Properties

Label 882.6.a.bk.1.2
Level $882$
Weight $6$
Character 882.1
Self dual yes
Analytic conductor $141.459$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,6,Mod(1,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 882.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(141.458529075\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 7 \)
Twist minimal: no (minimal twist has level 294)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 882.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +16.0000 q^{4} -4.50253 q^{5} +64.0000 q^{8} +O(q^{10})\) \(q+4.00000 q^{2} +16.0000 q^{4} -4.50253 q^{5} +64.0000 q^{8} -18.0101 q^{10} +116.191 q^{11} -85.4773 q^{13} +256.000 q^{16} -33.2662 q^{17} +635.377 q^{19} -72.0404 q^{20} +464.764 q^{22} -2727.43 q^{23} -3104.73 q^{25} -341.909 q^{26} -5860.48 q^{29} +279.136 q^{31} +1024.00 q^{32} -133.065 q^{34} +3038.49 q^{37} +2541.51 q^{38} -288.162 q^{40} -819.415 q^{41} +11100.2 q^{43} +1859.05 q^{44} -10909.7 q^{46} +7407.40 q^{47} -12418.9 q^{50} -1367.64 q^{52} +13698.8 q^{53} -523.153 q^{55} -23441.9 q^{58} -22375.7 q^{59} -12692.1 q^{61} +1116.55 q^{62} +4096.00 q^{64} +384.864 q^{65} -52303.3 q^{67} -532.259 q^{68} -60230.2 q^{71} +76958.4 q^{73} +12154.0 q^{74} +10166.0 q^{76} -33596.0 q^{79} -1152.65 q^{80} -3277.66 q^{82} -60574.9 q^{83} +149.782 q^{85} +44400.9 q^{86} +7436.22 q^{88} -92190.1 q^{89} -43638.8 q^{92} +29629.6 q^{94} -2860.80 q^{95} +152287. q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{2} + 32 q^{4} - 108 q^{5} + 128 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 8 q^{2} + 32 q^{4} - 108 q^{5} + 128 q^{8} - 432 q^{10} - 124 q^{11} + 720 q^{13} + 512 q^{16} + 1260 q^{17} + 360 q^{19} - 1728 q^{20} - 496 q^{22} - 6524 q^{23} + 4482 q^{25} + 2880 q^{26} - 7088 q^{29} + 5904 q^{31} + 2048 q^{32} + 5040 q^{34} - 6040 q^{37} + 1440 q^{38} - 6912 q^{40} + 17388 q^{41} - 608 q^{43} - 1984 q^{44} - 26096 q^{46} + 30456 q^{47} + 17928 q^{50} + 11520 q^{52} - 3964 q^{53} + 24336 q^{55} - 28352 q^{58} - 40752 q^{59} - 1368 q^{61} + 23616 q^{62} + 8192 q^{64} - 82980 q^{65} - 16224 q^{67} + 20160 q^{68} + 3204 q^{71} + 23976 q^{73} - 24160 q^{74} + 5760 q^{76} - 82160 q^{79} - 27648 q^{80} + 69552 q^{82} - 173736 q^{83} - 133700 q^{85} - 2432 q^{86} - 7936 q^{88} - 200556 q^{89} - 104384 q^{92} + 121824 q^{94} + 25640 q^{95} + 251928 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) −4.50253 −0.0805436 −0.0402718 0.999189i \(-0.512822\pi\)
−0.0402718 + 0.999189i \(0.512822\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 64.0000 0.353553
\(9\) 0 0
\(10\) −18.0101 −0.0569529
\(11\) 116.191 0.289528 0.144764 0.989466i \(-0.453758\pi\)
0.144764 + 0.989466i \(0.453758\pi\)
\(12\) 0 0
\(13\) −85.4773 −0.140279 −0.0701394 0.997537i \(-0.522344\pi\)
−0.0701394 + 0.997537i \(0.522344\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) −33.2662 −0.0279177 −0.0139589 0.999903i \(-0.504443\pi\)
−0.0139589 + 0.999903i \(0.504443\pi\)
\(18\) 0 0
\(19\) 635.377 0.403782 0.201891 0.979408i \(-0.435291\pi\)
0.201891 + 0.979408i \(0.435291\pi\)
\(20\) −72.0404 −0.0402718
\(21\) 0 0
\(22\) 464.764 0.204727
\(23\) −2727.43 −1.07506 −0.537531 0.843244i \(-0.680643\pi\)
−0.537531 + 0.843244i \(0.680643\pi\)
\(24\) 0 0
\(25\) −3104.73 −0.993513
\(26\) −341.909 −0.0991921
\(27\) 0 0
\(28\) 0 0
\(29\) −5860.48 −1.29401 −0.647006 0.762485i \(-0.723979\pi\)
−0.647006 + 0.762485i \(0.723979\pi\)
\(30\) 0 0
\(31\) 279.136 0.0521690 0.0260845 0.999660i \(-0.491696\pi\)
0.0260845 + 0.999660i \(0.491696\pi\)
\(32\) 1024.00 0.176777
\(33\) 0 0
\(34\) −133.065 −0.0197408
\(35\) 0 0
\(36\) 0 0
\(37\) 3038.49 0.364883 0.182442 0.983217i \(-0.441600\pi\)
0.182442 + 0.983217i \(0.441600\pi\)
\(38\) 2541.51 0.285517
\(39\) 0 0
\(40\) −288.162 −0.0284765
\(41\) −819.415 −0.0761279 −0.0380640 0.999275i \(-0.512119\pi\)
−0.0380640 + 0.999275i \(0.512119\pi\)
\(42\) 0 0
\(43\) 11100.2 0.915504 0.457752 0.889080i \(-0.348655\pi\)
0.457752 + 0.889080i \(0.348655\pi\)
\(44\) 1859.05 0.144764
\(45\) 0 0
\(46\) −10909.7 −0.760184
\(47\) 7407.40 0.489126 0.244563 0.969633i \(-0.421355\pi\)
0.244563 + 0.969633i \(0.421355\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −12418.9 −0.702520
\(51\) 0 0
\(52\) −1367.64 −0.0701394
\(53\) 13698.8 0.669874 0.334937 0.942241i \(-0.391285\pi\)
0.334937 + 0.942241i \(0.391285\pi\)
\(54\) 0 0
\(55\) −523.153 −0.0233196
\(56\) 0 0
\(57\) 0 0
\(58\) −23441.9 −0.915005
\(59\) −22375.7 −0.836848 −0.418424 0.908252i \(-0.637417\pi\)
