Properties

Label 882.6.a.f.1.1
Level $882$
Weight $6$
Character 882.1
Self dual yes
Analytic conductor $141.459$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,6,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.458529075\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 882.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} +16.0000 q^{4} +6.00000 q^{5} -64.0000 q^{8} +O(q^{10})\) \(q-4.00000 q^{2} +16.0000 q^{4} +6.00000 q^{5} -64.0000 q^{8} -24.0000 q^{10} +666.000 q^{11} -559.000 q^{13} +256.000 q^{16} +1740.00 q^{17} +1157.00 q^{19} +96.0000 q^{20} -2664.00 q^{22} +3468.00 q^{23} -3089.00 q^{25} +2236.00 q^{26} -3372.00 q^{29} +6293.00 q^{31} -1024.00 q^{32} -6960.00 q^{34} +3131.00 q^{37} -4628.00 q^{38} -384.000 q^{40} +4866.00 q^{41} -11407.0 q^{43} +10656.0 q^{44} -13872.0 q^{46} -2310.00 q^{47} +12356.0 q^{50} -8944.00 q^{52} +28296.0 q^{53} +3996.00 q^{55} +13488.0 q^{58} -20544.0 q^{59} -4630.00 q^{61} -25172.0 q^{62} +4096.00 q^{64} -3354.00 q^{65} -18745.0 q^{67} +27840.0 q^{68} +38226.0 q^{71} +70589.0 q^{73} -12524.0 q^{74} +18512.0 q^{76} -62293.0 q^{79} +1536.00 q^{80} -19464.0 q^{82} -79818.0 q^{83} +10440.0 q^{85} +45628.0 q^{86} -42624.0 q^{88} +18120.0 q^{89} +55488.0 q^{92} +9240.00 q^{94} +6942.00 q^{95} +124754. q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) 6.00000 0.107331 0.0536656 0.998559i \(-0.482909\pi\)
0.0536656 + 0.998559i \(0.482909\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −64.0000 −0.353553
\(9\) 0 0
\(10\) −24.0000 −0.0758947
\(11\) 666.000 1.65956 0.829779 0.558092i \(-0.188466\pi\)
0.829779 + 0.558092i \(0.188466\pi\)
\(12\) 0 0
\(13\) −559.000 −0.917389 −0.458694 0.888594i \(-0.651683\pi\)
−0.458694 + 0.888594i \(0.651683\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 1740.00 1.46025 0.730125 0.683314i \(-0.239462\pi\)
0.730125 + 0.683314i \(0.239462\pi\)
\(18\) 0 0
\(19\) 1157.00 0.735274 0.367637 0.929969i \(-0.380167\pi\)
0.367637 + 0.929969i \(0.380167\pi\)
\(20\) 96.0000 0.0536656
\(21\) 0 0
\(22\) −2664.00 −1.17348
\(23\) 3468.00 1.36697 0.683486 0.729964i \(-0.260463\pi\)
0.683486 + 0.729964i \(0.260463\pi\)
\(24\) 0 0
\(25\) −3089.00 −0.988480
\(26\) 2236.00 0.648692
\(27\) 0 0
\(28\) 0 0
\(29\) −3372.00 −0.744548 −0.372274 0.928123i \(-0.621422\pi\)
−0.372274 + 0.928123i \(0.621422\pi\)
\(30\) 0 0
\(31\) 6293.00 1.17613 0.588063 0.808815i \(-0.299891\pi\)
0.588063 + 0.808815i \(0.299891\pi\)
\(32\) −1024.00 −0.176777
\(33\) 0 0
\(34\) −6960.00 −1.03255
\(35\) 0 0
\(36\) 0 0
\(37\) 3131.00 0.375992 0.187996 0.982170i \(-0.439801\pi\)
0.187996 + 0.982170i \(0.439801\pi\)
\(38\) −4628.00 −0.519917
\(39\) 0 0
\(40\) −384.000 −0.0379473
\(41\) 4866.00 0.452077 0.226039 0.974118i \(-0.427422\pi\)
0.226039 + 0.974118i \(0.427422\pi\)
\(42\) 0 0
\(43\) −11407.0 −0.940806 −0.470403 0.882452i \(-0.655892\pi\)
−0.470403 + 0.882452i \(0.655892\pi\)
\(44\) 10656.0 0.829779
\(45\) 0 0
\(46\) −13872.0 −0.966595
\(47\) −2310.00 −0.152534 −0.0762671 0.997087i \(-0.524300\pi\)
−0.0762671 + 0.997087i \(0.524300\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 12356.0 0.698961
\(51\) 0 0
\(52\) −8944.00 −0.458694
\(53\) 28296.0 1.38368 0.691840 0.722051i \(-0.256801\pi\)
0.691840 + 0.722051i \(0.256801\pi\)
\(54\) 0 0
\(55\) 3996.00 0.178122
\(56\) 0 0
\(57\) 0 0
\(58\) 13488.0 0.526475
\(59\) −20544.0 −0.768343 −0.384171 0.923262i \(-0.625513\pi\)
−0.384171 + 0.923262i \(0.625513\pi\)
\(60\) 0 0
\(61\) −4630.00 −0.159315 −0.0796575 0.996822i \(-0.525383\pi\)
−0.0796575 + 0.996822i \(0.525383\pi\)
\(62\) −25172.0 −0.831646
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) −3354.00 −0.0984645
\(66\) 0 0
\(67\) −18745.0 −0.510151 −0.255075 0.966921i \(-0.582100\pi\)
−0.255075 + 0.966921i \(0.582100\pi\)
\(68\) 27840.0 0.730125
\(69\) 0 0
\(70\) 0 0
\(71\) 38226.0 0.899939 0.449969 0.893044i \(-0.351435\pi\)
0.449969 + 0.893044i \(0.351435\pi\)
\(72\) 0 0
\(73\) 70589.0 1.55035 0.775175 0.631746i \(-0.217662\pi\)
0.775175 + 0.631746i \(0.217662\pi\)
\(74\) −12524.0 −0.265867
\(75\) 0 0
\(76\) 18512.0 0.367637
\(77\) 0 0
\(78\) 0 0
\(79\) −62293.0 −1.12298 −0.561489 0.827484i \(-0.689771\pi\)
−0.561489 + 0.827484i \(0.689771\pi\)
\(80\) 1536.00 0.0268328
\(81\) 0 0
\(82\) −19464.0 −0.319667
\(83\) −79818.0 −1.27176 −0.635881 0.771787i \(-0.719363\pi\)
−0.635881 + 0.771787i \(0.719363\pi\)
\(84\) 0 0
\(85\) 10440.0 0.156730
\(86\) 45628.0 0.665251
