\(747\) 0 0
\(748\) 228096. 0.0149061
\(749\) 0 0
\(750\) 0 0
\(751\) −2.01483e7 −1.30358 −0.651790 0.758400i \(-0.725982\pi\)
−0.651790 + 0.758400i \(0.725982\pi\)
\(752\) 5.27462e6 0.340132
\(753\) 0 0
\(754\) 976080. 0.0625255
\(755\) 5.30400e6 0.338638
\(756\) 0 0
\(757\) 1.18427e7 0.751126 0.375563 0.926797i \(-0.377449\pi\)
0.375563 + 0.926797i \(0.377449\pi\)
\(758\) 2.15233e7 1.36062
\(759\) 0 0
\(760\) −522240. −0.0327972
\(761\) 2.97791e6 0.186402 0.0932008 0.995647i \(-0.470290\pi\)
0.0932008 + 0.995647i \(0.470290\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −1.50295e7 −0.931559
\(765\) 0 0
\(766\) −3.22973e6 −0.198881
\(767\) −3.35395e6 −0.205858
\(768\) 0 0
\(769\) 2.02441e7 1.23447 0.617237 0.786777i \(-0.288252\pi\)
0.617237 + 0.786777i \(0.288252\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 5.41424e6 0.326960
\(773\) −7.37953e6 −0.444202 −0.222101 0.975024i \(-0.571291\pi\)
−0.222101 + 0.975024i \(0.571291\pi\)
\(774\) 0 0
\(775\) −1.79654e7 −1.07444
\(776\) 1.19437e6 0.0712006
\(777\) 0 0
\(778\) 3.56556e6 0.211193
\(779\) 2.19912e6 0.129839
\(780\) 0 0
\(781\) −2.81437e6 −0.165103
\(782\) 896832. 0.0524438
\(783\) 0 0
\(784\) 0 0
\(785\) 9.08088e6 0.525961
\(786\) 0 0
\(787\) −1.36289e7 −0.784377 −0.392188 0.919885i \(-0.628282\pi\)
−0.392188 + 0.919885i \(0.628282\pi\)
\(788\) 3.80707e6 0.218412
\(789\) 0 0
\(790\) 8.17037e6 0.465773
\(791\) 0 0
\(792\) 0 0
\(793\) 3.49409e6 0.197311
\(794\) 4.49382e6 0.252967
\(795\) 0 0
\(796\) −3.27142e6 −0.183001
\(797\) −1.49548e7 −0.833938 −0.416969 0.908921i \(-0.636908\pi\)
−0.416969 + 0.908921i \(0.636908\pi\)
\(798\) 0 0
\(799\) −4.45046e6 −0.246626
\(800\) 2.61018e6 0.144193
\(801\) 0 0
\(802\) 6.88150e6 0.377787
\(803\) 2.22644e6 0.121849
\(804\) 0 0
\(805\) 0 0
\(806\) 2.76282e6 0.149801
\(807\) 0 0
\(808\) −9.79738e6 −0.527936
\(809\) −2.87242e7 −1.54304 −0.771519 0.636206i \(-0.780503\pi\)
−0.771519 + 0.636206i \(0.780503\pi\)
\(810\) 0 0
\(811\) 1.52265e7 0.812922 0.406461 0.913668i \(-0.366763\pi\)
0.406461 + 0.913668i \(0.366763\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −3.23083e6 −0.170904
\(815\) 2.51558e6 0.132661
\(816\) 0 0
\(817\) −5.24008e6 −0.274652
\(818\) 308984. 0.0161455
\(819\) 0 0
\(820\) 2.48371e6 0.128993
\(821\) 3.31001e7 1.71384 0.856921 0.515447i \(-0.172374\pi\)
0.856921 + 0.515447i \(0.172374\pi\)
\(822\) 0 0
\(823\) −1.35915e7 −0.699470 −0.349735 0.936849i \(-0.613728\pi\)
−0.349735 + 0.936849i \(0.613728\pi\)
\(824\) 2.29530e6 0.117766
\(825\) 0 0
\(826\) 0 0
\(827\) −3.13936e6 −0.159616 −0.0798082 0.996810i \(-0.525431\pi\)
−0.0798082 + 0.996810i \(0.525431\pi\)
\(828\) 0 0
\(829\) −1.27081e7 −0.642234 −0.321117 0.947040i \(-0.604058\pi\)
−0.321117 + 0.947040i \(0.604058\pi\)
\(830\) 1.02493e7 0.516417
\(831\) 0 0
\(832\) −401408. −0.0201038
\(833\) 0 0
\(834\) 0 0
\(835\) −1.02473e7 −0.508621
\(836\) −359040. −0.0177675
\(837\) 0 0
\(838\) 2.08246e7 1.02439
\(839\) −2.98312e7 −1.46307 −0.731536 0.681803i \(-0.761196\pi\)