−0.418424 + 0.908252i \(0.637417\pi\)
\(60\) 0 0
\(61\) −12692.1 −0.436725 −0.218363 0.975868i \(-0.570072\pi\)
−0.218363 + 0.975868i \(0.570072\pi\)
\(62\) 1116.55 0.0368890
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 384.864 0.0112986
\(66\) 0 0
\(67\) −52303.3 −1.42345 −0.711725 0.702458i \(-0.752086\pi\)
−0.711725 + 0.702458i \(0.752086\pi\)
\(68\) −532.259 −0.0139589
\(69\) 0 0
\(70\) 0 0
\(71\) −60230.2 −1.41798 −0.708988 0.705221i \(-0.750848\pi\)
−0.708988 + 0.705221i \(0.750848\pi\)
\(72\) 0 0
\(73\) 76958.4 1.69024 0.845121 0.534575i \(-0.179528\pi\)
0.845121 + 0.534575i \(0.179528\pi\)
\(74\) 12154.0 0.258011
\(75\) 0 0
\(76\) 10166.0 0.201891
\(77\) 0 0
\(78\) 0 0
\(79\) −33596.0 −0.605647 −0.302824 0.953047i \(-0.597929\pi\)
−0.302824 + 0.953047i \(0.597929\pi\)
\(80\) −1152.65 −0.0201359
\(81\) 0 0
\(82\) −3277.66 −0.0538306
\(83\) −60574.9 −0.965157 −0.482578 0.875853i \(-0.660300\pi\)
−0.482578 + 0.875853i \(0.660300\pi\)
\(84\) 0 0
\(85\) 149.782 0.00224860
\(86\) 44400.9 0.647359
\(87\) 0 0
\(88\) 7436.22 0.102364
\(89\) −92190.1 −1.23370 −0.616850 0.787081i \(-0.711591\pi\)
−0.616850 + 0.787081i \(0.711591\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −43638.8 −0.537531
\(93\) 0 0
\(94\) 29629.6 0.345865
\(95\) −2860.80 −0.0325221
\(96\) 0 0
\(97\) 152287. 1.64336 0.821680 0.569949i \(-0.193037\pi\)
0.821680 + 0.569949i \(0.193037\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −49675.6 −0.496756
\(101\) −107644. −1.04999 −0.524997 0.851104i \(-0.675934\pi\)
−0.524997 + 0.851104i \(0.675934\pi\)
\(102\) 0 0
\(103\) 120639. 1.12046 0.560229 0.828338i \(-0.310713\pi\)
0.560229 + 0.828338i \(0.310713\pi\)
\(104\) −5470.55 −0.0495961
\(105\) 0 0
\(106\) 54795.2 0.473672
\(107\) −86114.3 −0.727136 −0.363568 0.931568i \(-0.618442\pi\)
−0.363568 + 0.931568i \(0.618442\pi\)
\(108\) 0 0
\(109\) −66139.2 −0.533203 −0.266602 0.963807i \(-0.585901\pi\)
−0.266602 + 0.963807i \(0.585901\pi\)
\(110\) −2092.61 −0.0164895
\(111\) 0 0
\(112\) 0 0
\(113\) −131608. −0.969588 −0.484794 0.874628i \(-0.661105\pi\)
−0.484794 + 0.874628i \(0.661105\pi\)
\(114\) 0 0
\(115\) 12280.3 0.0865894
\(116\) −93767.7 −0.647006
\(117\) 0 0
\(118\) −89502.8 −0.591741
\(119\) 0 0
\(120\) 0 0
\(121\) −147551. −0.916174
\(122\) −50768.3 −0.308812
\(123\) 0 0
\(124\) 4466.18 0.0260845
\(125\) 28049.5 0.160565
\(126\) 0 0
\(127\) 14437.3 0.0794284 0.0397142 0.999211i \(-0.487355\pi\)
0.0397142 + 0.999211i \(0.487355\pi\)
\(128\) 16384.0 0.0883883
\(129\) 0 0
\(130\) 1539.45 0.00798929
\(131\) −319216. −1.62520 −0.812600 0.582821i \(-0.801949\pi\)
−0.812600 + 0.582821i \(0.801949\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −209213. −1.00653
\(135\) 0 0
\(136\) −2129.03 −0.00987041
\(137\) 50534.0 0.230029 0.115014 0.993364i \(-0.463309\pi\)
0.115014 + 0.993364i \(0.463309\pi\)
\(138\) 0 0
\(139\) 223787. 0.982422 0.491211 0.871041i \(-0.336554\pi\)
0.491211 + 0.871041i \(0.336554\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −240921. −1.00266
\(143\) −9931.68 −0.0406146
\(144\) 0 0
\(145\) 26387.0 0.104224
\(146\) 307834. 1.19518
\(147\) 0 0
\(148\) 48615.9 0.182442
\(149\) −259521. −0.957651 −0.478825 0.877910i \(-0.658937\pi\)
−0.478825 + 0.877910i \(0.658937\pi\)
\(150\) 0 0
\(151\) −110893. −0.395786 −0.197893 0.980224i \(-0.563410\pi\)
−0.197893 + 0.980224i \(0.563410\pi\)
\(152\) 40664.1 0.142759
\(153\) 0 0
\(154\) 0 0
\(155\) −1256.82 −0.00420188
\(156\) 0 0
\(157\) −405385. −1.31256 −0.656280 0.754518i \(-0.727871\pi\)
−0.656280 + 0.754518i \(0.727871\pi\)
\(158\) −134384. −0.428257
\(159\) 0 0
\(160\) −4610.59 −0.0142382
\(161\) 0 0
\(162\) 0 0
\(163\) 38618.7 0.113849 0.0569244 0.998378i \(-0.481871\pi\)
0.0569244 + 0.998378i \(0.481871\pi\)
\(164\) −13110.6 −0.0380640
\(165\) 0 0
\(166\) −242300. −0.682469
\(167\) 207255. 0.575060 0.287530 0.957772i \(-0.407166\pi\)
0.287530 + 0.957772i \(0.407166\pi\)
\(168\) 0 0
\(169\) −363987. −0.980322
\(170\) 599.127 0.00159000
\(171\) 0 0
\(172\) 177603. 0.457752
\(173\) 128257. 0.325812 0.162906 0.986642i \(-0.447913\pi\)
0.162906 + 0.986642i \(0.447913\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 29744.9 0.0723820
\(177\) 0 0
\(178\) −368760. −0.872357
\(179\) 98599.5 0.230007 0.115004 0.993365i \(-0.463312\pi\)
0.115004 + 0.993365i \(0.463312\pi\)
\(180\) 0 0
\(181\) 599225. 1.35954 0.679772 0.733423i \(-0.262079\pi\)
0.679772 + 0.733423i \(0.262079\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −174555. −0.380092
\(185\) −13680.9 −0.0293890
\(186\) 0 0
\(187\) −3865.23 −0.00808297