\(87\) 0 0
\(88\) −42624.0 −0.586742
\(89\) 18120.0 0.242484 0.121242 0.992623i \(-0.461312\pi\)
0.121242 + 0.992623i \(0.461312\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 55488.0 0.683486
\(93\) 0 0
\(94\) 9240.00 0.107858
\(95\) 6942.00 0.0789179
\(96\) 0 0
\(97\) 124754. 1.34625 0.673124 0.739530i \(-0.264952\pi\)
0.673124 + 0.739530i \(0.264952\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −49424.0 −0.494240
\(101\) 93390.0 0.910955 0.455478 0.890247i \(-0.349469\pi\)
0.455478 + 0.890247i \(0.349469\pi\)
\(102\) 0 0
\(103\) −167731. −1.55783 −0.778915 0.627129i \(-0.784230\pi\)
−0.778915 + 0.627129i \(0.784230\pi\)
\(104\) 35776.0 0.324346
\(105\) 0 0
\(106\) −113184. −0.978409
\(107\) −69180.0 −0.584146 −0.292073 0.956396i \(-0.594345\pi\)
−0.292073 + 0.956396i \(0.594345\pi\)
\(108\) 0 0
\(109\) −219559. −1.77005 −0.885024 0.465546i \(-0.845858\pi\)
−0.885024 + 0.465546i \(0.845858\pi\)
\(110\) −15984.0 −0.125952
\(111\) 0 0
\(112\) 0 0
\(113\) 39354.0 0.289930 0.144965 0.989437i \(-0.453693\pi\)
0.144965 + 0.989437i \(0.453693\pi\)
\(114\) 0 0
\(115\) 20808.0 0.146719
\(116\) −53952.0 −0.372274
\(117\) 0 0
\(118\) 82176.0 0.543300
\(119\) 0 0
\(120\) 0 0
\(121\) 282505. 1.75413
\(122\) 18520.0 0.112653
\(123\) 0 0
\(124\) 100688. 0.588063
\(125\) −37284.0 −0.213426
\(126\) 0 0
\(127\) 317093. 1.74453 0.872263 0.489037i \(-0.162652\pi\)
0.872263 + 0.489037i \(0.162652\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 0 0
\(130\) 13416.0 0.0696249
\(131\) 154830. 0.788273 0.394137 0.919052i \(-0.371044\pi\)
0.394137 + 0.919052i \(0.371044\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 74980.0 0.360731
\(135\) 0 0
\(136\) −111360. −0.516276
\(137\) −67332.0 −0.306493 −0.153246 0.988188i \(-0.548973\pi\)
−0.153246 + 0.988188i \(0.548973\pi\)
\(138\) 0 0
\(139\) −365215. −1.60329 −0.801644 0.597802i \(-0.796041\pi\)
−0.801644 + 0.597802i \(0.796041\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −152904. −0.636353
\(143\) −372294. −1.52246
\(144\) 0 0
\(145\) −20232.0 −0.0799133
\(146\) −282356. −1.09626
\(147\) 0 0
\(148\) 50096.0 0.187996
\(149\) 168060. 0.620153 0.310076 0.950712i \(-0.399645\pi\)
0.310076 + 0.950712i \(0.399645\pi\)
\(150\) 0 0
\(151\) 153536. 0.547984 0.273992 0.961732i \(-0.411656\pi\)
0.273992 + 0.961732i \(0.411656\pi\)
\(152\) −74048.0 −0.259959
\(153\) 0 0
\(154\) 0 0
\(155\) 37758.0 0.126235
\(156\) 0 0
\(157\) 202418. 0.655390 0.327695 0.944784i \(-0.393728\pi\)
0.327695 + 0.944784i \(0.393728\pi\)
\(158\) 249172. 0.794066
\(159\) 0 0
\(160\) −6144.00 −0.0189737
\(161\) 0 0
\(162\) 0 0
\(163\) −179764. −0.529949 −0.264974 0.964255i \(-0.585363\pi\)
−0.264974 + 0.964255i \(0.585363\pi\)
\(164\) 77856.0 0.226039
\(165\) 0 0
\(166\) 319272. 0.899271
\(167\) −217302. −0.602938 −0.301469 0.953476i \(-0.597477\pi\)
−0.301469 + 0.953476i \(0.597477\pi\)
\(168\) 0 0
\(169\) −58812.0 −0.158398
\(170\) −41760.0 −0.110825
\(171\) 0 0
\(172\) −182512. −0.470403
\(173\) 73980.0 0.187931 0.0939656 0.995575i \(-0.470046\pi\)
0.0939656 + 0.995575i \(0.470046\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 170496. 0.414890
\(177\) 0 0
\(178\) −72480.0 −0.171462
\(179\) −789366. −1.84139 −0.920695 0.390283i \(-0.872377\pi\)
−0.920695 + 0.390283i \(0.872377\pi\)
\(180\) 0 0
\(181\) −477739. −1.08391 −0.541956 0.840407i \(-0.682316\pi\)
−0.541956 + 0.840407i \(0.682316\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −221952. −0.483297
\(185\) 18786.0 0.0403557
\(186\) 0 0
\(187\) 1.15884e6 2.42337
\(188\) −36960.0 −0.0762671
\(189\) 0 0
\(190\) −27768.0 −0.0558034
\(191\) −358974. −0.711999 −0.356000 0.934486i \(-0.615860\pi\)
−0.356000 + 0.934486i \(0.615860\pi\)
\(192\) 0 0
\(193\) −181933. −0.351575 −0.175788 0.984428i \(-0.556247\pi\)
−0.175788 + 0.984428i \(0.556247\pi\)
\(194\) −499016. −0.951941
\(195\) 0 0
\(196\) 0 0
\(197\) −717924. −1.31799 −0.658996 0.752146i \(-0.729019\pi\)
−0.658996 + 0.752146i \(0.729019\pi\)
\(198\) 0 0
\(199\) 203096. 0.363554 0.181777 0.983340i \(-0.441815\pi\)
0.181777 + 0.983340i \(0.441815\pi\)
\(200\) 197696. 0.349480
\(201\) 0 0
\(202\) −373560. −0.644142
\(203\) 0 0
\(204\) 0 0
\(205\) 29196.0 0.0485220
\(206\) 670924. 1.10155
\(207\) 0 0
\(208\) −143104. −0.229347
\(209\) 770562. 1.22023
\(210\) 0 0
\(211\) 1.17098e6 1.81069 0.905343 0.424680i \(-0.139613\pi\)
0.905343 + 0.424680i \(0.139613\pi\)
\(212\) 452736. 0.691840
\(213\) 0 0
