Properties

Label 882.6.a.bv
Level $882$
Weight $6$
Character orbit 882.a
Self dual yes
Analytic conductor $141.459$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [882,6,Mod(1,882)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("882.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(882, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-16,0,64,0,0,0,-256,0,0,-628] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.458529075\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{793})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 399x^{2} + 400x + 38414 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2\cdot 3^{2}\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 98)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 q^{2} + 16 q^{4} + (\beta_{3} + 3 \beta_1) q^{5} - 64 q^{8} + ( - 4 \beta_{3} - 12 \beta_1) q^{10} + ( - \beta_{2} - 157) q^{11} + (7 \beta_{3} + 47 \beta_1) q^{13} + 256 q^{16} + ( - 16 \beta_{3} + 119 \beta_1) q^{17}+ \cdots + (742 \beta_{3} - 4113 \beta_1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{2} + 64 q^{4} - 256 q^{8} - 628 q^{11} + 1024 q^{16} + 2512 q^{22} - 2624 q^{23} + 4224 q^{25} - 17732 q^{29} - 4096 q^{32} + 2932 q^{37} + 9836 q^{43} - 10048 q^{44} + 10496 q^{46} - 16896 q^{50}+ \cdots + 396752 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 399x^{2} + 400x + 38414 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -14\nu^{3} + 21\nu^{2} + 2849\nu - 1428 ) / 785 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -84\nu^{3} + 126\nu^{2} + 50064\nu - 25053 ) / 785 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 7\nu^{3} + 1167\nu^{2} - 2602\nu - 234786 ) / 785 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - 6\beta _1 + 21 ) / 42 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 28\beta_{3} + \beta_{2} + 8\beta _1 + 8421 ) / 42 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 42\beta_{3} + 205\beta_{2} - 3564\beta _1 + 12621 ) / 42 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−12.1659
13.1659
15.9943
−14.9943
−4.00000 0 16.0000 −84.4857 0 0 −64.0000 0 337.943
1.2 −4.00000 0 16.0000 −34.9882 0 0 −64.0000 0 139.953
1.3 −4.00000 0 16.0000 34.9882 0 0 −64.0000 0 −139.953
1.4 −4.00000 0 16.0000 84.4857 0 0 −64.0000 0 −337.943
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 882.6.a.bv 4
3.b odd 2 1 98.6.a.i 4
7.b odd 2 1 inner 882.6.a.bv 4
12.b even 2 1 784.6.a.bg 4
21.c even 2 1 98.6.a.i 4
21.g even 6 2 98.6.c.i 8
21.h odd 6 2 98.6.c.i 8
84.h odd 2 1 784.6.a.bg 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
98.6.a.i 4 3.b odd 2 1
98.6.a.i 4 21.c even 2 1
98.6.c.i 8 21.g even 6 2
98.6.c.i 8 21.h odd 6 2
784.6.a.bg 4 12.b even 2 1
784.6.a.bg 4 84.h odd 2 1
882.6.a.bv 4 1.a even 1 1 trivial
882.6.a.bv 4 7.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(882))\):

\( T_{5}^{4} - 8362T_{5}^{2} + 8737936 \) Copy content Toggle raw display
\( T_{11}^{2} + 314T_{11} - 325064 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 4)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 8362 T^{2} + 8737936 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + 314 T - 325064)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} - 720594 T^{2} + 112021056 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 445030415236 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 15587240932624 \) Copy content Toggle raw display
$23$ \( (T^{2} + 1312 T - 5165072)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 8866 T + 19301776)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 19507839565824 \) Copy content Toggle raw display
$37$ \( (T^{2} - 1466 T - 2610128)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 18\!\cdots\!96 \) Copy content Toggle raw display
$43$ \( (T^{2} - 4918 T - 22280072)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 12\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( (T^{2} + 776 T - 504835028)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 43\!\cdots\!64 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 15\!\cdots\!36 \) Copy content Toggle raw display
$67$ \( (T^{2} - 6852 T - 101569536)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 28332 T - 3437738496)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 71\!\cdots\!84 \) Copy content Toggle raw display
$79$ \( (T^{2} + 109148 T + 2741915488)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 28\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 12\!\cdots\!64 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 32780823506116 \) Copy content Toggle raw display
show more
show less