\(188\) 118518. 0.244563
\(189\) 0 0
\(190\) −11443.2 −0.0229966
\(191\) −829216. −1.64469 −0.822346 0.568988i \(-0.807335\pi\)
−0.822346 + 0.568988i \(0.807335\pi\)
\(192\) 0 0
\(193\) −416385. −0.804641 −0.402320 0.915499i \(-0.631796\pi\)
−0.402320 + 0.915499i \(0.631796\pi\)
\(194\) 609147. 1.16203
\(195\) 0 0
\(196\) 0 0
\(197\) 592061. 1.08693 0.543464 0.839433i \(-0.317113\pi\)
0.543464 + 0.839433i \(0.317113\pi\)
\(198\) 0 0
\(199\) −1.06608e6 −1.90835 −0.954173 0.299255i \(-0.903262\pi\)
−0.954173 + 0.299255i \(0.903262\pi\)
\(200\) −198703. −0.351260
\(201\) 0 0
\(202\) −430577. −0.742458
\(203\) 0 0
\(204\) 0 0
\(205\) 3689.44 0.00613162
\(206\) 482557. 0.792283
\(207\) 0 0
\(208\) −21882.2 −0.0350697
\(209\) 73825.0 0.116906
\(210\) 0 0
\(211\) −846029. −1.30822 −0.654108 0.756401i \(-0.726956\pi\)
−0.654108 + 0.756401i \(0.726956\pi\)
\(212\) 219181. 0.334937
\(213\) 0 0
\(214\) −344457. −0.514163
\(215\) −49979.0 −0.0737380
\(216\) 0 0
\(217\) 0 0
\(218\) −264557. −0.377032
\(219\) 0 0
\(220\) −8370.44 −0.0116598
\(221\) 2843.50 0.00391627
\(222\) 0 0
\(223\) 112299. 0.151222 0.0756109 0.997137i \(-0.475909\pi\)
0.0756109 + 0.997137i \(0.475909\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −526433. −0.685602
\(227\) 178477. 0.229889 0.114944 0.993372i \(-0.463331\pi\)
0.114944 + 0.993372i \(0.463331\pi\)
\(228\) 0 0
\(229\) 459753. 0.579344 0.289672 0.957126i \(-0.406454\pi\)
0.289672 + 0.957126i \(0.406454\pi\)
\(230\) 49121.2 0.0612280
\(231\) 0 0
\(232\) −375071. −0.457502
\(233\) −748667. −0.903440 −0.451720 0.892160i \(-0.649189\pi\)
−0.451720 + 0.892160i \(0.649189\pi\)
\(234\) 0 0
\(235\) −33352.0 −0.0393960
\(236\) −358011. −0.418424
\(237\) 0 0
\(238\) 0 0
\(239\) 814752. 0.922637 0.461319 0.887235i \(-0.347377\pi\)
0.461319 + 0.887235i \(0.347377\pi\)
\(240\) 0 0
\(241\) −1.04763e6 −1.16189 −0.580947 0.813942i \(-0.697318\pi\)
−0.580947 + 0.813942i \(0.697318\pi\)
\(242\) −590203. −0.647833
\(243\) 0 0
\(244\) −203073. −0.218363
\(245\) 0 0
\(246\) 0 0
\(247\) −54310.3 −0.0566421
\(248\) 17864.7 0.0184445
\(249\) 0 0
\(250\) 112198. 0.113536
\(251\) 1.09401e6 1.09607 0.548034 0.836456i \(-0.315377\pi\)
0.548034 + 0.836456i \(0.315377\pi\)
\(252\) 0 0
\(253\) −316902. −0.311261
\(254\) 57749.1 0.0561644
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) 778391. 0.735131 0.367566 0.929998i \(-0.380191\pi\)
0.367566 + 0.929998i \(0.380191\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 6157.82 0.00564928
\(261\) 0 0
\(262\) −1.27687e6 −1.14919
\(263\) −1.10976e6 −0.989329 −0.494664 0.869084i \(-0.664709\pi\)
−0.494664 + 0.869084i \(0.664709\pi\)
\(264\) 0 0
\(265\) −61679.2 −0.0539540
\(266\) 0 0
\(267\) 0 0
\(268\) −836854. −0.711725
\(269\) −1.33640e6 −1.12605 −0.563024 0.826440i \(-0.690362\pi\)
−0.563024 + 0.826440i \(0.690362\pi\)
\(270\) 0 0
\(271\) 1.79201e6 1.48224 0.741118 0.671375i \(-0.234296\pi\)
0.741118 + 0.671375i \(0.234296\pi\)
\(272\) −8516.14 −0.00697944
\(273\) 0 0
\(274\) 202136. 0.162655
\(275\) −360741. −0.287650
\(276\) 0 0
\(277\) 57577.6 0.0450873 0.0225436 0.999746i \(-0.492824\pi\)
0.0225436 + 0.999746i \(0.492824\pi\)
\(278\) 895148. 0.694677
\(279\) 0 0
\(280\) 0 0
\(281\) 550257. 0.415719 0.207860 0.978159i \(-0.433350\pi\)
0.207860 + 0.978159i \(0.433350\pi\)
\(282\) 0 0
\(283\) −1.17788e6 −0.874249 −0.437125 0.899401i \(-0.644003\pi\)
−0.437125 + 0.899401i \(0.644003\pi\)
\(284\) −963684. −0.708988
\(285\) 0 0
\(286\) −39726.7 −0.0287189
\(287\) 0 0
\(288\) 0 0
\(289\) −1.41875e6 −0.999221
\(290\) 105548. 0.0736978
\(291\) 0 0
\(292\) 1.23133e6 0.845121
\(293\) −300762. −0.204670 −0.102335 0.994750i \(-0.532631\pi\)
−0.102335 + 0.994750i \(0.532631\pi\)
\(294\) 0 0
\(295\) 100747. 0.0674028
\(296\) 194463. 0.129006
\(297\) 0 0
\(298\) −1.03808e6 −0.677161
\(299\) 233133. 0.150809
\(300\) 0 0
\(301\) 0 0
\(302\) −443571. −0.279863
\(303\) 0 0
\(304\) 162656. 0.100946
\(305\) 57146.4 0.0351754
\(306\) 0 0
\(307\) 146787. 0.0888874 0.0444437 0.999012i \(-0.485848\pi\)
0.0444437 + 0.999012i \(0.485848\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −5027.27 −0.00297118
\(311\) −1.70311e6 −0.998484 −0.499242 0.866462i \(-0.666388\pi\)
−0.499242 + 0.866462i \(0.666388\pi\)
\(312\) 0 0
\(313\) 1.11695e6 0.644424 0.322212 0.946668i \(-0.395574\pi\)
0.322212 + 0.946668i \(0.395574\pi\)
\(314\) −1.62154e6 −0.928120
\(315\) 0 0
\(316\) −537536. −0.302824
\(317\) 962894. 0.538184 0.269092 0.963115i \(-0.413276\pi\)
0.269092 + 0.963115i \(0.413276\pi\)
\(318\) 0 0