\(214\) 276720. 0.413053
\(215\) −68442.0 −0.100978
\(216\) 0 0
\(217\) 0 0
\(218\) 878236. 1.25161
\(219\) 0 0
\(220\) 63936.0 0.0890612
\(221\) −972660. −1.33962
\(222\) 0 0
\(223\) 1.24635e6 1.67833 0.839167 0.543873i \(-0.183043\pi\)
0.839167 + 0.543873i \(0.183043\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −157416. −0.205011
\(227\) 918942. 1.18365 0.591825 0.806066i \(-0.298408\pi\)
0.591825 + 0.806066i \(0.298408\pi\)
\(228\) 0 0
\(229\) 1.20375e6 1.51687 0.758433 0.651751i \(-0.225965\pi\)
0.758433 + 0.651751i \(0.225965\pi\)
\(230\) −83232.0 −0.103746
\(231\) 0 0
\(232\) 215808. 0.263237
\(233\) 919062. 1.10906 0.554530 0.832164i \(-0.312898\pi\)
0.554530 + 0.832164i \(0.312898\pi\)
\(234\) 0 0
\(235\) −13860.0 −0.0163717
\(236\) −328704. −0.384171
\(237\) 0 0
\(238\) 0 0
\(239\) 625338. 0.708142 0.354071 0.935219i \(-0.384797\pi\)
0.354071 + 0.935219i \(0.384797\pi\)
\(240\) 0 0
\(241\) 1.25382e6 1.39057 0.695286 0.718733i \(-0.255278\pi\)
0.695286 + 0.718733i \(0.255278\pi\)
\(242\) −1.13002e6 −1.24036
\(243\) 0 0
\(244\) −74080.0 −0.0796575
\(245\) 0 0
\(246\) 0 0
\(247\) −646763. −0.674532
\(248\) −402752. −0.415823
\(249\) 0 0
\(250\) 149136. 0.150915
\(251\) 1.51333e6 1.51618 0.758089 0.652152i \(-0.226133\pi\)
0.758089 + 0.652152i \(0.226133\pi\)
\(252\) 0 0
\(253\) 2.30969e6 2.26857
\(254\) −1.26837e6 −1.23357
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 1.55493e6 1.46851 0.734257 0.678872i \(-0.237531\pi\)
0.734257 + 0.678872i \(0.237531\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −53664.0 −0.0492322
\(261\) 0 0
\(262\) −619320. −0.557393
\(263\) 1.11532e6 0.994280 0.497140 0.867670i \(-0.334384\pi\)
0.497140 + 0.867670i \(0.334384\pi\)
\(264\) 0 0
\(265\) 169776. 0.148512
\(266\) 0 0
\(267\) 0 0
\(268\) −299920. −0.255075
\(269\) −35670.0 −0.0300554 −0.0150277 0.999887i \(-0.504784\pi\)
−0.0150277 + 0.999887i \(0.504784\pi\)
\(270\) 0 0
\(271\) −292768. −0.242159 −0.121079 0.992643i \(-0.538636\pi\)
−0.121079 + 0.992643i \(0.538636\pi\)
\(272\) 445440. 0.365062
\(273\) 0 0
\(274\) 269328. 0.216723
\(275\) −2.05727e6 −1.64044
\(276\) 0 0
\(277\) 863213. 0.675956 0.337978 0.941154i \(-0.390257\pi\)
0.337978 + 0.941154i \(0.390257\pi\)
\(278\) 1.46086e6 1.13370
\(279\) 0 0
\(280\) 0 0
\(281\) −1.47110e6 −1.11142 −0.555709 0.831377i \(-0.687553\pi\)
−0.555709 + 0.831377i \(0.687553\pi\)
\(282\) 0 0
\(283\) 688841. 0.511273 0.255637 0.966773i \(-0.417715\pi\)
0.255637 + 0.966773i \(0.417715\pi\)
\(284\) 611616. 0.449969
\(285\) 0 0
\(286\) 1.48918e6 1.07654
\(287\) 0 0
\(288\) 0 0
\(289\) 1.60774e6 1.13233
\(290\) 80928.0 0.0565072
\(291\) 0 0
\(292\) 1.12942e6 0.775175
\(293\) −722832. −0.491890 −0.245945 0.969284i \(-0.579098\pi\)
−0.245945 + 0.969284i \(0.579098\pi\)
\(294\) 0 0
\(295\) −123264. −0.0824672
\(296\) −200384. −0.132933
\(297\) 0 0
\(298\) −672240. −0.438514
\(299\) −1.93861e6 −1.25404
\(300\) 0 0
\(301\) 0 0
\(302\) −614144. −0.387483
\(303\) 0 0
\(304\) 296192. 0.183819
\(305\) −27780.0 −0.0170995
\(306\) 0 0
\(307\) −20125.0 −0.0121868 −0.00609340 0.999981i \(-0.501940\pi\)
−0.00609340 + 0.999981i \(0.501940\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −151032. −0.0892616
\(311\) 1.74356e6 1.02220 0.511099 0.859522i \(-0.329238\pi\)
0.511099 + 0.859522i \(0.329238\pi\)
\(312\) 0 0
\(313\) 1.80854e6 1.04344 0.521721 0.853116i \(-0.325290\pi\)
0.521721 + 0.853116i \(0.325290\pi\)
\(314\) −809672. −0.463431
\(315\) 0 0
\(316\) −996688. −0.561489
\(317\) −1.02355e6 −0.572087 −0.286043 0.958217i \(-0.592340\pi\)
−0.286043 + 0.958217i \(0.592340\pi\)
\(318\) 0 0
\(319\) −2.24575e6 −1.23562
\(320\) 24576.0 0.0134164
\(321\) 0 0
\(322\) 0 0
\(323\) 2.01318e6 1.07368
\(324\) 0 0
\(325\) 1.72675e6 0.906820
\(326\) 719056. 0.374730
\(327\) 0 0
\(328\) −311424. −0.159833
\(329\) 0 0
\(330\) 0 0
\(331\) −1.00753e6 −0.505463 −0.252731 0.967536i \(-0.581329\pi\)
−0.252731 + 0.967536i \(0.581329\pi\)
\(332\) −1.27709e6 −0.635881
\(333\) 0 0
\(334\) 869208. 0.426341
\(335\) −112470. −0.0547551
\(336\) 0 0
\(337\) −1.56571e6 −0.750993 −0.375496 0.926824i \(-0.622528\pi\)
−0.375496 + 0.926824i \(0.622528\pi\)
\(338\) 235248. 0.112004
\(339\) 0 0
\(340\) 167040. 0.0783652
\(341\) 4.19114e6 1.95185
\(342\) 0 0
\(343\) 0 0
\(344\) 730048. 0.332625
\(345\) 0 0
\(346\) −295920. −0.132887
\(347\) −757284. −0.337625 −0.168813 0.985648i \(-0.553993\pi\)
−0.168813 + 0.985648i \(0.553993\pi\)
\(348\) 0 0