−0.731536 + 0.681803i \(0.761196\pi\)
\(840\) 0 0
\(841\) −1.43110e7 −0.697720
\(842\) −6.87390e6 −0.334136
\(843\) 0 0
\(844\) −5.57958e6 −0.269616
\(845\) −8.68054e6 −0.418220
\(846\) 0 0
\(847\) 0 0
\(848\) −8.31744e6 −0.397192
\(849\) 0 0
\(850\) −2.20234e6 −0.104553
\(851\) −1.27030e7 −0.601290
\(852\) 0 0
\(853\) 1.92215e7 0.904515 0.452257 0.891888i \(-0.350619\pi\)
0.452257 + 0.891888i \(0.350619\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −6.10906e6 −0.284964
\(857\) −2.65655e7 −1.23556 −0.617782 0.786349i \(-0.711969\pi\)
−0.617782 + 0.786349i \(0.711969\pi\)
\(858\) 0 0
\(859\) 9.16844e6 0.423948 0.211974 0.977275i \(-0.432011\pi\)
0.211974 + 0.977275i \(0.432011\pi\)
\(860\) −5.91821e6 −0.272863
\(861\) 0 0
\(862\) −2.32250e6 −0.106460
\(863\) 2.92196e7 1.33551 0.667755 0.744381i \(-0.267255\pi\)
0.667755 + 0.744381i \(0.267255\pi\)
\(864\) 0 0
\(865\) 7.94563e6 0.361067
\(866\) 1.66035e7 0.752324
\(867\) 0 0
\(868\) 0 0
\(869\) 5.61713e6 0.252328
\(870\) 0 0
\(871\) −1.24264e6 −0.0555009
\(872\) −1.35822e7 −0.604894
\(873\) 0 0
\(874\) −1.41168e6 −0.0625112
\(875\) 0 0
\(876\) 0 0
\(877\) 9.71286e6 0.426430 0.213215 0.977005i \(-0.431606\pi\)
0.213215 + 0.977005i \(0.431606\pi\)
\(878\) 1.55363e7 0.680160
\(879\) 0 0
\(880\) −405504. −0.0176518
\(881\) 1.65372e7 0.717833 0.358917 0.933370i \(-0.383146\pi\)
0.358917 + 0.933370i \(0.383146\pi\)
\(882\) 0 0
\(883\) −2.39487e7 −1.03367 −0.516833 0.856086i \(-0.672889\pi\)
−0.516833 + 0.856086i \(0.672889\pi\)
\(884\) 338688. 0.0145770
\(885\) 0 0
\(886\) −9.25994e6 −0.396300
\(887\) −4.62846e6 −0.197527 −0.0987637 0.995111i \(-0.531489\pi\)
−0.0987637 + 0.995111i \(0.531489\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −3.34886e6 −0.141717
\(891\) 0 0
\(892\) −2.35209e7 −0.989787
\(893\) 7.00536e6 0.293969
\(894\) 0 0
\(895\) 9.60466e6 0.400797
\(896\) 0 0
\(897\) 0 0
\(898\) −7.69126e6 −0.318278
\(899\) 1.75495e7 0.724212
\(900\) 0 0
\(901\) 7.01784e6 0.287999
\(902\) 1.70755e6 0.0698808
\(903\) 0 0
\(904\) 3.97478e6 0.161768
\(905\) −1.41144e7 −0.572848
\(906\) 0 0
\(907\) 2.06126e7 0.831983 0.415991 0.909369i \(-0.363435\pi\)
0.415991 + 0.909369i \(0.363435\pi\)
\(908\) −9.43296e6 −0.379694
\(909\) 0 0
\(910\) 0 0
\(911\) 3.46749e6 0.138427 0.0692133 0.997602i \(-0.477951\pi\)
0.0692133 + 0.997602i \(0.477951\pi\)
\(912\) 0 0
\(913\) 7.04642e6 0.279764
\(914\) −2.74486e7 −1.08681
\(915\) 0 0
\(916\) 1.67255e7 0.658627
\(917\) 0 0
\(918\) 0 0
\(919\) −3.61227e7 −1.41088 −0.705442 0.708767i \(-0.749252\pi\)
−0.705442 + 0.708767i \(0.749252\pi\)
\(920\) −1.59437e6 −0.0621039
\(921\) 0 0
\(922\) −1.18867e7 −0.460504
\(923\) −4.17892e6 −0.161458
\(924\) 0 0
\(925\) 3.11947e7 1.19874
\(926\) −1.94969e7 −0.747203
\(927\) 0 0
\(928\) −2.54976e6 −0.0971917
\(929\) 1.29366e7 0.491792 0.245896 0.969296i \(-0.420918\pi\)
0.245896 + 0.969296i \(0.420918\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −1.04196e7 −0.392925
\(933\) 0 0
\(934\) 3.26920e7 1.22624