\(319\) −680935. −0.374653
\(320\) −18442.3 −0.0100680
\(321\) 0 0
\(322\) 0 0
\(323\) −21136.5 −0.0112727
\(324\) 0 0
\(325\) 265384. 0.139369
\(326\) 154475. 0.0805032
\(327\) 0 0
\(328\) −52442.5 −0.0269153
\(329\) 0 0
\(330\) 0 0
\(331\) −2.25995e6 −1.13378 −0.566891 0.823793i \(-0.691854\pi\)
−0.566891 + 0.823793i \(0.691854\pi\)
\(332\) −969199. −0.482578
\(333\) 0 0
\(334\) 829019. 0.406629
\(335\) 235497. 0.114650
\(336\) 0 0
\(337\) 1.33338e6 0.639557 0.319778 0.947492i \(-0.396392\pi\)
0.319778 + 0.947492i \(0.396392\pi\)
\(338\) −1.45595e6 −0.693192
\(339\) 0 0
\(340\) 2396.51 0.00112430
\(341\) 32433.1 0.0151044
\(342\) 0 0
\(343\) 0 0
\(344\) 710414. 0.323680
\(345\) 0 0
\(346\) 513029. 0.230384
\(347\) 1.43486e6 0.639715 0.319857 0.947466i \(-0.396365\pi\)
0.319857 + 0.947466i \(0.396365\pi\)
\(348\) 0 0
\(349\) 3.34711e6 1.47098 0.735489 0.677536i \(-0.236952\pi\)
0.735489 + 0.677536i \(0.236952\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 118979. 0.0511818
\(353\) −4.00418e6 −1.71032 −0.855160 0.518365i \(-0.826541\pi\)
−0.855160 + 0.518365i \(0.826541\pi\)
\(354\) 0 0
\(355\) 271188. 0.114209
\(356\) −1.47504e6 −0.616850
\(357\) 0 0
\(358\) 394398. 0.162640
\(359\) 595986. 0.244062 0.122031 0.992526i \(-0.461059\pi\)
0.122031 + 0.992526i \(0.461059\pi\)
\(360\) 0 0
\(361\) −2.07240e6 −0.836960
\(362\) 2.39690e6 0.961343
\(363\) 0 0
\(364\) 0 0
\(365\) −346507. −0.136138
\(366\) 0 0
\(367\) −3.30390e6 −1.28045 −0.640224 0.768188i \(-0.721158\pi\)
−0.640224 + 0.768188i \(0.721158\pi\)
\(368\) −698221. −0.268766
\(369\) 0 0
\(370\) −54723.5 −0.0207812
\(371\) 0 0
\(372\) 0 0
\(373\) −2.83063e6 −1.05344 −0.526722 0.850038i \(-0.676579\pi\)
−0.526722 + 0.850038i \(0.676579\pi\)
\(374\) −15460.9 −0.00571552
\(375\) 0 0
\(376\) 474074. 0.172932
\(377\) 500938. 0.181523
\(378\) 0 0
\(379\) 2.45025e6 0.876218 0.438109 0.898922i \(-0.355648\pi\)
0.438109 + 0.898922i \(0.355648\pi\)
\(380\) −45772.8 −0.0162610
\(381\) 0 0
\(382\) −3.31687e6 −1.16297
\(383\) 3.38405e6 1.17880 0.589399 0.807842i \(-0.299364\pi\)
0.589399 + 0.807842i \(0.299364\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −1.66554e6 −0.568967
\(387\) 0 0
\(388\) 2.43659e6 0.821680
\(389\) 4.14961e6 1.39038 0.695189 0.718827i \(-0.255321\pi\)
0.695189 + 0.718827i \(0.255321\pi\)
\(390\) 0 0
\(391\) 90731.0 0.0300133
\(392\) 0 0
\(393\) 0 0
\(394\) 2.36824e6 0.768574
\(395\) 151267. 0.0487810
\(396\) 0 0
\(397\) −1.64666e6 −0.524358 −0.262179 0.965019i \(-0.584441\pi\)
−0.262179 + 0.965019i \(0.584441\pi\)
\(398\) −4.26432e6 −1.34940
\(399\) 0 0
\(400\) −794810. −0.248378
\(401\) 4.38664e6 1.36229 0.681147 0.732147i \(-0.261481\pi\)
0.681147 + 0.732147i \(0.261481\pi\)
\(402\) 0 0
\(403\) −23859.8 −0.00731820
\(404\) −1.72231e6 −0.524997
\(405\) 0 0
\(406\) 0 0
\(407\) 353045. 0.105644
\(408\) 0 0
\(409\) 354592. 0.104814 0.0524072 0.998626i \(-0.483311\pi\)
0.0524072 + 0.998626i \(0.483311\pi\)
\(410\) 14757.7 0.00433571
\(411\) 0 0
\(412\) 1.93023e6 0.560229
\(413\) 0 0
\(414\) 0 0
\(415\) 272740. 0.0777372
\(416\) −87528.7 −0.0247980
\(417\) 0 0
\(418\) 295300. 0.0826652
\(419\) 1.79802e6 0.500335 0.250167 0.968203i \(-0.419514\pi\)
0.250167 + 0.968203i \(0.419514\pi\)
\(420\) 0 0
\(421\) 6.10881e6 1.67978 0.839888 0.542760i \(-0.182621\pi\)
0.839888 + 0.542760i \(0.182621\pi\)
\(422\) −3.38412e6 −0.925048
\(423\) 0 0
\(424\) 876723. 0.236836
\(425\) 103282. 0.0277366
\(426\) 0 0
\(427\) 0 0
\(428\) −1.37783e6 −0.363568
\(429\) 0 0
\(430\) −199916. −0.0521407
\(431\) 1.91176e6 0.495724 0.247862 0.968795i \(-0.420272\pi\)
0.247862 + 0.968795i \(0.420272\pi\)
\(432\) 0 0
\(433\) 385530. 0.0988186 0.0494093 0.998779i \(-0.484266\pi\)
0.0494093 + 0.998779i \(0.484266\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1.05823e6 −0.266602
\(437\) −1.73294e6 −0.434091
\(438\) 0 0
\(439\) −1.83382e6 −0.454146 −0.227073 0.973878i \(-0.572916\pi\)
−0.227073 + 0.973878i \(0.572916\pi\)
\(440\) −33481.8 −0.00824473
\(441\) 0 0
\(442\) 11374.0 0.00276922
\(443\) 1.93392e6 0.468198 0.234099 0.972213i \(-0.424786\pi\)
0.234099 + 0.972213i \(0.424786\pi\)
\(444\) 0 0
\(445\) 415088. 0.0993666
\(446\) 449197. 0.106930
\(447\) 0 0
\(448\) 0 0
\(449\) −6.76354e6 −1.58328 −0.791641 0.610987i \(-0.790773\pi\)
−0.791641 + 0.610987i \(0.790773\pi\)
\(450\) 0 0
\(451\) −95208.5 −0.0220412
\(452\) −2.10573e6 −0.484794
\(453\) 0 0
\(454\) 713907. 0.162556
\(455\) 0 0
\(456\) 0 0
\(457\) −2.39492e6 −0.536414 −0.268207 0.963361i \(-0.586431\pi\)
−0.268207 + 0.963361i \(0.586431\pi\)