\(349\) −455638. −0.200243 −0.100121 0.994975i \(-0.531923\pi\)
−0.100121 + 0.994975i \(0.531923\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −681984. −0.293371
\(353\) 3.63139e6 1.55109 0.775543 0.631295i \(-0.217476\pi\)
0.775543 + 0.631295i \(0.217476\pi\)
\(354\) 0 0
\(355\) 229356. 0.0965916
\(356\) 289920. 0.121242
\(357\) 0 0
\(358\) 3.15746e6 1.30206
\(359\) 4.02484e6 1.64821 0.824104 0.566438i \(-0.191679\pi\)
0.824104 + 0.566438i \(0.191679\pi\)
\(360\) 0 0
\(361\) −1.13745e6 −0.459372
\(362\) 1.91096e6 0.766442
\(363\) 0 0
\(364\) 0 0
\(365\) 423534. 0.166401
\(366\) 0 0
\(367\) 2.57787e6 0.999072 0.499536 0.866293i \(-0.333504\pi\)
0.499536 + 0.866293i \(0.333504\pi\)
\(368\) 887808. 0.341743
\(369\) 0 0
\(370\) −75144.0 −0.0285358
\(371\) 0 0
\(372\) 0 0
\(373\) −2.53133e6 −0.942056 −0.471028 0.882118i \(-0.656117\pi\)
−0.471028 + 0.882118i \(0.656117\pi\)
\(374\) −4.63536e6 −1.71358
\(375\) 0 0
\(376\) 147840. 0.0539290
\(377\) 1.88495e6 0.683040
\(378\) 0 0
\(379\) −3.06677e6 −1.09669 −0.548344 0.836253i \(-0.684742\pi\)
−0.548344 + 0.836253i \(0.684742\pi\)
\(380\) 111072. 0.0394590
\(381\) 0 0
\(382\) 1.43590e6 0.503460
\(383\) 3.92520e6 1.36730 0.683652 0.729808i \(-0.260391\pi\)
0.683652 + 0.729808i \(0.260391\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 727732. 0.248601
\(387\) 0 0
\(388\) 1.99606e6 0.673124
\(389\) 4.02669e6 1.34919 0.674597 0.738187i \(-0.264318\pi\)
0.674597 + 0.738187i \(0.264318\pi\)
\(390\) 0 0
\(391\) 6.03432e6 1.99612
\(392\) 0 0
\(393\) 0 0
\(394\) 2.87170e6 0.931961
\(395\) −373758. −0.120531
\(396\) 0 0
\(397\) 4.57440e6 1.45666 0.728329 0.685227i \(-0.240297\pi\)
0.728329 + 0.685227i \(0.240297\pi\)
\(398\) −812384. −0.257071
\(399\) 0 0
\(400\) −790784. −0.247120
\(401\) 2.26944e6 0.704787 0.352393 0.935852i \(-0.385368\pi\)
0.352393 + 0.935852i \(0.385368\pi\)
\(402\) 0 0
\(403\) −3.51779e6 −1.07896
\(404\) 1.49424e6 0.455478
\(405\) 0 0
\(406\) 0 0
\(407\) 2.08525e6 0.623981
\(408\) 0 0
\(409\) −4.04596e6 −1.19595 −0.597976 0.801514i \(-0.704028\pi\)
−0.597976 + 0.801514i \(0.704028\pi\)
\(410\) −116784. −0.0343102
\(411\) 0 0
\(412\) −2.68370e6 −0.778915
\(413\) 0 0
\(414\) 0 0
\(415\) −478908. −0.136500
\(416\) 572416. 0.162173
\(417\) 0 0
\(418\) −3.08225e6 −0.862833
\(419\) 3.91281e6 1.08881 0.544407 0.838821i \(-0.316755\pi\)
0.544407 + 0.838821i \(0.316755\pi\)
\(420\) 0 0
\(421\) −2.78086e6 −0.764671 −0.382335 0.924024i \(-0.624880\pi\)
−0.382335 + 0.924024i \(0.624880\pi\)
\(422\) −4.68392e6 −1.28035
\(423\) 0 0
\(424\) −1.81094e6 −0.489204
\(425\) −5.37486e6 −1.44343
\(426\) 0 0
\(427\) 0 0
\(428\) −1.10688e6 −0.292073
\(429\) 0 0
\(430\) 273768. 0.0714022
\(431\) 4.38207e6 1.13628 0.568141 0.822931i \(-0.307663\pi\)
0.568141 + 0.822931i \(0.307663\pi\)
\(432\) 0 0
\(433\) 1.24946e6 0.320261 0.160130 0.987096i \(-0.448809\pi\)
0.160130 + 0.987096i \(0.448809\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −3.51294e6 −0.885024
\(437\) 4.01248e6 1.00510
\(438\) 0 0
\(439\) −6.74421e6 −1.67020 −0.835102 0.550095i \(-0.814592\pi\)
−0.835102 + 0.550095i \(0.814592\pi\)
\(440\) −255744. −0.0629758
\(441\) 0 0
\(442\) 3.89064e6 0.947252
\(443\) −478896. −0.115940 −0.0579698 0.998318i \(-0.518463\pi\)
−0.0579698 + 0.998318i \(0.518463\pi\)
\(444\) 0 0
\(445\) 108720. 0.0260261
\(446\) −4.98541e6 −1.18676
\(447\) 0 0
\(448\) 0 0
\(449\) −724506. −0.169600 −0.0848001 0.996398i \(-0.527025\pi\)
−0.0848001 + 0.996398i \(0.527025\pi\)
\(450\) 0 0
\(451\) 3.24076e6 0.750248
\(452\) 629664. 0.144965
\(453\) 0 0
\(454\) −3.67577e6 −0.836967
\(455\) 0 0
\(456\) 0 0
\(457\) −2.33956e6 −0.524016 −0.262008 0.965066i \(-0.584385\pi\)
−0.262008 + 0.965066i \(0.584385\pi\)
\(458\) −4.81500e6 −1.07259
\(459\) 0 0
\(460\) 332928. 0.0733594
\(461\) −2.98247e6 −0.653617 −0.326809 0.945091i \(-0.605973\pi\)
−0.326809 + 0.945091i \(0.605973\pi\)
\(462\) 0 0
\(463\) 4.28423e6 0.928795 0.464398 0.885627i \(-0.346271\pi\)
0.464398 + 0.885627i \(0.346271\pi\)
\(464\) −863232. −0.186137
\(465\) 0 0
\(466\) −3.67625e6 −0.784224
\(467\) 5.74035e6 1.21800 0.608998 0.793171i \(-0.291572\pi\)
0.608998 + 0.793171i \(0.291572\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 55440.0 0.0115765
\(471\) 0 0
\(472\) 1.31482e6 0.271650
\(473\) −7.59706e6 −1.56132
\(474\) 0 0
\(475\) −3.57397e6 −0.726804
\(476\) 0 0
\(477\) 0 0
\(478\) −2.50135e6 −0.500732
\(479\) −2.65051e6 −0.527826 −0.263913 0.964546i \(-0.585013\pi\)