\(935\) 342144. 0.0127991
\(936\) 0 0
\(937\) −5.01394e7 −1.86565 −0.932824 0.360332i \(-0.882664\pi\)
−0.932824 + 0.360332i \(0.882664\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 7.91194e6 0.292054
\(941\) −1.05568e7 −0.388651 −0.194325 0.980937i \(-0.562252\pi\)
−0.194325 + 0.980937i \(0.562252\pi\)
\(942\) 0 0
\(943\) 6.71378e6 0.245860
\(944\) 8.76134e6 0.319993
\(945\) 0 0
\(946\) −4.06877e6 −0.147821
\(947\) 3.14684e6 0.114025 0.0570124 0.998373i \(-0.481843\pi\)
0.0570124 + 0.998373i \(0.481843\pi\)
\(948\) 0 0
\(949\) 3.30593e6 0.119159
\(950\) 3.46664e6 0.124623
\(951\) 0 0
\(952\) 0 0
\(953\) −5.22829e7 −1.86478 −0.932389 0.361455i \(-0.882280\pi\)
−0.932389 + 0.361455i \(0.882280\pi\)
\(954\) 0 0
\(955\) −2.25442e7 −0.799883
\(956\) 8.21539e6 0.290726
\(957\) 0 0
\(958\) −9.37589e6 −0.330064
\(959\) 0 0
\(960\) 0 0
\(961\) 2.10452e7 0.735095
\(962\) −4.79730e6 −0.167132
\(963\) 0 0
\(964\) 1.11154e7 0.385242
\(965\) 8.12136e6 0.280744
\(966\) 0 0
\(967\) −2.48235e7 −0.853682 −0.426841 0.904327i \(-0.640374\pi\)
−0.426841 + 0.904327i \(0.640374\pi\)
\(968\) 1.00285e7 0.343991
\(969\) 0 0
\(970\) 1.79155e6 0.0611364
\(971\) 1.33077e7 0.452956 0.226478 0.974016i \(-0.427279\pi\)
0.226478 + 0.974016i \(0.427279\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −1.26771e6 −0.0428177
\(975\) 0 0
\(976\) −9.12742e6 −0.306707
\(977\) −8.17705e6 −0.274069 −0.137035 0.990566i \(-0.543757\pi\)
−0.137035 + 0.990566i \(0.543757\pi\)
\(978\) 0 0
\(979\) −2.30234e6 −0.0767739
\(980\) 0 0
\(981\) 0 0
\(982\) −2.08016e7 −0.688365
\(983\) −1.32465e7 −0.437238 −0.218619 0.975810i \(-0.570155\pi\)
−0.218619 + 0.975810i \(0.570155\pi\)
\(984\) 0 0
\(985\) 5.71061e6 0.187539
\(986\) 2.15136e6 0.0704727
\(987\) 0 0
\(988\) −533120. −0.0173753
\(989\) −1.59977e7 −0.520075
\(990\) 0 0
\(991\) −1.48550e7 −0.480494 −0.240247 0.970712i \(-0.577228\pi\)
−0.240247 + 0.970712i \(0.577228\pi\)
\(992\) −7.21715e6 −0.232856
\(993\) 0 0
\(994\) 0 0
\(995\) −4.90714e6 −0.157134
\(996\) 0 0
\(997\) 3.33769e6 0.106343 0.0531714 0.998585i \(-0.483067\pi\)
0.0531714 + 0.998585i \(0.483067\pi\)
\(998\) 1.94709e7 0.618814
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.6.a.i.1.1 1
3.2 odd 2 294.6.a.i.1.1 1
7.6 odd 2 126.6.a.b.1.1 1
21.2 odd 6 294.6.e.f.67.1 2
21.5 even 6 294.6.e.b.67.1 2
21.11 odd 6 294.6.e.f.79.1 2
21.17 even 6 294.6.e.b.79.1 2
21.20 even 2 42.6.a.f.1.1 1
28.27 even 2 1008.6.a.k.1.1 1
84.83 odd 2 336.6.a.g.1.1 1
105.62 odd 4 1050.6.g.m.799.2 2
105.83 odd 4 1050.6.g.m.799.1 2
105.104 even 2 1050.6.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.a.f.1.1 1 21.20 even 2
126.6.a.b.1.1 1 7.6 odd 2
294.6.a.i.1.1 1 3.2 odd 2
294.6.e.b.67.1 2 21.5 even 6
294.6.e.b.79.1 2 21.17 even 6
294.6.e.f.67.1 2 21.2 odd 6
294.6.e.f.79.1 2 21.11 odd 6
336.6.a.g.1.1 1 84.83 odd 2
882.6.a.i.1.1 1 1.1 even 1 trivial
1008.6.a.k.1.1 1 28.27 even 2
1050.6.a.a.1.1 1 105.104 even 2
1050.6.g.m.799.1 2 105.83 odd 4
1050.6.g.m.799.2 2 105.62 odd 4