\(458\) 1.83901e6 0.409658
\(459\) 0 0
\(460\) 196485. 0.0432947
\(461\) 6.42949e6 1.40904 0.704522 0.709682i \(-0.251162\pi\)
0.704522 + 0.709682i \(0.251162\pi\)
\(462\) 0 0
\(463\) 1.36524e6 0.295976 0.147988 0.988989i \(-0.452720\pi\)
0.147988 + 0.988989i \(0.452720\pi\)
\(464\) −1.50028e6 −0.323503
\(465\) 0 0
\(466\) −2.99467e6 −0.638828
\(467\) −4.36362e6 −0.925880 −0.462940 0.886390i \(-0.653205\pi\)
−0.462940 + 0.886390i \(0.653205\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −133408. −0.0278572
\(471\) 0 0
\(472\) −1.43204e6 −0.295870
\(473\) 1.28974e6 0.265064
\(474\) 0 0
\(475\) −1.97267e6 −0.401163
\(476\) 0 0
\(477\) 0 0
\(478\) 3.25901e6 0.652403
\(479\) 1.39250e6 0.277303 0.138652 0.990341i \(-0.455723\pi\)
0.138652 + 0.990341i \(0.455723\pi\)
\(480\) 0 0
\(481\) −259722. −0.0511854
\(482\) −4.19053e6 −0.821583
\(483\) 0 0
\(484\) −2.36081e6 −0.458087
\(485\) −685675. −0.132362
\(486\) 0 0
\(487\) 9.82919e6 1.87800 0.939000 0.343918i \(-0.111754\pi\)
0.939000 + 0.343918i \(0.111754\pi\)
\(488\) −812294. −0.154406
\(489\) 0 0
\(490\) 0 0
\(491\) 7.67255e6 1.43627 0.718135 0.695904i \(-0.244996\pi\)
0.718135 + 0.695904i \(0.244996\pi\)
\(492\) 0 0
\(493\) 194956. 0.0361259
\(494\) −217241. −0.0400520
\(495\) 0 0
\(496\) 71458.9 0.0130422
\(497\) 0 0
\(498\) 0 0
\(499\) 3.39383e6 0.610152 0.305076 0.952328i \(-0.401318\pi\)
0.305076 + 0.952328i \(0.401318\pi\)
\(500\) 448792. 0.0802824
\(501\) 0 0
\(502\) 4.37604e6 0.775037
\(503\) 8.36268e6 1.47376 0.736878 0.676026i \(-0.236299\pi\)
0.736878 + 0.676026i \(0.236299\pi\)
\(504\) 0 0
\(505\) 484671. 0.0845704
\(506\) −1.26761e6 −0.220094
\(507\) 0 0
\(508\) 230996. 0.0397142
\(509\) −3.87324e6 −0.662643 −0.331322 0.943518i \(-0.607494\pi\)
−0.331322 + 0.943518i \(0.607494\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 262144. 0.0441942
\(513\) 0 0
\(514\) 3.11356e6 0.519816
\(515\) −543181. −0.0902457
\(516\) 0 0
\(517\) 860672. 0.141616
\(518\) 0 0
\(519\) 0 0
\(520\) 24631.3 0.00399465
\(521\) −731064. −0.117994 −0.0589971 0.998258i \(-0.518790\pi\)
−0.0589971 + 0.998258i \(0.518790\pi\)
\(522\) 0 0
\(523\) −7.10854e6 −1.13639 −0.568193 0.822895i \(-0.692357\pi\)
−0.568193 + 0.822895i \(0.692357\pi\)
\(524\) −5.10746e6 −0.812600
\(525\) 0 0
\(526\) −4.43905e6 −0.699561
\(527\) −9285.80 −0.00145644
\(528\) 0 0
\(529\) 1.00252e6 0.155759
\(530\) −246717. −0.0381513
\(531\) 0 0
\(532\) 0 0
\(533\) 70041.3 0.0106791
\(534\) 0 0
\(535\) 387732. 0.0585662
\(536\) −3.34741e6 −0.503266
\(537\) 0 0
\(538\) −5.34562e6 −0.796237
\(539\) 0 0
\(540\) 0 0
\(541\) 3.79514e6 0.557487 0.278743 0.960366i \(-0.410082\pi\)
0.278743 + 0.960366i \(0.410082\pi\)
\(542\) 7.16804e6 1.04810
\(543\) 0 0
\(544\) −34064.5 −0.00493521
\(545\) 297793. 0.0429461
\(546\) 0 0
\(547\) −1.34686e7 −1.92466 −0.962332 0.271879i \(-0.912355\pi\)
−0.962332 + 0.271879i \(0.912355\pi\)
\(548\) 808543. 0.115014
\(549\) 0 0
\(550\) −1.44296e6 −0.203399
\(551\) −3.72361e6 −0.522499
\(552\) 0 0
\(553\) 0 0
\(554\) 230310. 0.0318815
\(555\) 0 0
\(556\) 3.58059e6 0.491211
\(557\) −4.89487e6 −0.668503 −0.334251 0.942484i \(-0.608483\pi\)
−0.334251 + 0.942484i \(0.608483\pi\)
\(558\) 0 0
\(559\) −948816. −0.128426
\(560\) 0 0
\(561\) 0 0
\(562\) 2.20103e6 0.293958
\(563\) 6.25606e6 0.831821 0.415910 0.909406i \(-0.363463\pi\)
0.415910 + 0.909406i \(0.363463\pi\)
\(564\) 0 0
\(565\) 592569. 0.0780941
\(566\) −4.71152e6 −0.618188
\(567\) 0 0
\(568\) −3.85474e6 −0.501330
\(569\) −1.42825e6 −0.184937 −0.0924685 0.995716i \(-0.529476\pi\)
−0.0924685 + 0.995716i \(0.529476\pi\)
\(570\) 0 0
\(571\) 9.05147e6 1.16179 0.580897 0.813977i \(-0.302702\pi\)
0.580897 + 0.813977i \(0.302702\pi\)
\(572\) −158907. −0.0203073
\(573\) 0 0
\(574\) 0 0
\(575\) 8.46792e6 1.06809
\(576\) 0 0
\(577\) 8.01919e6 1.00275 0.501373 0.865231i \(-0.332828\pi\)
0.501373 + 0.865231i \(0.332828\pi\)
\(578\) −5.67500e6 −0.706556
\(579\) 0 0
\(580\) 422191. 0.0521122
\(581\) 0 0
\(582\) 0 0
\(583\) 1.59168e6 0.193947
\(584\) 4.92534e6 0.597591
\(585\) 0 0
\(586\) −1.20305e6 −0.144723
\(587\) 8.28470e6 0.992388 0.496194 0.868212i \(-0.334730\pi\)
0.496194 + 0.868212i \(0.334730\pi\)
\(588\) 0 0
\(589\) 177357. 0.0210649
\(590\) 402989. 0.0476610
\(591\) 0 0
\(592\) 777854. 0.0912208
\(593\) −5.91443e6 −0.690679 −0.345340 0.938478i \(-0.612236\pi\)
−0.345340 + 0.938478i \(0.612236\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −4.15234e6 −0.478825
\(597\) 0 0
\(598\) 932532. 0.106638
\(599\) −3.32897e6 −0.379091 −0.189545 0.981872i \(-0.560701\pi\)