−0.263913 + 0.964546i \(0.585013\pi\)
\(480\) 0 0
\(481\) −1.75023e6 −0.344931
\(482\) −5.01529e6 −0.983282
\(483\) 0 0
\(484\) 4.52008e6 0.877067
\(485\) 748524. 0.144495
\(486\) 0 0
\(487\) 2.80554e6 0.536036 0.268018 0.963414i \(-0.413631\pi\)
0.268018 + 0.963414i \(0.413631\pi\)
\(488\) 296320. 0.0563263
\(489\) 0 0
\(490\) 0 0
\(491\) 4.68450e6 0.876919 0.438460 0.898751i \(-0.355524\pi\)
0.438460 + 0.898751i \(0.355524\pi\)
\(492\) 0 0
\(493\) −5.86728e6 −1.08723
\(494\) 2.58705e6 0.476966
\(495\) 0 0
\(496\) 1.61101e6 0.294031
\(497\) 0 0
\(498\) 0 0
\(499\) 1.47575e6 0.265315 0.132658 0.991162i \(-0.457649\pi\)
0.132658 + 0.991162i \(0.457649\pi\)
\(500\) −596544. −0.106713
\(501\) 0 0
\(502\) −6.05333e6 −1.07210
\(503\) −63606.0 −0.0112093 −0.00560465 0.999984i \(-0.501784\pi\)
−0.00560465 + 0.999984i \(0.501784\pi\)
\(504\) 0 0
\(505\) 560340. 0.0977740
\(506\) −9.23875e6 −1.60412
\(507\) 0 0
\(508\) 5.07349e6 0.872263
\(509\) −6.21157e6 −1.06269 −0.531345 0.847155i \(-0.678313\pi\)
−0.531345 + 0.847155i \(0.678313\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −262144. −0.0441942
\(513\) 0 0
\(514\) −6.21972e6 −1.03840
\(515\) −1.00639e6 −0.167204
\(516\) 0 0
\(517\) −1.53846e6 −0.253139
\(518\) 0 0
\(519\) 0 0
\(520\) 214656. 0.0348125
\(521\) −1.41205e6 −0.227906 −0.113953 0.993486i \(-0.536351\pi\)
−0.113953 + 0.993486i \(0.536351\pi\)
\(522\) 0 0
\(523\) 5.22935e6 0.835975 0.417987 0.908453i \(-0.362736\pi\)
0.417987 + 0.908453i \(0.362736\pi\)
\(524\) 2.47728e6 0.394137
\(525\) 0 0
\(526\) −4.46126e6 −0.703062
\(527\) 1.09498e7 1.71744
\(528\) 0 0
\(529\) 5.59068e6 0.868611
\(530\) −679104. −0.105014
\(531\) 0 0
\(532\) 0 0
\(533\) −2.72009e6 −0.414730
\(534\) 0 0
\(535\) −415080. −0.0626971
\(536\) 1.19968e6 0.180365
\(537\) 0 0
\(538\) 142680. 0.0212524
\(539\) 0 0
\(540\) 0 0
\(541\) 4.41372e6 0.648354 0.324177 0.945996i \(-0.394913\pi\)
0.324177 + 0.945996i \(0.394913\pi\)
\(542\) 1.17107e6 0.171232
\(543\) 0 0
\(544\) −1.78176e6 −0.258138
\(545\) −1.31735e6 −0.189981
\(546\) 0 0
\(547\) −1.19038e7 −1.70105 −0.850523 0.525938i \(-0.823714\pi\)
−0.850523 + 0.525938i \(0.823714\pi\)
\(548\) −1.07731e6 −0.153246
\(549\) 0 0
\(550\) 8.22910e6 1.15997
\(551\) −3.90140e6 −0.547447
\(552\) 0 0
\(553\) 0 0
\(554\) −3.45285e6 −0.477973
\(555\) 0 0
\(556\) −5.84344e6 −0.801644
\(557\) −1.29133e7 −1.76360 −0.881798 0.471626i \(-0.843667\pi\)
−0.881798 + 0.471626i \(0.843667\pi\)
\(558\) 0 0
\(559\) 6.37651e6 0.863085
\(560\) 0 0
\(561\) 0 0
\(562\) 5.88442e6 0.785891
\(563\) 1.13698e7 1.51176 0.755881 0.654709i \(-0.227209\pi\)
0.755881 + 0.654709i \(0.227209\pi\)
\(564\) 0 0
\(565\) 236124. 0.0311185
\(566\) −2.75536e6 −0.361525
\(567\) 0 0
\(568\) −2.44646e6 −0.318176
\(569\) 5.69795e6 0.737799 0.368900 0.929469i \(-0.379735\pi\)
0.368900 + 0.929469i \(0.379735\pi\)
\(570\) 0 0
\(571\) −7.04221e6 −0.903896 −0.451948 0.892044i \(-0.649271\pi\)
−0.451948 + 0.892044i \(0.649271\pi\)
\(572\) −5.95670e6 −0.761230
\(573\) 0 0
\(574\) 0 0
\(575\) −1.07127e7 −1.35122
\(576\) 0 0
\(577\) −2.58197e6 −0.322858 −0.161429 0.986884i \(-0.551610\pi\)
−0.161429 + 0.986884i \(0.551610\pi\)
\(578\) −6.43097e6 −0.800676
\(579\) 0 0
\(580\) −323712. −0.0399566
\(581\) 0 0
\(582\) 0 0
\(583\) 1.88451e7 2.29630
\(584\) −4.51770e6 −0.548132
\(585\) 0 0
\(586\) 2.89133e6 0.347819
\(587\) −4.69459e6 −0.562345 −0.281172 0.959657i \(-0.590723\pi\)
−0.281172 + 0.959657i \(0.590723\pi\)
\(588\) 0 0
\(589\) 7.28100e6 0.864774
\(590\) 493056. 0.0583131
\(591\) 0 0
\(592\) 801536. 0.0939980
\(593\) −1.34235e7 −1.56758 −0.783789 0.621027i \(-0.786716\pi\)
−0.783789 + 0.621027i \(0.786716\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 2.68896e6 0.310076
\(597\) 0 0
\(598\) 7.75445e6 0.886743
\(599\) −5.04601e6 −0.574621 −0.287310 0.957838i \(-0.592761\pi\)
−0.287310 + 0.957838i \(0.592761\pi\)
\(600\) 0 0
\(601\) −1.06391e7 −1.20148 −0.600742 0.799443i \(-0.705128\pi\)
−0.600742 + 0.799443i \(0.705128\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 2.45658e6 0.273992
\(605\) 1.69503e6 0.188273
\(606\) 0 0
\(607\) 1.41608e6 0.155997 0.0779986 0.996953i \(-0.475147\pi\)
0.0779986 + 0.996953i \(0.475147\pi\)
\(608\) −1.18477e6 −0.129979
\(609\) 0 0
\(610\) 111120. 0.0120912
\(611\) 1.29129e6 0.139933
\(612\) 0 0
\(613\) 9.46303e6 1.01714 0.508568 0.861022i \(-0.330175\pi\)
0.508568 + 0.861022i \(0.330175\pi\)