−0.189545 + 0.981872i \(0.560701\pi\)
\(600\) 0 0
\(601\) −4.87081e6 −0.550066 −0.275033 0.961435i \(-0.588689\pi\)
−0.275033 + 0.961435i \(0.588689\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −1.77428e6 −0.197893
\(605\) 664351. 0.0737919
\(606\) 0 0
\(607\) −1.51701e7 −1.67115 −0.835577 0.549374i \(-0.814866\pi\)
−0.835577 + 0.549374i \(0.814866\pi\)
\(608\) 650626. 0.0713793
\(609\) 0 0
\(610\) 228586. 0.0248728
\(611\) −633164. −0.0686141
\(612\) 0 0
\(613\) 5.18156e6 0.556941 0.278471 0.960445i \(-0.410173\pi\)
0.278471 + 0.960445i \(0.410173\pi\)
\(614\) 587146. 0.0628529
\(615\) 0 0
\(616\) 0 0
\(617\) −1.55854e6 −0.164818 −0.0824092 0.996599i \(-0.526261\pi\)
−0.0824092 + 0.996599i \(0.526261\pi\)
\(618\) 0 0
\(619\) −1.40751e6 −0.147647 −0.0738236 0.997271i \(-0.523520\pi\)
−0.0738236 + 0.997271i \(0.523520\pi\)
\(620\) −20109.1 −0.00210094
\(621\) 0 0
\(622\) −6.81243e6 −0.706035
\(623\) 0 0
\(624\) 0 0
\(625\) 9.57598e6 0.980580
\(626\) 4.46779e6 0.455677
\(627\) 0 0
\(628\) −6.48617e6 −0.656280
\(629\) −101079. −0.0101867
\(630\) 0 0
\(631\) −1.09643e7 −1.09624 −0.548120 0.836399i \(-0.684656\pi\)
−0.548120 + 0.836399i \(0.684656\pi\)
\(632\) −2.15014e6 −0.214129
\(633\) 0 0
\(634\) 3.85158e6 0.380553
\(635\) −65004.2 −0.00639745
\(636\) 0 0
\(637\) 0 0
\(638\) −2.72374e6 −0.264919
\(639\) 0 0
\(640\) −73769.4 −0.00711912
\(641\) 1.42122e7 1.36621 0.683103 0.730322i \(-0.260630\pi\)
0.683103 + 0.730322i \(0.260630\pi\)
\(642\) 0 0
\(643\) −9.13928e6 −0.871735 −0.435868 0.900011i \(-0.643558\pi\)
−0.435868 + 0.900011i \(0.643558\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −84546.2 −0.00797100
\(647\) 1.89272e7 1.77757 0.888785 0.458324i \(-0.151550\pi\)
0.888785 + 0.458324i \(0.151550\pi\)
\(648\) 0 0
\(649\) −2.59985e6 −0.242291
\(650\) 1.06153e6 0.0985487
\(651\) 0 0
\(652\) 617899. 0.0569244
\(653\) 4.29983e6 0.394610 0.197305 0.980342i \(-0.436781\pi\)
0.197305 + 0.980342i \(0.436781\pi\)
\(654\) 0 0
\(655\) 1.43728e6 0.130900
\(656\) −209770. −0.0190320
\(657\) 0 0
\(658\) 0 0
\(659\) 1.15303e7 1.03425 0.517126 0.855909i \(-0.327002\pi\)
0.517126 + 0.855909i \(0.327002\pi\)
\(660\) 0 0
\(661\) 1.47047e7 1.30904 0.654521 0.756044i \(-0.272870\pi\)
0.654521 + 0.756044i \(0.272870\pi\)
\(662\) −9.03981e6 −0.801704
\(663\) 0 0
\(664\) −3.87680e6 −0.341234
\(665\) 0 0
\(666\) 0 0
\(667\) 1.59840e7 1.39114
\(668\) 3.31608e6 0.287530
\(669\) 0 0
\(670\) 941989. 0.0810697
\(671\) −1.47471e6 −0.126444
\(672\) 0 0
\(673\) 1.42971e7 1.21678 0.608389 0.793639i \(-0.291816\pi\)
0.608389 + 0.793639i \(0.291816\pi\)
\(674\) 5.33352e6 0.452235
\(675\) 0 0
\(676\) −5.82379e6 −0.490161
\(677\) −9.12025e6 −0.764777 −0.382389 0.924002i \(-0.624898\pi\)
−0.382389 + 0.924002i \(0.624898\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 9586.03 0.000794999 0
\(681\) 0 0
\(682\) 129732. 0.0106804
\(683\) 1.45152e7 1.19062 0.595309 0.803497i \(-0.297030\pi\)
0.595309 + 0.803497i \(0.297030\pi\)
\(684\) 0 0
\(685\) −227530. −0.0185273
\(686\) 0 0
\(687\) 0 0
\(688\) 2.84166e6 0.228876
\(689\) −1.17094e6 −0.0939691
\(690\) 0 0
\(691\) 2.08507e6 0.166122 0.0830608 0.996544i \(-0.473530\pi\)
0.0830608 + 0.996544i \(0.473530\pi\)
\(692\) 2.05212e6 0.162906
\(693\) 0 0
\(694\) 5.73945e6 0.452347
\(695\) −1.00761e6 −0.0791278
\(696\) 0 0
\(697\) 27258.8 0.00212532
\(698\) 1.33884e7 1.04014
\(699\) 0 0
\(700\) 0 0
\(701\) −9.96513e6 −0.765928 −0.382964 0.923763i \(-0.625097\pi\)
−0.382964 + 0.923763i \(0.625097\pi\)
\(702\) 0 0
\(703\) 1.93059e6 0.147333
\(704\) 475918. 0.0361910
\(705\) 0 0
\(706\) −1.60167e7 −1.20938
\(707\) 0 0
\(708\) 0 0
\(709\) 7.09035e6 0.529727 0.264864 0.964286i \(-0.414673\pi\)
0.264864 + 0.964286i \(0.414673\pi\)
\(710\) 1.08475e6 0.0807579
\(711\) 0 0
\(712\) −5.90017e6 −0.436179
\(713\) −761324. −0.0560849
\(714\) 0 0
\(715\) 44717.6 0.00327125
\(716\) 1.57759e6 0.115004
\(717\) 0 0
\(718\) 2.38394e6 0.172578
\(719\) −1.20167e7 −0.866886 −0.433443 0.901181i \(-0.642701\pi\)
−0.433443 + 0.901181i \(0.642701\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −8.28958e6 −0.591820
\(723\) 0 0
\(724\) 9.58760e6 0.679772
\(725\) 1.81952e7 1.28562
\(726\) 0 0
\(727\) 1.32577e7 0.930318 0.465159 0.885227i \(-0.345997\pi\)
0.465159 + 0.885227i \(0.345997\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −1.38603e6 −0.0962642
\(731\) −369262. −0.0255588
\(732\) 0 0
\(733\) −909303. −0.0625099 −0.0312549 0.999511i \(-0.509950\pi\)
−0.0312549 + 0.999511i \(0.509950\pi\)
\(734\) −1.32156e7 −0.905413
\(735\) 0 0
\(736\) −2.79289e6 −0.190046
\(737\) −6.07717e6 −0.412129
\(738\) 0 0
\(739\) −286851. −0.0193217 −0.00966086 0.999953i \(-0.503075\pi\)
−0.00966086 + 0.999953i \(0.503075\pi\)
\(740\) −218894. −0.0146945
\(741\) 0 0
\(742\) 0 0
\(743\) 1.35906e6 0.0903163 0.0451582 0.998980i \(-0.485621\pi\)
0.0451582 + 0.998980i \(0.485621\pi\)
\(744\) 0 0
\(745\) 1.16850e6 0.0771327
\(746\) −1.13225e7 −0.744897
\(747\) 0 0
\(748\) −61843.6 −0.00404148
\(749\) 0 0
\(750\) 0 0
\(751\) 1.54404e7 0.998982 0.499491 0.866319i \(-0.333520\pi\)
0.499491 + 0.866319i \(0.333520\pi\)
\(752\) 1.89629e6 0.122282
\(753\) 0 0
\(754\) 2.00375e6 0.128356
\(755\) 499298. 0.0318781
\(756\) 0 0
\(757\) 1.70683e7 1.08256 0.541279 0.840843i \(-0.317940\pi\)
0.541279 + 0.840843i \(0.317940\pi\)
\(758\) 9.80100e6 0.619580
\(759\) 0 0
\(760\) −183091. −0.0114983
\(761\) −3.08345e6 −0.193008 −0.0965041 0.995333i \(-0.530766\pi\)
−0.0965041 + 0.995333i \(0.530766\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −1.32675e7 −0.822346
\(765\) 0 0
\(766\) 1.35362e7 0.833537
\(767\) 1.91261e6 0.117392
\(768\) 0 0
\(769\) 3.00821e7 1.83439 0.917195 0.398439i \(-0.130448\pi\)
0.917195 + 0.398439i \(0.130448\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −6.66216e6 −0.402320
\(773\) −2.16914e7 −1.30569 −0.652843 0.757494i \(-0.726424\pi\)
−0.652843 + 0.757494i \(0.726424\pi\)
\(774\) 0 0
\(775\) −866642. −0.0518305
\(776\) 9.74635e6 0.581016
\(777\) 0 0
\(778\) 1.65984e7 0.983146
\(779\) −520637. −0.0307391
\(780\) 0 0
\(781\) −6.99821e6 −0.410544
\(782\) 362924. 0.0212226
\(783\) 0 0
\(784\) 0 0
\(785\) 1.82526e6 0.105718
\(786\) 0 0
\(787\) 1.21019e6 0.0696490 0.0348245 0.999393i \(-0.488913\pi\)
0.0348245 + 0.999393i \(0.488913\pi\)
\(788\) 9.47297e6 0.543464
\(789\) 0 0
\(790\) 605067. 0.0344934
\(791\) 0 0
\(792\) 0 0
\(793\) 1.08489e6 0.0612633
\(794\) −6.58664e6 −0.370777
\(795\) 0 0
\(796\) −1.70573e7 −0.954173
\(797\) −2.44457e7 −1.36319 −0.681596 0.731728i \(-0.738714\pi\)
−0.681596 + 0.731728i \(0.738714\pi\)
\(798\) 0 0
\(799\) −246416. −0.0136553
\(800\) −3.17924e6 −0.175630
\(801\) 0 0
\(802\) 1.75466e7 0.963288
\(803\) 8.94186e6 0.489372
\(804\) 0 0
\(805\) 0 0
\(806\) −95439.3 −0.00517475
\(807\) 0 0
\(808\) −6.88923e6 −0.371229
\(809\) 1.18645e7 0.637352 0.318676 0.947864i \(-0.396762\pi\)
0.318676 + 0.947864i \(0.396762\pi\)
\(810\) 0 0
\(811\) −1.63289e7 −0.871778 −0.435889 0.900000i \(-0.643566\pi\)
−0.435889 + 0.900000i \(0.643566\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 1.41218e6 0.0747015
\(815\) −173882. −0.00916979
\(816\) 0 0
\(817\) 7.05282e6 0.369664
\(818\) 1.41837e6 0.0741150
\(819\) 0 0
\(820\) 59031.0 0.00306581
\(821\) 2.20202e7 1.14015 0.570077 0.821591i \(-0.306913\pi\)
0.570077 + 0.821591i \(0.306913\pi\)
\(822\) 0 0
\(823\) 9.43220e6 0.485415 0.242708 0.970099i \(-0.421964\pi\)
0.242708 + 0.970099i \(0.421964\pi\)
\(824\) 7.72091e6 0.396142
\(825\) 0 0
\(826\) 0 0
\(827\) 1.93147e7 0.982027 0.491014 0.871152i \(-0.336626\pi\)
0.491014 + 0.871152i \(0.336626\pi\)
\(828\) 0 0
\(829\) 3.26260e7 1.64883 0.824417 0.565982i \(-0.191503\pi\)
0.824417 + 0.565982i \(0.191503\pi\)
\(830\) 1.09096e6 0.0549685
\(831\) 0 0
\(832\) −350115. −0.0175349
\(833\) 0 0
\(834\) 0 0
\(835\) −933170. −0.0463174
\(836\) 1.18120e6 0.0584531
\(837\) 0 0
\(838\) 7.19210e6 0.353790
\(839\) −2.39890e7 −1.17654 −0.588272 0.808663i \(-0.700191\pi\)
−0.588272 + 0.808663i \(0.700191\pi\)
\(840\) 0 0
\(841\) 1.38341e7 0.674467
\(842\) 2.44352e7 1.18778
\(843\) 0 0
\(844\) −1.35365e7 −0.654108
\(845\) 1.63886e6 0.0789587
\(846\) 0 0
\(847\) 0 0
\(848\) 3.50689e6 0.167468
\(849\) 0 0
\(850\) 413129. 0.0196128
\(851\) −8.28726e6 −0.392272
\(852\) 0 0
\(853\) 1.36214e7 0.640988 0.320494 0.947251i \(-0.396151\pi\)
0.320494 + 0.947251i \(0.396151\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −5.51132e6 −0.257082
\(857\) −3.97793e7 −1.85014 −0.925071 0.379793i \(-0.875995\pi\)
−0.925071 + 0.379793i \(0.875995\pi\)
\(858\) 0 0
\(859\) 1.88973e7 0.873807 0.436904 0.899508i \(-0.356075\pi\)
0.436904 + 0.899508i \(0.356075\pi\)
\(860\) −799664. −0.0368690
\(861\) 0 0
\(862\) 7.64704e6 0.350530
\(863\) 1.81214e7 0.828256 0.414128 0.910219i \(-0.364087\pi\)
0.414128 + 0.910219i \(0.364087\pi\)
\(864\) 0 0
\(865\) −577482. −0.0262421
\(866\) 1.54212e6 0.0698753
\(867\) 0 0
\(868\) 0 0
\(869\) −3.90355e6 −0.175352
\(870\) 0 0
\(871\) 4.47075e6 0.199680
\(872\) −4.23291e6 −0.188516
\(873\) 0 0
\(874\) −6.93178e6 −0.306949
\(875\) 0 0
\(876\) 0 0