\(614\) 80500.0 0.00861737
\(615\) 0 0
\(616\) 0 0
\(617\) −1.29388e7 −1.36830 −0.684148 0.729343i \(-0.739826\pi\)
−0.684148 + 0.729343i \(0.739826\pi\)
\(618\) 0 0
\(619\) −3.80376e6 −0.399013 −0.199506 0.979897i \(-0.563934\pi\)
−0.199506 + 0.979897i \(0.563934\pi\)
\(620\) 604128. 0.0631175
\(621\) 0 0
\(622\) −6.97423e6 −0.722804
\(623\) 0 0
\(624\) 0 0
\(625\) 9.42942e6 0.965573
\(626\) −7.23417e6 −0.737824
\(627\) 0 0
\(628\) 3.23869e6 0.327695
\(629\) 5.44794e6 0.549042
\(630\) 0 0
\(631\) −9.17498e6 −0.917343 −0.458671 0.888606i \(-0.651674\pi\)
−0.458671 + 0.888606i \(0.651674\pi\)
\(632\) 3.98675e6 0.397033
\(633\) 0 0
\(634\) 4.09421e6 0.404526
\(635\) 1.90256e6 0.187242
\(636\) 0 0
\(637\) 0 0
\(638\) 8.98301e6 0.873716
\(639\) 0 0
\(640\) −98304.0 −0.00948683
\(641\) −1.02454e7 −0.984879 −0.492439 0.870347i \(-0.663895\pi\)
−0.492439 + 0.870347i \(0.663895\pi\)
\(642\) 0 0
\(643\) −5.72346e6 −0.545922 −0.272961 0.962025i \(-0.588003\pi\)
−0.272961 + 0.962025i \(0.588003\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −8.05272e6 −0.759209
\(647\) 9.98794e6 0.938027 0.469013 0.883191i \(-0.344610\pi\)
0.469013 + 0.883191i \(0.344610\pi\)
\(648\) 0 0
\(649\) −1.36823e7 −1.27511
\(650\) −6.90700e6 −0.641219
\(651\) 0 0
\(652\) −2.87622e6 −0.264974
\(653\) 1.19888e6 0.110025 0.0550126 0.998486i \(-0.482480\pi\)
0.0550126 + 0.998486i \(0.482480\pi\)
\(654\) 0 0
\(655\) 928980. 0.0846064
\(656\) 1.24570e6 0.113019
\(657\) 0 0
\(658\) 0 0
\(659\) −1.18065e7 −1.05903 −0.529516 0.848300i \(-0.677626\pi\)
−0.529516 + 0.848300i \(0.677626\pi\)
\(660\) 0 0
\(661\) 4.72039e6 0.420218 0.210109 0.977678i \(-0.432618\pi\)
0.210109 + 0.977678i \(0.432618\pi\)
\(662\) 4.03013e6 0.357416
\(663\) 0 0
\(664\) 5.10835e6 0.449636
\(665\) 0 0
\(666\) 0 0
\(667\) −1.16941e7 −1.01778
\(668\) −3.47683e6 −0.301469
\(669\) 0 0
\(670\) 449880. 0.0387177
\(671\) −3.08358e6 −0.264392
\(672\) 0 0
\(673\) −8.70826e6 −0.741129 −0.370564 0.928807i \(-0.620836\pi\)
−0.370564 + 0.928807i \(0.620836\pi\)
\(674\) 6.26283e6 0.531032
\(675\) 0 0
\(676\) −940992. −0.0791989
\(677\) −5.11105e6 −0.428587 −0.214293 0.976769i \(-0.568745\pi\)
−0.214293 + 0.976769i \(0.568745\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −668160. −0.0554126
\(681\) 0 0
\(682\) −1.67646e7 −1.38017
\(683\) 1.77198e7 1.45347 0.726736 0.686917i \(-0.241037\pi\)
0.726736 + 0.686917i \(0.241037\pi\)
\(684\) 0 0
\(685\) −403992. −0.0328962
\(686\) 0 0
\(687\) 0 0
\(688\) −2.92019e6 −0.235202
\(689\) −1.58175e7 −1.26937
\(690\) 0 0
\(691\) −2.25993e7 −1.80053 −0.900265 0.435341i \(-0.856628\pi\)
−0.900265 + 0.435341i \(0.856628\pi\)
\(692\) 1.18368e6 0.0939656
\(693\) 0 0
\(694\) 3.02914e6 0.238737
\(695\) −2.19129e6 −0.172083
\(696\) 0 0
\(697\) 8.46684e6 0.660145
\(698\) 1.82255e6 0.141593
\(699\) 0 0
\(700\) 0 0
\(701\) 818148. 0.0628835 0.0314418 0.999506i \(-0.489990\pi\)
0.0314418 + 0.999506i \(0.489990\pi\)
\(702\) 0 0
\(703\) 3.62257e6 0.276457
\(704\) 2.72794e6 0.207445
\(705\) 0 0
\(706\) −1.45255e7 −1.09678
\(707\) 0 0
\(708\) 0 0
\(709\) −5.09183e6 −0.380415 −0.190208 0.981744i \(-0.560916\pi\)
−0.190208 + 0.981744i \(0.560916\pi\)
\(710\) −917424. −0.0683006
\(711\) 0 0
\(712\) −1.15968e6 −0.0857311
\(713\) 2.18241e7 1.60773
\(714\) 0 0
\(715\) −2.23376e6 −0.163408
\(716\) −1.26299e7 −0.920695
\(717\) 0 0
\(718\) −1.60993e7 −1.16546
\(719\) 480858. 0.0346892 0.0173446 0.999850i \(-0.494479\pi\)
0.0173446 + 0.999850i \(0.494479\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 4.54980e6 0.324825
\(723\) 0 0
\(724\) −7.64382e6 −0.541956
\(725\) 1.04161e7 0.735971
\(726\) 0 0
\(727\) −1.40783e7 −0.987905 −0.493952 0.869489i \(-0.664448\pi\)
−0.493952 + 0.869489i \(0.664448\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −1.69414e6 −0.117663
\(731\) −1.98482e7 −1.37381
\(732\) 0 0
\(733\) 2.03932e6 0.140193 0.0700964 0.997540i \(-0.477669\pi\)
0.0700964 + 0.997540i \(0.477669\pi\)
\(734\) −1.03115e7 −0.706450
\(735\) 0 0
\(736\) −3.55123e6 −0.241649
\(737\) −1.24842e7 −0.846625
\(738\) 0 0
\(739\) −1.64957e7 −1.11112 −0.555558 0.831478i \(-0.687495\pi\)
−0.555558 + 0.831478i \(0.687495\pi\)
\(740\) 300576. 0.0201779
\(741\) 0 0
\(742\) 0 0
\(743\) 2.38121e7 1.58243 0.791217 0.611536i \(-0.209448\pi\)
0.791217 + 0.611536i \(0.209448\pi\)
\(744\) 0 0
\(745\) 1.00836e6 0.0665618
\(746\) 1.01253e7 0.666134
\(747\) 0 0
\(748\) 1.85414e7 1.21168
\(749\) 0 0
\(750\) 0 0
\(751\) 1.92496e6 0.124544 0.0622719 0.998059i \(-0.480165\pi\)
0.0622719 + 0.998059i \(0.480165\pi\)
\(752\) −591360. −0.0381336
\(753\) 0 0
\(754\) −7.53979e6 −0.482982
\(755\) 921216. 0.0588158
\(756\) 0 0
\(757\) 8.98092e6 0.569615 0.284807 0.958585i \(-0.408070\pi\)
0.284807 + 0.958585i \(0.408070\pi\)
\(758\) 1.22671e7 0.775475
\(759\) 0 0
\(760\) −444288. −0.0279017
\(761\) −1.45991e7 −0.913827 −0.456914 0.889511i \(-0.651045\pi\)
−0.456914 + 0.889511i \(0.651045\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −5.74358e6 −0.356000
\(765\) 0 0
\(766\) −1.57008e7 −0.966829
\(767\) 1.14841e7 0.704869
\(768\) 0 0
\(769\) 2.78381e7 1.69755 0.848776 0.528753i \(-0.177340\pi\)
0.848776 + 0.528753i \(0.177340\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −2.91093e6 −0.175788
\(773\) 2.82857e7 1.70262 0.851312 0.524660i \(-0.175808\pi\)
0.851312 + 0.524660i \(0.175808\pi\)
\(774\) 0 0
\(775\) −1.94391e7 −1.16258
\(776\) −7.98426e6 −0.475971
\(777\) 0 0
\(778\) −1.61068e7 −0.954024
\(779\) 5.62996e6 0.332401
\(780\) 0 0
\(781\) 2.54585e7 1.49350
\(782\) −2.41373e7 −1.41147
\(783\) 0 0
\(784\) 0 0
\(785\) 1.21451e6 0.0703439
\(786\) 0 0
\(787\) 9872.00 0.000568157 0 0.000284078 1.00000i \(-0.499910\pi\)
0.000284078 1.00000i \(0.499910\pi\)
\(788\) −1.14868e7 −0.658996
\(789\) 0 0
\(790\) 1.49503e6 0.0852281
\(791\) 0 0
\(792\) 0 0
\(793\) 2.58817e6 0.146154
\(794\) −1.82976e7 −1.03001
\(795\) 0 0
\(796\) 3.24954e6 0.181777
\(797\) 1.08919e7 0.607377 0.303688 0.952771i \(-0.401782\pi\)
0.303688 + 0.952771i \(0.401782\pi\)
\(798\) 0 0
\(799\) −4.01940e6 −0.222738
\(800\) 3.16314e6 0.174740
\(801\) 0 0
\(802\) −9.07776e6 −0.498360
\(803\) 4.70123e7 2.57290
\(804\) 0 0
\(805\) 0 0
\(806\) 1.40711e7 0.762943
\(807\) 0 0
\(808\) −5.97696e6 −0.322071
\(809\) 5.23529e6 0.281235 0.140618 0.990064i \(-0.455091\pi\)
0.140618 + 0.990064i \(0.455091\pi\)
\(810\) 0 0
\(811\) 1.26147e7 0.673482 0.336741 0.941597i \(-0.390675\pi\)
0.336741 + 0.941597i \(0.390675\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −8.34098e6 −0.441221
\(815\) −1.07858e6 −0.0568800
\(816\) 0 0
\(817\) −1.31979e7 −0.691751
\(818\) 1.61839e7 0.845666
\(819\) 0 0
\(820\) 467136. 0.0242610
\(821\) 1.53424e7 0.794392 0.397196 0.917734i \(-0.369983\pi\)
0.397196 + 0.917734i \(0.369983\pi\)
\(822\) 0 0
\(823\) −1.49595e7 −0.769870 −0.384935 0.922944i \(-0.625776\pi\)
−0.384935 + 0.922944i \(0.625776\pi\)
\(824\) 1.07348e7 0.550776
\(825\) 0 0
\(826\) 0 0
\(827\) −2.80498e7 −1.42615 −0.713076 0.701087i \(-0.752699\pi\)
−0.713076 + 0.701087i \(0.752699\pi\)
\(828\) 0 0
\(829\) 1.47311e7 0.744473 0.372236 0.928138i \(-0.378591\pi\)
0.372236 + 0.928138i \(0.378591\pi\)
\(830\) 1.91563e6 0.0965199
\(831\) 0 0
\(832\) −2.28966e6 −0.114674
\(833\) 0 0
\(834\) 0 0
\(835\) −1.30381e6 −0.0647141
\(836\) 1.23290e7 0.610115
\(837\) 0 0
\(838\) −1.56512e7 −0.769908
\(839\) −2.36347e7 −1.15916 −0.579581 0.814914i \(-0.696784\pi\)
−0.579581 + 0.814914i \(0.696784\pi\)
\(840\) 0 0
\(841\) −9.14076e6 −0.445649
\(842\) 1.11235e7 0.540704
\(843\) 0 0
\(844\) 1.87357e7 0.905343
\(845\) −352872. −0.0170010
\(846\) 0 0
\(847\) 0 0
\(848\) 7.24378e6 0.345920
\(849\) 0 0
\(850\) 2.14994e7 1.02066
\(851\) 1.08583e7 0.513971
\(852\) 0 0
\(853\) 1.43965e7 0.677459 0.338730 0.940884i \(-0.390003\pi\)
0.338730 + 0.940884i \(0.390003\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 4.42752e6 0.206527
\(857\) −1.24710e7 −0.580027 −0.290014 0.957023i \(-0.593660\pi\)
−0.290014 + 0.957023i \(0.593660\pi\)
\(858\) 0 0
\(859\) −1.25059e7 −0.578271 −0.289136 0.957288i \(-0.593368\pi\)
−0.289136 + 0.957288i \(0.593368\pi\)
\(860\) −1.09507e6 −0.0504890
\(861\) 0 0
\(862\) −1.75283e7 −0.803473
\(863\) −2.80289e7 −1.28109 −0.640545 0.767921i \(-0.721291\pi\)
−0.640545 + 0.767921i \(0.721291\pi\)
\(864\) 0 0
\(865\) 443880. 0.0201709
\(866\) −4.99785e6 −0.226459
\(867\) 0 0
\(868\) 0 0
\(869\) −4.14871e7 −1.86365
\(870\) 0 0
\(871\) 1.04785e7 0.468006
\(872\) 1.40518e7 0.625806
\(873\) 0 0
\(874\) −1.60499e7 −0.710712
\(875\) 0 0
\(876\) 0 0
\(877\) 2.31173e7 1.01493 0.507467 0.861671i \(-0.330582\pi\)
0.507467 + 0.861671i \(0.330582\pi\)
\(878\) 2.69768e7 1.18101
\(879\) 0 0
\(880\) 1.02298e6 0.0445306
\(881\) 9.59891e6 0.416660 0.208330 0.978059i \(-0.433197\pi\)
0.208330 + 0.978059i \(0.433197\pi\)
\(882\) 0 0
\(883\) 443183. 0.0191285 0.00956426 0.999954i \(-0.496956\pi\)
0.00956426 + 0.999954i \(0.496956\pi\)