\(877\) −2.38248e7 −1.04600 −0.522999 0.852333i \(-0.675187\pi\)
−0.522999 + 0.852333i \(0.675187\pi\)
\(878\) −7.33528e6 −0.321129
\(879\) 0 0
\(880\) −133927. −0.00582991
\(881\) 6.59299e6 0.286182 0.143091 0.989710i \(-0.454296\pi\)
0.143091 + 0.989710i \(0.454296\pi\)
\(882\) 0 0
\(883\) 1.13391e7 0.489413 0.244707 0.969597i \(-0.421308\pi\)
0.244707 + 0.969597i \(0.421308\pi\)
\(884\) 45496.0 0.00195814
\(885\) 0 0
\(886\) 7.73568e6 0.331066
\(887\) 1.16981e7 0.499237 0.249619 0.968344i \(-0.419695\pi\)
0.249619 + 0.968344i \(0.419695\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 1.66035e6 0.0702628
\(891\) 0 0
\(892\) 1.79679e6 0.0756109
\(893\) 4.70649e6 0.197501
\(894\) 0 0
\(895\) −443947. −0.0185256
\(896\) 0 0
\(897\) 0 0
\(898\) −2.70542e7 −1.11955
\(899\) −1.63587e6 −0.0675073
\(900\) 0 0
\(901\) −455706. −0.0187014
\(902\) −380834. −0.0155855
\(903\) 0 0
\(904\) −8.42293e6 −0.342801
\(905\) −2.69803e6 −0.109503
\(906\) 0 0
\(907\) 2.74600e6 0.110837 0.0554183 0.998463i \(-0.482351\pi\)
0.0554183 + 0.998463i \(0.482351\pi\)
\(908\) 2.85563e6 0.114944
\(909\) 0 0
\(910\) 0 0
\(911\) 8.70382e6 0.347467 0.173734 0.984793i \(-0.444417\pi\)
0.173734 + 0.984793i \(0.444417\pi\)
\(912\) 0 0
\(913\) −7.03826e6 −0.279440
\(914\) −9.57967e6 −0.379302
\(915\) 0 0
\(916\) 7.35606e6 0.289672
\(917\) 0 0
\(918\) 0 0
\(919\) 3.65884e7 1.42907 0.714536 0.699598i \(-0.246638\pi\)
0.714536 + 0.699598i \(0.246638\pi\)
\(920\) 785940. 0.0306140
\(921\) 0 0
\(922\) 2.57180e7 0.996344
\(923\) 5.14832e6 0.198912
\(924\) 0 0
\(925\) −9.43369e6 −0.362516
\(926\) 5.46097e6 0.209287
\(927\) 0 0
\(928\) −6.00113e6 −0.228751
\(929\) 3.19411e6 0.121426 0.0607128 0.998155i \(-0.480663\pi\)
0.0607128 + 0.998155i \(0.480663\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −1.19787e7 −0.451720
\(933\) 0 0
\(934\) −1.74545e7 −0.654696
\(935\) 17403.3 0.000651031 0
\(936\) 0 0
\(937\) 1.53039e7 0.569447 0.284724 0.958610i \(-0.408098\pi\)
0.284724 + 0.958610i \(0.408098\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −533632. −0.0196980
\(941\) −1.23623e7 −0.455121 −0.227560 0.973764i \(-0.573075\pi\)
−0.227560 + 0.973764i \(0.573075\pi\)
\(942\) 0 0
\(943\) 2.23489e6 0.0818423
\(944\) −5.72818e6 −0.209212
\(945\) 0 0
\(946\) 5.15898e6 0.187429
\(947\) −5.83773e6 −0.211528 −0.105764 0.994391i \(-0.533729\pi\)
−0.105764 + 0.994391i \(0.533729\pi\)
\(948\) 0 0
\(949\) −6.57819e6 −0.237105
\(950\) −7.89069e6 −0.283665
\(951\) 0 0
\(952\) 0 0
\(953\) −1.59935e7 −0.570443 −0.285222 0.958462i \(-0.592067\pi\)
−0.285222 + 0.958462i \(0.592067\pi\)
\(954\) 0 0
\(955\) 3.73357e6 0.132469
\(956\) 1.30360e7 0.461319
\(957\) 0 0
\(958\) 5.56998e6 0.196083
\(959\) 0 0
\(960\) 0 0
\(961\) −2.85512e7 −0.997278
\(962\) −1.03889e6 −0.0361935
\(963\) 0 0
\(964\) −1.67621e7 −0.580947
\(965\) 1.87478e6 0.0648087
\(966\) 0 0
\(967\) −4.65279e6 −0.160010 −0.0800050 0.996794i \(-0.525494\pi\)
−0.0800050 + 0.996794i \(0.525494\pi\)
\(968\) −9.44324e6 −0.323916
\(969\) 0 0
\(970\) −2.74270e6 −0.0935942
\(971\) −2.17271e7 −0.739528 −0.369764 0.929126i \(-0.620561\pi\)
−0.369764 + 0.929126i \(0.620561\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 3.93168e7 1.32795
\(975\) 0 0
\(976\) −3.24917e6 −0.109181
\(977\) −2.27382e7 −0.762113 −0.381056 0.924552i \(-0.624440\pi\)
−0.381056 + 0.924552i \(0.624440\pi\)
\(978\) 0 0
\(979\) −1.07117e7 −0.357190
\(980\) 0 0
\(981\) 0 0
\(982\) 3.06902e7 1.01560
\(983\) 4.40870e7 1.45521 0.727607 0.685994i \(-0.240632\pi\)
0.727607 + 0.685994i \(0.240632\pi\)
\(984\) 0 0
\(985\) −2.66577e6 −0.0875451
\(986\) 779823. 0.0255449
\(987\) 0 0
\(988\) −868964. −0.0283211
\(989\) −3.02750e7 −0.984224
\(990\) 0 0
\(991\) 2.80292e7 0.906623 0.453312 0.891352i \(-0.350242\pi\)
0.453312 + 0.891352i \(0.350242\pi\)
\(992\) 285836. 0.00922226
\(993\) 0 0
\(994\) 0 0
\(995\) 4.80005e6 0.153705
\(996\) 0 0
\(997\) −4.46315e7 −1.42201 −0.711006 0.703186i \(-0.751760\pi\)
−0.711006 + 0.703186i \(0.751760\pi\)
\(998\) 1.35753e7 0.431443
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.6.a.bk.1.2 2
3.2 odd 2 294.6.a.q.1.1 yes 2
7.6 odd 2 882.6.a.bu.1.1 2
21.2 odd 6 294.6.e.x.67.2 4
21.5 even 6 294.6.e.z.67.1 4
21.11 odd 6 294.6.e.x.79.2 4
21.17 even 6 294.6.e.z.79.1 4
21.20 even 2 294.6.a.n.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
294.6.a.n.1.2 2 21.20 even 2
294.6.a.q.1.1 yes 2 3.2 odd 2
294.6.e.x.67.2 4 21.2 odd 6
294.6.e.x.79.2 4 21.11 odd 6
294.6.e.z.67.1 4 21.5 even 6
294.6.e.z.79.1 4 21.17 even 6
882.6.a.bk.1.2 2 1.1 even 1 trivial
882.6.a.bu.1.1 2 7.6 odd 2