\(884\) −1.55626e7 −0.669808
\(885\) 0 0
\(886\) 1.91558e6 0.0819817
\(887\) 2.40097e7 1.02465 0.512327 0.858791i \(-0.328784\pi\)
0.512327 + 0.858791i \(0.328784\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −434880. −0.0184032
\(891\) 0 0
\(892\) 1.99416e7 0.839167
\(893\) −2.67267e6 −0.112154
\(894\) 0 0
\(895\) −4.73620e6 −0.197639
\(896\) 0 0
\(897\) 0 0
\(898\) 2.89802e6 0.119925
\(899\) −2.12200e7 −0.875681
\(900\) 0 0
\(901\) 4.92350e7 2.02052
\(902\) −1.29630e7 −0.530506
\(903\) 0 0
\(904\) −2.51866e6 −0.102506
\(905\) −2.86643e6 −0.116338
\(906\) 0 0
\(907\) 1.75854e7 0.709796 0.354898 0.934905i \(-0.384516\pi\)
0.354898 + 0.934905i \(0.384516\pi\)
\(908\) 1.47031e7 0.591825
\(909\) 0 0
\(910\) 0 0
\(911\) 2.95599e7 1.18007 0.590033 0.807379i \(-0.299115\pi\)
0.590033 + 0.807379i \(0.299115\pi\)
\(912\) 0 0
\(913\) −5.31588e7 −2.11056
\(914\) 9.35825e6 0.370535
\(915\) 0 0
\(916\) 1.92600e7 0.758433
\(917\) 0 0
\(918\) 0 0
\(919\) −3.91482e6 −0.152906 −0.0764528 0.997073i \(-0.524359\pi\)
−0.0764528 + 0.997073i \(0.524359\pi\)
\(920\) −1.33171e6 −0.0518729
\(921\) 0 0
\(922\) 1.19299e7 0.462177
\(923\) −2.13683e7 −0.825594
\(924\) 0 0
\(925\) −9.67166e6 −0.371661
\(926\) −1.71369e7 −0.656757
\(927\) 0 0
\(928\) 3.45293e6 0.131619
\(929\) 3.22009e6 0.122413 0.0612066 0.998125i \(-0.480505\pi\)
0.0612066 + 0.998125i \(0.480505\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 1.47050e7 0.554530
\(933\) 0 0
\(934\) −2.29614e7 −0.861254
\(935\) 6.95304e6 0.260103
\(936\) 0 0
\(937\) −5.16504e7 −1.92187 −0.960936 0.276772i \(-0.910735\pi\)
−0.960936 + 0.276772i \(0.910735\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −221760. −0.00818585
\(941\) 7.28698e6 0.268271 0.134135 0.990963i \(-0.457174\pi\)
0.134135 + 0.990963i \(0.457174\pi\)
\(942\) 0 0
\(943\) 1.68753e7 0.617977
\(944\) −5.25926e6 −0.192086
\(945\) 0 0
\(946\) 3.03882e7 1.10402
\(947\) 3.12448e7 1.13215 0.566073 0.824355i \(-0.308462\pi\)
0.566073 + 0.824355i \(0.308462\pi\)
\(948\) 0 0
\(949\) −3.94593e7 −1.42227
\(950\) 1.42959e7 0.513928
\(951\) 0 0
\(952\) 0 0
\(953\) 2.68273e7 0.956853 0.478426 0.878128i \(-0.341207\pi\)
0.478426 + 0.878128i \(0.341207\pi\)
\(954\) 0 0
\(955\) −2.15384e6 −0.0764198
\(956\) 1.00054e7 0.354071
\(957\) 0 0
\(958\) 1.06020e7 0.373230
\(959\) 0 0
\(960\) 0 0
\(961\) 1.09727e7 0.383270
\(962\) 7.00092e6 0.243903
\(963\) 0 0
\(964\) 2.00612e7 0.695286
\(965\) −1.09160e6 −0.0377350
\(966\) 0 0
\(967\) −1.00257e7 −0.344784 −0.172392 0.985028i \(-0.555150\pi\)
−0.172392 + 0.985028i \(0.555150\pi\)
\(968\) −1.80803e7 −0.620180
\(969\) 0 0
\(970\) −2.99410e6 −0.102173
\(971\) −115800. −0.00394149 −0.00197075 0.999998i \(-0.500627\pi\)
−0.00197075 + 0.999998i \(0.500627\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −1.12222e7 −0.379035
\(975\) 0 0
\(976\) −1.18528e6 −0.0398287
\(977\) −8.73809e6 −0.292874 −0.146437 0.989220i \(-0.546781\pi\)
−0.146437 + 0.989220i \(0.546781\pi\)
\(978\) 0 0
\(979\) 1.20679e7 0.402416
\(980\) 0 0
\(981\) 0 0
\(982\) −1.87380e7 −0.620075
\(983\) −2.38413e7 −0.786947 −0.393473 0.919336i \(-0.628727\pi\)
−0.393473 + 0.919336i \(0.628727\pi\)
\(984\) 0 0
\(985\) −4.30754e6 −0.141462
\(986\) 2.34691e7 0.768784
\(987\) 0 0
\(988\) −1.03482e7 −0.337266
\(989\) −3.95595e7 −1.28606
\(990\) 0 0
\(991\) −3.33719e7 −1.07944 −0.539718 0.841846i \(-0.681469\pi\)
−0.539718 + 0.841846i \(0.681469\pi\)
\(992\) −6.44403e6 −0.207911
\(993\) 0 0
\(994\) 0 0
\(995\) 1.21858e6 0.0390207
\(996\) 0 0
\(997\) 5.44687e7 1.73544 0.867718 0.497056i \(-0.165586\pi\)
0.867718 + 0.497056i \(0.165586\pi\)
\(998\) −5.90301e6 −0.187606
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.6.a.f.1.1 1
3.2 odd 2 294.6.a.l.1.1 1
7.2 even 3 126.6.g.c.109.1 2
7.4 even 3 126.6.g.c.37.1 2
7.6 odd 2 882.6.a.e.1.1 1
21.2 odd 6 42.6.e.a.25.1 2
21.5 even 6 294.6.e.e.67.1 2
21.11 odd 6 42.6.e.a.37.1 yes 2
21.17 even 6 294.6.e.e.79.1 2
21.20 even 2 294.6.a.j.1.1 1
84.11 even 6 336.6.q.c.289.1 2
84.23 even 6 336.6.q.c.193.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.6.e.a.25.1 2 21.2 odd 6
42.6.e.a.37.1 yes 2 21.11 odd 6
126.6.g.c.37.1 2 7.4 even 3
126.6.g.c.109.1 2 7.2 even 3
294.6.a.j.1.1 1 21.20 even 2
294.6.a.l.1.1 1 3.2 odd 2
294.6.e.e.67.1 2 21.5 even 6
294.6.e.e.79.1 2 21.17 even 6
336.6.q.c.193.1 2 84.23 even 6
336.6.q.c.289.1 2 84.11 even 6
882.6.a.e.1.1 1 7.6 odd 2
882.6.a.f.1.1 1 1.1 even 1 trivial